Massachusetts Institute of Technology
6.005: Elements of Software Construction
Fall 2011
Quiz 1
October 14, 2011

Wl (ﬂ[[
Name:_! M(, Lu (| \ A5mg (01

e Vil 4
{

\
el
——

Athena User Name:

Instructions

This quiz is 50 minutes long. It contains 8 pages (including this page) for a
total of 100 points. The quiz is closed-book, closed-notes.

Please check your copy to make sure that it is complete before you start.
Turn in all pages, together, when you finish. Write your name on the top of
every page. Please write neatly. No credit will be given if we cannot read
what you write. Good luck!

Question Name Page Maximum Points
Points Given

Regexes & grammars 2 12 =3
State machines & testing 3 15 4
Specifications 4 18) &
Abstract data types (a) 5 5 5
Abstract data types (b) 6 18 Y
Recursive data types (a) 7 15 10
Recursive data types (b) 8 kS [

24

Name: h) (éQr’-.Q,IL 0f

Regular Expressions and Grammars

Consider the following grammar:

F B‘?EN*M 0 o |
B:: \
E: :|;|8 | A <) g 008
No= - |~

M:=D|O|P

(a) [8 pts] Which of the following strings could be legally and entirely recognized by the
grammar? (circle all that apply)

D
"OD

beo

k3‘
\r'

oQ\"":*“

-

\

(b) [4 pts] Write a regular expression for this grammar. You can use any operators from
common regular expression syntax. Quoting or escaping is unnecessary if your meaning

"L Lorold]

i Y, wid ore £ 15 or)

94 2

Name: p (@ § /"“’Z/;i 9/

State Machines and Testing

Before going to bed every night, Ben Bitdiddle turns on his alarm clock. It rings in the
morning to wake him up, and he turns it off. Sometimes — not often — he wakes up early
and turns the alarm off before it has a chance to ring.

(a) [12 pts] Draw a state machine for the alarm clock below. Label the states and the
transitions, using only the labels shown at the right. Some]abels may be used more
than once, and some may be unused

; ‘1, "1 ,f—f;,._,:_a rwﬂ Wh n 0/.'7r fx P :‘"’f“"J
TR e

bed
clock
early
off

on

ring
s ringing
*E, L(f turnoff
turnon

(b) [3 pts] Devise one or more test cases that together achieve all-transitions coverage for
this state machine. Write each test case below, not as Java code but as an event trace -- a
sequence of event labels from the state machine above.

9{(4 .ﬂw‘rrjl' A {g_(ﬂ,{\, (’H 0(0”7[O(((
} (%D"J ﬂ'}’ (A)!fg.ffj Jrf {n | 'ku/r\ O

%m ({ .- tvin 00, {60 o bed [nomU /ﬁ N4

f”“‘}:'fl/(:”j~ g sl ot borg) f VERD, S g ,‘

s n_@m&'ﬂj / 99 > bed “'“i&/m Gf; ’”g’f O\ . 7
z mufﬂ(ﬂ /r;m ‘“1#_,“,,/} m J ‘}.-. 2./0 ?J (l /,o([/(“ ? &,-"/?-,:
. 6{5,0({ 05 [ﬂﬂ:/j / 'Y i ’/’ﬁ ﬂ/no/.r,f
Fuin off R R Ll 1550 4Hd (w,,)
0 sself nof [(g4 = X o> v

Name: Pl &J‘NQM/

Specifications

Write good specifications for the following methods. Do not change the parameter types
or return type of the method, but you may change other parts of the method signature if
you feel it’s necessary to write a good spec.

/** Compute the square root of a numbers | fn[d,'{ 4 ({ %0 / /}/ ,

Opamm m“ X To (ornpj % (;} p
A M4t be 70 ¢ May Tak Jﬁm”

\./*/ @(Q'idtﬂ :T‘: /;, -’}'((/f\(a fd I ;/\J /]

public static int squareRoot(int x);

// IntSet represents a set of integers.
public class IntSet {

... // other fields and methods here

/** Find the smallest element in the set.

~ r H ; 8 4 \ {
/ @ (p‘k{'}‘(}. (N ‘i ‘t,ﬂd‘ l’ i !’ =j { n ’E] :g T:
/@ {'fu((’, j: ’I 5][1){‘) "!ﬂ':i.;:‘i"! if{“r:/? aﬂ(‘,’ éoflt&d =]”Pf‘}il L(;f//

DO\? (\0 Mﬂd (7 :,f;/ Gl On ’”PLr’:f(ﬂ
pubhc int smallest(); k
}
/"7“* Double every number. . -
QE ?Jm.Lv A A jib% 0(fmi'()g)
)/) r M ot L ‘fsz Iﬂjmgj(.g/> 16% lr/}'foi\ 5 fieh O 'i:" d Ot“ F/‘,i)

— Quch [FQJ

@l [CTibe 7wy \Qz»w
N /)

rof feu”’

b |

public static List<Integer> doubleAll(List<Integer> Ist);

4 ‘14 . /
U\fl7 Ohﬂ '/f&,lf: T rn,;a,;@(} ‘

S EEE S

] 1

Name: P(/} L8 o

Abstract Data Types

Consider the following code.

1 /** Text is an immutable data type representing English text. */
2 public class Text {

3 private final String text;

4 private final String[] words;

5

6 // Rep invariant:

b text != null; words !'= null;

7 // concatenation of words (words[@]+words[1]+...+words[words.length-1])
8 i is the same as text with spaces and punctuation removed
9 // Abstraction function:

10 s represents the English text in the string variable text
11
12 S

13 * Make a Text object.

14 * @param sentence a sentence in English. Requires sentence != null.
15 */

16 public Text(String sentence) {

17 this.text = sentence;

18 this.words = sentence.split(" ");

19 }

20

21 /** @return the words in the sentence */

22 public String[] getWords() {

23 return words;

24 }

25

26 /** @return the sentence as a string */

27 public String toString() {

28 return text;

29 }

30

31 /** concatenates this Text to that Text. Requires that != null. */
32 public Text add(Text that) {

33 return new Text(this.text + that.text);

34 }

35

36 /** @return true if and only if the word w is in the sentence.
37 Requires w != null */

38 public boolean contains(String w) {

39 for (String v : words) { if (w.equals(v)) { return true; } }
40 return false;

41 1

42

43 }

(a) [5 pts] For each constructor and method above, write in the box next to it:
C for creator .
P for producer /- ‘ (6’ gub s
O for observer

M for mutator .. met Al e

Name: P (05), \ l

(b) [18 pts] The code above was code-reviewed, producing the comments below. Circle
AGREE or DISAGREE depending on whether the comment is correct or incorrect, and
add your own one-sentence comment explaining your answer. The right explanation is
worth mfre than the rlght circle, |

of T)"Q— pf’(f {(; ’01 4
ep exposure threatens the rep invariant! AGREE [@E
AGREE QIAéE

—

line 2

line 18: Constructor doesn’t establish the rep invariant DISAGREE

66’“@» PN] w Nl -'0

hf = n
line 17: Rep exposure! Need to make a copy of text before storing it in AGREE IS G E
your rep. ; ,7

6-(1

o T vl
O |exl ((P(s -f"—/]
line 33: add() changes this.text, you shouldn’t do that in an immutable AGREE "DISV N RE,E
‘ \ >

ty

line 39: the compiler’s static checking will throw an exception here if
w == null

I {0”4 hﬁ’lﬁf ﬁ,_&d }f /

(\. g
@/e (ol (Vs iﬂ

Name: /(QLJU \{

Recursive Data Types

In this problem you will implement a recursive data type representing sets of words and
intersections of those sets. The datatype definition is:

WordSet = Base(t:Text) + Intersect(left: WordSet, right: WordSet)

(a) [15pts] Write Java code below that implements this datatype. Include the reps (fields)
and creators (constructors), but no other methods. You don’t need to write specs for
your methods in this problem. Note that you will need to use the Text datatype defined
in the previous problem; assume that all its implementation bugs have been fixed so that
it behaves according to its spec.

(IR Wad 1 ¢

\ N\
[

~

f » £l } f

WMo 821

J
(@i - (' o
i
X -
5 7

1 Name: ptm Qf I

(b) [15pts] Define a function over your datatype:
contains: WordSet ws, String w => boolean
/I requires: w is a word, with no spaces or punctuation
// returns: true if and only if w is an element of the

/! set of words represented by ws (0 L/“ N, 13 ?[o

_) - Ju/ MJ‘J f’(fit
Implement the function using the @;er reter pattern. Write your Java code below. A& e
Again, you don’t need to write spec h]S problem. You also don’t need to repeat the P

code you wrote above, but if you need to insert methods into classes you wrote above, | 'r i ” >
just put a brief outline around it with the name of the class, e.g. L Gt
ClassName { i (1069 0~
public void myNewMethod() { /

(\J\ (\lif |

U-A\.’.

Lo 7 ‘[ed [f 1 | il
Al koofw check ot (WodSed wy Gilay / /

/N

.
/Mf), 4/0{@0{({), 72@# og@;‘ﬁ e 7

J o
(& {un ﬂ? I Y
5 ,

)
9 ;/,PG Lo

/] (wld

D(Q E\ONQ ;AJ.‘,C!N.;‘Q O({ }‘L\” f .__/ }-‘\)
END OF QUIZ

o

\Word S 4

pal
v ¢ Chich
M?% I fhis Cb(/ = (SM
W L A
- VoS) foat)
o

;

Massachusetts Institute of Technology
6.005: Elements of Software Construction
Fall 2011
Quiz 1
October 14, 2011

Name: SOLUTIONS

Athena User Name:

Instructions

This quiz is 50 minutes long. It contains 1 pages (including this page) for a
total of 100 points. The quiz is closed-book, closed-notes.

Please check your copy to make sure that it is complete before you start.
Turn in all pages, together, when you finish. Write your name on the top of
every page. Please write neatly. No credit will be given if we cannot read
what you write. Good luck!

Question Name Page Maximum Points

Points Given
Regexes & grammars 2 12
State machines & testing 3 15
Specifications . 18
Abstract data types (a) 5 3
Abstract data types (b) 6 18
Recursive data types (a) 7 15
Recursive data types (b) 8 15

Name:

Regular Expressions and Grammars

Consider the following grammar:

F:=B'EN*M
B.=>

Ewx= :1];]8
N:x= -|"
M:=D|O|P

(a) [8 pts] Which of the following strings could be legally and entirely recognized by the
grammar? (circle all that apply)

ey

{* Y
h S

(b) [4 pts] Write a regular expression for this grammar. You can use any operators from
common regular expression syntax. Quoting or escaping is unnecessary if your meaning
is clear.

>?[:;8][-"]*[DOP]

>2(:18)(-1")*(D|OIP)

o

Name:

State Machines and Testing

Before going to bed every night, Ben Bitdiddle turns on his alarm clock. It rings in the
morning to wake him up, and he turns it off. Sometimes — not often — he wakes up early
and turns the alarm off before it has a chance to ring.

(a) [12 pts] Draw a state machine for the alarm clock below. Label the states and the
transitions, using only the labels shown at the right. Some labels may be used more
than once, and some may be unused.

bed
clock
turnoff early

off
(ringing

off

on
ring
ringing
turnoff
turnon

on rng

(b) [3 pts] Devise one or more test cases that together achieve all-transitions coverage for
this state machine. Write each test case below, not as Java code but as an event trace -- a
sequence of event labels from the state machine above.

start in off state, then
turnon, ring, turnoff, turnon, turnoff

or

start in off state, then turnon, ring, turnoff
start in off state, then turnon, turnoff

Name:

Specifications

Write good specifications for the following methods. Do not change the parameter types
or return type of the method, but you may change other parts of the method signature if
you feel it’s necessary to write a good spec.

/*%* Compute the square root of a number.

(@param x Requires x >= 0
@returns largest integer n such that n*n <=x

or

@param x Requires x is a perfect square
(@returns square root of X

or

(@param x

(@returns square root of x

@throws IllegalArgumentException if x < 0 or x is not a
perfect square

*/
public static int squareRoot(int x);

B T R A LR

// IntSet represents a set of integers.
public class IntSet {

.../l other fields and methods here

/%% Find the smallest element in the set.

Requires this set is nonempty.
@returns smallest x such that x is in this set

or

@returns smallest x such that x is in this set
@throws EmptyException if set is empty

Name:

or

@returns smallest x such that x is in this set, or
Integer. MIN INT if set is empty

*/
public int smallest();

b

e e e U,

/% Double every number.

Modifies nothing / Doesn’t modify Ist.
(@returns new list Ist2, of same length as Ist, such that for
all 1 (O<=i<lIst.length), Ist2[i] = Ist[i]*2

or

Modifies Ist such that Ist[i] after the call is twice as large as
Ist[1] before the call.
(@returns Ist

%)
public static List<Integer> doubleAll(List<Integer> Ist);

Name:

Abstract Data Types

Consider the following code.

1 /** Text is an immutable data type representing English text. */
2 public class Text

3 private final String text;

private final String[] words;

ES

5
6 // Rep invariant:
/7 text != null; words != null;
7 // concatenation of words (words[0]+words[1]+...+words [words.length-1])
8 L is the same as text with spaces and punctuation removed
9 // Abstraction function:
10 /7 represents the English text in the string variable text
11
12 Lk
13 * Make a Text object.
14 * @param sentence a sentence in English. Regquires sentence != null.
15 */
16 public Text (String sentence) ({
17 this.text = sentence;
18 this.words = sentence.split(" "):
19)
20
21 /** @return the words in the sentence */
22 public String(] getWords() {
23 return words;
24 }
25
26 /** @return the sentence as a string */
27 public String toString() {
28 return text;
29)
30
31 /** concatenates this Text to that Text. Requires that != null. */
32 public Text add(Text that) ({
33 return new Text (this.text + that.text);
34 }
35
36 /** @return true if and only if the word w is in the sentence.
37 Requires w != null */
38 public boolean contains(String w) {
39 for (String v : words) (if (w.equals(v)) { return true; })
40 return false;
41 }
42
43 '}

(a) [5 pts] For each constructor and method above, write in the box next to it:
C for creator
P for producer
O for observer
M for mutator

(b) [18 pts] The code above was code-reviewed, producing the comments below. Circle
AGREE or DISAGREE depending on whether the comment is correct or incorrect, and
add your own one-sentence comment explaining your answer. The right explanation is
worth more than the right circle.

Ay
/
line 23: Rep exposure threatens the rep invariant! ; AG REE) DISAGREE
N\ /
\ /

e, DN

Name:

Yes, the caller could mutate the words array, making it
no longer match sentence (and Text also no longer
immutable).

line 23 reply: No it doesn’t, words is a final variable.

final just makes the words reference
unchangeable: it doesn’t prevent the words
array from being mutated.

line 18: Constructor doesn’t establish the rep invariant.

Needs to look at punctuation too.

line 17: Rep exposure! Need to make a copy of text before storing it in
your rep.

String is immutable, so it’s safe to share it
between rep and caller.

line 33: add() changes this.text, you shouldn’t do that in an immutable
type.

add is a producer, not a mutator; it doesn’t
modity this.text. and can’t anyway because
this.text is a final reference to an immutable
object.

line 39: the compiler’s static checking will throw an exception here if
w == null

an exception will be thrown, but not by the
compiler and not by static checking;
exceptions are thrown at runtime.

Recursive Data Types

AGREE DISAGREE

YN

H

_ AGREE DISAGREE

AGREE

AGREE (DISAGREE)

AGREE { DISAGREE

S

In this problem you will implement a recursive data type representing sets of words and

intersections of those sets. The datatype definition is:

Name:

WordSet = Base(t: Text) + Intersect(left: WordSet, right:WordSet)

(a) [15pts] Write Java code below that implements this datatype. Include the reps (fields)
and creators (constructors), but no other methods. You don’t need to write specs for
your methods in this problem. Note that you will need to use the Text datatype defined
in the previous problem; assume that all its implementation bugs have been fixed so that
it behaves according to its spec.

public interface WordSet ({
}

public class Base implements WordSet ({
private final Text t;
public Base (Text t) {
this.t = t;
}
}

public class Intersect implements WordSet {
private final WordSet left, right;

public Intersect (WordSet left, WordSet right) ({
this.left = left;
this.right = zight;

Name:

(b) [15pts] Define a function over your datatype:
contains: WordSet ws, String w => boolean
// requires: w is a word, with no spaces or punctuation
// returns: true if and only if w is an element of the
I set of words represented by ws

Implement the function using the Interpreter pattern. Write your Java code below.
Again, you don’t need to write specs for this problem. You also don’t need to repeat the
code you wrote above, but if you need to insert methods into classes you wrote above,
just put a brief outline around it with the name of the class, e.g.

ClassName {

public void myNewMethod () ({

}

WordSet ({
public boolean contains (String w);

}

Base {
public boolean contains (String w) ({
return t.contains (w) ;

}

Intersect {
public boolean contains (String w) {
return left.contains(w) || right.contains (w):;

!

END OF QUIZ

6.005 Gradebook

6.005 Software Construction

| Dashboard | students | Assignments |

Grading Summary for Quiz 1

23
20 lj_
20 20
18 18
1
3 15
14
13 13

10

5

4| 4
0
. 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Number of Scores: 162
Average: 74.55
Standard Deviation: 13.48

lofl

vl befly i g9

https://stellar.mit.edw/S/course/6/fal 1/6.005/gradebook/summarychart....

10/16/2011 2:48 PM

(1005 bt

Nowpd p Lotagatec
"4(/;0\14 OMYML/

Nk fedd ah sy il
Gy ot Yo g
S, 6{,4/“'

E/@o% N)me g5 \N@u

014

6.005 Elements of Software Construction
Fall 2011
Project 1: An ABC Music Player
Friday, October 14, 2011

¢ Problem
Purpose

References

Specification

Tasks

Infrastructure

Warmup

Deliverables and Grading
Hints

®

*® & @ ° o

L

Prob.!ggl

Composition of a musical piece is often a trial-and-error process, in which the musician writes down a
series of notes on“paper and tests them out on a musical instrument, such as a piano. One way to do
this on a computeristotype the notes into a text file usin cial notation and feed them to a
program that understands this notation. This way, you can transcribe your favorite pieces of music or
compose your own pieces, and easily exchange them among your friends on the web.

~—a, |
@4‘2 one of the languages designed for this purpose. It was originally intended for notating_@_ﬂ_(__and
aditional tunes-of Western Europe, but it provides a sufficient set of constructs for transcribing a
reasonably complex piece of music, such as a Beethoven symphony. Since its invention in 1980's, abc has
become one of the most popular notations for music, with around 50,000 abc files circulating around the

web. i

L Thoight + mid) was
In this project, you will build an abc player that plays an abc file, by parsing it and feeding it to the Java
Midi API. You are required to handle only a subset of the language, which we will discuss in more detail
below in the Specification section. This subset is sufficient to play a large number of interesting tunes
that are available on the web, but you are welcome to implement the rest of the standard, as long as
yvour overall design remains clean and simple.

Purpose

The purpose of this project is to help you gain experience in (1) designing and implementing programs in
the fynctional style (that is, making extensive use of functions over immutable types); (2) designing and
implementing abstract types; and (3) using co@&dmmm’wiversmg
structures (sucma\r'la‘ﬁ‘fﬁs Class, Interpreter, Iterator, and Visitor). It also introduces you to the
fundamentals of compilation, in particular: (4) expressing a Iawamar; (5) converting a text

to an abstract syftax treerand (6) organizing a compiler into phases (lexing, parsing, static semantic
E e —:\.__—‘_‘_—-__J

analysis, etc). Finally, the project will give you further practice in software engineering fundamentals,
such as (7) clarifying a problem statement; (8) inventing clear and simple interfaces to minimize coupling,
and identifying and resolving undesirable dependences; (9) structuring a programto make it easily

testable, organizing, executing and evaluating test suites; and (10) working collaboratively in a team.
r——-""_‘___'_—'_ ——______

References

Before reading the problem specification, you should keep in mind that this document is NOT meant to
provide you with comprehensive information on the abc notation. Instead, you should consuit the

following list of sites during your project:
-~

e abcstandard v1.6: Current official standard for abc. _ !

» Required abc subset: a description of the required abc subset, including the<grammar in an EBNF.
For your interest, the full EBNF can be found here, but remember, you are remm
ONLY our subset.

e Chris Walshaw's abc site: An informative web site by the inventor of the language. Among other
things, the site contains a set of examples and a tutorial, which should help get you up to speed
with abc.

¢ John Chambers' abc site: Another comprehensive site on abc. A great feature on this site is the abc
tune finder, which lets you search through thousands of abc files around the web.

e Wikipedia article on abc.

e Wikipedia article on modern musical symbols: A fairly comprehensive overview of the Western
musical notation.

Specification

Note: You are NOT allowed to use any code taken from,e]n existing abc player as a part of your
implementation in this project. 0 ‘ M s
uf 0ld plaf

Required Subset of abc. The subset of abc that you are required to implement in this project is described
in a separate document, the abc subset for 6.005.

Tasks

You should perform the following tasks:

e Team Contracts. Please see this page for details.

* Warmup. There are some warmup exercises that you need to do, listed below. They will help you
learn about how the abc music player works.

¢ Grammars and datatypes. Write out the grammar of the abc music player. Then specify which
datatype definitions you would like to use for the different parts of the project.

e Snapshot Diagram. Write out diagrams of 3 distinct example ABC expressions. It should show
what happens in each part of the code in tmamm.

+ Implementation. Based on how your snapshot diagram, implement your code in Java. You may find
that you want to make changes to your design, and thus your snapshot diagram. You are free to
do this, but should record the changes so it is clear how and why you diverged from the original.
Remember to do test first programming. You will need to write unit tests.

¢ Test. Test your entire system on the staff sample inputs. Create at least three additional test
cases (e.g. your own abc files) to demonstrate that your player is able to correctly parse and play
various musical constructs,and also detect any semantic errors in an abc file.

» Reflection. Write a brief commentary saying what you learned from this experience. What was

easy? What was hard? What was unexpected? Briefly evaluate your solution, pointing out its key
merits and deficiericies. This is an individual activity.

Infrastructure

Java MIDI Sequencer

Before you start the project, you should learn about the Java MIDI Sequencer. The Sequencer allows you

to schedule a series of notes to be played at certain time intervals.

Look at the package scund under src, and study the provided class, SequencePlayer, For this project, you
will not need to modify this class, but you should become comfortable using its constructor and the two
methods, addNote gnd play,

R e
addNote(int note, int startTick, int numTicks): This method schedules a note to be played at startTick
for the duration of numTicks, Here, a "tick" is similar to a time step. At the beginning of a musical piece,

the global tick is initialized to 0, and as the music progresses through the notes, the global tick is
incremented by some number.

The first parameter note js a MIDI note value that corresponds to the Qi_t_clg_f_a_note. The provided class
Pitch contains a number of useful methods for working with pitches. The method toMidiNote returns the

MIDI note value of the particular note, and transpose can be used to transpose the note some number of
semitones up or down.

SequencePlayer(int beatsPerMinute, int ticksPerQ uarterNot?): The constructor for SequencePlayer

takes two parameters: ﬁygwh‘[@ (l(b‘ﬁ ;,1 X'Zg!

* The first, beatsPerMinute js the tempo of a musical piece. It is expressed in the number of beats
per minute (BPM), where each beat is equal to the duration of one quarter note. The BPM to be
used for a particular piece depends on the value of the optional tempo field ('Q") in the input abc
file. When this field is absent, the default tempo is 100 BPM, where each beat is equal in duration
to the default note length (indicated by the field 'L").

¢ The second parameter, ticksPerQuarterNote, corresponds to the number of ticks per quarter note.
Note that ticks used by the sequencer are based on discrete time. Think abomis
number needs to be in order to play notes of different durations in an abc piece. For example, if
ticksPerQuarterNote had a value of 2, then an eighth note would be played for the duration of
one tick, but you would not be able to schedule a sixteenth note for the correct duration.

play(): After all of the notes have been scheduled, you can invoke P12y to tell the sequencer to begin
playing the music.

Run the main method in SequencePlayer which shows an example of using a sequencer to play up and
down a C major scale. In this example, all of the notes in the scale have been hard-coded. In your abc

player, you will be walking over your data structures that represent a musical piece and automatically
schedule the notes at appropriate ticks. e
S

We are also providing some example abc files that you can use to test your abc player (included in the
SVN directory sample_abc):

e A simple scale (scale.abc)

e A Little Night Music by W. A. Mozart (little night music.abc)

¢ Paddy O'Rafferty, an Irish tune (paddy.abc)

e Invention by J. S. Bach (invention.abc)

e Prelude by J. S. Bach (prelude.abc)
¢ Fur Elise by L. v. Beethoven {(fur elise.abc)

You can find many more examples online, including here.

Warmup

abc Music Notation

Task 1: Transcribe each of the following small pieces of music into an abc file. Name your files as
piecel.abc and piece2.abc, respectively, and commit them under the directory sample_abc jn your team's
SVN repository. :

You may find the abc subset description useful.

Piece No.1: A simple, 4/4 meter piece with triplets. As a starter, the header and the first two bars are
already provided. You should complete the rest of the piece by transcribing the last two bars.

T:Piece No.l

M:C r

L:1/4 t b\gadoj

Q: 140

K:C

C CC3/4 D/4 E E3/4 D/4 E3/4 F/4 G2 |

| G St 2

Piece Noﬁ:rA more complex pkeaéé, with chords, accidentals, and rests. Set its tempo to 200, with the
default note length of 1/4.

Task 2: Write JUnit tests that play these pieces using the sequencer, similar to the main method in the
SequencePlayer class. Store them in a separate class called SequencePlayerTest,

Hint: SequencePlayer has a toString method that produces a string representation of all its events. This

might be useful if you want to compare sequences that sound the same, if you are not confident in your
listening skills.

Deliverables and Grading

~
For the first deadline (11:59 PM, Octobey18, 2011), your deliverables are:

e Team contracts, which should be in a file called TeamContract.pdf;

¢ Your results to the tasks in Warmup;

e Grammars, datatypes, state machines, and snapshot diagrams of the three gjven example ABC
expressions, in one file called Design.pdf.

The deliverables for the main deadline (11:59 PM, October 27, 2011) are:

¢ the revised design in Design.pdf;
¢ the implementation;
¢ the tests;

All your code should be completed by this deadline!
The reﬂectig-rgjdue on the reflection deadline (11:59 PM, October 29, 2011) are:

e Reflections on Team. How did you feel the group did? How did your team work? How was the
coding? How did you split the work?

¢ Reflections on Individual. How do you think you did? What did you do in the project? How do you
feel about it?

Reflections should be committed to abc-reflections, which you will pull as if it's a pset.

Your code should be committed in the repository you share with your teammates by the deadline. All
other parts of the project should be stored in your repository as two separate PDF documents, one for
each deadline, as mentioned above. Each commit to the repository should have a commit comment

saying what you changed, as well as who worked on it. Your TA/Mentor will be receiving your commit
emails. B e s T
dasn

Grades will be allotted according to the following breakdown:

¢ Team Contract -- 5%;

¢ Design -- 25%;

¢ Implementation -- 50%;
¢ Testing -- 15%;

¢ Reflection -- 5%

Hinj:s

Start early! This project is more wor@amt\se_eIms. Starting early on the project will give you more time

to sort out any issues and ask the staff questions that may arise, especially if you have trouble with
transcribing music.

Lexing and parsing: Given the grammar for abc, you will need to build a lexer that breaks the input

string into tokens and a parser that groups the tokens into a valid syntactic construct and produces an
abstract syntax tree (AST).

Designing datatypes: For the design of your abc player, you should think carefully about datatypes that
you need to represent the musical constructs in abc. Start with simple constructs, such as notes and

rests, and think about how you would build up on these primitive objects to create more complex
structures. How would you represent a triplet? A chord? What does a bar consist of? How would you
represent multiple voices? Sort out answers to these questions with your team members during the

design stage. | &

Why Jy e nged to e ce/ tin Jd.,tahy;w /
Evaluating expressions: Once you parse an abc file and create your own internal fepresentation of the
music as an abstract syntax tree (AST), you will need to perform various computations that involve

traversing the tree, possibly multiple times. Consider carefully the patterns you learned for performing
these traversals: you may want to use the visitor pattern, though an interpreter pattern might also work.
Parsing and pattern matching: We recommend that you think carefully about your approach to parsing
the abc file; consider how to make it easiest to write a single parser that can handle the entire file, with

complexities such as bars split across lines. You may find the Java pattern matching libraries such as
java.util.regex.Pattern gnd java.util.regex.Matcher helpful, but you should use them judiciously.

Multiple voices: A particular challenge you should think about is how you will represent multiple voices,
. . . T _____,______,__,_/—-—_"
and how you will merge them into a single sequence of midi events.

Use classtime wisely: Lecture and Recitation are cancelled for team/TA meetings for the duration of the
project. You should use the time to work on the project, or meet up with your TA/mentor. This mentor is
randomly assigned, so may not be the one who teaches your recitation.

10/15/11 Project 2: Description of the abc Subset for 6.005

An ABC Subset for 6.005

This document provides a high-level, but not necessarily comprehensive, overview of language constructs
that your abc player will nee}j_ to handle. For information on the exact syntax of abc, you should consult
the grammar in the EBNF.

An abc file consists of two parts: (1) the header, which contains various information about the musical

piece, such as its title, composer, tempo; meter, and note length, and (2) the body, which contains a
sequence of notes that make up the musical piece. =

1 Header

Each line in the header corresponds to a field, and begins with a single uppercase letter and a colon (":'),
followed by the content of the field. The following shows an example of what a header may look like:

X: 3
T: Turkish March
C: W. Mozart

2/4

1=

i m{la DU@A t'? /@‘lf’of‘t Mf’ ‘[‘Gfmg

According to this header, the title of the piece contained in this file is "Turkish March", and was composed

by a person named "W. Mozart". The piece is in A minor ('K: Am'), and the defautt length of each note or
beat in the music is one eighth ('L: 1/8"). Each bar contains two quarter beats ('M: 2/4").

The abc standard specifies a large number of fields. You are required to handle only the following subset:

* C: Name of the composer. r\O'} (O/Hﬂ JGM”Q‘RL \//Il‘% L—arﬂL ?(ﬂ /0/[,\

e K: Key, which determines the key signature‘for the piece. -

s L: Default length or duration of a note. 7 tlﬁl‘l gQ(cpl— WJ\'(

¢ M: Meter. It determines the sum of the durations 0f all notes within a bar. I

e Q: Tempo. It represents the number of default-length notes per minute. begf—, F(J[,nim/l*(’

e T: Title of the piece.

¢ X: Index number, similar to the track numberin a recording. In this project, this field does not carry
any meaning, as you are required to parse only one abc file at a time. However, the official standard
designates this field to be mandatory in every abc file, and therefore, your parser must be able at
least to read it (and may then discard it).

There are several additional requirements on the header:

e The first field in the header must be the index number ('X').
e The second field in the header must be the title ('T").

* The last field in the header must be the key ('K').

e Each field in the header occurs on a separate line.

All fields other than 'X', 'T", and 'K' are optional, and may appear in any order. When omitted, the default
values are 1/8 for the note length, 4/4 for the meter, and 100 beats per minute for the tempo. When the
field 'C' is omitted, any reasonable string will suffice (e.g. "Unknown").

More about key signature: A key signature is a set of sharps or flats associated with

particular notes in the scale. A sharp causes every occlrrence of that no n o (/ F (:‘
played one semitone higher, and a flat causes every occurrence of that note to be = 2 7
played one.semitone lower. For example, the key signature in the diagram shown on 6 '\'O{Q
the-right contains three sharps (placed on C, F, and G). Throughout the piece, every@) e
irrespective of the octave) should be played one semitone higher. Your abc N\‘ H/
player should handle every major and minor key; the list of keys and their signatures \Q

can be found here. You should also note that the effect of the key signature can be temporarily overridden

F_-_—-—-—._
web.mit.edu/6.0050n0afat 1/projects/.../abe_subset_description.html 1/5

10/15/11 Project 2: Description of the abc Subset for 6.005
with an accidental, which appears immediately left of its target note. Accidentals are described in Section

2 Body

2.1 Notes

The body of an abc file consists of a sequence of notes separated by bar lines. Middle C is denoted by

c)

and the scale of C in this octave is represented by the sequence

CDEFGAB ¢ (@ll q,+ dal
The note C in the next higher octave is denoted by a lower case C
& (:-ﬂh

Therefore, the sequence of notes that represents the scale of C twice, going through two octaves, and
starting with middle C is
CDEFGABcdefgab

Notes in the higher octave are denoted by appending an appropriate number of apostrophes (')
immediately after their names. For example, B

€ gn fighor

represents C in the tw'o octaves up from the middle C, and
\ L
o i :
& hide shil) . |

represents C in the three octaves up. Similarly, notes in the octaves below the middle C can be denoted
by appending commas (,). (——[We(
A bar line separates a sequence of notes into segments and is denoted by '|'. A double bar line (e.g.'||' or
'17") indicates the end of @ major section in the music. There are also repeat lines (e.g. '|:"), which are
described in Section 2.7,

As a summarizing example, the following sequence of notes

may be represented by
c, D, E, F,|IG, A, B, CIDE FGIAB cdle £fgalbc'"d e'|f' g a'b'l]

2.2 Note Lengths

By default, every note has the length specified in the 'L' header field (and when this field is absent, a
length of 1/8). The length of a particular note may be augmented (diminished) by appending a
mu1tiplicam\factor to the note. For example, if the default note length is 1/8 (i.e. an eighth note), then
the following sequence of notes

0 | R G) |

rA i I -y s IS 1 T 1 1 P | il | |
1 i | | |
e T R R i

L / e = o o s e

is represented 1%
Al/4 a/4 a/ A A2 A3 A4 A6 AB| A,1/4 A, /4 A,/ A, A,2 A3 A, 44,6 A,8 |]

——

web.mit.edu/6.005/wwwi/fal Uprke'cts.'. ../abc_subset_description.html 2/5

Tl (p {E ant of ae!

10/15M11 Project 2: Description of the abc Subset for 6.005
Note that either the denominator or the numerator (or both) in a fractional multiplicative factor can be
omitted. An absent numerator should be treated as 1, and an absent denominator as 2. In addition, any

apostrophes or commas that indicate the deviation from the middle octave must precede the multiplicative
factor.

2.3 Accidentals

The effect of the key signature as discussed in Section 1 ('K' field) can be temporarily overridden using
accidentals. An accidental can be a sharp (denoted by '~'in abc), a flat ('_"), or a natural ('="). Asharp
causes a note to be played one semmitone higher, a flat one semitone“ower, and a natural causes the note
to be played as if the key were in C without any accidental. Double sharps ('~~') and flats ('__") are also
allowed.

The effect of an accidental on a note lasts only up to the end of the current bar, and can be overridden by
another accidental that occurs in the same bar. The effect of the key signature is restored at the
beginning of the next bar.

2.4 Rests
A rest is denoted by

rA

and Jas the same default length as a note. Multiplicative factors have the same effect on rests as they do
on notes, but accidentals canno apptied to rests.

2.5 Chords

One or more notes may be played simultaneously in a chord. In abc, a chord is denoted by a group of
notes between square brackets ('['and ']'):

CORLE IR S

Notes within a chord can be embellished with an accidental or a multiplicative factor.

2.6 Tuplets
Atuplet is @ consecutive group of notes that are to be played for a duration that is either
greater or less than the sum of the_indivi no oup. In abc, a tuplet is 3
denoted by an opening round bracket '(’, the tuplet number, and the actual notes in the o~
tuplet. For example, P é“" i) Sg
(3GAB {
0 hp
is a tuplet that consists of three notes, and called triplet.
P

./ G’)‘
In this project, we require you to handle ONLY duplets (a2 group of two notes), triplets, and quadruplet (a /Oﬂ ﬁ;
group of four notes). The duration of each type of the tuplets are as follows:

l;'l

e Duplet: 2 notes in the time of 3 notes
e Triplet: 3 notes in the time of 2 notes
e Quadruplet: 4 notes in the time of 3 notes

For example, a triplet that contains three eighth notes is equal in duration to one quarter note; therefore,
each eighth note in the triplet should be played 2/3 the duration of a standard eighth note.

2.7 Repeats

A section of music that is enclosed within '|:" and ":|'is to be repeated once. For example, in the following
fragment of abc,

I: CDEF | GABCc :|

the two bars are repeated, so the sequence of notes that your abc player should produce as output is:
CDEFGABCCDEFGABGC

web.mit.edu/6.005/wwwi/fa11/projects/.../Jabc_subset_description.html 315

10/115/11 Project 2: Description of the abc Subset for 6.005
The begin repeat bar'|:' may be omitted; in this case, the repeat is from the beginning of a major section
(i.e. the bar that immediately follows '|]'), or the beginning of the musical piece—— ——

A repeated section may have a differet ending when it is played the second time. In abc, alternate
endings are indicated using '[1' and '[2'. For example,

|: CDEF I[LGABc :|[2FEDC |
should be played as

CDEEGABeC DEFEFEDGC

Note that when the repeat is played the second time, the bar that begins with '[1'is entirely skipped over.

3 Non-standard Extension: Multiple Voices

All of the abc constructs that we have discussed so far allow us to play only a single melodic line. Many
pieces of music (e.g. orchestral or band music), however, involve multiplemﬁ that are
played simultaneously. Multiple voices do not belong to the official abc language definition, but have
nevertheless become a part of the de facto standard among abc users,

Different definitions for multiple voices can be found online. Your abc player should be able to parse and
play multiple voices as defined as follows. Your abc playeris NOT required to be able to play different

Instruments, =7 | o e ’-ﬂ:tkjddq_ bwi(,

Voices are listed in the header of an abc file using one or more field lines that begin with 'V'. The content
of each voice field is the identifier for a particular voice, and can be an arbitrary string. For example, the
header ‘

X:0

¢ Prelude No. 1
I S BEEH
M:4/4

#9208

:100

upper

: middle

lower

=20 9

< < <Ot

K:C

says that this piece of music contains three different voices, labeled "upper", "middle", and "lower". There
is no limit on the number of voices in a piece.

A 'V' field line may re-appear in the middle of the body to indicate that the following sequence of notes
belongs toa%a_dr_lt’ic’:u/ia_r,\mice, until another voice field with a different identifier appears. For increased
readability, middle-of-body voice fields are often placed between small sequences of bars for different

voices in alternating fashion (as it is normally done in sheet music):

V: upper
z2 Gc eGee z2 Gc eGee | z2 Ad fAdf z2 Ad fAdf |
V: middle
z E7 Z £7 | z D7 z B7 |
V: lower
C8 C8 | Cc8 cC8 |
: upper
z2 Gd fGdf 2z2 Gd £fGdf | z2 Ae alhea z2 RAe aBea |]
V: middle
z D7 z D7 | z E7 z E7 |]
V: lower

,8 B,8 | C8 C8 |]
However, your abc player should not make any assumptions about the order or frequency of middle-of-
EEmeaeeo b e

web.mit.edu/6.005/wwwi/fal1/projects/.../abc_subset_description.html

10/15/11 Project 2: Description of the abc Subset for 6.005
body voice fields. For example, instead of interleaving voices as in the previous example, an abc author
could write each voice in its entirety under a single middle-of-body voice field:

V: upper

z2 Gc eGee z2 Ge eGee | z2 Ad fAdf z2 Ad fAdf | 22 Gd fGdf z2 Gd fGdf | z2 Ae aRea z2 Ae aRea |]
V: middle

zEl 2zET | zD72zD7 | zD?7zD?7 | zE7z E7T |]

V: lower

c8 Ccs8 | cBcs | B,8B,8 | C8 C8]

web.mit.edu/6.005/www/fal1/projects/.../labc_subset_description.html 515

List of musical symbols - Wikipedia, the free encyclopedia

e asann

| of 12

List of musical symbols

From Wikipedia, the free encyclopedia

http://en.wikipedia.org/wiki/List of musical symbols

Modern musical symbols are the marks and symbols that are widely used in musical scores of all styles and instruments today. This is
intended to be a comprehensive guide to the various symbols encountered in modern musical notation.

Contents

1 Lines

2 Clefs

3 Notes and rests

4 Breaks

5 Accidentals and key signatures
= 5,1 Common accidentals
= 5.2 Key signatures
= 5.3 Quarter tones

6 Time signatures

7 Note relationships
8 Dynamics

9 Articulation marks
10 Ornaments

11 Octave signs

= |2 Repetition and codas

Lines

13 Instrument-specific notation
= [3.]1 Guitar
= 13.2 Piano
= 13.2.1 Pedal marks
= 13.2.2 Other piano notation

14 See also
15 References
16 External links

Staff

— e —————

9 h GY-hghot o sl
c bF

—_—

D
3 Middle C

The fundamental latticework of music notation, upon which symbols are placed. The five stave lines and four
intervening spaces correspond to pitches of the diatonic scale - which pitch is meant by a given line or space is
defined by the clef. With treble clef, the bottom staff line is assigned to E above middle C (E4 in note-octave

il

notation); the space above it is F4, and so on. The grand staff combines bass and treble staffs into one system joined
by a brace. It is used for keyboard and harp music. The lines on a basic five-line staff are designated a number from
one to five, the bottom line being the first one and the top line being the fifth. The spaces between the lines are, in the
same fashion, numbered from one to four. In music education, for the Treble Clef, the mnemonic "Every Good Boy
Does Fine" (or "Every Good Boy Deserves Fudge") is used to remember the value of each line from bottom to top.
The interstitial spaces are often remembered as spelling the word "face" (notes F-A-C-E).

Ledger or leger lines

Used to extend the staff to pitches that fall above or below it. Such ledger lines are placed behind the note heads, and

extend a small distance to each side. Multiple ledger lines may be used when necessary to notate pitches even farther
above or below the staff.

Bar line

Used to separate measures (see time signatures below for an explanation of measures). Bar lines are extended to
connect the upper and lower staffs of a grand staff.

10/17/2011 12:18 AM

List of musical symbols - Wikipedia, the free encyclopedia

20f 12 ‘

http://en.wikipedia.org/wiki/List_of musical_symbols

Double bar line, Double barline
Used to separate two sections of music. Also used at changes in key signature, time signature or major changes in

style or tempo.

| 4 ;
1 Bold double bar line, Bold double barline
= Used to indicate the conclusion of a movement or an entire composition.

Dotted bar line, Dotted barline

————— Subdivides long measures of complex meter into shorter segments for ease of reading, usually according to natural
— e

Clefs

rhythmic subdivisions.

Accolade, brace
Connects two or more lines of music that are played simultaneously.“] Depending on the instruments playing, the
brace, or accolade, will vary in designs and styles.

Main article: Clef

Clefs define the pitch range, or tessitura, of the staff on which it is placed. A clef is usually the /eftmost symbol on a staff. Additional
clefs may appear in the middle of a staff to indicate a change in register for instruments with a wide range. In early music, clefs could
be placed on any of several lines on a staff.

] R

G clef (Treble Clef)

The centre of the spiral defines the line or space upon which it rests as the pitch G above middle C, or approximately
392 Hz. Positioned here, it assigns G above middle C to the second line from the bottom of the staff, and is referred
to as the "treble clef." This is the most commonly encountered clef in modern notation, and is used for most modern
vocal music. Middle-C is the Ist ledger line below the stave here. The shape of the clef comes from a stylised upper-
case-G.

C clef (Alto Clef and Tenor Clef)

This clef points to the line (or space, rarely) representing middle C, or approximately 262 Hz. Positioned here, it
makes the center line on the staff middle C, and is referred to as the "alto clef." This clef is used in modern notation
for the viola. While all clefs can be placed anywhere on the staff to indicate various tessitura, the C clef is most often
considered a "movable" clef: it is frequently seen pointing instead to the fourth line and called a "tenor clef™. This clef
is used very often in music written for bassoon, cello, and trombone; it replaces the bass clef when the number of
ledger lines above the bass staff hinders easy reading.

C clefs were used in vocal music of the classical era and earlier; however, their usage in vocal music has been
supplanted by the universal use of the treble and bass clefs. Modern editions of music from such periods generally
transpose the original C-clef parts to either treble (female voices), octave treble (tenors), or bass clef (tenors and
basses).

F clef (Bass Clef)

The line or space between the dots in this clef denotes F below middle C, or approximately 175 Hz. Positioned here,
it makes the second line from the top of the staff F below middle C, and is called a "bass clef." This clef appears
nearly as often as the treble clef, especially in choral music, where it represents the bass and baritone voices. Middle
C is the Ist ledger line above the stave here. The shape of the clef comes from a stylised upper-case-F (which used to
be written the reverse of the modern F)

Neutral clef

Used for pitchless instruments, such as some of those used for percussion. Each line can represent a specific
percussion instrument within a set, such as in a drum set. Two different styles of neutral clefs are pictured here. It
may also be drawn with a separate single-line staff for each untuned percussion instrument.

Octave Clef

Treble and bass clefs can also be modified by octave numbers. An eight or fifteen above a clef raises the intended
pitch range by one or two octaves respectively. Similarly, an eight or fifteen below a clef lowers the pitch range by
one or two octaves respectively. A treble clef with an eight below is the most commonly used, typically used instead
of a C clef for tenor lines in choral scores. Even if the eight is not present, tenor parts in the treble clef are understood

10/17/2011 12:18 AM

List of musical symbols - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/List_of musical symbols

to be sung an octave lower than written,

Tablature

For guitars and other plucked instruments it is possible to notate tablature in place of ordinary notes. In this case, a TAB-sign is often
written instead of a clef. The number of lines of the staff is not necessarily five: one line is used for each string of the instrument (so,
for standard 6-stringed guitars, six lines would be used). Numbers on the lines show on which fret the string should be played. This

Tab-sign, like the Percussion clef, is not a clef'in the true sense, but rather a symbol employed instead of a clef. The interstitial spaces
on a tablature are never used.

Notes and rests
Main article: Note value

Note and rest values are not absolutely defined, but are proportional in duration to all other note and rest values. The whole note is the
reference value, and the other notes are named (in American) in comparison; i.e. a quarter note is a quarter the length of a whole note.

Note British name / American name Rest
(O Breve / Double whole note N
==
O Semibreve / Whole note
Minim / Half note s—
7,
Crotchet / Quarter note g or \'
&
Quaver / Eighth note
3 For notes of this length and shorter, the note has the same number of flags (or hooks) as the rest has 7
branches.

h Semiquaver / Sixteenth note .7
[4
§ Demisemiquaver / Thirty-second note ‘7
R
Hemidemisemiquaver / Sixty-fourth note i

Sofl2 10/17/2011 12:18 AM

List of musical symbols - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/List_of musical_symbols

Beamed notes

Beams connect eighth notes (quavers) and notes of shorter value, and are equivalent in value to flags. In metered

music, beams reflect the rhythmic grouping of notes. They may also be used to group short phrases of notes of the
" same value, regardless of the meter; this is more common in ametrical passages. In older printings of vocal music,

- beams are often only used when several notes are to be sung to one beat; modern notation encourages the use of
beaming in a consistent manner with instrumental engraving, and the presence of beams or flags no longer informs the
singer. Today, due to the body of music in which traditional metric states are not always assumed, beaming is at the
discretion of the composer or arranger and irregular beams are often used to place emphasis on a particular rhythmic
pattern.

Dotted note
Placing dots to the right of the corresponding notehead lengthens the note's duration, e.g. one dot by one-half, two
dots by three-quarters, three dots by seven-eighths, and so on. Rests can be dotted in the same manner as notes. For
y example, if a quarter note had one dot alongside itself, it would get one and a half beats. Therefore n dots lengthen
the note's or rest's original ¢ duration to » (2 — 27").
10
Multi-measure rest

M Indicates the number of measures in a resting part without a change in meter, used to conserve space and to simplify
notation. Also called "gathered rest" or "multi-bar rest".

Durations shorter than the 64th are rare but not unknown. 128th notes are used by Mozart and Beethoven; 256th notes occur in works

of Vivaldi and even Beethoven. An extreme case is the Toccata Grande Cromatica by early-19th-century American composer Anthony
Philip Heinrich, which uses note values as short as 2.048ths: however, the context shows clearly that these notes have one beam more

than intended, so they should really be 1,024th notes.

2(11umbc1' of flags on note + 2)

The name of very short notes can be found with this formula: Name = th note.

Breaks

9 Breath mark
In a score, this symbol tells the performer or singer to take a breath (or make a slight pause for non-wind
instruments). This pause usually does not affect the overall tempo. For bowed instruments, it indicates to lift the bow
and play the next note with a downward (or upward, if marked) bow.

// Caesura

Indicates a brief, silent pause, during which time is not counted. In ensemble playing, time resumes when conductor
or leader indicates.

Accidentals and key signatures
Main articles: Accidental (music) and Key signature
Common accidentals

Accidentals modify the pitch of the notes that follow them on the same staff position within a measure, unless cancelled by an
additional accidental.

Flat
bJ Lowers the pitch of a note by one semitone.

Aof 12 10/17/2011 12:18 AM

List of musical symbols - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/List of musical symbols

Sharp
1: Raises the pitch of a note by one semitone.

Natural
J Cancels a previous accidental, or modifies the pitch of a sharp or flat as defined by the prevailing key signature (such
q as F-sharp in the key of G major, for example).
Double flat
l); Lowers the pitch of a note by two chromatic semitones. Usually used when the note to be modified is already flatted
D by the key signature.

} Double sharp

Raises the pitch of a note by two chromatic semitones. Usually used when the note to be modified is already sharped
XJ by the key signature.

Key signatures

Key signatures define the prevailing key of the music that follows, thus avoiding the use of accidentals for many notes. If no key
signature appears, the key is assumed to be C major/A minor, but can also signify a neutral key, employing individual accidentals as
required for each note. The key signature examples shown here are described as they would appear on a treble staff.

Flat key signature

Lowers by a semitone the pitch of notes on the corresponding line or space, and all octaves thereof, thus defining the
prevailing major or minor key. Different keys are defined by the number of flats in the key signature, starting with the
leftmost, i.e., B b, and proceeding to the right: for example, if only the first two flats are used, the key is B b
major/G minor, and all B's and E's are "flattened", i.c. loweredto B b and E b .

Sharp key signature

Raises by a semitone the pitch of notes on the corresponding line or space, and all octaves thereof, thus defining the
it prevailing major or minor key. Different keys are defined by the number of sharps in the key signature, also

proceeding from left to right; for example, if only the first four sharps are used, the key is E major/Cg minor, and the
corresponding pitches are raised.

Quarter tones

Quarter-tone notation in Western music is not standardized. A common notation involves writing the fraction //4 next to an arrow
pointing up or down. Below are examples of an alternative notation:

Demiflat

g Lowers the pitch of a note by one quarter tone. (Another notation for the demiflat is a flat with a diagonal slash
through its stem. In systems where pitches are divided into intervals smaller than a quarter tone, the slashed flat
represents a lower note than the reversed flat.)

5 Flat-and-a-half (sesquiflat)
Q’?J Lowers the pitch of a note by three quarter tones.

5of12 10/17/2011 12:18 AM

List of musical symbols - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/List_of musical_symbols

Demisharp
Raises the pitch of a note by one quarter tone.

Sharp-and-a-half

“u Raises the pitch of a note by three quarter tones. Occasionally represented with two vertical and three diagonal bars
s instead.

Time signatures

Main article: Time signature

Time signatures define the meter of the music. Music is "marked off" in uniform sections called bars or measures, and time signatures
establish the number of beats in each. This is not necessarily intended to indicate which beats are emphasized, however. A time
signature that conveys information about the way the piece actually sounds is thus chosen. Time signatures tend to suggest, but only
suggest, prevailing groupings of beats or pulses.

Specific time
3 The bottom number represents the note value of the basic pulse of the music (in this case the 4 represents the
crotchet or quarter-note). The top number indicates how many of these note values appear in each measure. This
4 example announces that each measure is the equivalent length of three crotchets (quarter-notes). You would
pronounce this as "Three Four Time", and was referred to as a "perfect” time.

Common time
C This symbol is a throwback to sixteenth century rhythmic notation, when it represented 2/4, or "imperfect time".

Today it represents 4/4.

Alla breve or Cut time
¢ This symbol represents 2/2 time, indicating two minim (or half-note) beats per measure. Here, a crotchet (or quarter

note) would get half a beat.
Metronome mark
Written at the start of a score, and at any significant change of tempo, this symbol precisely defines the tempo of the

J o l 20 music by assigning absolute durations to all note values within the score. In this particular example, the performer is
told that 120 crotchets, or quarter notes, fit into one minute of time. Many publishers precede the marking with letters
"M.M.", referring to Maelzel's Metronome.

Note relationships

. Tie
1 Indicates that the two (or more) notes joined together are to be played as one note with the time values added
d together. To be a tie, the notes must be identical; that is, they must be on the same line or the same space; otherwise,

it is a slur (see below).

Slur :

Indicates that two or more notes are to be played in one physical stroke, one uninterrupted breath, or (on instruments
with neither breath nor bow) connected into a phrase as if played in a single breath. In certain contexts, a slur may
i—/ only indicate that the notes are to be played legato: in this case, rearticulation is permitted.

e

Slurs and ties are similar in appearance. A tie is distinguishable because it always joins exactly two immediately
adjacent notes of the same pitch, whereas a slur may join any number of notes of varying pitches.

6of 12 10/17/2011 12:18 AM

List of musical symbols - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/List_of musical_symbols

| " music over several measures. A phrase mark indicates a musical phrase and may not necessarily require that the
i

‘ A phrase mark (or less commonly, ligature) is a mark that is visually identical to a slur, but connects a passage of
J music be slurred. In vocal music, a phrase mark usually shows how each syllable in the lyrics is to be sung.

.

Glissando or Portamento
| (4 A continuous, unbroken glide from one note to the next that includes the pitches between. Some instruments, such as
! / i the trombone, timpani, non-fretted string instruments, electronic instruments, and the human voice can make this
@ | glide continuously (portamento), while other instruments such as the piano or mallet instruments will blur the discrete
pitches between the start and end notes to mimic a continuous slide (glissando).

e 8 vy Tuplet

-
! [A number of notes of irregular duration are performed within the duration of a given number of notes of regular time
' i value; e.g., five notes played in the normal duration of four notes; seven notes played in the normal duration of two;
[® three notes played in the normal duration of four. Tuplets are named according to the number of irregular notes; e.g.,
duplets, triplets, quadruplets, etc.
Chord
§ Several notes sounded simultaneously ("solid" or "block"), or in succession ("broken"). Two-note chords are called
dyad; three-note chords are called triads. A chord may contain any number of notes.
«»..... Arpeggiated chord
§- - A chord with notes played in rapid succession, usually ascending, each note being sustained as the others are played.
Also called a "broken chord".
Dynamics

Main article: Dynamics (music)
Dynamics are indicators of the relative intensity or volume of a musical line.

Pianississimo
Extremely soft. Very infrequently does one see softer dynamics than this, which are specified with additional ps.
Pianissimo

_M) Very soft. Usually the softest indication in a piece of music, though softer dynamics are often specified with additional

Ps.
Piano
Soft. Usually the most often used indication.

Mezzo piano
Literally, half as soft as piano.

mf Mezzo forte

Similarly, half as loud as forte. If no dynamic appears, mezzo-forte is assumed to be the prevailing dynamic level.

f Forte
Loud. Used as often as piano to indicate contrast.

Fortissimo
1 ’ Very loud. Usually the loudest indication in a piece, though louder dynamics are often specified with additional fs
(such as fortississimo - seen below).

fff Fortississimo
Extremely loud. Very infrequently does one see louder dynamics than this, which are specified with additional fs.
Sforzando

.%f,’z, Literally "forced", denotes an abrupt, fierce accent on a single sound or chord. When written out in full, it applies to
the sequence of sounds or chords under or over which it is placed.

70f12 10/17/2011 12:18 AM

List of musical symbols - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/List_of musical symbols

Crescendo
< A gradual increase in volume.
Can be extended under many notes to indicate that the volume steadily increases during the passage.

Diminuendo

> Also decrescendo

A gradual decrease in volume. Can be extended in the same manner as crescendo.

Other commonly used dynamics build upon these values. For example "piano-pianissimo” (represented as 'ppp' meaning so softly as to
be almost inaudible, and forte-fortissimo, ('fff') meaning extremely loud. In some European countries, use of this dynamic has been
virtually outlawed as endangering the hearing of the performers.[”] A small "s" in front of the dynamic notations means "subito", and

means that the dynamic is to be changed to the new notation rapidly. Subito is commonly used with sforzandos, but all other notations,
most commonly as "sff" (subitofortissimo) or "spp" (subitopianissimo).

f‘ Forte-piano
P A section of music in which the music should initially be played loudly (forte), then immediately softly (piano).

Another value that rarely appears is niente, which means 'nothing’. This may be used at the end of a diminuendo to indicate 'fade out to
nothing'.

Articulation marks

Articulations (or accents) specify how individual notes are to be performed within a phrase or passage. They can be fine-tuned by
combining more than one such symbol over or under a note. They may also appear in conjunction with phrasing marks listed above.

) Staccato

" 3 This indicates that the note is to be played shorter than notated,

‘ usually half the value, the rest of the metric value is then silent.
Staccato marks may appear on notes of any value, shortening
their performed duration without speeding the music itself.

Staccatissimo

Indicates a longer silence after the note (as described above),

making the note very short. Usually applied to quarter notes or
shorter. (In the past, this marking’s meaning was more
ambiguous: it sometimes was used interchangeably with
staccato, and sometimes indicated an accent and not staccato.
These usages are now almost defunct, but still appear in some
scores.)

Accent

The note is played louder or with a harder attack than
surrounding unaccented notes. May appear on notes of any
duration.

ey, L'

Tenuto

This symbol has several meanings: It may indicate that a note be
played for its full value, or slightly longer; it may indicate a slight
dynamic emphasis; or it may indicate a separate attack on a
note. [t may be combined with a staccato dot to indicate a slight
detachment ("portato" or "mezzo staccato").

TN

>

Marcato
{ The note is played somewhat louder or more forcefully than a
] note with a regular accent mark (open horizontal wedge).

§of 12 10/17/2011 12:18 AM

List of musical symbols - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/List of musical symbols

Snap pizicato

Left-hand pizzicato or Stopped note ; ;
P Pl 0} On a stringed instrument, a note

’

i

i

A note on a stringed instrument where the string is plucked with
the left hand (the hand that usually stops the strings) rather than
bowed. On the horn, this accent indicates a "stopped note" (a
note played with the stopping hand shoved further into the bell
of the horn). |-

played by stretching a string away
from the frame of the instrument
and letting it go, making it "snap"
against the frame. Also known as a
Bartok pizzicato.

180 . 5

Natural harmonic or Open note

On a stringed instrument, denotes that a natural harmonic (also
called flageolet) is to be played. On a valved brass instrument,
denotes that the note is to be played "open" (without lowering

any valve, or without mute). In organ music, this denotes that a
pedal note is to be played with the heel.

%o

Fermata (Pause)

An indefinitely-sustained note, chord, or rest. Usually appears
J over all parts at the same metrical location in a piece, to show a

halt in tempo. It can be placed above or below the note.

Up bow or Sull'arco

\V On a bowed string instrument, the note is played while drawing
the bow upward. On a plucked string instrument played with a
J plectrum or pick (such as a guitar played pickstyle or a
mandolin), the note is played with an upstroke. In organ

notation, this marking indicates to play the pedal note with the
toe.
Down bow or Gitl arco
. Like sull'arco, except the bow is drawn downward. On a

plucked string instrument played with a plectrum or pick (such

- as a guitar played pickstyle or a mandolin), the note is played
with a downstroke. Also note in organ notation, this marking
indicates to play the pedal note with the heel.

Ornaments

Ornaments modify the pitch pattern of individual notes.

» Trill
]; A rapid alternation between the specified note and the next higher note (according to key signature) within its
; duration. Also called a "shake." When followed by a wavy horizontal line, this symbol indicates an extended, or
: running, trill. Trills can begin on either the specified root note or the upper auxiliary note, though the latter is more
prevalent in modern performances.

Mordent

e ad
" Rapidly play the principal note, the next higher note (according to key signature) then return to the principal note for
i the remaining duration. In most music, the mordent begins on the auxiliary note, and the alternation between the two
notes may be extended.

Mordent (lower)
Rapidly play the principal note, the note below it, then return to the principal note for the remaining duration. In
much music, the mordent begins on the auxiliary note, and the alternation between the two notes may be extended.

9012 10/17/2011 12:18 AM

List of musical symbols - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/List_of musical _symbols

(o N0
=
i
oy Turn
o When placed directly above the note, the turn (also known as a gruppetto) indicates a sequence of upper auxiliary
t note, principal note, lower auxiliary note, and a return to the principal note. When placed to the right of the note, the
! principal note is played first, followed by the above pattern. By either placing a vertical line through the turn symbol
or inverting it, it indicates the order of the auxiliary notes is to be reversed.
(o)
!’
i
|
)
-

The first half of the principal note's duration has the pitch of the grace note (the first two-thirds if the principal note is

mr Appoggiatura
a dotted note).

i
"Mf Acciaccatura
| The acciaccatura is of very brief duration, as though brushed on the way to the principal note, which receives
virtually all of its notated duration.

Octave signs

e - Ottava
The 8va sign is placed above the staff (as shown) to indicate the passage is to be played one octave higher.

(The 8va sign is placed below the stalf to indicate the passage is to be played one octave lower B4

|5 . Quindicesima
The /3ma sign is placed above the staff (as shown) to indicate the passage is to be played two octaves higher.

(The {5ma sign is placed below the staff to indicate the passage is to be played two octaves lower.)

8va and [5ma are sometimes abbreviated further to 8§ and /5. When they appear below the staff, the word bassa is sometimes added.

Repetition and codas

Tremolo

A rapidly-repeated note. If the tremolo is between two notes, then they are played in rapid alternation. The number of
slashes through the stem (or number of diagonal bars between two notes) indicates the frequency at which the note is
to be repeated (or alternated). As shown here, the note is to be repeated at a demisemiquaver (thirty-second note)
rate.

f In percussion notation, tremolos are used to indicate rolls, diddles, and drags. Typically, a single tremolo line on a
sufficiently short note (such as a sixteenth) is played as a drag, and a combination of three stem and tremolo lines
indicates a double-stroke roll (or a single-stroke roll, in the case of timpani, mallet percussions and some untuned
percussion instrument such as triangle and bass drum) for a period equivalent to the duration of the note. In other

cases, the interpretation of tremolos is highly variable, and should be examined by the director and performers.

10 of 12 10/17/2011 12:18 AM

List of musical symbols - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/List of musical_symbols

Repeat signs
bt +|} Enclose a passage that is to be played more than once. If there is no left repeat sign, the right repeat sign sends the
performer back to the start of the piece or the nearest double bar.

Simile marks
l /. Denote that preceding groups of beats or measures are to be repeated. In the examples here, the first usually means to
repeat the previous measure, and the second usually means to repeat the previous two measures.

g"}“l Volta brackets (1st and 2nd endings, or 1st and 2nd time bars)
* Denote that a repeated passage is to be played in different ways on different playings. (Can also have more than two
ré—“ """" — endings (Ist,2nd,3rd...n'th endings) by changing the number inside the bracket to the number repeated. (Note: More

than two or three endings is very uncommon but can be found in some musical arangements.))

Da capo

DC Tells the performer to repeat playing of the music from its beginning. This is followed by af fine, which means to
repeat to the word fine and stop, or a/ coda, which means repeat to the coda sign and then jump forward.
Dal segno

DS Tells the performer to repeat playing of the music starting at the nearest segno. This is followed by al fine or al coda

just as with da capo.

%_ Segno
y Mark used with dal segno.

Coda

{B Indicates a forward jump in the music to its ending passage, marked with the same sign. Only used after playing
through a D.S. al coda or D.C. al coda.

Instrument-specific notation
Guitar

The guitar has a right-hand fingering notation system derived from the names of the fingers in Spanish or Latin. They are written
above, below, or beside the note to which they are attached. (The little finger is rarely used in classical music.) They read as follows:

Symbol Spanish Latin English

p pulgar pollex thumb

i indice index index

m medio media middle
‘a anular anularis ring

¢, X, €, q,a mefiique minimus little

Piano
Pedal marks

These pedal marks appear in music for instruments with sustain pedals, such as the piano, vibraphone and chimes.

a':h() Engage pedal
* Tells the player to put the sustain pedal down.

%:‘ Release pedal
Tells the player to let the sustain pedal up.

11 of 12 10/17/2011 12:18 AM

List of musical symbols - Wikipedia, the free encyclopedia

12 0f 12

http://en.wikipedia.org/wiki/List_of musical_symbols

Variable pedal mark

More accurately indicates the precise use of the sustain pedal. The extended lower line tells the player to keep the
sustain pedal depressed for all notes below which it appears. The inverted "V" shape () indicates the pedal is to be
momentarily released, then depressed again.

Other piano notation

m.d. / MD/
r.H./r.h./
RH

m.s. / MS/
m.g./ MG/
ILH./Lh./ LH

1,2,3,4,5

See also

mano destra (Italian)
main droite (French)
rechte Hand (German)
right hand (English)
mano sinistra (Italian)
main gauche (French)
linke Hand (German)
left hand (English)

Finger identifications:

1 = thumb
2 = index
3 = middle
4 = ring

5 = little

= Graphic notation

= Music theory

= Glossary of musical terminology
= Eye movement in music reading
= Shape note

References
1. ~ U+007B left curly bracket (http://www.decodeunicode.org 3. * George Heussenstamm, The Norton Manual of Music Notation
/u+007B) at decodeunicode.org; retrieved on May 3, 2009 (New York and London: W. W. Norton & Company), p.16
2. ~ "No Fortissimo? Symphony Told to Keep It Down" 4, ~ Anthony Donato, Preparing Music Manuscript (Englewood
(http://www.nytimes.com/2008/04/20/arts/music/20noise.html) by Clifts, New Jersey: Prentice-Hall, Inc.). pp. 42-43

Sarah Lyall, The New York Times (20 April 2008)

External links

= Comprehensive list of music symbols fonts (http://www.music-notation.info/en/compmus/musicfonts.html)

= Music theory & history (http://www.dolmetsch.com/theoryintro.htm) (Dolmetsch Online)

= Dictionary of musical symbols (http://www.dolmetsch.com/musicalsymbols.htm) (Dolmetsch Online)

= Sight reading tutorial with symbol variations (http://www.music-mind.com/Music/indexlrm.HTM) Amy Appleby

Retrieved from "http:/en.wikipedia.org/w/index.php?title=List_of_musical_symbols&oldid=45563 0260"

Categories:

Musical notation

= This page was last modified on 15 October 2011 at 02:30.

» Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. See Terms of use
for details.
Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization,

10/17/2011 12:18 AM

10/15/11 ABC notation - Wikipedia, the free encyclopedia

ABC notation

From Wikipedia, the free encyclopedia
(Redirected from Abc notation)

ABC notation 1 a shorthand form of musical notation that has been in use since at least the 19th century, In basic
form it uses the letters A through G to represent the given notes, with other elements used To-ptace added value on
these - sharp, flat, the length of the note, key, ornamentation. Later, with computers becoming a major means of
communication, others saw the possibilities of using this form of notation as an ASCII code that could facilitate the
sharing of music online, also adding a new and simple language for soﬁwaremm%r form it remains a
language for notating music using the ASCII character set. The carlier ABC notation was built Ollﬂl_lié‘lr_(}’ized and
changed to better fit the keyboard and an ASCII character set by Chris Walshaw, with the help and inpuf of others.
Although now re-packaged in this form, the original ease of writing and reading, for memory jogs and for sharing
tunes with others on a scrap of paper or a beer coaster remains, a simple and accessible form of music notation, not
unlike others, such as tablature and Solfeggio. Originally designed for use with folk and traditional tunes of Western
European origin (e.g. English, Irish, Scottish) which are typically single-voice melodies which can be written on a
single staff in standard notation, the work of Chris Walshaw and others has opened this up with an increased list of
characters and headers in a syntax that can also support metadata for each tune.[!!

ABC Notation being ASCII-based, any text editor can be used to edit the music. Even so, there are now many
ABC Notation software packages available that offer a wide variety of features, including the ability to read and
process abc notation, including into midi files and as standard 'dotted' notation. Such software is readily available for
most computer systems including Microsoft Windows, Unix/Linux, Macintosh, PalmOS, and web-based.]

Later 3rd-party software packages have provided direct output (bypassing the TeX typesetter),l* and have
extended the syntax to support lyrics aligned with notes,) multi-voice and multi-staffnotation,[®) tablature,!) and

il o
\Vse ['{* u// R\d

Contents

1 History of ASCII ABC Notation
=].] Standardization

2 Example
3 Collaborative abc
4 See also
5 References
6 External links
= (.1 Documentation
6.2 Software
6.3 ABC Search Engines
6.4 ABC Tune Collections

History of ASCII ABC Notation

en.wikipedia.org/wiki/Abc_notation 1/6

; '.) AR

1011511 Jj J k\/ L‘G/ %&Eola;tg-’\’eikip%ﬁf?hgr;e encyclopedia
In the 1980s Chris Walshaw began writing out fragments of folk/traditional tunes using letters to represent the notes
before he learned standard Western music notation. Later he began using MusicTeX to notate French bagpipe
music. To reduce the tedium of writing the MusicTeX code, he wrote a front-end for generating the TeX commands,
which by 1993 evolved into the abc2mtex program.!8] For more details see Chris' short history of abc
(http-//abenotation.comvhistory.html) , and John Chambers' chronology of ABC notation and software
(http//trillian. mit.edw/~jc/music/abe/doc/ABCtut_History.html) .

Standardization

The closest thing to an official standard is the (officially labelled "draft") "ABC Music standard 2.0"%] Tt is a textual
description of abc syntax and was grown from the 1996 user guide of version 1.6 of Chris Walshaw's original
abc2mtex (httpz//abenotation.com/abe2mtex/) program. In 1997, Henrik Norbeck published a BNF description of
the abc v1.6 standard (http/www.norbeck.mvabc/abebnf htm) .[0]

In 1997, Steve Allen registered the text/vnd.abc MIME media type with the IAN A" But registration as a top level
MIME type would require a full—blowRF/C,[lz] In 2006 Phil Taylor reported that quite a few websites still serve
abc files as text/plain.m]

£
In 1999, Chris Walsha\kf/:‘./tarted work on a new version of the abc specification to standardize the extensions that
had been developed in various 3rd-party tools. After much discussion on the ABC users mailing list, a draft standard
- version 1.7.6] was eventually produced in August 2000, but was never officially released."4) At that point Chris
stepped away for several years from actively developing abe. 1]

Guido Gonzato later compiled a new version of the specification and published a draft of version 2.0. This
specification is now maintained by Irwin Oppenheim. Henrik Norbeck has also published a corresponding BNF
speciﬁcation.[16]

After a surge of renewed interest in clarifying some ambiguities in the 2.0 draft and suggestions for new features,
serious discussion of a new (and official) standard resumed in 2011 and is currently (July 201 1) ongoing on the
abcusers mailing list. Chris Walshaw has gotten involved again and is coordinating this effort. The changes currently
being discussed are reflected at httpi/abenotation.com/wikvabe:standard:v2.1

Example

The following is an example of the use of abc notation

Wil

:The Legacy Jig

M:6/8

L:1/8

R Jig

gfg gab GFG BAB | d2A AFD |

gfg gab age edB |1 dBA AFD :12 dBA ABd |:

| I
| |
efe edB | dBA ABd | efe edB | gdB ABd |
; | d2d def | gfe edB |1 dBA ABd :12 dBA AFD |

Lines in the first part of'the tune notation, beginning with a letter followed by a colon, indicate various aspects ofthe
tune such as the index, when there are more than one tune in a file (X:), the title (T:), the time signature (M:), the

en.wikipedia.org/wiki/Abc_notation 216

10/15/11 ABC notation - Wikipedia, the free encyclopedia
default note length (L), the type of tune (R:) and the key (K:). Lines following the key designation represent the tune.
This example can be translated into traditional music notation using one of the abce conversion tools. For example,
abem2ps software produces output that looks like the following image:

More examples can be found on Chris Walshaw's abc examples page (httpz/abenotation.com/examples. html) which
displays almost extensively abe basic features, except rest that are noted "z".

Collaborative abc

Recently abc has been implemented as a means of composing and editing music collections in collaborative
environments. Several examples of Wiki environments that have been adapted to use abce are:

= AbcMusic (http7/www.mediawiki.org/wikyExtension:AbcMusic) , plugin for MediaW iki. Note: This
implementation uses GNU LilyPond as the underlying rendering engine. LilyPond comes packaged with a
script, abe2ly, that converts ABC notation to LilyPond. The extension calls abe2ly then LilyPond.

= MusicWiki (http//www.soe.ucsc.edw/cgi-bin/cgiwrap/nwhitehe/moin.cgvMusicWiki) , a Python plugin
implementation for MoinMoin

= AbcMusic (http//www.pmwiki.org/wiki/Cookbook/AbcMusic) for displaying abc notation in PmWiki

= Traditional Music Wiki (http/music.gordfisch.net/tradmusic/) A collaborative source for traditional music
using a tailored version of the AbcMusic (http//www.pmwiki.org/wiki/Cookbook/AbeMusic) plugin

= abc plugin (http//wikisplitbrain.org/plugin:abe) for displaying abe notation m DokuWiki. This plugin uses
JefMoine's abecm2ps (httpz/moinejf free.fr/) package as the rendering engine. It optionally uses abc2midi
(available from the ABC Plus Project (http/abeplus.sourceforge.net/)) to produce midi audio output.

= abcjs plugin (http//code.google.convp/abgjs) for displaying abc notation on any web page. This allows
abc to be stored as text on the server and rendered client-side.

= Zap's abe (http//www.appbrain.com/app/se.petersson.abe) an Android application combining abcm2ps,
abc2midi and a bit of abe4; into a tool for composing in your pocket. Online help

en.wikipedia.org/wiki/Abc_notation

316

10/15/11

Team Contract

Team Contract

A team contract is an agreement between you and your teammates about how your team will operate --
a set of conventions that you plan to abide by. The questions below will help you consider what might go
into your team contract. You should also think back to good or bad aspects of team project experiences

you've already had. —as =

Your contract doesn't have to answer all the questions below, but must answer the boldfaced questions.
Focus on the issues that your team considers most important. e e,

Goals

What are the goals of the team?
What are your personal goals for this assignment?

* What kind of obstacles might you encounter in reaching your goals?
e What happens if all of you decide you want to get an A grade, but because of time constraints, one

person decides that a B will be acceptable?
Is it acceptable for one or two team members to do more work than the others in order to get the

team an A? 1
Syee

Meeting Norms

Do you have a preference for when meetings will be held? Do you have a preference for where
they should be held?

How will you use the in class time?

How often do you think the team will need to meet outside of class? How long do you anticipate
meetings will be? ‘H

Will it be okay for team members to eat during meetings? 51 sl

How will you record and distribute the minutes and action lists produced by each meeting?

Work Norms

How much time per week do you anticipate it will take to make the project successful?

How will work be distributed?

How will deadlines be set?

How will you decide who should do which tasks?

Where will you record who is responsible for which tasks?

What will happen if someone does not follow through on a commitment (e.g., missing a deadline,
not showing up to meetings)?

How will the work be reviewed?

What happens if people have different opinions on the quality of the work?

What will you do if one or more team members are not doing their share of the work?

How will you deal with different work habits of individual team members (e.g., some people like to
get assignments done as early as possible; others like to work under the pressure of a deadline)?

Decision Making

Do you need consensus (100% approval of all team members) before making a decision?

e What will you do if one of you fixates on a particular idea?

web.mit.edu/6.005/mwww/falipidecisiabePlayer handouts/teamcontract.html

1

005

f(()x{’(} /%(

ety
o !
“dy te proed

o, b bet of all 7 vv/ laak{a,m oy
~ o by Lo

~Onclear %MQW‘)

"ng Tame ol
b ¢ hes ot oand Ul boorp

- M bon't Commit

clis s

ode et bods conty "’j

~ I G O Y b« pe ok
Can Mgk | m WL0

ae dupe open e
Goo@]e doe what au/w}z W0t o

Y o
Iﬂ C[Mff +N‘Ll QJ/U% U/lt@[Vvﬁ/]@{ In 04\[, ﬁeq LvﬂrZ(
O# of Class o f Wﬁdd

Tal Bof » e e - minto!

ok

¢

Hfb per WEQI; A5 i a ’W@iéé

D |LJ1L(L l]ujrti ‘\
ﬁ)vbf Wl G Ty
— No gwi [‘Jm

e B T

o Wﬂf ”VLD y
~Tdhgal

i ﬁ%aﬂ@
~ heah for parsec petan W@
Ry Tt e

Plbsel ~Goal . Toe of
by
Plas ‘M“ (W

Nord fuh of weeting
ML% (gme]L/Vemt\

Tohe e Bbebe dedle b oo
~lewe 3 daw befre ~% s 2 bt dff ogi g

e

@
Ty fu ¢

(m le t Jon qef doe ed_/,f

_‘wabk (of don ewly

~% ve wll b o Sl deo

q\'L“‘* iW[WQJH, male anoThr angs ”17/6« 8l
“{(Vﬂ A J/ltswaat'm

l g l
ﬂr@r@s}r qytofltzf Wl Ten
)Foa,g on @P/ﬂltnj d/bségw_mL ofom

@__
fQ/’eovL
|
M@

o
e
(ontad |
i

Wl
W)
Mﬁdlw\ ¢
TI.L &;im
f L \
5 . ’”iij E% mlﬂ
G mo \ wl
k@%\t‘f:&, ‘Z‘WHE % ﬂ;m
(hw ‘[) l(- £ Fe P
LW ° ajie wm[|
%M Q(Oe ’V / aﬁ,,,%,f’e
| | b ' /
Jé{cw: (d,)“ 3 4/\“:} ({ CVL)
aUr{‘ ; 5
jh Z:jc“é l holf |
hi . o
LM : i w
"))
4 (

°
A R N N
99 % of nogl dx/mﬁm

o for Y 6}; horma|
bdﬂl/ I'JL (147(0 9

: gfrr
60 M de 3 e\(gH noto
o Moy
-%' jrirv, é[ﬂb ea@[q
go Ldn m[tz C{@ nts
“’fﬂmm

D‘D (M(Q/

T 10-}5 U g Vf/e(,’[6L 0

oo b ¢ @g b0
» it e {1

: 549

(éon@w\dlnj b, M Chally bund

plaz H

Qebon oo}

ol W -loe o Jubb #5 6 bt
l\b[{ ZZ ‘['\Lolﬁb e C{Vd]‘h?f noi‘(

6/@/{9 PR ﬂcolL Nze,r‘

'__—\

\éo loes [ris male Gons0

b T b 9 otk g gt
"‘So \{ow\ fo e Th no{\v

T wld wityl, Ot T by]

b @l T g 9 eyt hby 10
/ BQHM M‘cs

25 Naw L{

\/WUM, LQ ({’3362
71?)1 J‘tuH@bY & = L{
-D\LS 50tm Aqna\ﬂ‘,\ﬂ k \\M b (o

has 3 wle ol
(clf\ ({o {e% bf{ua [TMJ HPM
CU((mHY A c[vmfef rote, =
o e 2 <5336
& A TE IR Y

foo

% N}H}pl? 9#71}12@]0\[g

¢ JLOHW %
% Ll qt w 2

L €i@h+ notes :% -3 1) ‘faf%l S S0 25 rpgé/‘

UM Pdm« VLOF w&‘mj In 64//},0/ %(//,l

L0095 i
ey B
By T
%h ool o foui Pqthyq
o b ji/nz%

~(lay pat E&L'epse

Dl(&@mmj
- (
go"ﬁﬁ f % Pt o
—1gre/

O(ML& 1l~({)QS

(f (f"}m/ o€ /t’ﬂg);/i oFﬂ (‘(A"(C

‘ G ey ;ﬂplemb
- i)

(L l/oécas ot o T mudile
I 947 no

bl «
?,OE M‘ \/ﬂ'((g .

(n

@—% D \ -] @

0

Lhodd Toflet b Jffeat’
V@b%ﬁ pﬂpe/ \/\/OLT

ﬂ(\fh{/mﬁ/{
5;%@ Mo hire
Wb@/ Fakator /%@/f
- e g

)99511'(\()(\

/Qﬂ/@w M
ML({ ‘\({0@\2(0 C/d@

M pm% m ctuof@
MJH\L {5 MJH([P'(\c@ftm 'ﬁaaLW

Pih 5 \u/ (Mg, t wﬂﬂéf/dﬂJ"\@

qaquf, Ko oy f]@' Jro(/oé‘cej
CC?/(O(/ldoéc "thwtd“t'ﬁ
. () | 7
bt muHa/LiI”L; R 5(4/7
“oftes gty ko
0 cop oxpenre.
P My s hades it

Fofj))[(epeujr
//

&0(\ /Bu\ll(vlf\ﬂ PW&Q/
%\% - \m\] R{() JWOJB

WM*(: OH
“ o (e To vl gn el

Nq,ﬁr wee/*\vt\«) [0 @ Leoh//@ sﬁ‘wc | (owy

Snapshot Diagrams

LExample |

mdaex

— > ArravasteVioee s

“tainole 17 CONsar
it B B R

I S
.

“Lnikinewn”

tat] 2

Array Last
“Srallliems
I 2 EH

bl
P o

Note

wpleneenis

staftitem leqsth

Note

anplersents

Stllitem

pteh

anplenneies
StnlTitem

wplenents

Stul¥item ——
LD S

pritch
i

D oaccudental

Fpateh
o

accidental
-

LExample 2

mdex
ArravLast<Voice>

-

ArrayLast
“StalTten:
n

star

Chord

wafsloisnt Saliliem

1les

Ty

\] (}tﬁf

ArrayList<Note>

pnplersents Baltliem

IL':]_L’.]]]]”l':]l

|

" Note

prnplernents Staltlem

]
accwdental
|

lenzth

=

Lxample 3

{ ndex
Just=-

title

Arravlasi<Nences

Voice

ILesnes

ArrayLast
“StalMienm-

ArrayList

“Salllizm

<

ArrayLast

Note

vaplennents Sl

pteh

srapelernents Sl them

| pich

leneth

/

/

!

ptch

accidental

<Stallens

'L
{

Note

unplenents Sallln

length

Data Types

Staff [tem

interface

N

" Note =

implements
pitch Staffite

Rest

implements
Statfltem

7N
/ /Chord\\ ~Tuplet ™

unplements Staflltem

length

accidental

notes

octave

(i8]

J,
notes numNotes

- N~
ArrayList<Note>

N T
ArrayList<Note>

0 1

0 1 2

~" Note ™ " Note ™\
implements Stattltem

implements Stattltem

implements Staftltem

pitch

i,

" Note ™

implements StaftTtem

length

pitch

n'z

T

implements Statfltem

length pitch
accidental

length
accidental

pitch

&

octave

length pitch
accidental

length

accidental

accidental
octave

C:\Users\Michael\workspace\6.005\project1\design\design_sources\grammar.txt

Song ::= Header (Voice* | Items)

Header ::= X T MidHeader K

MidHeader ::= (C (L (M Q?|Q M?)?
| M (L Q2]Q L?)?
| O (L M?|M L?)7?

)?
| L (C (M Q?|Q M?)?
| M (C Q?]1Q C?)°?
| @ (€ M2|M C?)7?

L (C Q?2]Q C?)?
QO (C L2IL €772

>3

C (L M?|M L?)?
L (C M?|M C?)?
M (C L?|L C?)?

//MidHeader = C?, L?, M? and Q? in any order

Voice = V: String Items

Items ::= (Note | Rest | Chord | Tuplet)*

X = X: Int

T = T: String

C :#=.C: String

L ::=L: Int (/ Int)?

M ::= M: Int / Int

Q ::= Q: Int

K ::= K: [~ _]? [ABCDEFG] m?

Note ::= (» "2 | = | _?)? [ABCDEFGabcdefg] (,* | '*) Mult?
//Note = Accidental (if any), letter, octave shift (if any),

any)

Rest ::= z Mult? (/Chtok;fo

Chord ::= '[' Note* ']'

Tuplet ::= '(' Int Note*

Mult = Int? (/ Int?)?

Int ::= [0123456789]+

String ::= []* //any number of any character

-

Wednesday, October 19, 2011 9:22 AM

multiplicative factor (if

C:\Users\Michael\workspace\6.005\projecti\design\design_sources\datatypes.txt Wednesday, October 19, 2011 9:22 AM
Song: Info about a song and the music required to play it

index: the index number of the song

title: the title of the song

composer: the name of the person who composed the song)

meter: the time signature of the song, as an array containing the numerator at index 0
and the denominator at index 1

length: the length of a default note, as a fraction of a measure

tempo: the number of beats per minute in the song

key: the key of the song

ticksPerQuarterNote: the number of ticks that represent a quarter note in the seguence
player

voices: a list of all the voices that play during the song, as well as the music they
play

Voice: a voice that plays during the song, as well as the music it plays
items: the list of notes, rests, chords, and tuples that the voice plays

Staffltem: Interface

Note (implements Staffltem): A single note within a voice
pitch: the letter representing the pitch of the note within an octave
accidental: the sharp or flat applied to the note, if any (-1 for flat, 0 for no
accidental, 1 for sharp)
octave: the octave in which the note is located (represented as a number of octaves
above the middle octave- a negative number if the octave is lower than the middle octave)
start: the time at which the note begins, in ticks since the beginning of the song
length: the number of ticks for which the note lasts

Rest (implements StaffItem): A single rest (pause in playing) within a voice
start: the time at which the rest begins, in ticks since the beginning of the song
length: the number of ticks for which the rest lasts

Chord (implements StafflItem): A series of notes played simultaneously by the same voice
start: the time at which the chord begins, in ticks since the beginning of the song
notes: the list of notes played in the chord

|Tuplet (implements Staffltem): A series of notes played sequentially for different lengths
|from what their notation would otherwise imply
start: the time at which the tuple begins, in ticks since the beginning of the song
numNotes: the number of notes in the tuple
notes: the list of notes played in the tuple

s

o) [Pl —> [|

005
h_jl/.\/@ b iwaTemL (a8

o0 et Lo, Povaer, E/@W/
“Cand eah port

Lkl Qe r\(\ﬁ o i
o Fhat late

Lects

il dhing

OL/lfP\A f'oL&’,/\S

€mpl—7

&/H]H.L {r”ﬁ@
huide [ef)@ﬂ[
Volo Whife ofdef
hote
Cdi ul
(o
Chord
Kfﬁ b e

%

\A/\M[JPM/\E&A & Ongin fwm()
L@@ﬂ@ /(/\e, é)n SDWm’j

A e i it w(‘fn My (s
F(Dr' g UN/
ﬁr Qg pwlk:ﬂf\
‘\é@r wh e
\LF i+ nables

AR ol

Mo 4F poatin g o
60 L/plw\{ i} 6”£7

(oot ek ¢, ol
LW [\/Qﬁ

rekd

@How bober Lewr 0;‘ harnal o
ﬂé@wi ;a &’h"/ ﬂ(e/t

" fod 4 Cle haadles .
(/\/rH‘('[EM? ﬁf@ /]

——_M—g/ LV
Losll e b ahd

OC\]LQLCM ’\0Jr a5%1 (Ad E{%[d [“7%’//

_ %[Wﬁtffs M /1 1Lu/f/15 'F/z/@
IV it €W|i[$ Sonme Tl
Ufs U;n (f/lc(/@@c/ (IYLJ

Oc\l s fk |

‘LQKP/ Jwé’

4

Pavsor

Cam &s L(ZKQ/

b gy pasey
TODG 90 A/ZW(!Z (‘

(‘ 7(@0‘}‘ pg/g@ (/u/ % g?[/ (;‘j
O Ol ey Ot
‘T TNWL T, Can \
P_JMAQ LMH Y%h

W’(}Jr‘m{j +€wjf5 LV ¢ {f“f(/lﬂ[\/\lj On/*\pu’l e

(i ékwf(l/ /eg/wm,« V%bzfof o rale U, f
Ui blrc'/t!)

Did on msoll

Mu[l‘n% 1 59&(65 MZ L/o{/-z

o by

9
j,: vl L/@#O/“

T b felT
B e fo Shany

E\/@f} o0 oﬂe« Gle Cﬂcl%(,m

\(% j/v\/d/ﬂ /"V“L

‘—_—-—-—‘—‘—__

I e vl fof 4
T\rﬂag chs Tl &WO,L»;
ot Seming 1,
il o

"_ 6\k Jo A— (a,‘ﬂ/,“

f\\ g/f/

" e pa:,u(

g b
WO/L = (¢ {DWL E(/[("ggg

b 0d5”

j—lfvﬂf\& (,Kfin I@Lﬂd ([MP (@WMLW‘”O/\

W\ A \/vMJt ébbove r 5@;0«1& w/ (/E
I need f@r(ovl\ Wt feshs

”WW{ wt” Lfylf

Methagl L/PML D&sflyn mg

(e T night) aidut

el b St @ gy

‘“P(\z\/col‘@
)

Mool will 1 daft by Wed 9%

“The vt 00

P f

13

UO (mwmanq
Lo et 7‘0&47 '
D élw@‘{ mewwq t }/'\95%38 P@%@
9, Pracesses + n[@w/j
% Hn@ Gﬂo@
U g Cond 11013
T dead lachs
p(oj] lve DM
| Lps § ()uJ(é“/%/ d“@ V\Q’QL ’n(’f

[< (;t 1%](‘10/5 'h)Mfo{fa w

Vo The wag 4170 i+ g 1. n e
Cﬂ/)th(ZM,y (f‘o [\M’,

V\\‘/Wlple Poesbes ab sam i
b of modem Pﬁoﬁ’rgmwyl{

P,
™
4

l
(

j\ﬂ/f /W{ (]rt Il?maL

9
/\/Wy Now Qyéfmg Ace M@ M” M‘S “t7

AH \v@j Apps ’h@d fz f).f,,,l(@Aw} Co»za//e/w/

o o e

O 1 appsfmbdes wolkig ot ge i

g Edige
]l

6@

go hoe gowe Ghatd momur i
“modles e f/’;@ T(o bicess + d«mye

hly | A @ hetd popo-

\ J,/ W/

éo (/—EY Pfomeﬂt {5 wter\ OLJ'foS ae m./fa(,wf

(¢

—_—

}’ﬂ(l:o Nc%&@a rﬁ&&‘?z'j md@l

e il

I
g
D) | O
Cah l»@
dwa, MW7

xhow Mbswvc// 6(0%@/5 M/(k

—'—'—‘—-—-_._____

D,

D(DPLDX -6Lﬂ@d Mmo//
r5\/N T Mssage pass:flj
Fuadlog ol —ressage pascay
Eroil Ak - ghyred "

G

P(oceéﬁ %@f
“Le Q. V:KJM/[Campuwl()/
~ 0ol Sieddlion ok b@@
Al
45
e (okd ot clak ol
ol ol aluers aniag
™ ghating Tl
“ \
IJVQWW\{ .
Cack s ona (JL@CC \

CEM \L [FTE[F] EIF| - ‘“j

7
oubpented anl e Jime
Pragam Juso} o ok vas feq |

le%ﬁ ‘ff lﬂnl\g CL}L 6!00[\

©

Ny O(s o moMicoe poEsos

6@‘nm dgs whot (,/OLW an AV sqn Sloved Your /y
h W/“ ﬂvf” Lc}ncia\ w/ HDD aless

Theyl
| 1 .
Z./”LQ o V[/*V@l l{)/g(@&sor Wiﬁlm \/{/fvb’{/{ C(OMP‘/f?(/s

:Tl-—,~ﬁ TUT'L Can IOC PKM}VZ.j A(’f{ (gdf
G 1| S g Shae sume m@M(J7a

\

lﬂﬂe (MJ% Jﬂ«aﬂt L*} N% Ef?dk ﬁw'

= s M e L/W P({a(%@@@

00 Gl Dyeads o ow Ve

’wa‘r@ éaoWb (ngssage ,Déssr'ﬂj p;p‘;) b/,,v Pl sa
Weeal = lows of cmﬁvl

. [
T Pl e exedn
6 bk — e Ly Owa 4,{-@(,{,

E é =

My

@
Can stad ovallay
L (/bt/f{/uy Aeccu/a@ of O |pop

(o %e gl Ec}i{ﬁe,

g

P/Ob[@@ (JVOJWZ‘j 6101;] (' S (pe (,@J

ook (g pables v/ ghoed pensl;
ﬁ@ﬁ"?’? e BMK @KAM,U@ o

How do T opmﬁ;a@ Greai o
Noak ans fo be 41500

Bt pinke g | 1= actl. paleae
=1 +od
L/@Uflﬂ(oaldm =y

/ f
16 L(Zg Cam["bfe/ {/

/ }
:
i
)
an
o
' !

8
¥
g
p@fl
hay
F\
.
(wti: h
{ 6\ :e
0
,3 !
l fhe
ﬂ;@

i
y |
The {Oo
+2}j
C@L b
|
%@JEE;
s
v
T

/]
o
CLI/

Con

aLe
C-'_—_'____-_-_____'_,J
X

(@

T

(e cﬂvtmf\ﬂ/\ — (Offet ey dep%_(s 4n ’H\m@
/D{ \\O[OH% W/ ﬂ:s ZS' 'hw“ 57! ({0@ Vw}' l’L‘f/’PQ4 OCZM%
— Moles Pf W% ‘ilr\ij]Lo Jeb\/)

|
= QICJ@/M,[nlonnml paltter
kOQ, P(N%Of/ Fing sf q(wz/ COM{L(, (ays

(e T 0 Taw —ned wed
Lot do n S5, Ve mssge o

/Empfe > ke ‘Ls 71’7"@ f E)/cﬂx i oa pupse
en bt 500 by b ol sa faling

L I\W/d ang, Mo Vs

Y‘o\/ Caa } cm}l on O(de/ H’% ch oL
Vocagars g copdr (onna

LS{NQ, 0(4(7/ 49@5 ﬂﬂ%‘ MH@' -WLQA /ﬂmf,,w 5(.1‘{,54{?5[}
P Theabs, Yl s b he

p ek
fﬂ/CU C@A(,(/({Q/«Of

© .
2ty o prb (bl chaye iy

bo byl u,sml//{(o/l

% | had £ By, repodotg
. lwi b M\ d@@ (ole (]/)

6.005 Software Construction
Fall 2011
Prof. Rob Miller

L10: Concurrency

Today

Processes & threads

Time slicing

Message passing & shared memory
Race conditions

Deadlocks

O 0 0O 0 O

Concurrency

» Concurrency is everywhere, whether we like it or not

> Multiple computers in a network

» Multiple applications running on one computer

Y

Multiple processors in a computer (today, often multiple processor cores on a
single chip)

L

» Concurrency is essential in modern programming
* Web sites must handle multiple simultaneous users

* Mobile apps need to do some of their processing on servers (“in the
cloud™)

* Graphical user interfaces often require background work (e.g. Eclipse
compiling your Java code while you’re editing it)

* Processor clock speeds are no longer increasing — instead we’re getting
more cores on each new generation of chips. So in the future, we’ll have to
split up a computation into concurrent pieces in order to get it to run faster.

Two Models for Concurrent Programming
Shared Memory

These lecture notes have been collaboratively anthored, with contributions from Saman Amarasinghe, Srini Devadas, Michael Ernst, John
Guttag, Daniel Jackson, Rob Miller, Martin Rinard, and Armando S olar-1ezama. Copyright © MIT.

» Analogy: two processors in a computer, sharing the same physical memory

Concurrent modules Aand B
interact by reading & writing shared
B state in memory

A

—

Shared memory

Other ways to think about this:
A and B might be two #hreads in a Java program (we’ll explain what a thread is later)

A and B might be two programs running on a computer, sharing a common
filesystem

Message Passing
» Analogy: two computers in a network, communicating by network connections

2 0

. -G - | A and B interact by sending
A BE B messages to each other through
{ - ' i

a communication channel

A and B might be a web browser and a web server — A opens a connection to B, asks for a web page,
and B sends the web page data back to A.

A and B might be an IM client and server.

A and B might be two programs running on the same computer whose input and output have been

connected by a pipe (like Is| grep).

Threads & Processes

Process

» A process is an instance of a running program that is isolated from other processes
on the same machine (particularly for resources like memory)

» Tries to make the program feel like it has the whole machine to itself — like a fresh
computer has been created, with fresh memory

» By default, processes have no shared memory (needs special effort)
» Automatically ready for message passing (standard input & output streams)

Thread

» A thread is a locus of control inside a running program (i.e. position in the code +
stack, representing the current point in the computation)

» Simulates making a fresh processor inside the computer, running the same
program and sharing the same memory as other threads in process

» Automatically ready for shared memory, because threads share all the memory in the
y) i , ry
process (needs special effort to get “thread-local” memory that’s private to the
thread)

» Must set up message passing explicitly (e.g. by creating queues)

Time-slicing

How can I have many concurrent threads with only one or two processors in my
computer?

% o .
When there are more threads than processors, concurrency is simulated by time
slicing (processor switches between threads)

» Time slicing happens unpredictably and nondeterministically

: T T2 T3
L& T2 5]
1
T3 a thread may i ' E
be paused and t
resumed at 3 8
T2 any time
TI

A Shared Memory Example

Four customers using cash machines simultaneously

> Shared memory model — each cash machine reads and writes the account balance

directly
Cash |
machines A B C D
deposit $100 withdraw $100 deposit $100 get balance
to account | from account 2 to account | of account |
Bank %50 | | $2OO i $50 Shared memory

account | account 2 account 3

// all the cash machines share a single bank account
private static int balance = 0;

private static void deposit() {
balance = balance + 1;

}

private static void withdraw() {
balance = balance - 1;

5

// each ATM does a bunch of transactions that
// modify balance, but leave it unchanged afterward

private static void cashMachine() {
for (int i = @; 1 < TRANSACTIONS_PER_MACHINE; ++1) {
deposit(); // put a dollar in
withdraw(); // take it back out

Throughout the day, each cash machine in our network is running cashMachine(), processing
transactions. In this simple example, every transaction is just a one dollar deposit followed by a one-
dollar withdrawal, so it should leave the balance in the account unchanged. So at the end of the day,
regardless of how many cash machines were running, or how many transactions we processed, we
expect the account balance to still be 0.

But it’s not. If more than one cashMachine() call is running at the same time — say, on separate
processors in the same computer — then balance may »of be zero at the end of the day. Why not?

Here’s one thing that can happen. Suppose two cash machines, A and B, are both working on a
deposit at the same time. Here’s how the deposit() step typically break down into low-level
processor instructions:

get balance 0
add 1 1
write back the result 1

When A and B are running concutrently, these low-level instructions interleave with each other
(some might even be simultaneous in some sense, but let’s just worry about interleaving for now):

A get balance 0
Aadd 1 1

A write back the result 1
B get balance 1
Badd 1 2
B write back the result 2

This interleaving is fine — we end up with balance 2, so both A and B successfully put in a dollar.
But what if the interleaving looked like this:

A get balance 0

B get balance 0
Aadd 1 1

Badd1 1
A write back the result 1

B write back the result 1

The balance is now 1 — A’s dollar was lost! A and B both read the balance at the same time,
computed separate final balances, and then raced to store back the new balance — which failed to
take the other’s deposit into account.

This is an example of a race condition

» A race condition means that the correctness of the program (the satisfaction of
postconditions and invariants) depends on the relative timing of events in
concurrent computatons

* “Aisinarace with B”

> Some interleavings of events may be OI (in the sense that they are consistent with
what a single, nonconcurrent process would produce), but other interleavings
produce wrong answers — violating postconditions or invariants

Tweaking the Code Won't Help

All these versions of the code exhibit the same race condition:

// version 1

private static void deposit() {
balance = balance + 1;

}

private static void withdraw() {
balance = balance - 1;

}

// version 2

private static void deposit() {
balance += 1;

}

private static void withdraw() {
balance -= 1;

0

// version 3
private static void deposit() {

++balance;

¥

private static void withdraw() {
--balance;

i

You can’t tell just from looking at Java code how the processor is going to execute it. You can’t tell
what the indivisible operations — the atomic operations — will be. It isn’t atomic just because it’s one
line of Java. It doesn’t touch balance only once just because the balance identifier occurs only once
in the line. The Java compiler, and in fact the processor itself, makes no commitments about what
low-level operations it will generate from your code. In fact, a typical Java compiler produces exactly
the same code for all three of these versions!

The key lesson is that you can’t tell by looking at an expression whether it will be safe from
race conditions.

Reordering

It’s even worse than that, in fact. The race condition on the bank account balance can be explained
in terms of different interleavings of sequential operations on different processors. But in fact, when

you’re using multiple vatiables and multiple processors, you can’t even count on changes to those
variables appearing in the same order.

Here’s an example:

private boolean ready = false;
private int answer = 0;

// computeAnswer runs in one thread
private void computeAnswer() {
answer = 42;
ready = true;

¥

// useAnswer runs in a different thread
private void useAnswer() {
while (!ready) {
Thread. yield();
}

System. out.printlnCanswer);

We have two methods that are being run in different threads. computeAnswer does a long
calculation, finally coming up with the answer 42, which it puts in the answer variable. Then it sets
the ready variable to true, in order to signal to the method running in the other thread, useAnswer,
that the answer is ready for it to use. Looking at the code, answer is set before ready is set, so once
useAnswer sees ready as true, then it seems reasonable that it can assume that the answer will be 42,
right? Not so.

The problem is that modern compilers and processors do a lot of things to make the code fast. One
of those things is making temporary copies of variables like answer and ready in faster storage (registers
ot caches on a processor), and working with them temporarily before eventually storing them back to
their official location in memory. The storeback may occur in a different order than the variables were
manipulated in your code. Here’s what might be going on under the covers (but expressed in Java
syntax to make it clear). The processor is effectively creating two temporary variables, tmpr and
tmpa, to manipulate the fields ready and answer:

private void computeAnswer() {
boolean tmpr = ready;
int tmpa = answer;

tmpa = 42;
tmpr = true;

ready = tmpr;
// <== what happens if useAnswer() interleaves here?
/7 ready is set, but answer isn't

answer = tmpa;

Synchronization

The correctness of a concurrent program should not depend on accidents of timing

Race conditions are nasty bugs -- may be rarely observed, hard to reproduce, hard to debug, but may
have very setious effects.

To avoid race conditions, concurrent modules that share memory need to synchronize with each
other,

> Locks are a common synchronization mechanism
» Holding a lock means “I’'m changing this; don’t touch it right now”

» Suppose B acquires the lock first; then A must wait to read and write the balance
undl B finishes and releases the lock

» Ensures that A and B are synchronized, but another cash machine C would be able
to run independently on a different account (with a different lock)

Cash

machines | A B C D

waiting for lock i I
waiting for lock

Bank | | $50 $200 $50
lock helder { et L g (free]

account | account 2 account 3

Shared memory |

> Acquiring or releasing a lock also tells the compiler and processor that you're using
shared memory concurrently, so that registers and caches will be flushed out to the
shared storage (which solves the reordering problem)

Deadlock

Suppose A and B are making simultaneous transfers

N

A transfer between accounts needs to lock both accounts, so that money can’t
disappear from the system

v

A and B each acquire the lock on the “from” account

Y

Now each must wait for the other to give up the lock on the “t0” account

» Stalemate! A and B are frozen,
and the accounts are locked up.

“Deadly embrace”

» Deadlock occurs when concurrent
modules are stuck waiting for each
other to do something

v

A deadlock may involve more than
two modules (e.g., a cycle of
transfers among N accounts)

» You can have deadlock without
using locks — example later
transfer $100 wransfer $200
from account | from account 2
to account 2 to account |
% E Shared
L P memory
A 1
account | account 2

Message Passing Example
Now let’s look at the message-passing approach to our bank account example.
Modules interact by sending messages to each other

» Incoming requests are placed in a queue to be handled one at a time

Y

Sender doesn’t stop working while waiting for an answer to its request; it handles
more requests from its own qucuc

» Reply eventually comes back as another message

| A {8]| |c||D]

deposic $100 withdraw $100 deposic $100 get balance

to account | : from account 2 to account | of account |
' . 1 get bal '
queue for i]
Account | ! den $100
 dep $100 " wdrw $100
. Account | Account 2 Account 3
Accounts are bal: $50 | bal:$200 bal: $50

now modules,
not just memory locations

Message passing doesn’t eliminate race conditions

» Suppose the account state machine supports get-balance and withdraw operations
(with corresponding messages)

» Can Alice and Bob always stay out of the OVERDRAWN state?

withdraw

“Alice. Bob withdraw
get-balance get-balance
if b?lance > §75, if balance > $50, oK OVERDRAWN
withdraw $75 withdraw $50 .
: ACCOUHE / get- balance

bal: $100

» Lesson: need to carefully choose the atomic (indivisible) operations of the state
machine — withdraw-if-sufficient-funds would be better

Message-passing can have deadlocks too

» Particularly when using finite queues that can fill up

Concurrency is Hard to Test and Debug

If we haven’t persuaded you that concurrency is tricky, here’s the worst of it. 1t’s very hard to
discover these kinds of concurrency bugs (race conditions and deadlocks) using testing. And even
once a test has found a bug, it may be very hard to localize it to the part of the pragram causing it.

Poor coverage
#» Recall our notions of coverage
* all states, all transitions, or all paths through a state machine

> Given two concurrent state machines (with N states and M states), the combined
system has N x M states (and many more transitions and paths)

» As concurrency increases, the state space explodes, and achieving sufficient
coverage becomes infeasible

Poor reproducibility

» Transitions are nondeterministic, depending on relative timing of events that are
strongly influenced by the environment

* Delays can be caused by other running programs, other network traffic,
operating system scheduling decisions, variations in processor clock speed,
etc.

Test driver can’t possibly control all these factors

» So even if state coverage were feasible, the test driver can’t reliably reproduce
patticular paths through the combined state machine

heisenbugs

» a“heisenbug” is nondeterministic, hard to reproduce (as opposed to a “bohrbug”,
which shows up repeatedly whenever you look at it — almost all bugs in sequential
programming are bohrbugs)

» a heisenbug may even disappear when you try to look at it with println or debugger!

private static void cashMachine() {
for (int 1 = @; 1 < TRANSACTIONS_PER_MACHINE; ++1) {

deposit(); // put a dollar in

withdraw(); // take it back out

System.out.println(balance); // makes the bug
unreproducible!

}
1

one approach
» build a lightweight event log (circular buffer)
» log events during execution of program as it runs at speed

» when you detect the error, stop program and examine logs

Summary

Concurrency

» Multiple computations running simultaneously
Shared-memory & message-passing paradigms

» Shared memory needs a synchronization mechanism, like locks

o

¥ Message passing synchronizes on communication channels, like streams or queues
Processes & threads

» Process is like a virtual computer; thread is like a virtual processor

Race conditions

» When correctness of result (postconditions and invariants) depends on relative
timing of events

Deadlock

» When concurrent modules get stuck waiting for each other

(065 Refattan

Delah i ol

\o A domale] qmd(mg

{Pﬁoi} lOG/W‘t(a/ \/0v (,lao‘f

downf)

.
(pncmewi
LGO\L//(»: UM My {

Lot Gk
b G0 e el

~ Peom allq(fermjr f@%

_LG l UDU V¥ (/v;/l ﬁp 620\«(7/

"Wd ()J@MA‘
7_/LCP(/ Can m[d/ua%

¢ //}l_vbe be Hpeafuc lLTP@- o pallon
Cm@(fe/\cz Con mgly fht"«}g IC%W

/V%im[b (T

O web s

U

Qm(él&é?/} %‘Z‘dj
P«B'«&W’A_ (Wﬁ (WHJ?W)[fﬂa/fs OIC SWO(/’U’

~ @'I/Vl@mﬂ/? él‘a/;/kj LJ/W)W@ A é!'w&{ Wﬁrm/\/ b{

P(OC(’,%@ L df’/faut W Hf\/?.(/@s

~(tn hae i g Pemory oo

S0 Can (Ja Me A P(Lﬁﬂ/ﬁ “'CMJ ol e NS ug e Pasm

7

\
hb\fw{s d%@(’r% — must ée (M/ﬁ/{
p fo@sies ik less dqag(y

Wp(m%@/ a%&g s J(

e lC@B +9 eadt pro
¢
ZOIY .

| ﬂreo{i = Mv R\/ed/o((lQmﬂq/W)

Thead « 51(411();
it

\ | TMH\L(, \/0\;& (V/L”q

\

e hllg Ny

]

YO\/ J,fm‘\l]L,\a\v lelc(/LL (ua Lbjfc)

W hiper il oy
NQ P@Jm‘tbc;

‘H\(Qﬂ/& lJQtJQ ()
- }M itk Lo ‘ﬁ\(a«i o (}4 15711 ox eq/7v'fy
) m& bﬂ(m ‘HL {OUWt\ \(4["0 fk mu/l'n P/mﬂ/dﬂ/)

thead Stk

ﬂvecd. : jdm

oo™
L@o{‘w@/ ”

p(omw“%
(7 Lot / S/ -
() nefe Soclioks
D bloolfxlmg
D w;'/e f)mh)(ﬂlﬁ
L doad lede

PSS m/e Dn/f VM{II’HL

__’/

'3 Mmorf. Psﬂ/ﬁ Q/é/?
‘D{y\ 6'{/1%(P@j@d—

P 5: Pfo(&%ﬁs *nglw“ty

Pé(i %(@L&s 1 [odly
% 7. (T

Pajet. Conblas all 30 TH cli e 5yoler

6@,\(\@/ Lq&ufﬁq Ontr /AN \L[CUAOH;M;/ Pm@/“”"""“/
{l// /
= o ‘UW hjer oldar p (ol
oldures 0«! Wﬁumwj-ﬁ

~ 'y &@AM,

7

v
Louttry,
hMPﬂﬁﬁ{

\ ngead % \ 1’:\:@‘(

fned

[|

_B P/o\o\mé \l\jll\lﬂ\)Lhrm& Lmﬁn [C(MV‘{]C 69%\%1:@) d)t

gare me”l — (UL Q)mm\lm
..____.-—--——"--—___-—/

)) 0{"%\#& (J{P(%(lﬁ 04 grocdﬁc 6—;,}('7
"osogt Pagsiny

L=

“tak absf 4oy

" dald,
/L“‘ﬁ ({52 (a {001)—"\ C@ﬁ(’/ﬁ
~ mosth MssagC. PW‘/“j
" b (an

@(50 G(\g; 1 L\ﬂf‘{ _— L@
\ : AL /\’QW{ Wi
%wj b e (onditons

Lo j(m VO ey ool P 62\@%«:/ M@Mﬂ/‘/
- 60 €%y g don't Codtre g Janyef% ks

(,“Q/ﬁ'/ﬁ@wez \Jﬂs‘l@h PGZ/JHLG/;«]

ndatts (gt
-
W gl e
pC

Our P5 G seds male Ay oedk walf

LOO dﬂt Vzd‘ V\e]lwﬂ/h Sﬂol‘é& LM

- frces g

I\ILV, Ut’/][‘/d’[(M‘F/*@/
oen (P (3t ladks Ll
(wih ey

Eedl |

In \/k 5'}/3%5

OJ(M é’ffems
t\ﬁl, IN (Q’9 CWW

CL\[QlLlL/%OKJQ/ Cdn })Q on G Mﬂ,’m@ as u/c‘{(/0@@%@5

e AgTwork @ Sﬁu,[&
“bik o Wt Qe o prid

AN cal o

Lk o b
iz 8 Dol \t af
— s T oo (Q h”:ﬂ/dw N
[7/6}{2[391 \v @ Oy /NrY

Fol neluol' Iﬂ*’ff&tt bes n e of fox‘h

() - 9935

' (’for E?fbcl ;mlw{'dfﬁx

Lhe wholo o9
T‘ Mf‘ e&d fgaff 60

\/gb gaerr = polt 90
LM’@« ol poff 70
~ (redkes ookt Jy on potf D

Q)

pOFJr LHB J(g”m t ¢ cv/{@ﬁq? Oylof?

5@/}/9/ g"("@{y |];91[045 gM Ow C&lﬂ@‘{';ﬂﬂb on {;kez Pd/f“

N

W@MW/@%&
// YA

\/\k{r\ c\iwﬁ COWNd;ﬂ/\ mlv@s *@HM}P {/@’L‘f‘”

g)
QQ" ly Colok MDJ@[
‘ j,“s-!f/'“:ﬂ
= G0 N |wh]

e vie n@fwrk a5 M boy "76)0
gﬁ ve (ol cant on]lt/n‘“j

hiags \obc\cﬁ
ViEia—

Read() cihs debo & avarlolle
walls % ok welinle

Wile) s debe € @
WAHS if 6{,“ wf@é ace @U

gmil wl l’\ﬂv(? 43 ‘merj((,’ 5[’%’6({ L,dfe/ On @ANCHM

/%
iy
ﬁ@m P(A/]Ul(?,.s 6(’/1(’, Ob{’r)OaF(messagt LC\ LVJ(Fe/ Y ﬂ/
GOK) oV 'r/\ Morg d@]lw‘({
Wil % db on whe adely bk Gk
P(@%@CO‘
R MYy gy) (@%dg{*_ﬁ L,d?mﬁ
\afﬁpi@a_ fron fot/
Sty of s / bte

@(LA ey o » - bl

0

g" WQN A W H\ﬁ faks oo of tahs Y7
Gl iy el gt Xt

Clit fogesty Sors Cephe,
Cl:eml b &q%}rq §e/v(2/ = M‘zﬁ
R@r{u@ﬁ 0 Nm W /(QplT = ﬂjum\/\

Vom 1, < T[Hh (:J

Web suas wge prdocds e i

(’ AsaT baed

Can vl Feled o oo b pagp
ey basie oy
B 6‘% for M/@\%

G@‘d fo'h)CO{ ([66163/]
"l@@(mm{? for (hey,

V0 T
— e Xtgrohi],

“9%0 (% sond dee [TF b

Comn ngg wald [of T gt i ﬁﬂ%ﬂ
CET, PUT/ DELFIE

Pl ok m@lf’ed‘?’%
l€’WL (o fcf he WtHf”l n Oﬁz [ﬂﬂ
5“{ IJ,VG(0}) C(,"} é(’/la l%cequ

O‘h/? C{n, uﬂﬁﬁj O(Oﬂ 7‘ t//v(ﬁp/aLW{
MSO e XL ingFeud
— 350N

» 6{@\((, ffmuﬁh S0 leh’y cun (’64({

el 1 M e

6.005 Software Construction
Fall 2011
Prof. Rob Miller

L11: Processes & Sockets

Today

Client/server
Network sockets
Blocking

Wire protocals
Deadlocks

o C C C O

Required reading (from the Java Tutorial)

* 1/O Sweams (up to 1/O from the Command Line)
* Network Sockets

Review

Shared memory vs. message passing
Race conditions caused by shared memory access

Today: dig deeper into message passing, and see our first example of deadlock

Client/Server Design Pattern

in today’s lecture (and in PS5) we’re going to use a well-established design pattern for message
passing called client/server.

This pattern has multiple processes communicating by message passing. There are two kinds of
processes: clients and servers. A client initiates the communication by connecting to a server. The
client sends requests to the server, and the server sends replies back. Finally the client disconnects.

Many Internet applications work this way: web browsers are clients for web servers, an email
program like Thunderbird or Outlook is a client for a mail server, etc.

On the Internet, client and server processes are often running on different machines connected by
the network, but it doesn’t have to be -- the server can be a process running on the same machine as
the client.

Network Sockets

a network interface is identified by an 1P address (or a hostname, which translates into an 1P address;
so there may be many synonyms)

examples: 127.0.0.1, localhost; web.mit.edu
an interface has 65536 ports, numbered from 0 to 65535

a server process binds to a port (the listening port). clients have to know which number it’s binding
to. Some numbers are well-known (port 80 is the standard web server port, port 22 is the SSH port,
port 25 is the standard SMTP email server port). When it’s not a standard port for the kind of
server, you just treat it as part of the address (you may have seen URLs like http://128.2.39.10:90007
The 9000 is the port number to connect to on the computer at [P address 128.2.39.10,

These lecture noles have beew collaboratively awthored, with contributions from Saman Amarasinghe, Srini Devadas, Michael Ernst, Jobn
Guittag, Daniel Jackson, Rob Miller, Martin Rinard, and Armando Solar-1egana, Copyright © MIT.

the listening port is just used to accept incoming client connections. Once the connection is
accepted, the server creates a new socket for the actual connection, with a fresh port number
(unrelated to the listening port number). Both the client and server sockets have port numbers.

Buffers

Dara is sent over a network in chunks. Rarely just byte-sized chunks (though they may be). The
sending side typically writes a big chunk (maybe a whole string like “Hello, world!”, or maybe 20
megabytes worth of video data all at once). The network chops that chunk up into packets, which
are routed separately over the network. And the receiver reassembles the packets together to a
stream of bytes,

The result is a bursty kind of data transmission — the data may be there when you want to read it, or
you may have to wait for it.

When data arrives, it is put into a buffer, which is simply an array in memory that is holding it until
you read it.

Streams

Stream abstraction: a sequence of bytes

Most modern languages support Unicode, in which characters are 16 bits. But file storage and
network transmission uses bytes, which are only 8 bits long,.

character set (Unicode) vs. character encoding (Latin-1, UTF-8, UTF-16, Windows horrible)

1nputSLreﬂm/(DmpulSchnm vs. Reader/Writers

Blocking

Blocking means a thread waits (doing nothing) until an event occurs. It’s usually used to refer to a
method call: when a method call blocks, it delays returning to its caller until the event occurs.

Socket streams exhibit blocking behavior:
- When an incoming socket’s buffer is empty, read() blocks.
- When the destination socket’s buffer is full, write() blocks.

Blocking is very convenient from a programmet’s point of view, because the programmer can write
code as if the read() call will always succeed, no matter what the tming of data arrival. The operating
system takes care of the details of delaying vour thread until read() ean succeed.

Blocking happens throughout concurrent programming, not just in I/O. Concurrent modules don’t
work in lockstep, like sequential programs do, so they typically have to wait for each other to catch
up.

We'll see, though, that all this waiting causes the second major kind of bug in concurrent

programming: deadlocks.

Wire Protocols

Now that we've eot our client and our server and they’re connected up with sockets, what do they
g) >)
pass back and forth over those sockets?

a protocol is a set of messages that can be exchanged by two communicating parties. A wire
protocol, in particular, is a set of messages represented as byte sequences, like “hello world” and
ub)

ye®,

most Internet applications use simple ASClI-based wire protocols. You can even use a Telnet
program to check them out. For example:

HTTPR:
telnet web.mit.edu 80

GET /

The GET command gets a web page; the / is the path of the page you want on the web.mit.edu
server. So this command effectively fetches the page at hup://web.mit.edu:80/

Internet protocols are defined by RFC specifications (RFC stands for “request for comment”).

Designing a Wire Protocol

similar to defining operations for an abstract data type: small, coherent, adequate
the equivalent of representation independence is platform-independence

ready for change — e.g., version number that client and server can announce to each other. GET /

HTTP/1.0

Data Serialization

Java object serialization
XML
JSON

Deadlock

When buffers fill up, message passing systems can experience deadlock.

Deadlock: two concurrent modules are both blocked waiting for each other to do something. Since
they’re blocked, neither will be able to make it happen, and neither will break the deadlock.

In general, in a system of multiple concurrent modules communicating with each other, we can
imagine drawing a graph in which the nodes are the modules and there’s an edge from A to Bif A is
blocked waiting for B to do something. The system is deadlocked if at some point in time, there’s a
cycle in this graph. The simplest case is the two-nade deadlock, A -> B and B -> A, but more
complex systems can have larger deadlocks.

Deadlocked systems appear to simply hang. They’re not done, there’s still work to be done, they just
can’t make any progress,

One solution to deadlock is to design the system so that there is no possibility of a cycle — so that if
i’s possible for A to wait for B, then it’s never possible for B to wait for A,

Another approach to deadlock is #imeonts — if a module has blocked for too long (maybe 100
milliseconds? mavbe 10 seconds? it depends on the application and how long you need to wait), then
vou stop blocking and throw an exception. Then the problem becomes what do you do when that
exception gets thrown.

We'll come back to deadlocks again when we talk about locking (which is what gave deadlock its
name).

(0
@EM

Cdﬂ \\M (A(L)H/dfj # 9{ Sﬂviﬁf/l—ﬁ fn A\ fU’VL
bl Tl g b usd

Codt 5= S (100,210 ",wqf/)s
B NMdlede 1 < . PAfewd Reacee M

Lapt ﬁ@m Re ¢lor (SL gﬁﬂjnpvfﬁfé’@ﬂ[))) j
Softn, 04, ity (i v Lin)

iy

Ve Weker P ¥

p f(}(ﬁ n (lsees))

Puﬂwp{«(t ¢ ity fdes oo
Gy g,

E

6.005 Software Construction
Fall 2011
Prof. Rob Miller

L12: Thread Safety

Today

o Confinement
o Threadsafe datatypes

Required reading

* Concurrency

* Wrapper Collections

Optional reading
The material in this lecture and the next lecture is inspired by an excellent book:

* Brian Goewz et al. Jara Concirrency in Practice. Addison-Wesley, 2006,

Review

Recall race conditions: multiple threads sharing the same mutable variable without coordinating what
they’re doing. This is unsafe, because the correctness of the program may depend on accidents of
timing of their low-level operations.
There are basically four ways to make variable access safe in shared-memory concurrency:
* don’t share the variable between threads. This idea is called confinenent, and we’ll explore it
today.
* make the shared data immutable. We've talked a lot about immutability already, but there
are some additional constraints for concurrent programming that we’ll talk about in this

lecture.

* encapsulate the shared data in a threadsafe datatype that does the coordination for you.
We'll talk about that today.

L]

use synchronization to keep the threads from accessing the variable at the same time.
Synchronization is what you need to build your own threadsafe datatype. We'll talk about
that next tume.

These Jecture notes have been collaboratively anthored, with contributions fromt Saman Amarasinghe, Srini Devadas, Michael Ernst, Johu
Guttag, Daniel [ackson, Rol Miller, Martin Rinard, and Armands Solar-Legama. Copyright © MIT.

Threads

A look at how to create threads in Java. For more details, see the Java tutorial link above.

public void serve() throws IOException {
ServerSocket serverSocket = new ServerSocket(PORT);

while (true) {
// block until a client connects
final Socket socket = serverSocket.accept();

// start a new thread to handle the connection
Thread thread = new Thread(new Runnable() {
public void run() {
// the client socket object is now owned by this thread,
// and mustn't be touched again in the main thread
handle(socket);
}
3
thread.start(); // IMPORTANT! easy to forget
// when does thread.start() return?
// when will the thread stop?

Thread Confinement

Thread confinement is a simple idea: you avoid races on mutable data by keeping that data confined
to a single thread. Don’t give any other threads the ability to read or write the data directly.

Local variables are always thread confined! A local variable is stored in the stack, and each thread has
its own stack. There may be multiple invocations of a method running at a time (in different threads
ot even at different levels of a single thread’s stack, if the method is recursive), but each of those
invocations has its own private copy of the variable, so the variable itself is confined.

But be careful — the pariable is thread confined, but if it’s an object reference, you also need to check
the object it points to. 1f the object is mutable, then we want to check that the object is confined as
well — there can’t be references to it that are reachable from any other thread.

What about local variables that are initially shared with a thread’s Runnable when it starts, like socker
in the code above? Java requires those variables to be final! Immutable references are okay to use
from muldple threads, because vou don’t get races with immutability.

Avoid Global Variables

Unlike local variables, global variables (called “static” in Java) are nof automatically thread confined.

Lf you have static variables in your program, then you have to make an argument that only one thread
will ever use them, and you have to document that fact clearly, Better, you should eliminate the static
variables entirely.

Here’s an example that we looked at in a previous lecture:

// This class has a race condition in it.
public class Midi {

private static Midi midi = null;
// invariant: there should never be more than one Midi object created

private Midi() {
System.out.println("created a Midi object");
}

// factory method that returns the sole Midi object, creating it if it
doesn't exist
public static Midi getInstance() {
if (midi == null) {
midi = new Midi();
1

return midi;

}

This class has a race in the getlnstance() method — two threads could call it at the same time and end
up creating two copies of the Midi object, which we don’t want.

To fix this race using the thread confinement approach, you would specify that only a certain thread
(maybe the “midi playing thread”) is allowed to call Midi.getInstance(). The risk here is that Java
won'’t help you guarantee this.

In general, static variables are very risky for concurrency. They might be hiding behind an innocuous
function that seems to have no side-effects or mutations. Consider this example:

// is this method threcadsafe?
/**
* @param x integer to test for primeness; requires x > 1
¥ @return true if and only if x is prime
*/
public static boolean isPrimeCint x) {
if (cache.containsKey(x)) return cache.get(x);
boolean answer = BigInteger.value0f(x).isProbablePrime(100);
cache.put(x, answer);
return answer;

}

private static Map<Integer,Boolean> cache = new
HashMap<Integer,Boolean>();

This method is not safe to call from multiple threads, and its clients may not even realize it.

Threadsafe

A datatype is threadsafe if it behaves correctly when used from multiple threads, regardless of how
those threads are executed, and without demanding additional coordination from the calling code.

- “behaves correctly” means satstying its specification and preserving its rep invariant

- “how threads are executed” means threads might be on multiple processors or timesliced on
the same processor

- “without additional coordination” means that the datatype can’t put preconditions on its
caller related to timing, like “you can’t call get() while set() is in progress.”

Remember lterator? It’s not threadsafe. lterator’s specification says that you can’t modify a
collection at the same time as you're iterating over it. That’s a precondition put on the caller, and
Iterator makes no guarantee to behave correctly if you violate it. So it’s not threadsate.

Immutability

Final variables are constants, so the variable itself is threadsafe.

Immutable objects are generally also threadsafe. We say generally because our current definition of
immutability is too loose for concurrent programming. We've said that a type is immutable if an
object of the type always represents the same abstract value for its entire lifetime. But that actually
allows the type the freedom to mutate its rep, as long as those mutations are invisible to clients. We
saw an example of this notion, called benevalent or beneficient mutation, when we looked at an immutable
list that cached its length in a mutable field the first time the length was requested by a client.
Caching is a typical kind of beneficent mutation.

For concurrency, though, this kind of hidden mutation is a no-go. An immutable datatype that uses
beneficent mutation will have to make itself threadsafe using locks (the same technique required of
mutable datatypes), which we’ll talk about next lecture.

So in order to be confident that an immutable datatype is threadsafe withont locks, we need stronger
rules:

- no mutator methods

- all fields are private and final

- no muration whatsoever of mutable objects in the rep -- not even beneficent mutation
- no rep exposure (see the ADT lecture to review what rep exposure is)

If you follow these rules, then you can be confident that your immutable type will also be threadsafe.

Threadsafe Collections

The collection interfaces in Java — List, Set, Map — have basic implementations which are »of
threadsafe. The implementations of these that you've been used to using, namely ArrayList,
HashMap, and HashSet, cannot be used safely from more than one thread.

Fortunately, just like the Collections API provides wrapper methods that make collections
immutable, it provides another set of wrapper methods to make collections threadsafe, while still
mutable.

These wrappers effectively make each method of the collection atomic. An atomic action effectively
happens all at once — it doesn’t interleave its internal operations with other threads, and none of the
effects of the action are visible to other threads until the entire action is complete, so it never looks
partially done.

Now we see a way to fix that isPrime() method we had earlier in the lecture:

private static Map<Integer,Boolean> cache = Collections.synchronizedMap(
new HashMap<Integer,Boolean>());

A few points here.
First, make sure to throw away references to the underlying non-threadsafe collection, and access it

only through the synchronized wrapper. That happens automatically in the line of code above, since
the new HashMap is passed only to synchronizedMap() and never stored anywhere else.

Second, even though method calls on the collection itself (get(), put(), add(), etc.) are now threadsafe,
iterators created from the collection are still #of threadsafe. So you can’t use iterator(), or the for loop
syntax:

for (String s: 1st) { } // not threadsafe, even if lst is a synchronized
list wrapper

The solution to this problem will be to acquire the collection’s lock when you need to iterate over it,
which we’ll talk about next time.

Finally, the way that you ase the synchronized collection can still have a race condition! Consider this
code, which-checks whether a list has at least one element and then gets that element:

if (! lst.isEmpty()) { String s = 1st.get(®); ... }

Even if you make Ist into a synchronized list, this code sdll may have a race condition, because
another thread may remove the element between the isEmpty() call and the get() call.

Even the isPrime() method sull has potential races:

if (cache.containsKey(x)) return cache.get(x);
boolean answer = Biglnteger.value0f(x).isProbablePrime(100);
cache.put(x, answer);

The synchronized map ensures that containsKey(), get(), and put() are now atomic, so using them
from multiple threads won’t damage the rep invariant of the map. But those three operations can
now interleave in arbitrary ways with each other which might break the invariant that isPrime needs
from the cache: if the cache maps an integer x to a value f, then x is prime if and only if f is true. If
the cache ever fails this invariant, then we might return the wrong result.

So we have to argue that the races between containsIey(), get(), and put() don’t threaten this
invariant. First, the race between containsKey() and get() is not harmful because we never remove
items from the cache — once it contains a result for x, it will continue to do so. Second, there’s a race
between containsKey() and put(). As a result, it may end up that two threads will both test the
primeness of the same x at the same time, and both will race to call put() with the answer. But both
of them should call put() with the same answer, so the race will be harmless.

The need to make these kinds of careful arguments about safety — even when you’re using threadsafe
datatypes — is the main reason that concurrency is hard.

Goals of Concurrent Program Design

Now is a good time to pop up a level and look at what we’re doing. Recall that the primary goals of
this course are to learn how to create software that is (1) safe from bugs, (2) easy to understand, and
(3) ready for change. There are other properties of software that are important, like performance,
usability, security, etc., but we’re deferring those properties for the sake of this course.

Building concurrent software has these same overall goals, but they break down more specifically
into some common classes. In particular, when we ask whether a concurrent program is safe from
bugs, we care about two properties:

&

* Safety. Does the concurrent program satisfy its invariants and its specifications? Races in

accessing mutable data threaten safety. Another way to put this is, can you prove that
nothing bad ever happens?

Liveness. Does the program keep running and eventually do what you want, or does it get
stuck waiting forever for events that will never happen? Can you prove that something
good eventually happens? Deadlocks threaten liveness. Liveness may also require faimess,
which means that concurrent modules are able to make progress in their computations

when they are actually able to run. If Eclipse’s editor module hogs the only processor in the
system, so that the compiler module never gets a chance to run, then you won’t ever get
your program compiled — a liveness failure. Fairness is mostly a matter for the operating
system’s thread scheduler, which decides how to timeslice threads, but you can influence the
scheduler’s decisions with mechanisms like thread priorities, so it’s possible for a system
design to threaten fairness,

Concurrent programs also usually worry about performance, i.e. the speed or resource usage of the
program, since that is often the main reason for introducing concurrency into the system in the first
place (making the program work faster or respond more quickly). We’ve largely been postponing
issues of performance in 6.005. 6.172 Performance Engineering is strongly recommended for
learning about this, and it covers performance of concurrent programs in great detail. But here are
some high-level comments about getting good performance with threads.

Create only a few threads. Threads cost resources — memory for a stack, processor time to switch
threads, operating system resources. So don’t create them as freely as you create data objects. There
are typically two reasons why you create threads: to do 1/O (e.g. network, MIDI device, graphical
user interface), or to handle computation. Each has some rules of thumb:

* For I/O: create at most one thread per stream (often one for reading and one for writing),
so that it can block without preventing other streams from making progress.

* For computation: the sweet spot is slightly more threads than you have processors
(Runtime.getRuntime().availableProcessors()). If you start 100 threads but you have only 4
processors for them to run on, then you’re just wasting memory and time, and you won’t
finish the job any faster than 4 threads would. Java has an interface called ExecutorService
that manages a pool of threads for a queue of tasks, so you can chop your computation up
into bits and use as many threads as make sense to do them.

Don’t move work between threads unnecessarily. Sending requests to other threads is expensive;
switching threads on a processor is expensive; moving data between threads is expensive;
synchronizing and coordinating between threads is expensive. So if thread A has a piece of work
that needs to get done, and it has all the data it needs to do the work and can do it safely (without
races), then A should just do the work itself, rather than handing it off to another thread B. If an 1/O
thread in a server receives a request that doesn’t require accessing mutable data that is confined to
another thread, it should just handle the request itself, rather than sending it to another thread.

How to Make a Safety Argument

We've seen that concurrency is hard to test and debug. So if you want to convince yourself and
others that your concurrent program is correct, the best approach is to make an explicit argument
that it’s free from races and deadlocks.

We're going to focus for now on the safety question. Your argument needs to catalog all the threads
that are exist in your module or program, and the data that that they use, and argue which of the four
techniques you are using to protect against races for each data object or variable: confinement,
immutability, threadsafe datatypes, or synchronization. (When you use the last two, you also need to
argue that all accesses to the data are appropriately atomic — that is, that the invariants you depend on
are not threatened by interleaving. We gave one of those arguments for isPrime above.)

The SocialServer code with this lecture has an example of a safety argument:

red

// Thread safety argument

/e e

/7 The threads in the system are:

// - main thread accepting new connections

// - one thread per connected client, handling just that client

//

// The serverSocket object is confined to the main thread.

s

// The Socket object for a client is confined to that client's thread;

// the main thread loses its reference to the object right after starting
// the client thread.

/Y

// The friendsOf map and all the lists inside it are confined to the main
thread

// during creation and then immutable after creation.

//

// System.err is used by all threads for displaying error messages.

// No other shared mutable data.

//

| ’D,(oa((Gafleq
D(oft el‘fleﬂm{
1 el sefe clafmlﬁ;eb
)j Pl Oé[utﬂf / (0nsrgy

B H%qu queets

PS 5 \J,‘/Q T}LW ﬂ\(&]’d_ L Cafe foudn.

& & dau. (ot Son. &e okl oy M Sy +lodks
L ol hedghle

[ty o0 (uditn
‘*\u@ f\u\ n ,ﬂmH% vv/ 5}WE’/L omh 7
— muMplg Praads 6M«j ol dib o COa(J}ua@
“ 10 P bk awat ,omb)em

O Cgue (e ness @Ufé

B PR

(’[gt"@‘L@g{%
\(DOA(]L sLafe, L)/u/ tWU{!fS

LCaaffmml'

—don ¥ pgle H‘Vgé Miglble Con g+ e ads
L Nole dah vmAall

3. Uge W&&i‘ cole ' dafo Fypes
LW\LM\“LM Jwy; in ith(e
e Collbuns, Loy quees

an

9

Y, §wm{m‘wq
—Umb/@um um({ '(ef Cool ‘““m’ﬂ]le"ﬂ

T adds en Moy
(,On{[uﬁ M”A‘I"

e
— e M

1 bl g b -fheoded G

g o/
!

oy Vbl & B fhed
Cco«ﬁnene#)

Mo (Ol 'ﬁrvfﬁi (an fouh [L]'

‘]Lll(&(;:[/t\ h’ne
(ooshik & weo ook for nat. st
L{/jves Foa thd ;ﬂg pout " Qaadle

m wind
~lle o lanbda i~ P \
m{ (ot J// (om0
Topalin paby pont for (e

Ve fo luon Vel g uable r\ﬁla’e fn

D@H cw” ge\ﬁ ‘P"”’(?f o main nlfw{é 5

We (on ontz f@&m tof g
JM:& U/f M(l[/Q (OP 1/1,6& thﬂe

{4

(WM Mo /w&bf@ 0(/1[o NG 0&95 gor Oen }es; M&SJ.

"o e g0 wes 1, (ul$on (%5n)
Lol valles (he aim) we alar oficd
bt OLJQ(}' dalt i b Cle@tf
Smt(& Vil tfﬂtbl& | (oaﬁw@é

L\([O”(TL/%'H oﬂf/%ﬁ
B Lé {NM‘L can Adesy

) skded
“ 9t Tl | Jqf\[jewb& fog
f-LoJﬂL Can costiuet gt saM fing

a@[(%‘rcdd oo (covN mly M@LQ [oé)wL and
(e 55 able \n(M paﬂrwm e

Tm(\@ eeeny thogh ohal o S £ o canfipal

;i V) b ik Wﬂj lla 5'4«%@4 ﬁm&
Q%J[;(VU/L“(’,&

langon
T bync

Y
i \
CYamgle o P \»// (aching
b= ﬂp b oty (AN face fo wUle Jo CML(

— gl fo Crooh

Wr\ MJM
““6!&(@ m[(?m& l\{ fa ({(mﬁu chieclore i M,Mj
dad readtng al cam T bl

LLM\\% (,\memL {ﬁo G hart firg ehov
o iy au it

60 llf\d]LO P’U%ﬁ JCD{Z{ S#/M(y/ (

T, Tomdibity = Tl bt hofoc
Vv

- bvlm\[cflL fepreseafca 4774 CLW@J

Y
DN«
N
[5

dedpfSeq of 2%
sk ohiy

Teat hae mdtgle & & | A

\)(
e

()

go V';(‘.Qf CQvge ﬁfl}'@ . lan fldu@[l/ IQQ CL(M@ Lgﬁ
n T <} il (@/Cé%l’ﬁ 50 yal g

O gbshat vabe n0a Cluges
twed o %{%Sa& (<p ale 6 M tf {
“Hloks bl e Co
) :'Mpw{fam{‘ <ﬂnd/[fo (ﬂ/‘P;{U
’L€ ’6(16[45 p014/~ }o mt/Md[Q Oé‘/(s/ Z[ha%
Ohys g ot M lafy

_—

3 Nl el Dutatypy

dﬁehf ‘,- (’OQL\IUCS CO([UHV WLQ’\ Vgﬁ({ 60(WLV/HJJ/C
Mvads lhod add o caord gt
;’m VD(%W&) \tq vl il

} ObW SpeL
— frecond fon = fmjf Cand o

[y) \
~ 1o prend ity ket oo ot abat fomt
— @t sag " ov cn't call molbiole Fies

Y

‘ i sl
mm% ‘O/%QOR &9@611 UJ’LJLHM {”((7(3 i (@ w werf Ny~

}J[Q{a\l@/ - (arwl /n\ﬂLa/P@ CO Q(//L/ﬂr‘ tv}w If aifin \j

50/*@4’\(#65 - ‘Mm»«g (O/L(V/(/QH\M@JEFc\wﬁ”;m Exgepff{m
L)* N+ P(Om{b?/(l/

60 T}MF@/ :5 ﬁff)(Wadécuﬁ@

ﬁ/ﬂa A[fw{ ‘/,“"L,Ha&l\ g@“l H(kgh NGP ﬂw__

~ el boadd & Swonieed wapp
Lw& e e WHWZ

Co”ed‘tﬂnﬁdynchfmlm Mg Cf\@h, Tl ¢ Tubese, Doolee 7{%

ﬂﬁ\@

Wi
k\o\;(b (00\'@{ unlil 98 Q(ov@

[k @ gake - only | Thawgh af w the

¢ I/\/M]L fo M@L@ [%rgq, glepg a/'J'M'b

8
0,
—(in 4 be vﬂm{ﬁ

with oy e b dhn ‘- W'y WW ’u QO;/M I Undgmeath
—ahstrached oy

Bt sl W
—M aqe @ ol Sy o s wot puabe
“d bk ek all fhee (8]
“ bl ol cwlww@
— Wl bl Ty o nieh oAtk (ade
= st dnll Bk @hook

‘Qfopﬂ\

~fafley = dog @‘%m\baﬂc{ ara

— (Mg g

= w@.@ss s Jo&g 5«1%9)"’!@ g.oql €(/€444M[Adﬂw’}
&,@c&”ﬁd\

Py~ do 4 Vb of oo gt

| A—

—Mere lm Cc ”2

Woop

6.005 Software Construction
Fall 2011
Prof. Rob Miller

L12: Thread Safety

Today

o Confinement
o Threadsafe datatypes

Required reading

* Concurrency
e Wrapper Collections

Optional reading

'

The material in this lecture and the next lecture is inspired by an excellent book:

* Brian Goetz et al. Java Conewrrency in Practice. Addison-Wesley, 20006.

Review

Recall race conditions: multiple threads sharing the same mutable variable without coordinating what
they’re doing. This is unsafe, because the correctness of the program may depend on accidents of
timing of their low-level operations.

There are basically four ways to make variable access safe in shared-memory concurrency:

L * don’t share the variable between threads. This idea is called confinenrent, and we’ll explore it
toda";‘_——"‘- e S

(2/ * make the shared data immutable, We've talked a lot about immutability already, but there
are some additional constraints for concurrent programming that we’ll talk about in this
lecture.

3 * encapsulate the shared data in a threadsafe datatype that does the coordination for you.
We'll talk about that today.

Synchronization is what you need to build your own threadsafe datatype. We'll talk about
that next time.

U‘ * use synchronization to keep the threads from accessing the variable at the same time.

These fecture notes have been collaboratively anthored, with contributions fromt Saman Amarasinghe, Srini Devadas, Michael Ernst, John
Guttag, Daniel Jackson, Rob Miller, Martin Rinard, and Armando Solar-Lezanma. Copyright © MIT.

Threads

A look at how to create threads in Java. For more details, see the Java tutorial link above.

public void serve() throws IOException {
ServerSocket serverSocket = new ServerSocket(PORT);

while (true) {
// block until a client connects
final Socket socket = serverSocket.accept();

// start a new thread to handle the connection
Thread thread = new Thread(new Runnable() {
public void run() {
// the client socket object is now owned by this thread,
// and mustn't be touched again in the main thread
handle(socket);
}
13
thread.start(); // IMPORTANT! easy to forget
// when does thread.start() return?
// when will the thread stop?

Thread Confinement

Thread confinement is a simple idea: you avoid races on mutable data by keeping that data confined
to a single thread. Don’t give any other threads the ability to read or write the data directly.

Local variables are always thread confined! A local variable is stored in the stack, and each thread has
its omlﬂe invocations of a method runiiing at a time (in different threads
or even at different levels of a single thread’s stack, if the method is recursive), but each of those
invocations has its own private copy of the variable, so the variable itself is confined.

But be careful — the rariable is thread confined, but if it’s an object reference, you also need to check
the object it points to. 1f the object is mutable, then we want to check that the object is confined as
well — there can’t be references to it that are reachable from any other thread.

What about local variables that are initially shared with a thread’s Runnable when it starts, like socket
in the code above? Java requires those variables to be finall Immutable references are okay to use
from multiple threads, because you don’t get races with immutability.

Avoid Global Variables

Unlike local variables, global variables (called “static” in Java) are #of automatically thread confined.
> & 3

If you have static variables in your program, then you have to make an argument that only one thread
will ever use them, and you have to document that fact clearly. Better, you should eliminate the static
variables entirely.

Here’s an example that we looked at in a previous lecture:

// This class has a race condition in it.
public class Midi {

private static Midi midi = null;
// invariant: there should never be more than one Midi object created

private Midi() {
System.out.println("created a Midi object");
}

// factory method that returns the sole Midi object, creating it if it
doesn't exist
public static Midi getInstance() {
if (midi == null) {
midi = new MidiQ);
}

return midi;

}

This class has a race in the getlnstance() method — two threads could call it at the same time and end
up creating two copies of the Midi object, which we don’t want.

To fix this race using the thread confinement approach, you would specify that only a certain thread
(maybe the “midi playing thread”) is allowed to call Midi.getInstance(). The risk here is that Java
won’t help you guarantee this.

In general, static variables are very risky for concurrency. They might be hiding behind an innocuous
function that seems to have no side-effects or mutations. Consider this example:

// is this method threadsafe?
/**
* @param x integer to test for primeness; requires x > 1
* @return true if and only if x is prime
kS
public static boolean isPrime(int x) {
if (cache.containsKey(x)) return cache.get(x);
boolean answer = BigInteger.valueOf(x).isProbablePrime(100);
cache.put(x, answer);
return answer;

private static Map<Integer,Boolean> cache = new
HashMap<Integer,Boolean>();

This method is not safe to call from multiple threads, and its clients may not even realize it.

Threadsafe

A datatype is threadsafe if it behaves correctly when used from multiple threads, regardless of how
those threads are executed, and without demanding additional coordination from the calling code.

- “behaves correctly” means satisfying its specification and preserving its rep invariant

- “how threads are executed” means threads might be on multiple processors or timesliced on
the same processor
(-) : . | > it 2

- “without additional coordination” means that the datatype can’t put preconditions on its
caller related to timing, like “you can’t call get() while set() is in progress.”

Remember Iterator? It’s not threadsafe. Iterator’s specification says that you can’t modify a
collection at the same time as you’re iterating over it. That’s a precondition put on the caller, and
Iterator makes no guarantee to behave correctly if you violate it. So it’s not threadsafe.

Immutability

Final variables are constants, so the variable itself is threadsafe.

Immutable objects are generally also threadsafe. We say generally because our current definition of
immutability is too loose for concurrent programming. We've said that a type is immutable if an
object of the type always represents the same abstract value for its entire lifetime. But that actually
allows the type the freedom to mutate its rep, as long as those mutations are invisible to clients. We
saw an example of this notion, called benevolent or beneficient mntation, when we looked at an immutable
list that cached its length in a mutable field the first time the length was requested by a client.
Caching is a typical kind of beneficent mutation.

For concurrency, though, this kind of hidden mutation is a no-go. An immutable datatype that uses
beneficent mutation will have to make itself threadsafe using locks (the same technique required of
mutable datatypes), which we’ll talk about next lecture.

So in order to be confident that an immutable datatype is threadsafe withont locks, we need stronger
rules:

- no mutator methods

- all fields are private and final

- no mutation whatsoever of mutable objects in the rep -- not even beneficent mutation
- no rep exposure (see the ADT lecture to review what rep exposure is)

If you follow these rules, then you can be confident that your immutable type will also be threadsafe.

Threadsafe Collections

The collection interfaces in Java — List, Set, Map — have basic implementations which are ot
threadsafe. The implementations of these that you've been used to using, namely ArrayList,
HashMap, and HashSet, cannot be used safely from more than one thread.

Fortunately, just like the Collections API provides wrapper methods that make collections
immutable, it provides another set of wrapper methods to make collections threadsafe, while still
mutable.

These wrappers effectively make each method of the collection atomic. An atomic action effectively
happens all at once — it doesn’t intetleave its internal operations with other threads, and none of the
effects of the action are visible to other threads until the entire action is complete, so it never looks
partially done.

Now we see a way to fix that isPrime() method we had eatlier in the lecture:

private static Map<Integer,Boolean> cache = Collections.synchronizedMap(
new HashMap<Integer,Boolean>());

A few points here.
First, make sure to throw away references to the underlying non-threadsafe collection, and access it

only through the synchronized wrapper. That happens automatically in the line of code above, since
the new HashMap is passed only to synchronizedMap() and never stored anywhere else.

Second, even though method calls on the collection itself (get(), put(), add(), etc.) are now threadsafe,
iterators created from the collection are still #of threadsafe. So you can’t use iterator(), or the for loop
syntax:

for (String s: 1st) { } // not threadsafe, even if lst is a synchronized
list wrapper

The solution to this problem will be to acquire the collection’s lock when you need to iterate over i,
which we’ll talk about next time.

Finally, the way that you wse the synchronized collection can still have a race condition! Consider this
code, which checks whether a list has at least one element and then gets that element:

if (! lst.isEmpty()) { String s = lst.get(@); ... }

Even if you make Ist into a synchronized list, this code still may have a race condition, because
another thread may remove the element between the isEmpty() call and the get() call.

Even the isPrime() method still has potential races:

if (cache.containsKey(x)) return cache.get(x);
boolean answer = BigInteger.valueOf(x).isProbablePrime(10@);
cache.put(x, answer);

The synchronized map ensures that containsKey(), get(), and put() are now atomic, so using them
from multiple threads won’t damage the rep invariant of the map. But those three operations can
now interleave in arbitrary ways with each other which might break the invariant that isPrime needs
from the cache: if the cache maps an integer x to a value f, then x is prime if and only if f is true. If
the cache ever fails this invariang, then we might return the wrong result.

So we have to argue that the races between containsKey(), get(), and put() don’t threaten this
invariant. First, the race between containsKey() and get() is not harmful because we never remove
items from the cache — once it contains a result for x, it will continue to do so. Second, there’s a race
between containsKey() and put(). As a result, it may end up that two threads will both test the
primeness of the same x at the same time, and both will race to call put() with the answer. But both
of them should call put() with the same answer, so the race will be harmless.

The need to make these kinds of careful arguments about safety — even when you’re using threadsafe
datatypes — is the main reason that concurrency is hard.

Goals of Concurrent Program Design

Now is a good time to pop up a level and look at what we’re doing. Recall that the primary goals of
this course are to learn how to create software that is (1) safe from bugs, (2) easy to understand, and
(3) ready for change. There are other properties of software that are important, like performance,
usability, security, etc., but we’re deferring those properties for the sake of this course.

Building concurrent software has these same overall goals, but they break down more specifically
into some common classes. In particular, when we ask whether a concurrent program is safe from
bugs, we care about two properties:

* Safety. Does the concurrent program satisfy its invariants and its specifications? Races in
accessing mutable data threaten safety. Another way to put this is, can you prove that
nothing bad ever happens?

* Liveness. Does the program keep running and eventually do what you want, or does it get
stuck waiting forever for events that will never happen? Can you prove that something
good eventually happens? Deadlocks threaten liveness. Liveness may also require fairmess,
which means that concurrent modules are able to make progress in their computations

when they are actually able to run. If Eclipse’s editor module hogs the only processor in the
system, so that the compiler module never gets a chance to run, then you won’t ever get
your program compiled — a liveness failure. Fairness is mostly a matter for the operating
system’s thread scheduler, which decides how to timeslice threads, but you can influence the
scheduler’s decisions with mechanisms like thread priorities, so it’s possible for a system
design to threaten fairness.

Concurrent programs also usually worry about performance, i.e. the speed or resource usage of the
program, since that is often the main reason for introducing concurrency into the system in the first
place (making the program work faster or respond more quickly). We’ve largely been postponing
issues of performance in 6.005. 6.172 Performance Engineering is strongly recommended for
learning about this, and it covers performance of concurrent programs in great detail. But here are
some high-level comments about getting good performance with threads.

Create only a few threads. Threads cost resources — memory for a stack, processor time to switch
threads, operating system resources. So don’t create them as freely as you create data objects. There
are typically two reasons why you create threads: to do I/O (e.g. network, MIDI device, graphical
user interface), or to handle computation. Each has some rules of thumb:

* For I/O: create at most one thread per stream (often one for reading and one for writing),
so that it can block without preventing other streams from making progress.

* For compuration: the sweet spot is slightly more threads than you have processors
(Runtime.getRuntime().availableProcessors()). If you start 100 threads but you have only 4
processors for them to run on, then you’re just wasting memory and time, and you won’t
finish the job any faster than 4 threads would. Java has an interface called ExecutorService
that manages a pool of threads for a queue of tasks, so you can chop your computation up
into bits and use as many threads as make sense to do them.

Don’t move work between threads unnecessarily. Sending requests to other threads is expensive;
switching threads on a processor is expensive; moving data between threads is expensive;
synchronizing and coordinating between threads is expensive. So if thread A has a piece of work
that needs to get done, and it has all the data it needs to do the work and can do it safely (without
races), then A should just do the worl itself, rather than handing it off to another thread B. If an 1/O
thread in a server receives a request that doesn’t require accessing mutable data that is confined to
another thread, it should just handle the request itself, rather than sending it to another thread.

How to Make a Safety Argument

We’ve seen that concurrency is hard to test and debug. So if you want to convince yourself and
others that your concurrent program is correct, the best approach is to make an explicit argument
that it’s free from races and deadlocks.

We're going to focus for now on the safety question. Your argument needs to catalog all the threads
that are exist in your module or program, and the data that that they use, and argue which of the four
techniques you are using to protect against races for each data object or variable: confinement,
immutability, threadsafe datatypes, or synchronization. (When you use the last two, you also need to
argue that all accesses to the data are appropriately atomic — that is, that the invariants you depend on
are not threatened by interleaving. We gave one of those arguments for isPrime above.)

The SocialServer code with this lecture has an example of a safety argument:

Vi

// Thread safety argument

E A e it

// The threads in the system are:

// - main thread accepting new connections

// - one thread per connected client, handling just that client

L/

// The serverSocket object is confined to the main thread.

/7

// The Socket object for a client is confined to that client's thread;

// the main thread loses its reference to the object right after starting
// the client thread.

/i :

// The friendsOf map and all the lists inside it are confined to the main
thread

// during creation and then immutable after creation.

/7

// System.err is used by all threads for displaying error messages.

// No other shared mutable data.

//

(005 Y /2
Rt

— ¥ nt preotat
Ol b W dyt Twe
U bt fdvae |

('Oﬂlﬂu{'(’f
PV Y 2 g [1 3
W' b2 0 < d Z 4
f (m ‘%L % i)

Wil Tabe o £ 3 pouts fo T fum e ew
\Nlt“ s At o TLQ (mﬁm[({ﬁﬂ ,_,[0

e

gﬁmp\e, %/ nu” f f;” tr— (c@ LS
(0\ /\\O) \/ Cr\,a/\q/b/\mc/\m&)
. wle pulhs gre o ol

0

N«/@ [% {m,\ pone %tmpt@

One v

el @
it 5ALU b Lomiles

(d’a "M& QA ‘,(DLK O\,Jr
Geade 72/ 100 (UM
(an do o

O\m“ ‘l (o\mg \ﬂ&t@u

f)f 0)@% bl mogk

W3

\Dm (-
W o
?fﬁdvﬁ?{ (@ ({/&{/vﬁ (O)B A4 O b’@d’j

= ohevind/ l/ﬂ’ /9

“Vodue
e g dif o
CW%% fole JDML (JH"CMU@

Wl v
s Sk Yl B @
J f’P[oW

3 ,
'_[]C Consmtr 5 Faee Dy P@dd@/

"COW}’W (an (,mtuf - Ca,”eJ bloou_ny

——— =

o lckng ¢ Feglt

~ s ol gt potun

R 6[\/@(/@ {(5 (u)”

Pl ald gl (ot
—0c @[z/c, P celn

‘{\ag (egvlb{ add () temor U] potlods

il M nalhads o) tek()
S

—wll Tk deve bectoes Ofeahle

= Ao (ter () poUCJ G, 6 am ot w,/{

(ets " A £ b ool
o e oi}‘a«i el

lNMP : 0&&/@4’%@ ot pd / Jalo

COMWZ(

(\) 0 :q/ﬁ}ww)
@ (N“& G’(Je,)“
0 poll ()

s (Ol‘ “:nul[)
}J(edi;

fb} /et 9;»4 at ,o/”zlnj vakes 6t ,M{

@ V/WHS W\{‘,H ég{@/ht’mj . on Q(/eqfc/e
- — talled bl < % Lk (Fy
@ L‘Q‘QP‘S CLU/L\Mj 2 e wo[/lg w/ zC,,\LW‘P))

U CPY (JY"{@ -/;;thwﬁ @:&2% oL
- e Lo

V
% *}\Lé L an ¢ mm@g 0‘? Mﬁﬁaﬁg /Dqﬁa@
W L\(My bVU/J} (omm((d/}L{/

fy 4x0n L
(a,! /ﬂ(%b/ﬂ n o a fh{@a,d On(z ﬁ” M /Zm{

t/ Yov (041 (¢ F@feﬂce (Iujfézde /macrzéla (”L WI//
:% have M o less {a,) That

ML \M A Thf@dd (nshcty

(e

- crfids W™ cede pa clis,
“mel emM]S @Mbb
7}\“\ (n zltﬁ (mé]tff/%for Can 50666{(70

Evashly ols (

0ca\

i 6 bobellos e € Yol fuss

Problem Set 5: Finding Prime Factors with Networking hitp://web.mit.eduw/6.005/www/fall/psets/psS5/ps5.html

6.005 Elements of Software Construction | Fall 2011
Problem Set 5: Finding Prime Factors with Networking
Due: Thursday, November 3 2011, 11:59 PM

The purpose of this problem set is to introduce you to aspects of Java's I/O and networking API, to help you
get started building network applications.

You have substantial design freedom on this problem set. However, in order for your solution to be
graded, your solution must not change the name, method signature, class name, package name, or
specification of the following:

¢ factors.client.PrimeFactorsClient.main()
o factors.server.PrimeFactorsServer.main()
e echo.client.EchoClient.main()

* echo.server.EchoServer.main()

To get started, pull out the problem set code from SVN Admin.

Background

Passing sensitive information over a network is a tricky operation, especially if listeners are ready to intercept
your messages. Encryption has become central in protecting your important information. Modern cryptography
systems encrypt your data in such a manner so that listeners would have to solve intractable problems, in

particular the prime factorization of the product of two very large primes. Finding an efficient solution to factor
this number makes it possible to crack the underlying message, exposing the encrypted sensitive data. In this
problem set, we will create a solution that will perform brute-force prime factor searching, but distributed over

The client-server architecture models a distributed method of computing characterized by two parts, client
systems and server systems . Both systems communicate with one another either over a network or perhaps
7 e‘t@ﬁﬁﬁ'tﬁé’g;me system. Accordingly, this architecture is an example of a distributed system whereby we

use multiple computers to solve a problem. M(?ff"«dﬂ /J‘(%:/‘J

Client systems often initiate and make the requests to the servers. Generally, clients are seeking some service
or have to rely on the resources of a server to handle their needs. These may include access to files,
peripherals, or processing power. In this architecture, clients do not share resources with one another (this
characteristic is more in tune with the peer-to-peer architecture, which lacks a centralizedservice provider).

Server systems, on the other hand, hosts server programs whose resources are shared with all connected
clients. Servers will generally wait for client requests prior to serving out resources.

Common systems that follow the client/server model include email exchanges, web access, and database
access.

You may find the Wikipedia article of the Client/Server Model helpful in understanding more of the details.

Before You Begin ...

Before starting on this problem set, please ensure that you have@nstalled. *nix operating systems
should have telnet installed by default.

Windows users should first check if Telnet is installed by running the command "Telnet" in command line. If
you do not have it, you can install it via Control Panel ---> Programs and Features ---> Turn windows features
on/off ---> Telnet client.

10of8 10/29/2011 3:41 PM

Problem Set 5: Finding Prime Factors with Networking http://web.mit.edu/6.005/www/fal /psets/ps5/ps5.html

You can have Telnet connect to a host/port (for example, "localhost:4444") from the command line with
"telnet localhost 4444".

Alternatively you can open the Telnet program and connect from there with the command "open localhost

4444", paEEe S S

Overview

We will be creating two different Client/Server systems, namely an Echo system and a Prime Factors search
system. s Ga _—

With the Echo system, our goal is to learn how users, clients, and servers interact with one another under the
Java networking framework. The system will be very simple, taking in User input from Standard input,
navigating through the entire network system, and finally returning the original User input back to the User via
Standard output.

With the Prime Factors system, one of the focuses is to find the prime factors of a given input (which can be
potentially very large). We will attempt to do this through a distributed system in the following fashion:

1. Start several servers dedicated to searching for prime factors in a given range of numbers.
2. Start a client that will send requests to these servers.
3. Accumulate the server responses in some meaningful manner.

You should take note that performance is not a criterion on this problem set. Brute-force search for factors is
fine. The client is given multi ers ate with and you should use as many servers as given to
your program.

Do NOT use multithreading for this problem set. Each Server instance will handle at most one client at a
single time. Though we will have multiple Servers running asynchronously, none of them will be run on the
same thread.

We will be using the Java networking library for communication between our client and our servers. Please
read about Streams (specifically aboutmy, and éocket@ before proceeding.

Echo System Specifications

The Echo system messages are defined below. Underlined terms are considered terminals in our grammar.

e User-to-Client messages define what the User can input on the standard input stream, consequently
what the client reads in.

User-to-Client Echo Message Protocol

|

t

1 Valid-Input := String NewLine
E String = ["NewLine]+

1 NewLine := \n

e Client-to-User messages define what the client outputs on the standard output stream, consequently
what the user can read in console.

‘ Client-to-User Echo Message Protocol
i Valid-Input

[l

Prefix Space String NewLine

% Prefix = 22>

| String := [~NewLine]+

3 Space =" " // "™ " is a single space character
| NewLine := \n

e Client-to-Server messages define all messages that the client will send to the server for processing.

2 of 8 10/29/2011 3:41 PM

Problem Set 5: Finding Prime Factors with Networking http://web.mit.edw6.005/www/fall/psets/ps5/ps5.html

3o0f8

Server-to-Client messages define the processed output for the respective Client-to-Server message.

There are no special protocéls for Client-to-Server or Server-to-Client messages for the Echo system.

Client-to-Server and Server-to-Client Echo Message Protocol

Valid-Input := String NewLine
String = [“NewLine]+
NewLine := \n

. The Echo Server component is specified below.

* The server takes in at most one integer Program Argument, the port incoming clients will connect
through. e
o If there is no Program Argument, default server to listen to port 4444
o If server fails to listen on the assigned port, terminate the server.
o In Eclipse, you can specify a Program Argument by creating a new Run Configuration -->
Arguments Tab --> Write some port number in Program Arguments{example: 4444).
e Server should only handle ONE client at any given time. Do not use any multithreading in your

solution. s
* When client disconnects, server will listen for new incoming client connections on the same assigned
port.

* When receiving one Client-to-Server message, the exact contents of this message are sent back to
client in exactly one Server-to-Client message.

—

The Echo Client component is specified below.

» The client takes in exactly one Program Argument, the address of the server.

o If there is no Program Aréhment, output a helpful errdr statement and terminate client.
e Client will read messages passed in by User from the standard input stream (System. in).

o If user's standard input stream is closed, terminate the client. ~
¢ Client will push messages back out to user through the standard output stream (System.out).
* The message passing and processing are specified as follows:
User-to-Client messages are read in from the standard input stream.
Client passes these messages directly to the Server as Client-to-Server messages.
Client listens for exactly one Server-to-Client messages.

When this message is received, the contents of the message are sent as a Client-to-User
message onto the standard output stream.

Problem 1: Setting up an Echo Server

We will first set up a server instance that accepts an incoming client connection and echoes all incoming
statements from the user.

In your EchoServer class, there is a main() method where all Server setup logic should go. As with the
example provided in the Java tutorial, you should set up a Ser ocKket to listen for incoming client
connections. Your EchoServer must follow the specifications indicated above.

When a client connects, your server should listen to input messages from the connected client and send it right
back to the client over the connection.

Remember, we only require your server to handle one client at a time (NO Multithreading!). However, if the
connected client disconnects, your server should go back to listening for any clients that want to connect.

A . i A
You can manually check your server is working correctly as follows:

1. Run your EchoServer with a single program argument for some port number.

2. Open up telnet and connect to localhost:[port number] (example: "telnet localhost 4444", or "open
localhost 4444")

3. If this connection fails, telnet will notify you.
e R

10/29/2011 3:41 PM

Problem Set 5: Finding Prime Factors with Networking http://web.mit.edw/6.005/www/fal 1/psets/ps5/ps5.html

4, If it succeeds, try typing some input. You should see the exact same input spit back at you.
5. Close telnet, and then use it again to reconnect to the server. The server should work for the second
connection as well.

a. [15 points] Implement and test the EchoServer, which reads incoming messages and outputs the same
message on the output stream. It should follow all the specifications defined in the earlier section.

Problem 2: Setting up an Echo Client

We will now write a client that can connect to our EchoServer.

In your EchoClient class, there is a main() method where all Client setup logic should go. As with the example
provided in the Java tutorial, you should set up a Socket to connect and communicate to a Server.

You will be able to manually check your client is working by having a Server instance running in a process and
attempting to connect to it with a new client instance. T e

The following is an example conversation between your User and EchoServer through the EchoClient,
displayed through console:

Hello, I am EchoClient!

>>> Hello, I am EchoClient!

No, I am EchoClient!

>>> No, I am EchoClient!

You are exhausting to talk to.

>>> You are exhausting to talk to.

Note that all the statements preceded with G>ﬂare a result of the message passing through the EchoServer
back through the Client-to-User protocol. 23 e e

a. [15 points] Implement and test the EchoClient. It should follow all the specifications defined in the earlier
section.

Problem 3: Finding Prime Factors

We will now implement a Java function to find prime factors.

A rough pseudocode for solving this problem is provided. You may not modify the specifications defined below.
However, you can improve on this algorithm however you choose.

@requires BigInteger N. such that 2 <= N
@requires BigInteger low, hi. such that 1 <= low <= hi
@effects finds all prime BigIntegers x
such that low <= X <= hi AND x divides N evenly.
Repeated prime factors will be found multiple times

~
a

0. Given BigInteger N, BigInteger low, BigInteger hi:

1 for x from lo to hi:

2. if x is prime then

3 while x divides evenly into N:

4 add x to the collection of prime factors.
5 N = N/x

You may use the BigInteger function isProbablePrime to approximate if a number is prime and remainder to
check if one Biglnteger fully divides another. See Biglnteger for further details.

The following are a few example input/outputs for your function:

° (N= 85=5*17, lo= 2, hi=17) -> [5,17]

4 of 8 10/29/2011 3:41 PM

Problem Set 5: Finding Prime Factors with Networking http://web.mit.edw/6.005/www/fal l/psets/ps5/psS.html

° (N= 85=5*17, lo= 2, hi=16) -> [5]

o (N= 85=5%*17, lo= 2, hi=4) => []

. (N= 264=2%2*%2*3%*11, lo= 2, hi=17) -> [2,2,2,3,11]
Note that your outputs do not have to be in any specific order.

a. [10 points] Implement and test the function to find all prime factors of a number, given the range of
values to search through.

Prime Factors System Specifications

The Prime Factors system messages are defined below. As before, Underlined terms are considered terminals
in our grammar.

° ? User-to-Client Echo Message Protocol
| Valid-Input := Space N Space NewLine
' N = [0-9]+
Space = R Ny // Inner " " is a single space character
NewLine := \n

|

You can make the assumption that User input is valid only for N >= 2,

. } Client-to-User Echo Message Protocol
| Valid-Input := Prefix Space N Equals Factor (Mult Factor)* NewLine
i | Invalid
i Prefix = 23>
N := Number
Factor := Number
Invalid := invalid
Equals ==
. Mult e ®
| Number i= [0-9]+4
i Space =" " // " " is a single space character
| NewLine := \n
The following are a few example Client-to-User messages: a) i 1 ‘d §
(50 ,O/'l/H' (nvli
o] >>> 85=5*17

o >>> 1332425524=2%2*17%19594493

. Client-to-Server Message Protocol
Message := Factor Space N Space LowBound Space HighBound NewLine
Factor := factor
N := Number
LowBound := Number
HighBound := Number
Number = [0-9] 4
Space g L // " " is a single space character
NewLine := \n

You can make the assumption that the message is valid only for N >= 2,
The following are a few example Client-to-Server messages:

o factor 85 2 17

means find all prime factors of 85 between 2 and 17.
o factor 1332425524 2 16

means find all prime factors of 1332425524 between 2 and 16.

S5of8 10/29/2011 3:41 PM

Problem Set 3: Finding Prime Factors with Networking http://web.mit.edw/6.005/www/fal l/psets/ps5/ps5.html

] factor 1 1 100
is NOT valid under this context because N=1.

. Server-to-Client Message Protocol

Protocol := Message*

Message = Found Space N Space Factor NewLine
| Done Space N Space LowBound Space HighBound NewLine
| Invalid NewLine

Found = found

Done := done

Invalid = invalid

N := Number

Factor := Number

LowBound := Number

HighBound := Number

Number ;= [0=0]+

Space =T // " " is a single space character

NewLine := \n

The following are a few example Server-to-Client messages:

o found 85 5

means the server found 5 as a prime factor of 85.
o found 85 17

means the server found 17 as a prime factor of 85.
o done 85 2 17

means the server in charge of finding factors of 85 between 2 and 17 is complete.
The Prime Factors Server component is defined below.

e Server takes in at most one integer Program Argument, the port incoming clients will connect through.
o If there is no Program Argument, default server to listen to port 4444
o If server fails to listen on the assigned port, terminate the server.
s Server should only handle ONE client at any given time. Do not use any multithreading in your
solution.
e When client disconnects, server listens for new incoming client connections on the same assigned port.
e Its functionality will be defined as:
o Server will listen for Client-to-Server messages. If it does not fit the protocol defined above, send
a Server-to-Client "invalid" message.
o Server will send a Server-to-Client "found" message for each prime factors x of N such that
LowBound <= x <= HighBound.
o When server has found all such x, it sends the Server-to-Client "done" message.

The Prime Factors Client component is defined below.

e Client will take in at least one Program Argument, the addresses of the PrimeFactorsServers your client
will query.
o If there is no provided Program Argument, output a helpful error statement and terminate the
client.
e Your client will read messages passed in by your User from the standard input stream (System. in).
o If the User's standard input stream is closed, you should terminate the Client.
e Your client will push messages back out to your User through the standard output stream (System.out).
e The entire procedure of message processing is defined as:

1. User-to-Client messages are read in from the standard input stream, indicating the number to
factor.
2. Client passes Client-to-Server messages, one for each Server. Each message to the Server

6 of 8 10/29/2011 3:41 PM

Problem Set 5: Finding Prime Factors with Networking http://web.mit.edw/6.005/www/fall/psets/ps5/ps5.html

specifies a range of numbers, the sum of which covers all Integers from 2 through sart ().

3. Client listens for Server-to-Client messages, each indicating a prime factor x.

4. Client aggregates prime factors and sends the appropriate Client-to-User message. If the client
receives malformed messages or data, it will send the invalid message.

Problem 4: Making a Server to do Prime Factor Searching

The intention of this problem set is to solve this problem in a distributed fashion. We can do so by breaking the
problem down into smaller subproblems, as alluded to in the previous problem.

We will create a server that takes in messages indicating three numbers N, LowBound, HighBound.
It will respond with a message for every x where x is a prime factor of N and LowBound <= x <= HighBound.
The Client-to-Server and Server-to-Client Message protocols are defined in the Specifications section above.

You can first check that this works by communicating with your server through telnet. A sample conversation
may be as follows:

factor 264 2 5
found 264 2
found 264 2
found 264 2
found 264 3
done 264 2 5
factor 1 2 5
invalid

what? why??
invalid

(The italics may not be rendered in your Telnet. It is simply an indication of output from the Server.)

Your Server does NOT need to respond with factors in any specific order.

a. [30 points] Implement and test the PrimeFactorsServer to listen for incoming Client connections. You
should follow all of PrimeFactorsServer specifications defined in the previous section. You should use the
function you defined in Problem 3.

Problem 5: Integrating your Client with Multiple Servers

We will now create a client that will make requests to servers it is connected to, to get back all prime factors.

We have to first define our search space. In fact, we only have to look for prime factors between 2 and
sqrt (N), as there is guaranteed to be at most one prime factor greater than sqrt (1) . Accordingly, to extend
the algorithm presented in Problem 3, you can do the following:

Lo for x from 2 to sgrt(N):

2 if x is prime then

B while x divides evenly into N:
4. X 1s a prime factor!

= N = N/x

6. if N != 1 then

T N is a prime factor!

You can find a Biglnteger sqrt function in the provided util.BigMath class.

You should partition your search space in some manner across all servers that your client is connected to.

For example, if your client is connected to three servers, you can simply divide the range [2, sqrt(N)] in

Tol8 10/29/2011 3:41 PM

Problem Set 5: Finding Prime Factors with Networking http://web.mit.edw/6.005/www/fal | /psets/ps5/ps3.html

8of8

three even parts, [2, sqrt (N) /3], [sqrt(N) /3 + 1, 2*sqrt(N)/3], [2*sqrt(N)/3 + 1, sqrt (N)]

When your client has accumulated all of the prime factors, it should display them according to the Client-
to-User protocol.

A sample conversation is shown:

264
>>> 264=2*2*11*3%2
1332425524
>>> 1332425524=2*2*17*19594493
cool!
>>> linvalid

a. [30 points] Implement and test the PrimeFactorsClient. It should obey the above User-to-Client, Client-

to-User protocols when interacting with Standard input/output. It should also obey the Server/Client protocols
to send and obtain necessary information.

10/29/2011 3:41 PM

LO0s Ple

WYt

%(,\fA [t V M{,l
49

Cm\mmd e ‘WLW“({

L stdoms 1 eho @l pine Cofe
/\/@ m/ Tl/(d&”[

Fonby

D@ oS WT
—Copy {[Qn\ €MW\\0 /Cf/(
W 4 (¢ m\/c«\t(’djf 7 Al

i |
Ué% \Tcwtl SP/L/C/ 500);'(’,l.‘

\ | -
l/\/l’\ { (e/ 1L/ 29 60 @ 00 é i {,i}\ :- ‘,l:‘- lf'.’i’;’f ,

Clega!
hed o “ibe om0 le
ﬂwbjr- Was o

1

N |
Ol Gy s can
“pRt e

{(A{Li}"; - Wh@y]

- d[wcbj eXtWTL&

Neod & 4 (,,,

r
Sl g, QW et Optn
- (f‘ﬁ M\L Vilry Ca(aﬂ/(/l7

fan EKPE’C};M oS

T twil b doe
Bul' CWQ/& d‘LQfﬂtF “(0 {’Wh

and ﬁ/m
“ o {WH/

"N dw@is &/ML7 RPRL,

/

(N ,

—_—

K

%
[he #M hassage oyphen !

Oc (opq F /)ML(
B -\/]/JU\{& (0\0\1 + Pa}ﬁ
M 61\4‘/ WM Q S0l “lec

(M)fluma Ve lowh ”JHL MW)

i : /7 |
Uh et /M(vef[/ ~dusbibbed st
IAO ‘[t'y §q4.€
J’LGG b) MPWN (/\W@L{k / Wl\/l (/D(Q SPUS

nﬂr\ f‘a(’/i 1’0 i hw, M/i —

CY“D had =1 (Onwmtaﬂ

4

Ve (o T

(
I%)Mﬂ R Qmfipg 1
uds Wy bk Gud G el

st oty |

(it seads fachr
how o (it P‘L(/L/i
| i Thoh ad 1

[V ad {"@ Pdcoe. o Sewes

— sl W) gpuos
“69 dox D Y@ et
onds foud e G ewh

- glly <o /
) WLublL SQ/b(‘, lz/\ § @L[[U@(

Ok o [l Tons G el

W

6

NW et

b b oly goay b) g
RS (VIR v

(:50 s L r‘c@l«ﬁ ‘

g}\ C[LQA/‘I' ? SV("P"’"@d ‘fo cc(g@(egtdé /€>VZ75
Dot IV L wiong ..

LV\O P%]L) on p(q%a' f’M}()}(\@J ér[[; COV{’ML

Wil B agsesite10s

Dihdor (B = 5517
?/afﬁ? T ()

ARV Y]
VY (g

{ﬂﬁbr (ZéY)

——-—-_‘—-—-—‘__‘_‘__.’

OM da mﬂ+;&m7 how

Cud st o 00 chiead i

\/\/W:‘JJF Eb OﬁQf O }’\/(:

m,cL ¢ mMors
o G5
’ g 7€fﬁb HL

buﬂL 406‘; \{‘lL WME
Jon

o (o o Cm mlssz{q) Ing
i Cliggl

WL@LQ ety fesh

|V
Wa@/a[% 7{1

OL(LLA 60 Hb%
% (Lflé;q)q
&o@} o mafter UJW\L WWL G0

aflin

éC@ lé ?LQ%%& Sy oA ﬁ“"‘j

GLWL s Qg e ndyng {yn ot at
/n/‘ﬂz Mw{‘)

()

" G5
Now dude 4 by &

—

[L]((OW fo Cuafe ‘9 9{ oA
15—
(0 ! 7

o fale & M /“@WJ
O(«\ Sone (/vJB Can é)e, glg "’Nt”/é b["’ {?k
50 rr?'h/‘}' S&/(J/d;[‘%Ma/p/j

lll{ bv/ Wﬂ\m@/]flﬁ C

vibe tb e b sttt « o
W il ot

At dont Chave i puph se

0 l/\/t")r g \/V\w(m C@“ (be{wb/{

LV\Q &/l/gw(lz | Lo(/z, (0/16{/1/01(0/
TR ynon i gt

f |
) 51/“‘/ 5 AN
et ﬁi 5900 |
' [\ 7 ! l%ﬂ/"(Q—Q@/D

Oty ve ¢ by T alos lece af

M ma@wr ML fo mie eme Ses (ﬂqga ol ;»lL C[L'@;J’M/(
gl

00 o clab ca Bl 1, mollple contrs
J/.‘!f{‘b (' v : f (\
L Izm m{'S/Q i éomﬂ EK((M':MJ /(91/'/4
dnl b Wy \Lr\owl
%% 60 A ({'}V‘I'Uﬂﬁ ‘/(!M L{’ [(Ln()w 26 éaiﬂj (iﬂé/[
AC{M/LL? 71(2(«/ M) 91% %
Can hae miple Catd blod
T\u[[e Cabj((zﬂﬁ pmblé’m Gy
Ui et closgg 5
59 /LM, [CL\?M\L —0/ /MH(;O{& Clt‘éﬁéT

Ok (aA é{lﬂ 8JF¢ 2« ﬂg/@

O"L 400‘{' NO({& Maﬁ((pl‘i ’D/\/U{,l&,;
Lred 4 roud 4 o b

0

Ot& all ﬁwb Qﬁg nofds e .Lg %I,,,,L
éa) ng MVH; .hf\/@w;/tj 9 0re cﬂffﬁ({/Ze m‘@/f

N@% er o(/d@fé’%f 4 Mﬂ k 174 /e//és hd,

FO(zmp @W@
WH[{ bive (/(pﬂleb)

Ol Seoms o "Q bagk (Nw/&\(/{j

Q\tfd Iﬁégé’/ 90 dmo #«7’(
(NDY\/ dUY\Q N'}V (Vﬂl(;‘/l(j ’/Zcil/b](',,w

ied

Ity
i @{/& Jf" g (/?L HL VMH(fp(e, fit, ol)

— WK e

fﬂ(élei Jf;r\ (4 ({0 T{/M%

I M g wﬂ%‘(
I A‘Li \L{f{ S!‘/("(h/UM L‘Qéé e

‘)% I vty ke ox
J gy P lLLU:fLy ne to do I b v
Mv\qﬁ/\?
it Vﬁl‘@ i
(_baﬂkwdﬁ fr whgt NM[/Z &{
Ok L comacdel A ik 0 ot~ o

W&é N Wllwg SCilles
ﬂ‘o»@\ﬂvL 1[s ik W0 c{obj @J&

hith
W/J ¢ -&é\/@ﬁ &1; T |

[A///J/LJ(

A fwally w0 rgla of can Feque 2/\'0‘/[1
Ol (0ndiny Mél@ﬂb

) 9% i gib (ound 44 4

O(k 69 \(zafl’ A ey bt & /m{/l(

glm&, 4, gsﬂtm Q/o,e; not dtoul- & ” o
e of iy
(e 0@? P//O/ (

HQA{ t O Wong 9o

0

v = (»Lﬂ\
Now aliay WA o bl 0 xcepton
O"\ MML (QcL%ﬂL “WL(?///’
OL\ r\!zw“re/ fg@({% sont - -
D 1 gl
el nd - ok
NOW vv‘H [5 \OL W/or\g(
= braakiy 1 viong Tint
bt Jobte (i
@ Ah‘\ /UM’] M/M“y
\Q\)r e (.WlAM cttmm%r bt .-
Wik

W@VL/ WM‘L else “ Wl s e ”\WE
A 6 o +e}b

K((CM(Jr b l %eﬁ\Lf
f(70[% Wiy %o Soq e ﬁmi&(‘:

0

ON« _)Dﬁ\‘/\{) fwj(Conma{‘(r/lﬂ ridhL

’ %q/l =10 W b 0 e ot
(Weed o by on o

Ut aftorads)

B Ut bk o

fnd ¥ Cctgual NN

i gy gre dgliats o
ool b ek af ed
D i diag Vel ta

N@w Conoent gy {'4 YA

;ML Sha b @ﬁ{/ h{eﬂ{)
V4t 0brs o b bud

all M:/((
FLOnLI a,({& On Ladlr o"(@(‘

G
\/\/LVY ({0@" [W‘ﬂe o é‘ ‘

L[e@\»’lf(Oy ({0@ th /@ﬁm W(ﬂﬁy

61/\ M 25 546{/{ /(({[/

/tOf Nt (@W@ Mo /gw% bﬂ/aﬂ@”(/

L
§1L9p val {00 sl
"Nope WWLA LW -

OLL s ok Ww& i\/\g QA(J«/M
V' Wors

N@vu (,\/)'Ltz Cﬁ/b# \/JL (i Mol h’Wl Z %@)IL @/L ﬂ/f{g
(N ;5 M‘F amé(fvfﬂ(ﬁ v

50 50/ 4 5}\0\/[& cLoe@ on /wﬁ
CO%O){ is Nt over ~ MWLB el f\“é[
O\ﬁ {M@J
Do now ved Yo ek we o4l by
”/ﬂff‘/(L JFGﬁJD — Mo
JOVL \H, moe (ait T[wff«g -'j(on(m/c%&{ o1 %5/%

A(\ (//V((.GJ(’_ (/«/0{(#5(
fc{ms ({FL dous ek L/d/k'

Y

Notds & celun Chu !

(
Ok\ l“} (s ‘U/‘M“Z M ¢ 6(/65/60{ éq(/
N Wy o sen

(= 0{‘ *’4 /,f_g,é
N@W Sumy fo be worlt U el =W n
.'. b é@ﬁ‘t&j up Q[‘Q/”L ﬁ/

- !

NOW N(Lb d In /W[/
Ol done

Now .o bty 1, Wrg]
Oh mgd §5 (@)l ‘ (
0 i Cak MMLL lM@b JMJ‘ ﬁ(,{m ;

(
JFM‘WOO{lf |
(¢ W\O/Q,T}um [CC

60 Sl(\ovi k{ o (GSUH |
U A Do dow uhole Psth!

Lo I
L3 Sncorlgafion

Ulodds
| J moata. \0(0\({@”’
W
L1 lehing ~ disciplees
Pé 6; OVF/ Q(VQ DM
LUS@ what e H“f& a,baif ‘MM/
= M\&, 61“%(! W\ViLa(Hg ({Wh{, H#Q 4 “(f

E{A{ﬁ é

-
if pam | 8

F G wap o gl o

[, (onﬁvpmi r
—orpl[gaf(ll{ no (efeens n Oh(’f ﬂ/]/&({

0w Ll safe , ol party (gets it T dW?t

_’6'{&]{‘% "(w/ {q/b]‘tﬂ N@M) RJtpoe hag AEes5

Y
J- Tl

Aoy wn b !
Mo Colr e (/O’VCLZT:O/% /0056;“6

3 haid-safe mbhally (e e

He

Symﬂ*"’&i neap e
Blockag Guaes
%J‘qt pale oy o Md]ﬁa sof(

’_'—‘-—-_._______;

I(L\»’; “/“fj ()oo@\g Do(b
“Megd motvghle ol dos

Ceale ADT [t DA

Tl

(dn A

\
= H\b{l/{\

— Got J n Juhbgre
~doly,

IM EJH gtf(’([nllq(éw

— Wr :/‘!Q, rofnads S\tﬂj
Zc T@blﬁ “L {\ _f P
s l@\c L 0 S /Z{,p
- CULC% g{w\&s
= @% sl st QLWMW% hw{\ ikl

BL Im{)[mﬂtyI\ :
V’/’C@Y\ST(W]LO(& ((,ﬂuhln? PA‘ i thlﬁ?{atﬁ ddg/ (’g JM,/
Tl (hose e
- CWM }‘t lo/uj[cj[of(& Oy 3\@ da

—} ﬁwf F(‘af ’
Li"zks 4 {e[mblfg o (f&f AW

vdﬂ ‘{‘@551‘ (2% worlr

et G v g wbia
- hae SWLargj Budes °
- Luf ht} ?‘l/@u,({ 516(

B o e (onplex e p

6{144(@ fheaddd 141 | |
— [m{ th 5llmpl@ \«/MK J@["%(’ﬁ

= polti-theded ‘\L@%;mj ”n[anfm“
< b o kab sl bedd i et e
l!s/\ I‘wwri\/g&/gé

I f\w% 9#}@ &
Lan ;wse/H (onsbidd o GYL”‘/%I From dﬁd Wg

‘15 (/blﬂﬁ %mu{ :WéZE 010}%’3

@‘/J‘ T gv\\o}e err Z& mdfmbl@(.
“ ot gk (]
Uty bl

gk‘% meuerm &S w/ Cdnsél Mﬂ%

0.

Ted b Cepsigut

Sp LOW {to ﬂ}é f' |
T{\ IWM“{ %W ~D) 0 (/\.L\l
wa#o

4 ﬁ@ = CC‘“‘Z heb b | B
mUL\ lg 4 I&(M

)
QQ{/\J\@ <‘ “L’“&

ﬂa{/‘”@ Lol«l‘b lg R/\bh\lf \n\/@a,({
Owng]odk Pf’ml(’/@,,fg

Ln Jon

=~ lodks Mbn@ﬁ\w/f/ aftakd s Ry okjrwl

| ¢ /OLL\
()\"u —

= pmf 1 tlu{ P(OJ) (eﬂrgf fhls Now
~ v st ne J}epurt b ted ok 1o (e W?

_@“M v]L m/[w/(; %QM/O (0n f[Idngy,
0”2 ead ireafly g d/t@ e Can JMA

éo Vo §7 1'¢(o m%a(l/ (Oh) é

Mvse, Prah /alt

OM(LW IML lod

balinc = Wl #1 /
6o ()

T lgn U{}’{ Whﬂ@ &j
(th’vk e bﬁﬂ (mdx(@)

M\m \]“hrm& }fl@}" @»W 9th)1L 7Lf€¢. 7{0 |
4(“({/[/& [oJ'l

Wi !T”l e b gl sy (i) T Hhoks
ol ok o

b L Mp (onfirngnt

e -

o Tor Elcc{m W&) ViR Lool\ N g"'{’ Q%W
C ol gl offF bl

6\1([(01"’11/! Cl@é}

P Mot do b to mbshs ool Choours

\ |
b o ol
[{\O‘w“{eye! S‘MF Mppms & (mif
~In (leLSQ/bz(’,
Jmp 0 = ol CIRL + Clek
W | :
/ﬂ(Hﬁwfwcf (éﬁm /@CL([L&/& a [OcLL h @[/&/J7 /La)
Wtfz \Jqﬁ’}\ Pass ﬁufoyszt w/g pfﬂb)\gmﬁ
"QMJF’l“j Won T (ofouyp
L@/& ComH’L\g # 01(5%’@

Méjr Lﬂ (l‘bflt’v@(l{ fo PJ Jock CWy ihare

(@4 Cb{m P"% 1(67/1,((01*»(’%{ll [efore vefhad ﬁﬂﬁ
Ll bo sam iy ds Sue o
LIS TR Coasheetis
“Ohed gholl fy ofud @y e b M@

AT $hoed cefores
i - a,lws fw

—\/&/ Can bH‘” Syal On thter,lo# 'U% \f‘// LLWD‘{

(0 5t have probas 0~ e
ok Redee [Efp ko, 5, 1)

0 0ps Lokl hagorn ot
’“affamt P\A/ eagf\ ﬁﬁé’/ 7

— bt no Ffof'eofﬂf\ ALes5 mylt M& OVJFFQ/HM(g ({4 U L[f(l
~ Pk male Gaie ﬁmlv\j whone
“ b o g i [odl,
bnc ?ﬂ;?e (MA’-’”) ¢
3
~ bt wade skl \,of% oW, ead

— Wi \,uamL m (ﬂ Vsae OL/IQI/{,

Tk poogk e dhe ot A o g
Noun ae highlghiey

bh won (eated Alﬁ/ml

“hrmAs 4@ ow b va

“vouds can e wa/? o ek ofl
hﬂ%{ Ay B?/wﬂ’tfxﬁ on f3
8 t

G

\J\/[;Llaf J, 0 Yoy {Q

/-————____-/

“\\""k‘“ﬁ ale B:J}/ecf:""”w/

\ , b bdh |/
"\/DrlH izel(f l P ecsaa F(LE“JS ﬁ{ 0&4/ ~—Wdﬂ' i&f_’\p@l‘)ﬂ

IF qu ol Syt both ‘fry fo T[fc’em] eah of), o
Sare Fing 0 &Q@(Llaok

To

b i
M{U‘m fhe ol \o i

| -m\‘m il e Q\L\L */62\%{

LAPPQM Glow fQC(P“Z(w[y M’@J

@ (ujf\wﬂé
| T by Lok
—§ vy Sabe |
— bt o lOMa,“L&m
- \N\»Y bg‘])« (sznﬂ -H]f%({j ﬁ@lhp/
ZL LOdL 066@
’(l;&ﬁu/lf | (
F%o/ce, [oa\ga % &Cﬂcu:/e)[m Ok (er]Lcm Ofoz@/
2(3/)D[Q(PL«J O(JQ/
\M Yov @em% AOAHL - Wml bodee 4, a%/}/e
- (ed ‘(ﬂé‘tcle/ 08 Lgmaks

6.005 Software Construction
Fall 2011
Prof. Rob Miller

L13: Synchronization

Today

Making a datatype threadsafe
Locks

Monitor pattern

Deadlock

Locking disciplines

O 0 00O

Required reading (from the Java Tutorial)

®* Synchronization

Optional reading

The material in this lecture is inspired by an excellent book:

* Brian Goetz et al. Java Concurrency in Praciice. Addison-Wesley, 2006.

Review

Recall the four ways to make data access safe in shared-memory concurrency:

¢ Confinement: don’t share the data between threads. Ensure that only one thread has access
to it.

¢ Immutability: make the shared data immutable.
* Threadsafe datatype: use a datatype that does the coordination for you, like a
BlockingQueue or a synchronized collection wrapper.

* Synchronization: when the data has to be shared between threads, keep two threads from
accessing it at the same time.

We talked about the first three in the last lecture. Synchronization is our topic for today. We'll look
at it in the context of designing a threadsafe abstract datatype.

Developing a Datatype for a Multiuser Editor

Suppose we’re building a multi-user editor, like Google Docs, that allows multiple people to connect
to it and edit it at the same time. We'll need a mutable datatype to represent the text in the
document. Here’s the interface; basically it represents a string with insert and delete operations.

/** An EditBuffer represents a threadsafe mutable string of characters in a
text editor. */
public interface EditBuffer {
/**
* Modifies this by inserting a string.
* @param i position to insert (requires @ <= pos <= current buffer length)
* @param s string to insert
*y
public void insert(int pos, String s);

These lecture notes bave been collaboratively authored, with contributions from Saman Amarasinghe, Srini Devadas, Michael Ernst, Jobn
Guittag, Daniel Jackson, Rob Miller, Martin Rinard, and Armando Solar-1 ezama. Copyright @ MIT.

*

Modifies this by deleting a substring
@param pos start of substring to delete

(requires @ <= pos <= current buffer length)
@param len length of substring to delete

(requires @ <= len <= current buffer length - pos)

L

*y
public void delete(int pos, int len);

/**
* @return length of text sequence in this edit buffer
*/

public int length();

VAL
* @return content of this edit buffer
i g
public String toString();
}

A very simple rep for this datatype would just be a string:

public class SimpleBuffer implements EditBuffer {
private String text;
// Rep invariant:
// text !'= null
// Abstraction function:
// represents the sequence text[@],...,text[text.length()-1]

The downside of this rep is that every dme we do an insert or delete, we have to copy the entire
string into a new string. That gets expensive. Another rep we could use would be a char array, with
space at the end. That’s fine if the user is just typing new text at the end of the document (we don’t
have to copy anything), but if the user is typing at the beginning of the document, then we’re copying
the entire document with every keystroke.

A more interesting rep, which is used by many text editors in practice, is called a gap buffer. It’s
basically a char array with extra space in it, but instead of having all the extra space at the end, the
extra space is a gap that can appear anywhere in the buffer. Whenever an insert or delete operation
needs to be done, the datatype first moves the gap to the location of the operation, and then does the
insert or delete. If the gap is already there, then nothing needs to be copied — an insert just consumes
part of the gap, and a delete just enlarges the gap! Gap buffers are particularly well-suited to
representing a string that is being edited by a user with a cursor, since inserts and deletes tend to be
focused around the cursor, so the gap rarely moves.

/** GapBuffer is a nonthreadsafe EditBuffer that is optimized for editing with
* a cursor, which tends to make a sequence of inserts and deletes at the same
* place in the buffer. */

public class GapBuffer implements EditBuffer {

private char[] a;

private int gapStart;

private int gaplength;

// Rep invariant:

/7 a = null

// B <= gapStart <= a.length

/7 @ <= gaplLength <= a.length - gapStart
// Abstraction function:

// represents the sequence al[@],...,a[gapStart-1],
// a[gapStart+gaplLength],...,a[length-1]

In a multiuser scenario, we’d want multiple gaps, one for each user’s cursor, but we’ll use a single gap
for now.

Steps to Developing the Datatype

Recall our recipe for designing and implementing an ADT:

1. Specify. Define the operadons (method signatures and specs). We did that in the
EditBuffer interface.

2. Test. Develop test cases for the operations. See EditBufferTest in the provided code. The
test suite includes a testing strategy based on partitioning the parameter space of the
operations.

3. Rep. Choose a rep. We chose two of them for EditBuffer, and this is often a good idea:

a. Implement a simple, brute-force rep first. It’s easier to write, you’re more likely
to get it right, and it will validate your test cases and your specification so you can
fix problems in them before you move on to the harder implementation. This is
why we implemented SimpleBuffer before moving on to GapBuffer. Don’t throw
away your simple version, either — keep it around so that you have something to test
and compare against in case things go wrong with the more complex one.

b. Write down the rep invariant and abstraction function, and implement
checkRep(). checkRep() asserts the rep invariant at the end of every constructor,
producer, and mutator method. (It’s typically not necessary to call it at the end of
an observer, since the rep hasn’t changed.) In fact, assertions can be very useful for
testing complex implementations, so it’s not a bad idea to also assert the
postcondition at the end of 2 complex method. You’ll see an example of this in
GapBuffer.moveGap() in the code with this lecture.

In all these steps, we’re working entirely single-threaded at first. Multithreaded clients should be in
the back of our minds at all imes while we’re writing specs and choosing reps (we’ll see later that
careful choice of operations may be necessary to avoid race conditions in the eents of your datatype).
But get it working, and thoroughly tested, in a sequential, single-threaded environment first.

Now we’re ready for the next step:

4. Synchronize. Make an argument that your rep is threadsafe. Write it down explicitly as a
comment in your class, right by the rep invariant, so that a maintainer knows how you
designed thread safety into the class.

This lecture is about how to do step 4.

Examples of Thread Safety Arguments

Let’s see some examples of how to make thread safety arguments for a datatype. Remember our
four approaches to thread safety: confinement, immutability, threadsafe datatypes, and
synchronization.

Confinement is not usually an option when we’re making an argument just about a datatype,
because you have to know what threads exist in the system and what objects they’ve been given
access to. If the datatype creates its own set of threads (like the Crawler datatype we used last
lecture), then you can talk about confinement with respect to those threads. Otherwise, the threads
are coming in from the outside, carrying client calls, and the datatype may have no guarantees about
which threads have references to what. So confinement isn’t a useful argument in that case. Usually
we use confinement at a higher level, talking about the system as a whole and arguing why we don’t

need thread safety for some of our modules or datatypes, because they won’t be shared across threads
by design.

Immutability is often a useful argument:

public class String {
private final char[] a;
// thread safety argument:
/7 This class is threadsafe because it's immutable:
/7 - a is final
yod - a points to a mutable char array, but that array is encapsulated
// in this object, not shared with any other object or exposed
// to a client.

Here’s another rep for String that requires a little more care in the argument:

public class String {
private final char[] g;
private final int start;
private final int len;
// rep invariant:
Yod a != null, @<=start<=a.length, O@<=len<=a.length-start
// abstraction function:
yos represents the string of characters
/7 a[start],...,a[start+length-1]
// thread safety argument:
s This class is threadsafe because it's immutable:
// - a, start, and len are final
o4 - a points to a mutable char array, which may be shared with
Yok other String objects, but they never mutate it.
/7 The array is never exposed to a client.

Note that since this String rep was designed for sharing the array between multiple String objects, we
have to ensure that the sharing doesn’t threaten its thread safety. As long as it doesn’t threaten the
String’s immutability, however, we can be confident that it won’t threaten the thread safety.

We also have to avoid rep exposure. Rep exposure is bad for any datatype, since it threatens the
datatype’s rep invariant. It’s also fatal to thread safety.

Bad Arguments

Here are some incorrect arguments for thread safety:

/** SimpleBuffer is a threadsafe EditBuffer with a simple rep. */
public class SimpleBuffer implements EditBuffer {

private String text;

// Rep invariant:

/7 text l= null

// Abstraction function:

// represents the sequence text[@],...,text[text.length()-1]

// Thread safety argument:

// text is an immutable (and hence threadsafe) String,

// so this object is also threadsafe

Why doesn’t this argument work? String is indeed immutable and threadsafe; but the rep pointing to
that string, specifically the text variable, is not immutable. Text is not a final variable, and in fact it

can’t be in this datatype, because we need the datatype to support insertion and deletion operations.
So reads and writes of the text variable itself are not threadsafe. This argument is false.

Here’s another broken argument:

public class Graph {
private final Set<Node> nodes =
Collections.synchronizedSet(new HashSet<Node>());
private final Map<Node,Node> edges =
Collections. synchronizedMap(new HashMap<Node,Node>());
// rep invariant:
/7 nodes, edges != null
/7 if edges maps x -> y, then nodes contains x and y
// abstraction function:
7/ represents a directed graph whose nodes are the set of nodes

/7 and edges are the x-»y pairs in edges
// thread safety argument:

/7 - nodes and edges are final, so those variables are immutable

// and threadsafe.

e - nodes and edges point to threadsafe set and map datatypes

This is a graph datatype, which stores its nodes in a set and its edges in a map. (Quick quiz: is Graph
a mutable or immutable datatype? What do the final keywords have to do with its mutability?)

Graph relies on other threadsafe datatypes to help it implement its rep — specifically the threadsafe
Set and Map wrappers that we talked about last lecture. That helps a lot to prevent race conditions,
but it doesn’t provide a sufficient guarantee, because the graph’s rep invariant includes a relationship
between the node set and the edge map: all nodes that appear in the edge map also have to appear in
the node set. So there may be code like this:

public void addEdge(Node from, Node to) {
edges.put(from, to);
nodes.add(from);
nodes.add(to);

1

which would produce a race condition — a moment when the rep invariant is violated. Even though
the threadsafe set and map datatypes guarantee that their own add() and put() methods are atomic
and noninterfering, they can’t extend that guarantee to interactions besween the two data structures.
So the rep invariant of the Graph is not safe from race conditions. Just using immutable and
threadsafe-mutable datatypes is not sufficient when the rep invariant depends on relationships
between objects in the rep.

Locking

So we need a way for a datatype to protect itself from interfering access by multiple threads. A
popular synchronization technique, so common that Java provides it as a built-in language feature, is
locking.

A lock is an abstraction that allows at most one thread to own it at a time. Locks have two
operations: acquire (to own the lock for a while) and release (to allow another thread to own it). If a
thread tries to acquire a lock currently owned by another thread, then it blocks until the other thread
releases the lock and the thread successfully acquires it.

In Java, every object has a lock implicitly associated with it — a String, an array, an ArrayList, and
every class you create, all their object instances have a lock. Even a humble Object has a lock, so
bare Objects are often used for explicit locking:

Object lock = new Object();

You can’t call acquire and release on that lock directly, however. Instead you use the synchronized
statement to acquire a lock for the duration of a statement block.

synchronized (lock) { // thread blocks here until lock is free
// now this thread has the lock
balance = balance + 1;
// exiting the block releases the lock

1

Synchronized regions like this provide mutual exclusion: only one thread at 2 ime can be in a
synchronized region guarded by a given object’s lock. In other words, you are back in sequential
programming world, with only one thread running at a time, at least with respect to other
synchronized regions that refer to the same object.

Locks are used to guard a shared data variable, like the account balance shown here. If all accesses
to a data variable are guarded (surrounded by a synchronized block) by the same lock object, then
those accesses will be guaranteed to be atomic — uninterrupted by other threads.

Monitor Pattern

When you are writing methods of a class, the most convenient lock is the object instance itself, i.c.
this. As a simple approach, we can guard the entire rep of a class by wrapping all accesses to the rep
inside synchronized(this).

/** SimpleBuffer is a threadsafe EditBuffer with a simple rep. */
public class SimpleBuffer implements EditBuffer {
private String text;

public SimpleBuffer() {
synchronized (this) {
text = "";
checkRep();

}

public void insert(int pos, String s) {
synchronized (this) {
text = text.substring(®, pos) + s + text.substring(pos);
checkRep();

3

public void delete(int pos, int len) {
synchronized (this) {
text = text.substring(@, pos) + text.substring(pos+len);
checkRep();

¥

public int length() {
synchronized (this) {
return text.length(Q);
1

public String toString() {
synchronized (this) {
return text;

}

}

Note the very careful discipline here. Every method that touches the rep must be guarded with the
lock — even apparently small and trivial ones like length() and toString(). This is because reads must
be guarded as well as writes — if reads are left unguarded, then they may be able to see the rep in a
partially-modified state.

This approach is called the monitor pattern. A monitor is a class whose methods are mutually
exclusive, so that only one thread can be inside the class at a time.

The monitor pattern is so useful in Java that Java provides some syntactc sugar for it. If you add the
keyword synchronized to the method signature, then Java will act as if you wrote synchronized(this)
around its method body. So the code below is an equivalent way to implement the synchronized
SimpleBuffer:

/** SimpleBuffer is a threadsafe EditBuffer with a simple rep. */
public class SimpleBuffer implements EditBuffer {
private String text;

public SimpleBuffer() {
text = "";
checkRep();

}

public synchronized void insert(int pos, String s) {
text = text.substring(®, pos) + s + text.substring(pos);
checkRep();

1

public synchronized void delete(int pos, int len) {
text = text.substring(®, pos) + text.substring(pos+len);
checkRep();

}

public synchronized int length() {
return text.length();
}

/*¥* @see EditBuffer#toString */

public synchronized String toString() {
return text;

}

}

Notice that the SimpleBuffer constructor doesn’t have a synchronized keyword. Java actually forbids
it, syntactically, because an object under construction should be confined to a single thread until it
has returned from its constructor. So synchronizing constructors should be unnecessary.

/** SimpleBuffer is a threadsafe EditBuffer with a simple rep. */
public class SimpleBuffer implements EditBuffer {

Thread Safety Argument with Synchronization

Now that we're protecting SimpleBuffer’s rep with a lock, we can write a better thread safety
argument:

/** SimpleBuffer is a threadsafe EditBuffer with a simple rep. */
public class SimpleBuffer implements EditBuffer {
private String text;
// Rep invariant:
/7 text != null
// Abstraction function:
/7 represents the sequence text[@],...,text[text.length()-1]
// Thread safety argument:
// all accesses to text happen within SimpleBuffer methods,
// which are all guarded by SimpleBuffer’s lock

The same argument works for GapBuffer, if we use the monitor pattern to synchronize all its
methods.

Note that the encapsulation of the class, the absence of rep exposure, is very important for making
this argument. If text were public:

public String text;

then clients outside SimpleBuffer would be able to read and write it withont knowing that they should
first acquire the lock, and SimpleBuffer would no longer be threadsafe.

Locking Discipline

1. Every shared mutable variable must be guarded by some lock. The data may not be read or
written except inside a synchronized block that acquires that lock.

2. If an invariant involves multiple shared mutable variables (which might be in different
objects), then all the variables involved must be guarded by the same lock. The invariant
must be satisfied before releasing the lock.

The monitor pattern satisfies both rules. All the shared mutable data in the rep — which the rep
invariant depends on -- is guarded by the same lock.

Giving Clients Access to a Lock

It’s sometimes useful to make your datatype’s lock available to clients, so that they can use it to
implement higher-level atomic operatons using your datatype. For example, consider a find and
replace operation on the EditBuffer datatype:

/* Modifies buf by replacing the first occurrence of s with t.
* If s not found in buf, then has no effect.
* @returns true if and only if a replacement was made
*/
public static boolean findReplace(EditBuffer buf, String s, String t) {
int 1 = buf.toString().index0f(s);
if (i =-1) {
return false;

¥

buf.delete(i, s.length());
buf.insert(i, t);

return true;

}

This method makes three different calls to buf — to convert it to a string in order to search for s, to
delete it, and then to insert t in its place. Even though each of these calls individually is atomic, the
findReplace method as a whole is not threadsafe, because other threads might mutate the buffer
while findReplace() is working, causing it to delete the wrong region or put the replacement back in
the wrong place.

To prevent this, findReplace() needs to synchronize with all other clients of buf. One approach is to
simply document that clients can use the EditBuffer’s lock to synchronize with each other:

/** An EditBuffer represents a threadsafe mutable string of characters
in a text editor. Clients may synchronize with each other using
the EditBuffer object itself. */

public interface EditBuffer {

1
And then findReplace() can synchronize on buf:

public static boolean findReplace(EditBuffer buf, String s, String t) {
synchronized (buf) {
int 1 = buf.toString().index0f(s);
if (1 = -1) {
return false;
1

buf.delete(i, s.length());
buf.insert(i, t);
return true;

}

The effect of this is to enlarge the synchronization region that the monitor pattern already put
around the individual toString(), delete(), and insert() methods, into a single atomic region that
ensures that all three methods are executed without interference from other threads.

Sprinkling Synchronized Everywhere?

So is thread safety simply a matter of putting the synchronized keyword on every method in your
program? Unfortunately not.

First, you actually don’t want to synchronize methods willy-nilly. Synchronization imposes a large
cost on your program. Making a synchronized method call may take significantly longer, because of
the need to acquire a lock (and flush caches and communicate with other processors). Java leaves
many of its mutable datatypes unsynchronized by default exactly for these performance reasons.
When you don’t need synchronization, don’t use it.

Second, it’s not sufficient. Dropping synchronized onto a method without thinking means that you’re
acquiring a lock without thinking about which lock it is, or about whether it’s the right lock for
guarding the shared data access you’re about to do. Suppose we had tried to solve findReplace()’s
synchronization problem simply by dropping synchronized onto its method:

public static synchronized boolean findReplace(EditBuffer buf, ...) {

This wouldn’t do what we want. It would indeed acquire a lock -- because findReplace is a static
method, it would acquire a static lock for the whole class that findReplace happens to be in, rather
than an instance object lock. As a result, only one thread could call findReplace() at a time — even if
other threads want to operate on different buffers, which should be safe, they’d still be blocked until

the single lock was free. So we’d suffer a significant loss in performance, because only one user of
our massive multiuser editor would be allowed to do a find-and-replace at a time, even if they’re all
editing different documents. Worse, however, it wouldn’t provide much protection, because other
code that touches the document probably wouldn’t be acquiring the same lock.

The synchronized keyword is not a panacea. Thread safety requires a discipline — using confinement,
immutability, or locks to protect shared data. That discipline needs to be written down, or
maintainers won’t know what it is.

Designing a Datatype For Concurrency

findReplace()’s problem can be interpreted another way: that the EditBuffer interface really isn’t that
friendly to muldple simultaneous clients. It relies on integer indexes to specify insert and delete
locations, which are extremely brittle to other mutations. If somebody else inserts or deletes before
the index position, then the index becomes invalid.

So if we’re designing a datatype specifically for use in a concurrent system, we need to think about
providing operations that have better-defined semantics when they are interleaved. For example, it
might be better to pair EditBuffer with a Position datatype representing a cursor position in the
buffer, or even a Selection datatype representing a selected range. Once obtained, a Position could
hold its location in the text against the wash of insertions and deletions around it, until the client was
ready to use that Position. If some other thread deleted all the text around the Position, then the
Position would be able to inform a subsequent client about what had happened (perhaps with an
exception), and allow the client to decide what to do. These kinds of considerations come into play
when designing a datatype for concurrency.

As another example, consider the ConcurrentMap interface in Java. This interface extends the
existing Map interface, adding a few key methods that are commonly needed as atomic operations on
a shared mutable map, e.g.:

map.putlfAbsent(key,value) is an atomic version of
if (Imap.containsKey(key)) map.put(key, value);
map.replace(key, value) is an atomic version of

if (map.containsKey(key)) map.put(key, value);

Deadlock Rears its Ugly Head

The locking approach to thread safety is powerful, but (unlike confinement and immutability) it
introduces blocking into the program. Threads must sometimes wait for other threads to get out of
synchronized regions before they can proceed. And blocking raises the possibility of deadlock —a
very real risk, and frankly far more common in this setting than in message passing with blocking
I/0O (where we first saw it last week).

With locking, deadlock happens when threads acquire multiple locks at the same time, and two
threads end up blocked while holding locks that they are each waiting for the other to release. The
monitor pattern unfortunately makes this fairly easy to do. Here’s an example. Suppose we’re
modeling the social network of a series of books:

public class Wizard {
private final String name;
private final Set<Wizard> friends;
// rep invariant:
£ name, friends != null
/7 friend links are bidirectional:

i for all f in friends, f.friends contains this
// concurrency argument:

/r threadsafe by monitor pattern: all accesses to rep
i are guarded by this object's lock

public Wizard(String name) {
this.name = name;
this.friends = new HashSet<Wizard>();

}

public synchronized boolean isFriendsWith(Wizard that) {
return this.friends.contains(that);

}

public synchronized void friend(Wizard that) {
if (friends.add(that)) {
that. friend(this);
)

}

public synchronized void defriend(Wizard that) {
if (friends.remove(that)) {
that.defriend(this);
1

}

Like Facebook, this social network is bidirectional: if x is friends with y, then y is friends with x. The
friend() and defriend() methods enforce that invariant by modifying the reps of both objects, which
because they use the monitor pattern means acquiring the locks to both objects as well.

Let’s create a couple of wizards:

Wizard harry = new Wizard("Harry Potter");
Wizard snape = new Wizard("Severus Snape'");

And then think about what happens when two independent threads are repeatedly running:

// thread A // thread B
harry.friend(snape); snape. friendCharry);
harry.defriend(snape); snape.defriendCharry);

We will deadlock very rapidly. Here’s why. Suppose thread A is about to execute
harry.friend(snape), and thread B is about to execute snape.friend(harry). Thread A acquires the lock
on harry (because the friend method is synchronized). Then thread B acquires the lock on snape (for
the same reason). They both update their individual reps independently, and then try to call friend()
on the other object — which requires them to acquire the lock on the other object. So A is holding
Harry and waiting for Snape, and B is holding Snape and waiting for Harry. Both threads are stuck
in friend(), so neither one will ever manage to exit the synchronized region and release the lock to the
other. This is a classic deadly embrace. The program simply stops.

The essence of the problem is acquiring multiple locks, and holding some of the locks while waiting
for another lock to become free.

One Solution to Deadlock: Lock Ordering

One way to prevent deadlock is to put an ordering on the locks that need to be acquired
simultancously, and ensuring that all code acquires the locks in that order. This is a

In our social network example, we might always acquire the locks on the Wizard objects in
alphabetical order by the wizard’s name. Since thread A and thread B are both going to need the
locks for Harry and Snape, they would both acquire them in that order: Harry’s lock first, then
Snape’s. If thread A gets Harry’s lock before B does, it will also get Snape’s lock before B does,
because B can’t proceed until A releases Harry’s lock again. The ordering on the locks forces an
ordering on the threads acquiring them, so there’s no way to produce a cycle in the waiting-for graph.

Here’s what the code might look like.

public void friend(Wizard that) {
Wizard first, second;
if (this.name.compareTo(that.name) < @) {
first = this; second = that;
1 else {
first = that; second = this;

¥

synchronized (first) {
synchronized (second) {
if (friends.add(that)) {
that.friend(this);
3

}

(Note that the decision to order the locks alphabetically by the person’s name would work fine for
this book, but it wouldn’t work in a real life social network. Why not? What would be better to use
for lock ordering than the name?)

Although lock ordering is useful (particularly in code like operating system kernels), it has a number
of drawbacks in practice. First, it’s not modular — the code has to know about all the locks in the
system, or at least in its subsystem. Second, it may be difficult or impossible for the code to know
exactly which of those locks it will need before it even acquires the first one. It may need to do some
computation to figure it out. Think about doing a depth-first search on the social network graph, for

example — how would you know which nodes need to be locked, before you’ve even started looking
for them?

Another Approach: Coarse-Grained Locking

A more common approach than lock ordering, particularly for application programming (as opposed
to operating system or device driver programming), is to use coarser locking — use a single lock to
guard many object instances, or even a whole subsystem of a program.

For example, we might have a single lock for an entire social network, and have all the operations on
any of its constituent parts synchronize on that lock. In the code below, all Wizards belong to a
Castle, and we just use that Castle object’s lock to synchronize:

public class Wizard {
private final Castle castle;
private final String name;

private final Set<Wizard> friends;

public void friend(Wizard that) {
synchronized (castle) {
if (this.friends.add(that)) {
that. friend(this);
}

F

Coarse-grained locks can have a significant performance penalty. If you guard a large pile of mutable
data with a single lock, then you’re giving up the ability to access any of that data concurrently. In
the worst case, having a single lock protecting everything, your program might be essentially
sequential — only one thread is allowed to make progress at a time.

Concurrency in Practice
What strategies are typically followed in real programs?

Library data structures either use no synchronization (to offer performance to single-
threaded clients, while leaving it to multithreaded clients to add locking on top) or the
monitor pattern.

Mutable data structures with many parts typically use cither coarse-grained locking or

thread confinement. Most graphical user interface toolkits follow one of these approaches,

because a graphical user interface is basically a big mutable tree of mutable objects. Java

Swing, the toolkit we’ll be looking at in the next lecture, uses thread confinement. Only a

single dedicated thread is allowed to access Swing’s tree. Other threads have to pass

messages to that dedicated thread in order to access the tree.

* Search often uses immutable datatypes. Our Sudoku SAT solver would be easy to make
multithreaded, because all the datatypes involved were immutable. There would be no risk
of either races or deadlocks.

* Operating systems often use fine-grained locks in order to get high performance, and use

lock ordering to deal with deadlock problems.

We've omitted one important approach to mutable shared data because it’s outside the scope of this
course, but it’s worth mentioning: a database. Database systems are widely used for distributed
client/server systems like web applications. Databases avoid race conditions using transactions, which
are similar to synchronized regions in that their effects are atomic, but they don’t have to acquire
locks, though a transaction may fail and be rolled back if it turns out that a race occurred. Databases
can also manage locks, and handle locking order automatcally. For more about how to use
databases in system design, 6.170 Software Studio is strongly recommended; for more about how
databases work on the inside, take 6.814 Database Systems.

Summary

* Make thread safety arguments about your datatypes, and document them in the code

* Acquiring a lock allows a thread to have exclusive access to the data guarded by that lock,
forcing other threads to block

* The monitor pattern guards the rep of a datatype with a single lock that is acquired by every
method

* Blocking caused by acquiring multiple locks creates the possibility of deadlock, which can be
solved by lock ordering or coarse-grained locking

Nechsf 0

—

ﬂwreod;

ALY)W ey T P(M
Gt Cles < e bk
N pv /’llﬁ [Jf’L Sane /P/L[V/ el

“/0/‘ 0% m;ﬂfug ot
A
Tcwai«ofc “ QW\ e

~ Je al
%ﬁg%ﬂ“ﬁ Ay s

ol ofs, ol Sopoafe 1Y bnghlp

p((ﬂfl V/WH_ /IQ?L éc cil J@/t?

. (/\/W}a/)/\avﬁ fa Q\{({ %‘ Con 5;/%/0/

e e -

L'{ ”lﬂlm .
A Ng 1A &({ £
Rr@'ﬁ.\ ; lbﬁ-;fc @%m tf'%% (al) o e
L/[J {
(]}arelplom Mlaa L = o Trwpl Plan (), « onl, T
o 83 Plas 4 L cuplaec E™_bLane ! 4;[:(,6 as mml&&ﬁmghw%

9

@\(m (Oml‘(lﬂﬂS P@%‘fbe ; G-NL /Pdle/e/ CUJK
UJGS maktoq lb* (M)ML l\ﬂ“ﬂ M\}(ML hwﬁﬁ JL

61/%@ eals /wu,[" Jilfoenl f ey

(Oft(}//@ﬂ Mtf'c@m F)(g;;{'{m = V/ prfd/faf

‘(50“%0& 1Lr % 719 (oncv/ff’/‘z man[7

Caﬂ %&(L/ g\mﬁ /mn‘l‘ée \WTW ‘Ito G¢(/7 ms)sz Mﬂﬂml

phe wated 4, 1 wid b ol b O
%P/H% ad Gt

o it dighy ol 4
1 ﬂc‘) N v {
\’epe J " ﬁw‘fxbl(/ Sl‘d}f/ (s

K W @ ge- m:JM(

T{ V(74 5\/&6(10{?2}45 B Lﬂ% AW{#; QF Wj

@

oo el vve‘tgh pros + (o

(ov\ (MH J7n(, Gome. amﬂm on JJJJ@L
swoed () ¢

go 26 hove Yg‘ﬂ\/ ard bat
N 7 .
—'M ‘huf c,fon '% negd f 1)1 v/’&lf@d w/ [ejtfmﬁ
& e fﬁ/@

0(UPQ]()ILQC 2 ﬁ;mﬂ')] &VIQL NM/W
bz Oplad () & o e ik cally 4

ﬂg Jldte wfal

el {4y cplt)
Synted (bn) (baz plte) J

A
ok (1 hae
Tl vy hal o mak sue J 0 sqnory Loyl
Td w1 '

(0 e 06, ¢ Syncmrv[(%ei ()

/&/J)d? {‘U v()u/j
L |
o A(Mﬂfa vvaH\wg forow

Wl bl ks 6 prodone B ode
W 67 '(Wl‘ rhl CGame Jni({yc ://ll
ot A [Of(‘é}f‘d)) (qwﬂfj b(dli wgw#)

(wli plﬁfﬁ 3105111 {0(/('(
“On pwm\t ohtd- 4l Oé}a/ﬁ wo

iy way

Sned {fﬁ'ﬁ) 4
§w@c[(OW) Z%

3
3

Wit b o Wﬂ"% w/ g{abw/ lale A
L(Jw ﬂa)L mulle whin t(} TMJ 74 OW

EPOLAOM) £ Lo 0){

Nk [-k
,OC\L2 = Oflﬂ’

3¢l (

(ock L = ofur
lod2 :fh{)

5,
Syndd k) {
byred JekY) ¢

33

7
|
(1
2
2
| i
=
[on

S\W
\[%
on
S\MU

new 2
Wednesday, November 09, 2011 9:12 PM

package beforeclass;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.net.ServerSocket;
import java.net.Socket;

import java.util.Arrays;

import java.util.Collections;
import java.util.HashMap;

import java.util.List;

import java.util.Map;

/**

* SocialServer simulates a social networking web server

* in which each user has a list of friends.

* Clients make requests of the form:

* Request ::= Person\n

* Person ::= [“\n]+

* and for each request, the server sends a reply listing the
* person's friends, one per line, terminated by a blank line:

* Reply ::= (Person\n)*\n

* An unknown person returns an empty list of friends.
*/

//, -————— T

//{Thread safety argquEE::::>
e, R S R I P e S

// The threads in the system are:
// - main thread accepting new connections
// - oné thread per connected client, handling just that client

!/ %%

// The serverSocket object is confined to the main thread. 3

" ﬁ)/ 50/«1?/
// The Socket object for a client is confined to that client's thread;

// the main thread loses its reference to the object right after startin
// the client thread.

//

// The friendsOf map and all the lists inside it are confined to the main thread

// during creation and then immutable after creation. [katf

!/

// System.err is used by all threads for displaying error messages. {;h Lféhf;
// No other shared mutable data. ﬁ%’
!/

public class SocialServer {
// default port number where the server listens for connections
public static final int PORT = 3003;

private final Map<String, List<String>> friendsOf = makeFriendsGraph();

=4

new 2 Wednesday, November 09, 2011 9:12 PM

// rep invariant:
o serverSocket, friendsOf, and all references in friendsOf != null k"!
i all strings in friendsOf contain no \n character (N« ﬁ/{@&

o L don ¥ foap

* Make a SocialServer. , A }

w WZ ﬂ&J ﬂ/’bkn
public SocialServer() {
}

/-k*
* @return immutable graph of person -> list of friends
/4
private static Map<String, List<String>> makeFriendsGraph() ({
Map<String, List<String>> graph = new HashMap<String, List<String>>();
add (graph, "Harry Potter", "Ron Weasley", "Hermione Granger", "Sirius Black"):
add (graph, "Ron Weasley", "Harry Potter", "Hermione Granger");
add (graph, "Hermione Granger", "Ron Weasley", "Harry Potter"):
return Collections.unmodifiableMap (graph) ;

/**

* modifies graph by adding a mapping from person to an immutable list of friends
*y
private static void add(Map<String, List<String>> graph, String person, String...
friends) {

graph.put (person, Collections.unmodifiableList (Arrays.asList (friends))):

}

/**
* Run the server, listening for client connections and handling them.
* Never returns unless an exception is thrown.
* @throws IOException if the main server socket is broken
* (IOExceptions from individual clients do *not* terminate serve()).
%/

public void serve() throws IOException {

' heads [oFe
ServerSocket serverSocket = new ServerSocket (PORT) ; nﬁz“l ﬁf&t [7

while (true) {
// block until a client connects
final Socket socket = serverSocket.accept():;

// start a new thread to handle the connection
Thread thread = new Thread(new Runnable() { kaQQ é!
public void run() { (Lw/%!
// the client socket object is now owned by this thread,

// and mustn't be touched again in the main thread a bV€¢
handle (socket) ; é

by
thread.start(); // IMPORTANT! easy to forget

2.

new 2 Wednesday, November 09, 2011 9:12 PM

// when does thread.start () return?
// when will the thread stop?

/**

* Handle a single client connection. Returns when client disconnects.

* @param socket socket where client is connected

* @throws IOException if connection has an error or terminates unexpectedly
-ic/ .

private void handle(Socket socket) {

try {
System.err.println("client connected"); bvhdfwf
// get the sockel's input stream, and wrap converters around it dﬂ oﬂ/
// that convert it from a byte stream to a character stream, tkﬁ
// and that buffer it so that we can read a line at a time ﬂ_COﬂ“@

BufferedReader in = new BufferedReader (new InputStreamReader (socket.
getInputStream()));

// similarly, wrap character=>bytestream converter around the socket output
stream,

// and wrap a PrintWriter around that so that we have more convenient ways to
write

// Java primitive types to it.

PrintWriter out = new PrintWriter (new OutputStreamWriter (socket.getOutputStream

0O)):

// in and out are thread-confined

try {
// each request from the client is a single line containing a person's name
for (String person = in.readline(); person != null; perscon = in.readLine()) {
System.err.println("request: " + person);

// look up the person's friends

List<String> friends = friendsOf.get (person); Cﬁ(f ,
if (friends !'= null) { MZ
for (String friend : friends) { ‘ F zf
System.err.println("reply: " + friend); lf\ ekea Lfﬂ

out.print (friend + "\n"); Fb@L
}
- Lu‘(
d /€f7

// send the terminating blank line
out.print ("\n");

// VERY IMPORTANT! flush our buffer so the client gets the reply
out.flush() ;
}
} finally {
out.close() ;

new 2 Wednesday, November 09, 2011 9:12 PM

in.close() ;
socket.close() ;
}
} catch (IOException e) {
e.printStackTrace();

}
}
/**—
* Start a SquareServer running on the default port.
M
public static void main(Stringl] args) ({
try {
SocialServer server = new SocialServer():; { \f U@#
server.serve() ; ERZ (
} ecatch (IOException e) {
e.printStackTrace() ;
}
}

@

Problem Set 6: Multiplayer Minesweeper http://web.mit.edwnjoliat/www/ps6/ps6.html

6.005 Elements of Software Construction | Fall 2011
Problem Set 6: Multiplayer Minesweeper
Due: Thursday, November 3 2011, 11:59 PM

The purpose of this problem set is to explore multithreaded programming with a shared mutable datatype, which you
should protect using synchronization.

You have substantial design freedom on this problem set. However, in order for your solution to be graded, your
solution must not change the name, method signature, class name, package name, or specification of the following:

* minesweeper.server.MinesweeperServer.main()

To get started, pull out the problem set code from SVN Admin.

Overview

You will start with some minimal server code and implement a server and thread-safe data structure for playing a
multiplayer variant of the classic computer game "Minesweeper"

You can review the traditional/single-player minesweeper concept / rules here: http://en.wikipedia.org
/wiki/Minesweeper_(video_game)

You can try playing traditional/single-player minesweeper here: http://www.chezpoor.com/minesweeper
/minesweeper.html [1]

the final product will consist of a server and no client; it should be fully playable using telnet.

Notes

We will refer to the board the board as an NxN grid where each square has a state which can be 'flagged', 'dug’, or
'untouched’, and each square either has a bomb or does not have a bomb.

Our variant works very similarly to real minesweeper but with multiple players for one board. the main functional
difference is that when one player blows up a bomb in single player, they just lose. when one player blows up a bomb in
our version, they still lose, [i.e. server ends their connection] but the other players may continue playing. The square
where the bomb was blown up is now a dug square with no bomb. (The player who lost may also reconnect to the same
game via telnet.)

Note that there are some tricky cases of user-level concurrency: as a notable example, user A has just modified the game
state (i.e. by digging in one or more squares) such that square i,j obviously has a bomb. Meanwhile, user B has not
observed the board state since this update has taken place, so user B goes ahead and digs in square i,j. Your program
should allow the user to dig in that square-- a user of Multiplayer Minesweeper must accept this kind of risk.

We are not specifically defining, or asking you to implement, any kind of "win condition” for the game.

In our version of minesweeper, the board is always square.

Protocol and Specification

You must implement the following protocol for communication between the user and the server, and associated
specification.

Grammar for messages from the user to the server:

User-to-Server Minesweeper Message Protocol

MESSAGE :== (LOOK | DIG | FLAG | DEFLAG | HELP_REQ | BYE) NEWLINE
LOOK 1== "look"
DIG == "dig" SPACE X SPACE Y

FLAG == "flag" SPACE X SPACE Y
DEFLAG == "deflag" SPACE X SPACE Y
HELP_REQ == "help"

BYE == "hye"

1 of 4 11/6/2011 1:39 PM

Problem Set 6: Multiplayer Minesweeper

2 of4

NEWLINE == "MAn
X :== INT
Y 1== INT
SPACE ==
INT == [0-9]+

Server spec for dealing with user input:

LOOK message:

http://web.mit.edu/njoliat/www/ps6/ps6.html

Returns a BOARD message, a string representation of the board'’s state. Does not mutate anything on the server.

See SERVER->CLIENT protocol for the grammar of the BOARD message.

DIG message:

1. If either x or y is less than 0 or greater than board size, do nothing and return a BOARD message.

B

If square x,y's state is 'untouched', change square x,y's state to 'dug'.

3. If square x,y has a bomb, change it so it has no bomb and send a BOOM message to the user (see SERVER-USER
protocol). Then, if the DEBUG flag is not set to 'true’ (see Question 4), terminate the user's connection.

o

those squares.

FLAG message:

For any DIG message where a BOOM message is not returned, return a BOARD message.
. If this operation results in a 'dug' square whose neighbors all have no bomb, perform the DIG operation on all of

1. If x and y are both greater than or equal to 0, and less than board size, and square x,y is in the "untouched' state,

change it to be in the 'flagged' state.

2. For any FLAG message, return a BOARD message.

DEFLAG message:

1. If x and y are both greater than or equal to 0, and less than board size, and square x,y is in the 'flagged’ state,

change it to be in the 'untouched’ state.

2. For any DEFLAG message, return a BOARD message.

HELP_REQ message:

Returns a HELP message as defined in the SERVER-USER protocol. Does not mutate anything on the server.

BYE message:

Terminate the connection with this client.

To clarify, for any message which matches the grammar, other than a BYE message, we should always be returning either

a BOARD message, a BOOM message, or a HELP message.

For any server input which does not match the USER->SERVER grammar, do nothing.

Grammar for messages from the server to the user:

MESSAGE :== BOARD | BOOM | HELP | HELLO
BOARD :== LINE+

LINE :== (SQUARE SPACE)* SQUARE NEWLINE
SQUARE :== “=" | “F” | COUNT | SPACE
SPACE :== “ %

NEWLINE :== “\n”

COUNT :== [1-8]

BOOM :== "BOOM!"

HELP :== ["NewLinel]+

HELLO :== "Welcome to Minesweeper.

N :== INT

INT :== [0-9]+

" N " people are playing including you. Type 'help' for help."

The BOARD message, as the grammar indicates, consists of a series of newline-separated rows of space-separated chars,
thereby giving a grid representation of the board's state with exactly one char for each square. The mapping of chars is as

follows:

e "-" for squares with state "untouched".
e "F" for squares with state "flagged".

s " " for squares with state "dug" and 0 neighbors who have a bomb.

11/6/2011 1:39 PM

Problem Set 6: Multiplayer Minesweeper http://web.mit.edwnjoliat/www/ps6/ps6.html

e integer COUNT in range [1-8] for squares with state "dug" and COUNT neighbors who have a bomb.

Notice that in this representation we reveal every square's state of "untouched", "flagged”, or "dug", and we indirectly
reveal limited information about whether some squares have bombs.

The HELP message should print out a message which indicates all the commands the user can send to the server (the exact
design of the message is up to you.)

As the grammar indicates, the HELLO message includes N which is the number of users currently connected to the server.
This message should be send to the user only once, immediately after the server connects to the user.

Problem 1: Setting up a Server to Deal with Multiple Clients

a. [15 points] We have provided you with a single-thread server which can accept connections with one client at a time,
and which includes code to parse the input according to the client-server protocol above. Modify the server so it can
maintain multiple client connections simultaneously. Each dlient connection should be maintained by its own thread. You
may wish toadd another class todo this—¥eu-may continue to do nothing with the parsed user input at this time.

Problem 2: Implementing a Data Structure for Minesweeper

a. [30 points] Specify, implement, and test the minesweeper board data structure (as a Java type, without using sockets
or threads). You are encouraged to add additional classes beyond the Board class that we have provided for you.

Problem 3: Making your Data Structure Thread Safe

a. [15 points] Make the minesweeper board threadsafe using synchronization (again, just using Java method calls, not
sockets).

b. [5 points] Near the top of your Board.java source file, include a substantial comment with an argument about why your
board is thread-safe.

Problem 4: Setting up the Server to take Command Line Arguments

We will now add a few command line arguments to MinesweeperServer. Here is the protocol for the arguments:

ARGS :== DEBUG SPACE (SIZE | FILE)?
DEBUG :== "true" | "false"

SIZE :== SIZE_FLAG SPACE X

SIZE_FLAG :== "-g"

X :== INT

FILE :== FILE_FLAG SPACE PATH

FILE FLAG :== n_fv

PATH :== .+

INT :== [0-9]+

SPACE (== " "

To fulfill the server’s specification, we will need the server to have an instance of our Board data structure.

For the DEBUG argument, the server should set a boolean DEBUG flag with the corresponding value (this will be used in
Question 5.)

For a SIZE argument: if X > 0, the server's Board instance should be randomly generated and should have size equal to X
by X. To randomly generate your board, you should assign each square to have a bomb with probability .25; else no bomb.
All squares' states should be set to 'untouched'.

For a FILE argument: If a file exists at the given PATH, read the the corresponding file, and if it is properly formatted,
deterministically create the Board instance. The file format for input should be:

FILE :== LINE+
LINE :== (VAL SPACE)* VAL NEWLINE
VAL == 0 | 1
SPACE :== " "

| . NEWLINE :== "\n"

In a properly formatted file matching the FILE grammar, if there are N LINEs, each line must contain N VALs. If the file read

3 of 4 11/6/2011 1:39 PM

Problem Set 6: Multiplayer Minesweeper . hitp://web.mit.edwnjoliat/www/ps6/ps6.html

4 of 4

is properly formatted, the Board should be instantiated such that square i,j has a bomb iff the j'th VAL in LINE i of the input
is 1.

In if neither a SIZE or FILE argument is present, the Board should be randomly generated as in the case of a SIZE
argument, but with a size of 10 by 10.

For example, if you were running your server from the command line and the executable was called 'server’, some
command line arguments might look like:

./server true
./server false -s 30
./server true -f ../testBoard

a. [10 points] Modify your server so that it parses these command line arguments according to the grammar, and fulfills
our specification for the arguments.

Problem 5: Putting it all Together

a. [20 points] Modify your server so that it implements our protocols and specifications, by keeping a shared reference to
a single instance of Board. Note that when we send a BOOM message to the user, we should terminate their connection iff
the DEBUG flag (set as instructed in problem 4) is set to 'false’.

b. [5 points] Near the top of your MinesweeperServer.java source file, include a substantial comment with an argument
about why your server is thread-safe.

[1] You may notice that this implementation does something subtle: it ensures that there's never a bomb where you make

your first click of the game. You should not implement this for the assignment. (It would be in conflict with giving the option
to pass in pre-designed board, for example.)

11/6/2011 1:39 PM

Uod 1l
W i ps

mlméww(w/

QK{@* m,u\/ }PL(J, UG (aa @Lv&{

gp WML On (/s m% A M«OCl W* ”;f‘@éWC/@f AM\J
J/\L({ C(}mh]Lq/Lk b {dL fW&d} T@hp L

Vot |

Vo i @m\m -y gl

Chep)

3 & W‘ i ol f(ﬂl@ theads
Can have owﬂ?q/ C [M}
S5 a @ﬁ@i i spans Tt
Class

60 MEFM) A H’VW{ vvlw'(j,/[r\ MLHB FO/ A anwﬂm
\,\/[Me,\ Mﬂ‘m 400, ML l\L (lb l(‘dxkixl T Vfan o sy,

(fh/(’//bdf
l"/@ 0 how 49"”- Wths (1 o§ (/uo/lA
W L.}(P@op)e m On Ue@ P(b Jg }\W

9
ﬂmi P"”L “J{/{wayb 7 [Zlfxe({ ﬁ o€ fwads
Véﬂ& whn o o o kel

1‘50 Con it FF d e
,§g€,© e A Yeqt fd@ f/\ /6(['/(!5& b i
éof‘ ‘Ws@ Sfecs

éo WLM s @P/f& (onnedl (10'7

Ljdm 0Pans o W,{/d
‘do T (e dt Ty {Oﬂ:mL(V
L g pd L
T ust spwn g
Teah now 4 s dofop
L/(lli P(ﬁf,
Vo el Sowwr o5 Cxample
(i (de Thed b M(@(ﬁm{&)
L fagt 7 copel Thal
Lo T copled gﬂe_ oy
Nt Sl o

(9
O b o ths
(o, Std o
Now yeod fo puse
Oty did

Now QCULCL St

il

BW&
T

4
((M Z\MJ Lmb

i
}>e 6](\01/4

({id el obed it Py
bl 1 b gl obis

Cdiy oo dib d L
— petally ——(ols

J
O(,a« y hae sub, sib L[oma/f
Uty ad oo
@ ol (eally ke W&LW object Eron Yol)
Noed o male dasing S d
-l (onddlor |
Gedtes [atters needed .
@u Do Compliq Hions ot 5@1%},13} YRR
o R A A
Wil oo iy e closs pde do
ALY
Newd gt gthods
4 gk T g
vy e

ok e gt oa [of fo

Gt {luy
"Ml 0n Lojf %f)\t T(% Jrcoo‘:

0\1\ \\WW{' N‘[('OH ()e €n¢u@h W/ éwi Pl
SJWJf Wﬁaﬁ @Lmr)[—h'trw{)

| LOL\L whole [)owi Whiay Mﬂw‘ hagens

stmﬂ]e M@W Uo0s Nw Loc* L 1

9v/ncu on Thil
Of (Md Jp On 0@“ Lﬂwd ﬂ@ﬂwds

60 At s h o P/(?/M (€f> Cxpoise
]\ Pf\l/w]((i .
2. dd pom‘e ine 9

{[\m h\fea/{ édfﬁf
oo ke bl poid |y

Of‘ m }30\@ 0LJ — e

(M& hae Spgerdle o) @e(@&(iw [ay(x
~don} waat g

Tt o Ny |
NQ) ‘h(ian\fL M Mmt p(jr{, [;M l
WM\L ‘Wé +0 CD(NLfOL SC‘

O s hae b ol et . od

| (/y\léﬁﬁ &é@é@ﬁ PVHZ(, M’/ﬂ«h Wil OL” {’u 05 (8

ed b g

| Loy ¢l | P
\N%{J lods 22 (astle

Wéo whok ﬁwy laked

d to T Poss gl n@f‘wfl éz{j

—

O(ll NQw ‘f(% 3(%{

V(J, ” ’Hh Commands
el 1o cdl A@M higs Dot

m‘ @%f& out ot Cantrolled

— F Gt S
T 1 {(\ T
Unfoched +lay ~0 0 m\u@hbpﬁ
N‘Lﬁhb@
H‘OW (/(w((f a ew bawd/:
Wt gee”

(j L\ Mw MD?&,@Q} (Cﬂl"ﬂ,/“

e

L(om,m,,é t\lwe, Wy ath hok Lron Meut
-l gk =

0)

/Uu\ M\\(M | Sduer ;WM@

Wod f0 & waly (ﬂ@co

|adt

TwnE bt all ¢
COIVM(\C

(

60 “fo‘“‘d %& cmp {%L N
U\f Wl o fur ome) it A o mak

@Lf)o e o do A4 >

Nn she o fllo

L@rrr ;mpor}f/u
Ned 1 om0 bom
mbo V‘@ﬁ({ 1(9 \Nﬁ (/\ea(by (tnfs
m@ ot

— reud flle i

—%o MU rew bawd mpf

LZN& ME/\

4
Y wgd & P,
q

\QM X CO{WM 4

o 1,4
IL—iax

AWA 1 /&///&l/c d(‘
Vo read o
W N, +0 Q{O /Gd/d }/]

| b
Adualy ad T g
@m& ~wa.¢4ﬂ%wkd

Tl b
gl o (it L/,P“1 al*

m& doe
é (/
_ (T do d@ LNS 5 904€)

) h,l,«t
'd‘z (0
Ou-ﬁ/ /\ h (/P‘I"%

Ao custe L
Tt oo
ﬁﬁ“ﬂ £y {lamrers

() “
O This \0/01 et fok

So de aad tenes gl ety ooty

g il ! 9]
clekf |

el

TE b ey *-)»ML 6 how \WJ

(s appear ot

% ey
afoal{) — s g nebt) gl
Chal Wolghbos)
e Wi oty Whlghbos

Rjr oo fo wede cpb conbs F
For Qach IOoml) l &(KQM/”L r@l‘gzw/a/ﬁ?
Ok

DM“L . a,bd % 6}L00’F/‘/L h;TL ﬁﬁ%
J dut y

Now CM mlﬁhb] %
TM Was ()chm“{ ot That MJ

NOW f\(&L {7 1L&>L
DQ Jobsy ode 25

O ' mmj
hegl b tot My o mefiods
bt kel bt o gt bad
fegt Cll

| ok b 2 T(Yq podtd e
Wu“ POlmeGr (reor e
Why g e shgh!
OL\ {({ n ot (f/L —(gfrn (?m@

Ok op> - —cbpd e

—

‘1%‘& 0ty
Oh diy cersie ~cat o cewme gyl

||
<)\;\/M CUL“’U b@ Whee Zoomb S

\CL\W%Q, 5% Mo })Owb
M (ant ¢ pb ¥ oon besd
“0h Whn Jomee boa | nel- ot conbs
B M {iy f‘@ f(menf/lﬁﬁ
\W(“ St [o bonb ot t‘fﬁééf
Olw el Pl Coban
NVeed {5 chage gof 4o Object (s Lided L) gef()

W@w Wl"‘(P{;/pf%/tg L\/(ofy(;
Oh ree ol hed
Ok z\é& —was adaly cyly

r‘\“‘—‘—u__—’

\\}OV«/ why 70 {\lv@ b{{’di&)?

N&v 1}& Pt (@M
6\'\ Ccor w/ Thes M
= il nd rend

Now Caming iong. gy
6\’\ ‘f)W CG‘//ﬂL Cror

@)

O\k M&(% [6{4(/ on bﬂml? @(Q//])L
\/O [L Wott 1[%& éf éimﬂ(c Case

e

th ‘/WH, €Cf [g(‘[(/bu// 0p O\t/al‘/d.é/f 5,1)g£

led b b s
Wt an oy o 1o [P A VSR V¥
| ko"‘b é}‘w 9\1\L \Lﬁw V' v

T Am ?\O'L é[ﬂﬂgﬂg }Jomﬁs!

T an bob ding oenby —indead o (lug
Uiy mﬁb%k !’n fé?“(d}f?

59 Now 6(}@5 o (A l\i [0@

SMC(m & (0
ek LL b‘ﬂ 0%

A(M%) (0w
W\Aw\,\ U/o@ Aal (%H“[@JJL
5‘&"& OVt O ¢ O agm(q

(p@‘{f\ 1[0 Jel@/g !)

.
O"\ \/o{,L/ﬂ’ \Wie Maﬂ{/] daf‘f@{
Aoh wabs much boffer o

VQM /l\éci 'L‘LHG/ ﬁw, I Con mmL on ZQ("W

OLL i Can do Thetd Cout ¢
L ogwss e Haowt e —5]

V\)Ow ol o H W/ (omant e+ tolgf
U A \\/‘mdfw fueuall erar!
OL btn Pl fumg b open Tl Mot creatod fees
for Bt W & fw
L@OL 0(/4\ ’l‘mo on ﬂM Ny

©

Ok on 4t

(g of o oy gbﬂltfﬂg hieq (>
IFiad 1V

“(atl b gl

*dml iju./ what Cl‘a’fﬂﬂ({

Nﬂw Fl“"“'%] \-;

dy d ad pint

Lot

i Cleasd —cln flag

1l g

rJO’# (Anow WIMHL W(/L @bé’}

| |
mVH(COWQ[Lorks ¢

\ (
Vlogowy oe 9
™

m’ Lowh A e (/W’Ay (0@@{517

- M UO(“M»)
[¢

LoS LY
T o

(vitw fre
O Jistr pulfen
L) - vigy ~ ool putto
by hyand s
P 5(n &e Tht

T o St e pt T

Lok ol
/48]{1///\!;\5 No\/ 30

Pow Tope oty « 60T
bt ConCuiealy s a p@Uerﬂ
~Undy o bt moe (ool

bt b b follow

et QUL we gl | (o Tree
~0\t“ [qn&} —
\TL/Q({ o{ &LU}W‘}

~ bobhar botons, [abels, :mages/@fr

- s b o 3 @@@(ﬂﬂ 56’>@

“ligt Vbag of abbect ohats

EOLH @(-oupw 'fogﬂkr (r/}}p @
~ Wk Y vk (Trae)

“‘1111& N w'mdow (M 'WW&OW‘S

—te Comspards 2 5@%34/) Wm/acﬁ/ %ﬁ%

(\
S A LONL% boes That o nashyd t%lfijgoﬁﬁm@

- Quy i fmp{emh o Comnon bolict
L:SC()(’IPO(M (
\‘(?\/(’/m'}gj Ol f’m@vh T)(o”tpﬂ’\”* :

(dbn Vaitpab o ADT J@mfjw/yf)
— [ho J“fP{ o€ \/\t@\ﬂé

= Pl o b b il
\:;V-"‘L 0 ((W/', [)\/HO/I/ ofc
o | M .l (@ }d/}/t OTNF Vs
TML LA h',s Lan/E, W/ fﬁa/fd;"{ Mm kfﬂﬁj
(alled Conosite — paffen
~n hobld {rees Vft(”j Then

D

T {/\M Y)(\M[d‘w{ EKP/%S\IO@ il @mpps;h’, S Po/@s/\w
o QCOMEA

-~

2@0&@} \/‘z(%w t@@ ,l5 Lstd

“Od]rPVXf TLo dfow L
H_ﬂm&/a,wj (NY“”‘E QOW/]‘](&? Cb\t{ng(%

~ (gl szwﬂ)
LMTM& i TC@W* /J(DT
~owh B (gt dekgalo

= I OP}\(MS A m’ :)\/b'l V%S 05
5W:ﬂ3 = Mf“‘f”l 2T i ((H@Zﬁ
~aan (hose Copy Mae

B (.KA»[W"' '
~enh ohat bas 60~//bd(43 o
B MM db\@(mm{j fon ot T
~ edth Heou M ((mmhb
&I'WDJ\(H }mm KQLW‘P"M
- cdllel Mo lagat®
“eaoh foolk Jes The Ly

~Jaa o mu)ffp}e La ,a/}\ mmﬂe(s
~ mogt (0mmg1 Gfﬂt/p La yML

— th l[?x%cf Stze on GL/} Y 6@@
— Conkar QKPWQ & il
- @@0‘{ (o 6 fmwle, a fFJ
0“% @'\W‘” {“’0 C@mp)fx o /WL go [~ v{ (Zrzaﬁé

Mﬂ‘/{\‘ Z)ffﬂL \
lades LW‘% boxes That o oo

VIQM | h F 5 ‘ /
= Vg ’HQQ (eaks “p Winday 1abo (€494

= ﬁ%t feg]lorg {L Hor /(mu*,‘ Wls

=~ Mose has X,y Cood)

-~ leW
—b b Gt b v b s e
~ oiah Lits o et objals

e At S0 (moe et }

L 6O beay

\ P’Jé an 5W l;g;}:{

3| [

Moo

Ltﬂlwo/p §ub $ E kw 6\/1%1[)
[(5;0’[9 a+/€?7L
Fall fo i (Liohwr),
"oyt Hot y /(?coiz fo i @o/lf/e T ¢ opabs

‘m}e/(m U%Wf {

od gt Haped B wat),

pus i
3 \N)wb“ [zi;'oﬁ

ot it ay
~ i bey o o e

bl Lot an shsulle and n s basibe
Joepls e {on et depindine 40 lihes
T Jistes e wﬂuda‘fﬁ Troas.es

Cbnb%(oaﬁr 0{ V{lﬂw olo@ N [ML 0{ \wr{k

- PJ)}ZH m@%ﬁ |
| dyl /et
= &(bthzih {[Lymhew/)
B;: %\ ‘W"”’{ L ((OWJLCM f ({Qaf\b
leyj lffr VSN &‘W{((b (UAOHW[pfagzamﬂlffﬁ

hapr odi

vl

Tfeww Oeds as bl

9@9491& dud ot Mk hotory
/QM '%;IWL hla o qn(L hH‘ Gpte 194/
. e ﬁwf(m D@rf bw(v(ﬂ -]l/(ég%d j ""/ CE/(o peltads

DVAJA J@fzced/(uwl C(MO//[@’U? @Mmfle,

—

UL digplays s elih iy Todel objet
LJanLa, hat WHT \o@l’/t@ déPM
MVC &J\o(ﬂ ot ﬂwtﬁh\t ﬁ@f@@\/e{u}/@g §@’9Wﬁ¢7
(g shill ware wlol Unik Tgb
O s aF UDS 410 jufenl o by
(@AL (/\;M\L/jg/\/a/ SPW

MM \m@ﬁ% lo Y &/Q/HL

Gty calle avert hondler
Bt only blagle Teady by, deflt
S VL e Vo

N@% NN "/‘%ponbim,

LDO@bl)(Hvin 4)\(\9w W{‘ MWLM Aw beea)@f &o

0
ot haad s sl conploe cﬁu}wlhi/
() RV\LWM " baka]
Vew oo it achall fogs ol

A/\(l, {M‘L quﬁ (Q,l(/eeh EUIMM&C)
B hae fae (odition ‘pf@bfem

[’Mwle, UL g QI(WL V’flm\qu}e édﬁ Ob/\ecf'
Uy My GUT tool ik ()My mw(m Thedd
Chn pldke it
Co Pass repsade hu % UL |
%lw\pfﬁ (lveve e anL (?Jmf) A/IH 9

9 M b wil b Thed Sat(

M@ f:a Nﬂ\ﬁ @\@(\MQ

Today

O 0 0 O

6.005 Software Construction
Fall 2011
Prof. Rob Miller

L14: Graphical User Interfaces

View tree
Listener pattern
Model-view-controller pattern

Background threads

Required reading (from the Java Tutorial)

A Visual Guide to Swing Components

Using Swing Components, specifically:
o Using Top-Level Containers
o Using Text Components
o How to Use Buttons
o How to Use Lists
o How to Make Frames
Laying Out Components Within a Container, specifically:
o How to Use GroupLavout

Writing Event Listeners, specifically:
o Introduction to Fvent Listeners
Concurrency in Swing (up to The Event Dispatch Thread)

Today we’ll take a high-level look at the software architecture of GUI software, focusing on the
design patterns that have proven most useful. Three of the most important patterns are:

the model-view-controller pattern, which has evolved somewhat since its original
formulation in the early 80’s;

the view tree, which is a central feature in the architecture of every important GUI toolkit;

the listener pattern, which is essential to decoupling the model from the view and
controller.

View Tree

Graphical user interfaces are composed of view objects, each of which occupies a certain portion of
the screen, generally a rectangular area called its bounding box. The view concept goes by a variety of
names in various UI toolkits. In Java Swing, they’re JComponents; in HTML, they’re elements or
nodes; in other toolkits, they may be called widgets, controls, or interactors.

These fecture notes have been collaboratively anthored, with contributions from Saman Amarasinghe, Srini Devadas, Michael Ernst, John
Guttag, Daniel Jackson, Rob Miller, Martin Rinard, and Armando Solar-1.egama. Copyright @ MIT.

button (JButton) indow (JFrame)

D tiew ek

tree widget
(JTree)

sp!ittef bar

- scrolling pane
(JSplitPane)

(JSplitPane)

This leads to the first important pattern we’ll talk about today: the view tree. Views are arranged into
a hierarchy of containment, in which some views contain other views. Typical containers are
windows, panels, and toolbars. The view tree is not just an arbitrary hierarchy, but is in fact a spatial
one: child views are nested inside their parent’s bounding box.

JSplitPane
/-”f KN“”“—‘M»

JScrollPane

i

N
JScrollPane,

View hierarchy is an example of the Composite pattern
» Primitive views don’t contain other views
* button, tree widget, textbox, thumbnail, etc.
» Composite views are used for grouping or modifying other views
*]SplitPane displays two views side-by-side with an adjustable splitter

* JScrollPane displays only part of a view, with adjustable scrollbars

Key idea
» primitives and composites implement a common interface (JComponent)
» containers can hold any JComponent: both primitives and other containers

» Composite pattern gives rise to a tree, with primitive views at the leaves and containers
at the internal nodes

How the View Tree is Used

Virtually every GUI system has some kind of view tree. The view tree is a powerful structuring idea,
which is loaded with responsibilities in a typical GUI:

Output. Views are responsible for displaying themselves, and the view hierarchy directs the display
process. GUIs change their output by mutating the view tree. For example, e.g., to show a new set
of photos, the current Thumbnails are removed from the tree and a new set of Thumbnails is added
in their place. A redraw algorithm built into the GUI toolkit automatically redraws the affected parts
of the subtree. In Java Swing, this is done with the Interpreter pattern: every view in the tree has a
paint() method that knows how to draw itself on the screen. The repaint process is driven by calling
paint() on the root of the tree.

Input. Views can have input handlers, and the view tree controls how mouse and keyboard input is
processed. More on this in a moment.

Layout. The view tree controls how the views are laid out on the screen, i.e. how their bounding
boxes are assigned. An automatic layout algorithm automatically calculates positions and sizes of
views. Specialized composites (like JSplitPane, JScrollPane) do layout themselves. More generic
composites (JPanel, JFrame) delegate layout decisions to a layout manager (e.g. GroupLayout,
BorderLayout, BoxLayout, ...)

Input Handling

Input is handled somewhat differently in GUIs than we’ve been handling it in parsers and servers. In
those systems, we've seen a single parser that peels apart the input and decides how to direct it to
different modules of the program:

while (true) {
read mouse click
if (elicked on New Album) doNewAlbum();
else if (clicked on Delete Album) doDeleteAlbum();
clse if (dicked on Add Photos) doAddPhotos();

else if (cicked on an album in the tree) doSelectAlbum();

else if (cicked on +/- button in the tree) doToggleTreeExpansion();

else if (clicked on a thumbnail) doToggleThumbnailSelection();

In a GUI, we don’t directly write this kind of method, because it’s not modular — it mixes up
responsibilities for button panel, album tree, and thumbnails all in one place. Instead, GUIs exploit
the spatial separation provided by the view tree to provide functional separation as well. Mouse
clicks and keyboard events are distributed around the view tree, depending on where they occur.

GUI input event handling is an instance of the Listener pattern (also known as Publish-Subscribe). In
the Listener pattern:

an event source generates a stream of discrete events, which correspond to state transitions
in the source.

* one or more listeners register interest (subscribe) to the stream of events, providing a
functon to be called when a new event occurs.

In this case, the mouse is the event source, and the events are changes in the state of the mouse: its
x,y position or the state of its buttons (whether they are pressed or released). Events often include
additional information about the transition (such as the x,y position of mouse), which might be
bundled into an event object or passed as parameters.

When an event occurs, the event source distributes it to all subscribed listeners, by calling their
callback methods.

Control flow through a graphical user interface
» A top-level event loop reads input from mouse and keyboard

» For each input event, it finds the right view in the hierarchy (by looking at the x,y
position of the mouse) and sends the event to that view’s listeners

> Listener does its thing (e.g. modifying the view hierarchy) and returns immediately
to the event loop

Higher-level GUI input events

» JButton sends an action event when it is pressed (whether by the mouse or by the
keyboard)

» JTree sends a selection event when the selected element changes (whether by mouse

or by keyboard)

» JTextbox sends change events when the text inside it changes for any reason

Separating Frontend from Backend

We've seen how GUI programs are structured around a view tree, and how input events are handled
by attaching listeners to views. This is the start of a separation of concerns — output handled by views,
and input handled by listeners.

But we’re still missing the application itself — the backend that represents the data and logic that the
user interface is showing and editing. (Why do we want to separate this from the user interface?)

The model-view-controller pattern has this separation of concerns as its primary goal. It separates
the user interface frontend from the applicadon backend, by putting backend code into the model
and frontend code into the view and controller. MVC also separates input from output; the
controller is supposed to handle input, and the view is supposed to handle output.

The model is responsible for maintaining application-specific data and providing access to that data.
Models are often mutable, and they provide methods for changing the state safely, preserving its
representation invariants. OK, all mutable objects do that. But a model must also notify its clients

when there are changes to its data, so that dependent views can update their displays, and dependent
controllers can respond appropriately. Models do this notification using the listener pattern, in

which interested views and controllers register themselves as listeners for change events generated by
the model.

View objects are responsible for output. A view usually occupies some chunk of the screen, usually a
rectangular area. Basically, the view queries the model for data and draws the data on the screen. It
listens for changes from the model so that it can update the screen to reflect those changes.

Finally, the controller handles the input. It receives keyboard and mouse events, and instructs the
model to change accordingly. :

Controller handles input
» listens for input events on the view tree
¢ calls mutators on model or view

View handles output

* gets data from the model to display it
» listens for model changes and updates
display _

input events

get() & set()

Controller

change events

-‘getO & set()
methods

get()
methods

Model maintains application state
* implements state-changing behavior
» sends change events to views

A simple example of the MVC pattern is a text field widget (this is Java Swing’s text widget). Its
model is a mutable string of characters. The view is an object that draws the text on the screen
(usually with a rectangle around it to indicate that it’s an editable text field). The controller is an
object that receives keystrokes typed by the user and inserts them in the string.

[e (ot st
/"' i, o ;n;s —i R
' bt /
(£ i \\
JTextField | | KeyListener |
mﬂ;:’m, i 'f"“ﬂrﬁ\\‘ ~ .-'i':di: text
o / ™ P4
gettext . /

| Document }<
ek

y
\\\._/"/
Document represents a mutable string of
characters

Instances of the MVC pattern appear at many scales in GUI software. At a higher level, this text
field might be part of a view (like the address book editor), with a different controller listening to it
(for text-changed events), for a different model (like the address book). But when you drill down to
a lower level, the text field itself is an instance of MVC.

Here’s an example from a photo browsing application:

il Hoon o Controller\\
/ e m&ePressed()

=

ThumbnailSelector
(MouseListener)

X

And here’s a larger example, in which the view is a filesystem browser (like the Mac Finder or
Windows Explorer), the model is the disk filesystem, and the controller is an input handler that
translates the user’s keystrokes and mouse clicks into operations on the model and view.

////View :‘ _______ ?pm”do / Controller

.E/ Bl PressedDelete

)
{ FilesystemTree \ J {KeyListener) 4

1

\ /
change events /mutator

observer methods \, (e:& ﬁh?jgﬁﬂ*ﬂ) uuuuu o / methods
(e.g. getRootFolder(), o i ’ (e.g deleteFile()
getFiles() P

i Filesystem

The separation of model and view has several benefits. First, it allows the interface to have muldple
views showing the same application data. For example, a database field might be shown in a table
and in an editable form at the same time. Second, it allows views and models to be reused in other
applications. The MVC pattern enables the creation of user interface toolkits, which are libraries of
reusable views. Java Swing is such a toolkit. You can easily reuse view classes from this library (like
JButton and JTree) while plugging your own models into them.

Risks of Event-Based Programming

Control flow through an event-based program is not simple. You can’t follow the control just by
studying the source code, because control flow depends on listener relationships established at

runtime, and input events happening nondeterministically. Careful discipline about who listens to
what (like the model-view-controller pattern) is essential for limiting the complexity of control flow
and understanding how to debug your program.

The hidden control flow leads to some unexpected pitfalls, which is the next thing we’ll look at in
this lecture.

First, a bit of notation. The diagram below is a sequence diagram, which is useful for depicting
control flow. Time flows downward. Vertical time lines represent objects, such as an event source
or a listener. Horizontal arrows show method calls and returns passing control between objects.
Finally, dark rectangles show when a method is active (i.e., on the call stack).

client source listener jyrerface Source {

addListener addListener()
_____ ﬂ removeListener()
observer()
mutator mutator()

}

interface Listener {
changeEvent()

}

changeEvent :

Here’s the conventional interaction that occurs in the listener pattern. A client uses addListener (or
a similar method) registers a listener to receive notifications from the event source. Then, when the
source changes state (usually due to some other object calling a mutator method), it fires an event to
all its registered listeners by calling changeEvent on them.

Pitfall #1: Listener Calls Observer Methods

This leads to the first pitfall. The listener often reacts to the change in the model by pulling more
data from the source using observer method calls. For example, when a textbox gets a change event
from its model, it needs to call getText() to get the new text and display it. So calls to observer() may
occur while mutator() is still in progress.

client source listener

mutator

changeEvent
_ observer |

Why is this a potential problem? Because the mutator() method hasn’t returned yet, it’s possible that
the source data structure is not yet in a consistent state (i.e. not yet satisfying its rep invariant), which
might cause the observer() method to return garbage (or worse, throw an exception).

When the source calls changeEvent() on its listeners, it is giving up control — in much the same way
that a method gives up control when it returns to its caller, or that a thread gives up control when its
dmeslice is over and another thread takes control of the processor. In fact, what we’re seeing here is
a concurrency problem!

Here’s some pseudocode that demonstrates this pitfall:

class Filesystem {
private Map<File, List<File>> cache;
public List<File> getContents(File folder) {
. check for folder in cache, else read it from disk and update
cache
}
public void deleteContents(File folder) {
for (File f: getContents(folder)) {
f.delete();
fireChangeEvent(f, REMOVED); // notify listeners that f was
deleted
1

cache.remove(folder); // cache is no longer valid for this folder

3

Filesystem is a model class that represents a disk filesystem. It has an observer method
getContents(), which returns the files in a folder, and a mutator method deleteContents(), which
deletes all the files in a folder. To minimize disk traffic, it also maintains a cache mapping folder
names to their files, so getContents() doesn’t always have to hit the disk.

Now suppose a filesystem browser view is showing the files from a folder (which it obtained with
getContents()) and then deleteContents() is invoked. One by one the files are removed from the
folder on disk, and change events are sent back to the view — but if the view is calling getContents()
to update itself, it will always see the stale copy in the cache. The cache isn’t invalidated until the
end of deleteContents(), which is too late for the view.

The essential problem is that this class has a rep invariant (that the cache correctly reflects the state
of the filesystem) that doesn’t hold when the view calls getContents(). It’s quite normal, even
inevitable, for invariants to be semporarify unsatisfied while a mutator method is executing. In this
case, event-passing has created an opportunity for a client to get control during that period of
inconsistency, and see buggy results.

So an event source has to make sure that it’s consistent --- i.e., that it has established all of its
internal invariants — before it starts issuing notifications to listeners. It’s often best to delay firing off
events until the end of the method that caused the modificadon. Don’t fire events while you’re in
the midst of making changes to the model’s data structure. This example could be fixed either by
batching up events until the end of deleteContents(), or by invalidating the cache before starting to
remove files, so that the invariant is never unsadsfied.

Pitfall #2: Listener Calls Mutator Methods

Another pitfall occurs when a listener responds to an update message by calling the mutator on the

model. Why would it do that? It might, for instance, be trying to keep the model within some legal
range. Or two models could be listening to each other in order to keep their state synchronized. So

recursive calls to mutator() may occur while mutator() is still in progress. Obviously, this could lead
to infinite regress if you’re not careful.

client sourcel listener source 2 listener

mutator .
11_changeEvent

ﬂf

Here’s a concrete example of this pitfall: a numeric slider and a textbox, which you want to
synchronize with each other so that the user can change the value using cither widget:

mutator .
- changeEvent

mutator |

” 45

change eent .| ChangeListener -~ 3etText()
Bt |
JSlider | s | |
setValue(‘)ﬂ o Qb@g@y}vsgnsx%‘" ~ change event

So both widgets end up listening to each other’s changes, and an infinite regress might result.

A good practice for models to protect themselves against this regress is to only send update events if
a change actually occurs; if a client calls mutator() but it has no actual effect on the model, then no
events should be sent.

Pitfall #3: Listener Removes Itself

Another potential pitfall is a listener that unregisters itself with removeListener. For example,
suppose we have a model of stock market data, and a listener that’s watching for a certain stock to
reach a certain price. Once the stock hits the target price, the listener does its thing (e.g., popping up
a window to notify the user, or executing a trade); but then it’s no longer needed, so it unregisters
itself from the model.

client source listener

oset .

|changeEvent. .|
: rfzmo\(eUsten_erH
1

This is a problem if the model is iterating naively over its collection of listeners, and the collection is
allowed to change in the midst of the iteration. Here’s some concrete code showing the problem —
the listeners are stored as a simple fixed-size array. Trace through and see what happens if the ith
listener calls removeListener() on itself from its changeEvent() method:

class Source {
private Listener[] listeners;
private int size;
public void removelistener(Listener 1) {
for (int 1 = 0; i < size; ++i) {
if (listeners[i] = 1) {
listeners[i] = listeners[size-1]; --size;
¥
}
1
private void fireChangeEvent(...) {
for (int 1 = 0; i < size; ++1) {
listeners[i].changeEvent(...);
I

}

Most Java collections (Lists, Sets) have the same problem. If you’re lucky, Java will throw a
ConcurrentModificationException when you mutate a collection that you’re currently iterating. If
you’re not, your list will simply be quietly corrupted.

It’s safer to iterate over a apy of the listener list. Since one-shot listeners are not particulatly
common, however, this imposes an extra cost on every event broadcast. So the ideal solution is to
copy the listener list only when necessary — i.e., when a register or unregister occurs in the midst of
event dispatch. javax.swing.EventListenerList works this way.

Background Processing in Graphical User Interfaces

The last major topic for today connects back to concurrency.

First, some motivation. Why do we need to do background processing in graphical user interfaces?
Even though computer systems are steadily getting faster, we’re also asking them to do more. Many
programs need to do operations that may take some time: retrieving URLs over the network, running
database queries, scanning a filesystem, doing complex calculations, etc.

But graphical user interfaces are event-driven programs, which means (generally speaking)
everything is triggered by an input event handler. For example, in a web browser, clicking a
hyperlink starts loading a new web page. But if the click handler is written so that it actually retrieves
the web page itself, then the web browser will be very painful to use. Why? Because its interface will

appear to freeze up until the click handler finishes retrieving the web page and returns to the event
loop. Here’s why.

This happens because input handling and screen repainting is all handled from a single thread. That
thread (called the event handling thread) has a loop that reads an input event from the queue and
dispatches it to listeners on the view hierarchy. When there are no input events left to process, it
repaints the screen. But if an input handler you’ve written delays returning to this loop — because it’s
blocking on a network read, or because it’s searching for the solution to a big Sudoku puzzle — then
input events stop being handled, and the screen stops updating. So long tasks need to run in the
background.

In Java, the event-handling thread is distinct from the main thread of the program (see below). Itis
started automatically when a user interface object is created. As a result, every Java GUI program is
automatically multithreaded. Many programmers don’t notice, because the main thread typically
doesn’t do much in a2 GUI program — it starts creation of the view, and then the main thread just
exits, leaving only the event-handling thread to do the main work of the program.

Swing event-handling thread

e
ST} Eventloop |———

main thread

e)

The fact that Swing programs are multithreaded by default creates risks. There’s very often a shared
mutable datatype in your GUI: the model. If you use background threads to modify the model
without blocking the event-handling thread, then you have to make sure your data structure is
threadsafe.

But another important shared mutable datatype in your GUI is the view tree. Java Swing’s view
tree is not threadsafe. In general, you cannot safely call methods on a Swing object from anywhere
but the event-handling thread.

The view tree is a big meatball of shared state
» And there’s no lock protecting it at all

» It’s confined (by specification) to the event-handling thread, so it’s ok to access view
objects from the event-handling thread (i.e., in response to input events)

» But the Swing specification forbids touching — reading or writing — any JComponent
objects from a different thread

* See “Threads and Swing”,
http://java.sun.com/products/jfc/tsc/articles/threads/threads1.html

* The truth is that Swing’s implementaton does have one big lock
(Component.getTreeLock()) but only some Swing methods use it (e.g.
layout)

Solution: the event queue is also a message-passing queue

> To access or update Swing objects from a different thread, you can put a message
(represented as a Runnable object) on the event queue

SwingUtilities.invokelLater(new Runnable() {

public void run() {
content.add(thumbnail);

s

» The event loop handles one of these pscudo-events by calling run()

Swing thread
Mouse g
S e} 3

(e [

Summary
View hierarchy

» Organizes the screen into a tree of nested rectangles
» Used for dispatching input as well as displaying output

» Uses the Composite pattern: compound views (windows, panels) can be treated just
like primitive views (buttons, labels)

Publish-subscribe pattern
» An event source sends a stream of events to registered listeners
» Decouples the source from the identity of the listeners
» Bewate of pitfalls
MVC pattern
» Separation of responsibilides: model=data, view=output, controller=input
» Decouples view from model
Background threads
» Swing view tree is confined to the event-handling thread

» To read and write the tree from another thread, use the event loop as a message-
passing queue

(ke

(805"

04\

Problem Set 7: GUI Jotto Client http://web.mit.edu/6.005/www/fal 1/psets/ps7/ps7.html

6.005 Elements of Software Construction | Fall 2011
Problem Set 7: Jotto Client GUI
Due: Thursday, November 17 2011, 11:59 PM

The purpose of this problem set is to give you experience with GUI programming. In particular you will be
using Java Swing. Finally, you will get some more practice with multithreading. gﬁff
—

You have substantial design freedom on this problem set. However, in order for your solution to be
graded, your solution must include the follmvmg___olgj_e_q:g_i_uour GUI as specified in the problems. They are
defined for you in the JottoGUI class (and instantiated with default constructors), but you can instantiate them
however you would liké, These objects must be added directly to the layout of the JottoGUI JFrame.

* a JButton named "newPuzzleButton"

a JLabel named "puzzleNumber"

a JTextField named "guess"

a JTextField named "newPuzzleNumber"
a JTable named "guessTable"

NOTE: You can rename the variables themselves, but their "name" property must be set appropriately using
the setName() method.

To get started, pull out the problem set code from SVN Admin.

) *Vl/% o Wlwtwfl'ﬁ qJJ;/'Jt“?__ o

derview 7

In this problem set, you will implement a simpl@zlaying client that communicates with a server that we
have provided for you. If you've never played Jottd, you can find a short description of it here.

In our particular version of the game, the client selects a puzzle ID at random which corresponds to a secret
5-letter word on the server. The user can then submit 5-letter dictionary word guesses to the server, which

will respond with the number of letters in common between the two words and the number of letters in the

correct position.

You will communicate with the server through scripts.mit.edu. All communication from the client to the server
will be through a request of the following form:

m\'lf http://6.005.scripts.mit.edu/jotto.py?puzzle=[puzzie #]&guess=[5-letter dictionary word]

sqdﬁ{ where [puzzle #] will be replaced by an integer generated by the client, and [5-letter dictionary word] is a
(you guessed it) 5-letter dictionary word. -

The response from the server should be:

guess [in common] [correct position]

-— — —

where [in common] is the number of letters that the secret word, which the server determines by the puzzle
#, and the guess have in common. [correct position] is the number of letters in the guess that are in the
correct position in the secret word. Thus, [in common] will always be greater than or equal to [correct

position]. e —

If the request sent to the server was invalid, the response will be one of the following errors (in bold). The
unbold text is a description of the error.

error 0 lll-formatted request.

error 1 Non-number puzzle ID.

1 of4 11/12/2011 3:08 PM

Problem Set 7: GUI Jotto Client http://web.mit.edw/'6.005/www/fal 1/psets/ps7/ps7.html

error 2 Invalid guess. Length of guess != 5 or guess is not a dictionary word.
For example, if you were to submit
http://6.005.scripts.mit.edu/jotto.py?puzzle=16952&guess=crazy
The secret word is "cargo,” so the server should respond

guess 3 1

But if you submitted
http://6.005.scripts.mit.edu/jotto.py?puzzle=16952&guess=elephant
The server would respond with

error 2

This problem set requires the use of multithreading. To help in debugging and testing multithreading behavior,
. . e T
the server will provide delayed responses for any guess containing an asterisk ("*"). Ensure that your GUIL is

still responsive during this dela s {
J 50 @I m 051(’ 6{37 (€5 0614

For example, if you were to submit — Z n c/
(TS

http://6.005.scripts.mit.edu/jotto.py?puzzle=16952&guess=*bean

The server will provide a delayed response, waiting for 5 seconds before responding back with:

guess 10
The '*' will be considered a character in the server, so any guesses of incorrect length including the "*' returns
an error: f;

http://6.005.scripts.mit.edu/jotto.py?puzzle=16952&guess=*bea

error 2

By the end of this problem set you will have built a GUI for your client to interact seamlessly with the server.
The interface should eventually look something like this:
——

A

2 of4 [1/12/2011 3:08 PM

Problem Set 7: GUI Jotto Client

3of4

Puzzle #7908 Mew Puzzle - :]

Type aguesshere: |]

crazy
chars
alphabet
grace

i

2

rnvalid quess,

Your GUI does not have to look exactly like the window above. It should pass our tests as long as it functions,
and the necessary components are there.

Problem 1: Communicate with the Server

[20 points] Write a Java method that uses java.net.URL (See the Java Tutorial for more details on how to

use java.net.URL) to send a guess to the server, read back the reply, and return it. You must handle

exceptions and errors from the server appropriately. We've provided a method signature for you in

Jottoﬁm%m change anything about it that you like. In fact, its return

type is currently void, so you must change that. Make sure to include a spec and test your method thoroughly.
e

Problem 2: Set the Puzzle Number

a. [10 points] Create a GUI that includes a "New Puzzle" button (newPuzzleButton) next to a text field
(newPuzzleNumpber) and a label (puzzleNumber) to dispray the puzzle number. We recommend that you use
theﬁ@mmanager. It should basically look like the top row of the window above.

b. [10 points] Next, register an ActionListener to set the input from the text field as the new puzzle number,
displaying it in the label next to the button. If no number is provided or the input is not a positive integer, pick
a random positive integer. Make sure you can generate at least 10,000 different numbers. We've provided a
JottoGUI class for you to use, but as stated earlier, you are free to change whatever about this that you like

as long as you have the necessary components named correctly. Your program should start with a puzzle
number already selected, be it random or always the same.

Problem 3: Make a Guess

[20 points] Add a JTextField (guess) to the GUI for the user to input a guess. Then use an ActionListener to
send the guess to the server when the user presses ENmsult to standard output. Also clear
the textbox aftew_efs, so that it's easy for the user to type the next guess. You should print "You win!
The secret word was [secret word]!" when the user guesses the word correctly, ie. the server responds with
"guess 5 5." Feel free to be creative with the message, but make sure it contains the phrase "you win."

7

11/12/2011 3:08 PM

http://web.mit.edu/6.005/www/fall/psets/ps7/ps7.html

Problem Set 7: GUI Jotto Client http://web.mit.edw/6.005/www/fal 1/psets/ps7/ps7.html

Problem 4: Record Your Guesses

[20 points] Add a JTable (guessTable) to the GUI, to record both the guess and the server's response for
that guess. The table should contain exactly 3 columns, one displaying the guesses the user mades, one
displaying the number of characters "in common", and one displaying the number of characters in the "correct
position”. The table should be cleared each time the puzzle number is reset. If the server returns an error for
3 guess, the GUI should display a human-readable error message for that guess in the table instead of its
score. The "You win!" message should also be displayed in the table. "J '

Problem 5: Make it Multithreaded -Q-Qdyf B,

[20 points] Move the server communication to a background thread. Make sure that you are still able to
interact with the GUI even if the server is taking a loﬁﬁﬁéﬁﬁsﬁbnd. The user should be able to submit
multiple guesses even if the result from the original query has not yet appeared in the table. In particular, the
guess should appear in the table as soon as the user submits it, and the resul;s for all the guesses should
eventually appear in the appropriate rows. ﬁﬂ(/f /

Remember, to test and debug the multithreaded nature of your Client, guesses that include a '*' are delayed.
You should make sure that your GUI remains responsive during this delay.

—_—

4 of 4 11/12/2011 3:08 PM

Jotto - Wikipedia, the free encyclopedia

1of2

Jotto

From Wikipedia, the free encyclopedia

Jotto (sometimes Giotto Dziotto) is a logic-oriented word game
played with two players, a writing implement, and a piece of paper.
Each player pﬁm&?ﬂet word 0 - at 15 in the
dictionary, generally no proper nouns are allowed, and generally
consisting of all different letters), and the object of the game is to
correctly guess the other player's word first. Players take turns
guessing and giving the number of Jots, or the number of letters that
are in both the guessed word and the secret word. The positions of
the letters don't matter: for example, if the secret word is OTHER
and a player guesses PEACH, he gets a reply of 2 (for the E and the
H, even though they're in the wrong positions). Using a written-out
alphabet, players cross out letters that are eliminated with Jot counts
of 0 and other logical deductions.

\

Contents o 5

\
1 History [A.C0¥M01 1
2 Variations (
3 See also (0[[6(/{’ P@" “L/@A

4 References

History

http://en.wikipedia.org/wiki/Jotto

i

R E ST e Sl R -

T ﬁac: sy *s pea

Jotto Sheet

Jotto was invented in 1955 by Morton M. Rosenfeld and marketed by his New York-based Jotto Corp. In the
1970s, copyright passed to the Selchow and Righter Company. It is now made by Endless Games.

Variations

= The most common variation uses words of four letters instead of five.

= Players should agree before playing if secret words can contain duplicate letters.

= Six-Letter (sometimes called "Word Master Mind', though its logical content places it well beyond
Master Mind and Jotto). Known to have been played with pencil and paper in UK computer (;
departments at least as far back as 1970. Each player picks a secret word of 6 letters, and they
takeme other's word. Secret words (sometimes called 'targets’) and guesses, must
all be real words verifiable in a nominated dictionary. When you guess a word, you find out the #
of letters which are perfect matches only. So if you guess PEACHY and the secret word was
OTHERS, you get a reply of 0 (because the E and H are in the wrong positions). Even more so
than Jotto, this game stretches one's skills in combinatorial logic as well as one's command of the
dictionary. The name of the same computer game is Sixicon by Island Software, 1979.

= Five-Letter, like Jotto, requires players to take turns guessing at an opponent's five-letter word.
Like Six-Letter, responses only indicate the number of perfect matches. If you guess PEACH and

11/12/2011 6:24 PM

Jotto - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Jotto

2 of2

the secret word is PHIAL, the response would be 1 -- the P is an exact match, but the A and the H
are not. A strong strategy for Five-Letter involves attacking the middle three positions (2, 3, and
4) with vowels.

= The television game show Lingo consists largely of contestants playing a variant of Jotto. In
Lingo, the player is told which matching letters are in the correct position, and which are in
incorrect positions. Instead of being selected by the contestants, the words are chosen by the show
and contestants are given a limited number of guesses.

= A computer game version called Josho created by Zachary Stern is available.

= Kane Jotto is a form of multi-player Jotto. Each player has a secret word, like the original game.
Each round, a player guesses a word and each player goes around stating the number of letters his
or her secret word has in common with the guess. The winner correctly guesses the secret words
of all other players.

= Three-letter Jotto is played without using pencil and paper. In order that the game not be overly
difficult, as it must be done entirely in the head, only perfect matches return a count.

See also

» Bulls and cows — a similar game with numbers £ Y@G{/l\ Q OO L/

References

Retrieved from "http://en.wikipedia.org/w/index.php?title=Jotto&oldid=442871384"
Categories: Word games =~ Selchow and Righter games - Endless Games games
Paper-and-pencil games

= This page was last modified on 3 August 2011 at 17:10.

» Text is available under the Creative Commons Attribution-Share Alike License; additional terms
may apply. See Terms of use for details.
Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit
organization.

11/12/2011 6:24 PM

C:\Users\Michael\workspace\6.005\published\lectures\L14-guis\src\beforeclass\hogwarts\gui\WizardView.java Saturday, November 12, 2011 8:40 PM

}
PN

/** Sets the model shown by this view. */
public void setWizard(Wizard w) {
this.model = w;
refresh () ;

/** Refresh this view to reflect changes in the model. */
public void refresh() {
name.setText (model.getName ()) ;
‘picture.setIcon(new Imagelcon(model.getPhoto()));
friendsModel.clear () ;
for (Wizard friend : model.getFriends()) {
friendsModel.addElement (friend) ;

/** Switch the model to display the friend currently selected in the friends list.
* If no friend selected, has no effect. */
private void visitSelectedFriend() {
if (friends.isSelectionEmpty()) return; // no wizard selected, can't switch to it
int selectedIndex = friends.getMinSelectionIndex() ;
setWizard((Wizard) friendsModel.get (selectedIndex)) ;

/** Repeatedly friends and unfriends the currently-selected friend N times.
* If no friend selected, has no effect. */
private void thrashWithSelectedFriend() {
if (friends.isSelectionEmpty()) return; // no wizard selected, can't switch to it
int selectedIndex = friends.getMinSelectionIndex() ;
Wizard selectedWizard = (Wizard) friendsModel.get (selectedIndex) ;
thrashForeground(model, selectedWizard) ;

private static final int NUM THRASHES = 5;

private void thrashForeground(Wizard source, Wizard target) ({
try {
for (int j = 0; j < NUM_THRASHES; ++j) {
// unfriend them
source.defriend(target) ;
refresh () ;
Thread.sleep(1000); // wait for a second

// then refriend them

source. friend(target) ;

refresh() ;

Thread.sleep(1000); // wait for a second

.3-

C:\Users\Michael\workspace\6.005\published\lectures\L14-guis\src\beforeclass\hogwarts\gui\WizardView.java Saturday, November 12, 2011 8:40 PM

} catch (InterruptedException e) {
Thread.currentThread () .interrupt () ;

private void thrashBackground(final Wizard source, final Wizard target) {
Thread backgroundThread = new Thread(new Runnable() {
public void run() {
try {
for (int j = 0; j < NUM_THRASHES; ++Jj) {
// unfriend them
source.defriend(target) ;
refreshInUIThread() ;
Thread.sleep(1000); // wait for a second

// then refriend them
source.friend(target);
refreshInUIThread() ;
Thread.sleep(1000); // wait for a second
}
} catch (InterruptedException e) ({
Thread.currentThread () .interrupt () ;

private void refreshInUIThread() {
SwingUtilities.invokelater (new Runnable() {
public void run() |
refresh () ;

}) s

|
backgroundThread.start () ;

C:\Users\Michael\workspace\6.005\published\lectures\L14-guis\src\beforeclass\hogwarts\gui\WizardView.java Saturday, November 12, 2011 8:40 PM

//setPreferredSize (new Dimension(400,400));

// get some margins around components by default
layout.setARutoCreateContainerGaps (true) ;
layout.setAutoCreateGaps (true) ;

// place the components in the layout (which also adds them
// as children of this view)
layout.setHorizontalGroup (
layout.createParallelGroup ()
.addGroup (layout.createSequentialGroup ()
.addComponent (picture, 100, 100, 100)
.addComponent (name))
.addGroup (layout.createParallelGroup ()
.addComponent (friendsLabel)
.addComponent (friends, 0, GroupLayout.PREFERRED SIZE, Integer.
MAX VALUE)
.addComponent (thrashButton))
)
layout.setVerticalGroup (
layout.createSequentialGroup ()
.addGroup (layout.createParallelGroup ()
.addComponent (picture, 100, 100, 100)
.addComponent (name, GroupLayout.PREFERRED SIZE, GroupLayocut.
PREFERRED SIZE, GroupLayout.PREFERRED SIZE))
.addComponent (friendsLabel) J@% Th\
.addComponent (friends, 0, 200, Integer.MAX VALUE) 1 fﬁy

.addComponent (thrashButton) wﬂ@is

by

// add listeners for user input i\ﬂli‘% _{_
friends.addMouselistener (new MouseAdapter () { .
public void mouseClicked(MouseEvent event) ({ LAW+&4
// respond only on double-click
if (event.getClickCount () == 2) {

visitSelectedFriend() ;

b

friends.addKeyListener (new KeyAdapter () {
public void keyPressed(KeyEvent event) {
if (event.getKeyCode() == KeyEvent.VK ENTER) ({
visitSelectedFriend();

1)
thrashButton.addActionListener (new ActionListener () {

public void actionPerformed(ActionEvent event) {
thrashWithSelectedFriend() ;

D=

C:\Users\Michael\workspace\6.005\published\lectures\L14-guis\src\beforeclass\hogwarts\gui\WizardView.java Saturday, November 12, 2011 8:40 PM

package beforeclass.hogwarts.gui;
import beforeclass.hogwarts.model.Wizard;

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.awt.event.KeyAdapter;
import java.awt.event.KeyEvent;

import java.awt.event.MouseAdapter;
import java.awt.event.MouseEvent;

import javax.swing.DefaultListModel;
import javax.swing.GroupLayout;
import javax.swing.Imagelcon;

import javax.swing.JButton;

import javax.swing.JLabel;

import javax.swing.JList;

import javax.swing.JPanel;

import javax.swing.JTextField;
import javax.swing.SwingUtilities;

@SuppressWa;?;ngsfdgéi'al") :
public clase WizardView extends ZPan {

[|

// this view's model
private Wizard model = null;
// may be null

// view objects used to display this view
private final JLabel picture;

private final JTextField name;

private final JList friends;

private final DefaultListModel friendsModel;

// rep invariant: all view objects != null ,
_'JV(LQW bfvﬁ[/V/ﬁ

/** Make a WizardView. */

public WizardView() {
// create the components
picture = new JLabel (" [picture]");
name = new JTextField("Harry Potter");
friendsModel = new DefaultListModel () ;
friends = new JList (friendsModel) ;

// create labels and other decorations that we don't need to access later,
// so we don't save them in the rep

final JLabel friendsLabel = new JLabel ("Friends:"):;

final JButton thrashButton = new JButton("Thrash");

// define layout p (h%%th
GroupLayout layout = new GroupLayout (this); U%Q} Q 0\‘?

setLayout (layout) ;

C:\Users\Michael\workspace\6.005\published\lectures\L14-guis\src\beforeclass\hogwarts\gui\MainWindow.java

package beforeclass.hogwarts.gui;

import
import

import
import
import

import

import

public

beforeclass.hogwarts.model.Castle;
beforeclass.hogwarts.model.Castle.SameNameException;
beforeclass.hogwarts.model.Wizard;

java.awt.BorderLayout;
java.net.MalformedURLException;
java.net.URL;

Saturday, November 12, 2011 8:40 PM

javax.swing.JFrame; ?-’5@*' (ﬂbus :}5f¢b CZZIi
Wl

@SuppressWarnings ("serial")

clasg(MainWindow extends JFrame

private final WizardView wizardView;

public MainWindow() { (— C[@d*?fﬁ /heThOC!

setTitle ("Hogwarts") ;

setLayout (new BorderLayout ()) ; G;"sﬁf l&ypui {éy

wizardView = new WizardView() ; @b
add (wizardView, BorderLayout.CENTER) ;
pack() ;

public void setStartingWizard(Wizard w) {

wizardView.setWizard(w) ;

private static Castle makeHogwarts() {

try { _
Castle hogwarts = new Castle() ;

(/Vt /110-4 lf

URL noPicture = MainWindow.class.getResource("images/no-photo.jpg");

hogwarts.add (new Wizard(hogwarts, "Harry Potter", Mai

"images/harry.jpg")));

hogwarts.add (new Wizard(hogwarts, "Hermione Granger",

getResource ("images/hermione.jpg™)))

nWindow.class.getResource(

MainWindow.class.

hogwarts.add (new Wizard(hogwarts, "Ron Weasley", noPicture));

hogwarts.add (new Wizard(hogwarts, "Albus Dumbledore",

noPicture)) ;

hogwarts.add(new Wizard(hogwarts, "Severus Snape", noPicture));
hogwarts.lookup ("Harry Potter").friend(hogwarts.lookup("Hermione Granger")) ;
hogwarts.lookup ("Harry Potter").friend(hogwarts.lookup("Ron Weasley"));
hogwarts.lookup ("Hermione Granger").friend(hogwarts.lookup("Ron Weasley")) ;
hogwarts.lookup ("Harry Potter").friend(hogwarts.lookup("Albus Dumbledore")) ;
hogwarts.lookup ("Severus Snape") .friend(hogwarts.lookup("Albus Dumbledore")) ;

return hogwarts;

sxcept all J// late M
} catch (SameNameException e) ({ !
e.printStackTrace() ; ka{ W & a/{-\a 5

throw new AssertionError("shouldn't happen");

C:\Users\Michael\workspace\6.005\published\lectures\L1 4-guis\src\beforeclass\hogwarts\gui\MainWindow.java Saturday, November 12, 2011 8:40 PM

public static void main(String[] args) ({
Castle hogwarts = makeHogwarts() ;
MainWindow win = new MainWindow() ;
win.setStartingWizard (hogwarts.lookup ("Harry Potter")):

win.setVisible (true) ;

2.

"

|<s, Hogwarts

| B)

%Harrf Polter

N

Friends:

Ron Weasley
Hermione Granager

Albus Dumbledore

Thrash

houg

Threads and Swing http://java.sun.comV/jsp_utils/PrintPage.jsp?url=http://java.sun.com/pro...

1 of 7

sun.com
http://java.sun.comvproducts/jfc/tsc/articles/threads/threads1. html Nov 13, 2011

Article
Threads and Swing

Threads and Swing

This article about multithreading in Swing was archived in April 1998. A month later, we published another
article, "Using a Swing Worker Thread", expanding on the subject. For a better understanding of how
multithreading works in Swing, we recommend that you read both articles.

Note: In September 2000 we changed this article and its example to use an updated version of SwingWorker
that fixes a subtle threading bug.

By Hans Muller and Kathy Walrath

The Swing APl was designed to be powerful, flexible, and easy to use. In particular, we wanted to make it easy for
programmers to build new Swing components; whether from scratch or by extending components that we provide.

For this reason, we do not require Swing components to support access from multiple threads. Instead, we
make it easy to send requests to a component so that the requests run on asingle thread.

This article gives you information about threads and Swing components. The purpose is not only to help
é\” you use the Swing APl in a thread-safe way, but also to explain why we took the thread approach we did.

Here are the sections of this article:

« The single-thread rule: Swing components can be accessed by only one thread at a time. Generally, this thread is the

event-dispatching thread.

« Exceptions to the rule: Afew operations are guaranteed to be thread-safe.

« Event dispatching. If you need access to the Ul from outside event-handling or drawing code, then you can use the
‘w invokeLater()Or invokeAndWait () method.
———

« Creating threads: If you need to create a thread -- for example, to handle a job that's computationally expensive or /O
bound -- you can use a thread utility class such as SwingWorker or Timer.
e ———— e

« Why did we implement Swing this way?: This article ends with some background information about Swing's thread
safety.

The single-thread rule
Here's the rule:

Once a Swing component has been realized, all code that might affect or depend on the state of that
component should be executed in the event-dispatching thread.

This rule might sound scary, but for many simple programs, you don't have to worry about threads. Before we go into detail
about how to write Swing code, let's define two terms: realized and evenlt-dispatching thread.
ek i

Realized means that the component's paint () method has been or might be called. A Swing component that's a top-level
window is realized by having one of these methods invoked on it: setVisible(true), show(), or (this might surprise you)
pEk’u,ane a window is realized, all components that it contains are realized. Another way to realize a component is to add it
to a container that's already realized. You'll see examples of realizing components later.

11/13/2011 12:06 PM

Threads and Swing http://java.sun.com/jsp_utils/PrintPage.jsp?url=http://java.sun.com/pro...

2 of 7

The event-dispatching thread is the thread that executes drawing and event-handling code. For example, the paint () and
actionPerformed () methods are automatically executed in the event-d WQ thread. Another way to execute code in the
event-dispatching thread is to use the SwingUtilities invokeLater () method.

Exceptions to the rule

There are a few exceptions to the rule that all code that might affect a realized Swing component must run in the event-
dispatching thread:

« Afew methods are thread-safe: In the Swing APl documentation, thread-safe methods are marked with this text:

This method is thread safe, although most Swing methods are not. VVL\ L{/‘l {

+ An appffcation's GUI can often be constructed and shown in the main thread: The following typical
code is safe, as long as no components (Swing or otherwise) have been realized:

public class MyApplication { ((\
public static void main(String[] args) { W [\q/ f Llﬁb
JFrame f = new JFrame("Labels"); > w rL £ CJQ’P
/I Add components to
I/ the frame here...
f.pack();
f.show();
// Don't do any more GUI work here...
}
}

All the code shown above runs on the "main" thread. The ¢ .pasi) call realizes the components under the
JFrame. This means that, technically, the £.shew() call is unsafe and should be executed in the event-
dispatching thread. However, as long as the program doesn't already have a visible GUI, it's exceedingly
unlikely that the JFrame or its contents will receive a paint () call before f.show() returns. Because there's no
GUI code after the £.show() call, all GUI work moves from the main thread to the event-dispatching thread,
and the preceding code is, in practice, thread-safe.

+ An applet's GUI can be constructed and shown in the init () method: Existing browsers don't draw an applet until
afterits init() and start() methods have been called. Thus, constructing the GUI in the applet's init () method is
safe, as long as you never call show() OF setVisible(true) On the actual applet object.

By the way, applets that use Swing components must be implemented as subclasses of Japplet, and components should
be added to the JApplet content pane, rather than directly to the JApplet. As for any applet, you should never perform
time-consuming initialization in the init () or start() method; instead, you should start a thread that performs the
time-consuming task.

+ The following JComponent methods are safe to call from any thread: repaint (), revalidate(), and invalidate().
The repaint () and revalidate () methods queue requests for the event- dispéﬁchin thread to call paint () and
validate (), respectively. The invalidate() method just marks a component and all of its direct ancestors as requunng
validation.

« Listener lists can be modified from any thread: It's always safe to call the add Z:ctezez7rzelistener() and

remove l1sterneripzelistener () methods. The add/remove operations have no effect on an event dispatch that's under
way.

NOTE: The important difference between revalidate () and the older validate() method is

that revalidate() queues requests that might be coalesced into a single validate() call. This d
is similar to the way that repaint () queues paint requests that might be coalesced. pgs

" NOTE

11/13/2011 12:06 PM

Threads and Swing http://java.sun.com/jsp_utils/PrintPage.jsp?url=http://java.sun.com/pro...

Event dispatching

Most post-initialization GUI work naturally occurs in the event-dispatching thread. Once the GUI is visible, most programs are
driven by events such as button actions or mouse clicks, which are always handled in the event-dispatching thread.

However, some programs need to perform non-event-driven GUI work after the GUI is visible. Here are some examples:

+ Programs that must perform a lengthy initialization operation
before they can be used: This kind of program should generally show some GUI while the initialization is occurring, and
then update or change the GUL. The initialization should not occur in the event-dispatching thread; otherwise, repainting
and event dispatch would stop. However, after initialization the GUI update/change should occur in the event-dispatching
thread, for thread-safety reasons.
Ay

+ Programs whose GUI must be updated as the result of non-AWT events: For example, suppose a server program
can get requests from other programs that might be running on different machines. These requests can come at any time,
and they result in one of the server's methods being invoked in some possibly unknown thread. How can that method
update the GUI? By executing the GUI update code in the event-dispatching thread.

The SwingUtilities class provides two methods to help you run code in the event—dis:patching thread:

+ 1nvokeLater(): Requests that some code be executed in the event-dispatching thread. This method returns immediately,
without waiting for the code to execute.

+ invokeAndWait(): Acts like invokeLater(), except that this method waits for the code to execute. As a rule, you should
use invekelLater() instead of this method.

This page gives you some examples of using this API. Also see the BINGO example in The Java Tutorial, especially the
following classes: CardWindow, ControlPane, Player, and OverallStatusPane.

Using the invokeLater() Method

You can call invekeLater() from any thread to request the event-dispatching thread to run certain code. You must put this
code in the run() method of a Runnable object and specify the Runnable object as the argument to

invokeLater (). The invokeLater method returns immediately, without waiting for the event-dispatching thread to execute the
code. Here's an example of using invokeLater():

Runnable doWorkRunnable = new Runnable() {
public void run() { doWork(); }
h

SwingUltilities.invokeLater(doWorkRunnable); : 60)\0\/ %0 l\L) W](; [L&’JQ
M Goothe Thiea!
Using the invoke AndWait() Method "—MLL 5\//@ Wed /QL%/MCQ

The invokeAndwait () method is just like invekeLater(), except that invokeAndwait () doesn't return until the event-
dispatching thread has executed the specified code. Whenever possible, you should use invekeLater() instead of

invokeAndWait (). If you use invokeAndawait (), make sure that the thread that calls invekeandwait () does not hold any locks
that other threads might need while the call is occurring.

Here's an example of using invokeAndWait () :

void showHelloThereDialog()

3of7 11/13/2011 12:06 PM

Threads and Swing http://java.sun.com/jsp_utils/PrintPage.jsp?url=http://java.sun.con/pro...

throws Exception {
Runnable showModalDialog = new
Runnable() {
public void run() {
JOptionPane.showMessageDialog(
myMainFrame, "Hello There");
}
h
SwingUtilities.invokeAndWait
(showModalDialog);
}

Similarly, a thread that needs access to GUI state, such as the contents of a pair of text fields, might have the following code:

void printTextField() throws Exception {
final String[] myStrings =
new String[2];

Runnable getTextFieldText =
new Runnable() {
public void run() {
myStrings[0] =
textField0.getText();
myStrings[1] =
textField1.getText();
1
h
SwingUltilities.invokeAndWait
(getTextFieldText);

System.out.printin(myStrings[0]
+" "+ myStrings[1]);

Creating threads

If you can get away with it, avoid using threads. Threads can be difficult to use, and they make programs harder to debug. In
general, they just aren't necessary for strictly GUI work, such as updating component properties.

However, sometimes threads are necessary. Here are some typical situations where threads are used:

+ To perform a time-consuming task without locking up the event-dispatching thread. Examples include making extensive
calculations, doing something that results in many classes being loaded (initialization, for example), and blocking for
network or disk l/O.

+ To perform an operation repeatedly, usually with some predetermined period of time between operations.
+ To wait for messages from clients.

You can use two classes to help you implement threads:

+ SwingWorker: Creates a background thread to execute time-consuming operations.

+ Timer: Creates a thread that executes some code one or more times, with a user-specified delay between executions.

4 of 7 11/13/2011 12:06 PM

Threads and Swing http://java.sun.conVjsp_utils/PrintPage.jsp?url=http://java.sun.com/pro...
2 p/f] Jsp_ ge.Jsp p

Using the SwingWorker Class

The SwingWorker class is implemented in SwingWorker. java, which is not included in any of our releases, so you
@\ must download it separately.
DOWNLOAD SwingWorker does all the dirty work of implementing a background thread. Although many programs don't need
background threads, background threads are sometimes useful for performing time-consuming operations, which can improve
the perceived performance of a program.

To use the SwingWorker class, you first create a subclass of it. In the subclass, you must implement the construct () method
so that it contains the code to perform your lengthy operation. When you instantiate your SwingWorker subclass, the
SwingWorker creates a thread but does not start it. You invoke start () on your SwingWorker object to start the thread, which
then calls your construct () method. When you need the object returned by the censtruct () method, you call the
SwingWorker's get () method. Here's an example of using SwingWorker:

.../fin the main method:
final SwingWorker worker =
new SwingWorker() {
public Object construct() {
return new
expensiveDialogComponent();
}
I3

worker.start();

.../lfin an action event handler:
JOptionPane.showMessageDialog
(f, worker.get());

When the program's main () method invokes the start () method, the SwingWorker starts a new thread that instantiates
ExpensiveDialogComponent. The main () method also constructs a GUI that consists of a window with a button.

) created. The program then shows a modal dialog containing the ExpensiveDialegCemponent. You can find the
" entire program in MyApplication.java.

DOWKLOAD

@ When the user clicks the button, the program blocks, if necessary, until the ExpensiveDialogComponent has been

Using the Timer Class

The Timer class works with an ActionListener to perform an operation one or more times. When you create a timer, you specify
how often the timer should perform the operation, and you specify which object is the listener for the timer's action events.
Once you start the timer, the action listener's actionPerformed () method is invoked one or more times to perform its operation.

The actionPerformed () method defined in the Timer's action listener is invoked in the event-

|_~ dispatching thread. That means that you never have to use the invokeLater () method in it.

“ NOTE

Here's an example of using a Timer to implement an animation loop:

public class AnimatorApplicationTimer
extends JFrame implements
ActionListener {
...[lwhere instance variables

S5of7 11/13/2011 12:06 PM

Threads and Swing http://java.sun.com/jsp_utils/PrintPage.jsp?url=http://java.sun.com/pro...

.../lare declared:
Timer timer;

public AnimatorApplicationTimer(...) {

/I Set up a timer that calls this
I object's action handler,
timer = new Timer(delay, this);
timer.setInitialDelay(0);
timer.setCoalesce(true);

;

public void startAnimation() {
if (frozen) {
// Do nothing. The user has
/l requested that we stop
/f changing the image.
}else {
/fStart (or restart) animating!
timer.start();
}
}

public void stopAnimation() {
//Stop the animating thread.
timer.stop();

public void actionPerformed
(ActionEvent e) {
/{Advance the animation frame.
frameNumber++;

//Display it.
repaint();

Why did we implement Swing this way?
There are several advantages in executing all of the user interface code in a single thread:

+ Component developers do not have to have an in-depth understanding of threads programming: Toolkits like
ViewPoint and Trestle, in which all components must fully support multithreaded access, can be difficult to extend,

particularly for developers who are not expert at threads programming. Many of the toolkits developed more recently,
such as SubArctic and IFC, have designs similar to Swing's.

+ Events are dispatched in a predictable order: The runnable objects enqueued by invekeLater () are dispatched from
the same event queue as mouse and keyboard events, timer events, and paint requests. In toolkits where components
support multithreaded access, component changes are interleaved with event processing at the whim of the thread
scheduler. This makes comprehensive testing difficult or impossible.

+ Less overhead: Toolkits that attempt to carefully lock critical sections can spend a substantial amount of time and space
managing locks. Whenever the toolkit calls a method that might be implemented in client code (for example, any public or
protected method in a public class), the toolkit must save its state and release all locks so that the client code can grab
locks if necessary. When control returns from the method, the toolkit must regrab its locks and restore its state. Al

6of 7 11/13/2011 12:06 PM

Threads and Swing http://java.sun.com/jsp_utils/PrintPage.jsp?url=http://java.sun.con/pro...

applications bear the cost of this, even though most applications do not require concurrent access to the GUI.

Here's a description, written by the authors of the SubArctic Java Toolkit, of the problem of supporting multithreaded
access in a toolkit:

It is our basic belief that extreme caution is warranted when designing and building multi-threaded
applications, particularly those which have a GUIl component. Use of threads can be very deceptive. In many
cases they appear to greatly simplify programming by allowing design in terms of simple autonomous entities
focused on a single task. In fact in some cases they do simplify design and coding. However, in almost all
cases they also make debugging, testing, and maintenance vastly more difficult and sometimes impossible.
Neither the training, experience, or actual practices of most programmers, nor the tools we have to help us,
are designed to cope with the non-determinism. For example, thorough testing (which is always difficult)
becomes nearly impossible when bugs are timing dependent. This is particularly true in Java where one
program can run on many different types of machines and OS platforms, and where each program must work
under both preemptive or non-preemptive scheduling.

As a result of these inherent difficulties, we urge you to think twice about using threads in cases where they
are not absolutely necessary. However, in some cases threads are necessary (or are imposed by other
software packages) and so subArctic provides a thread-safe access mechanism. This section describes this
mechanism and how to use it to safely manipulate the interactor tree from an independent thread.

The thread-safe mechanism they're referring to is very similar to the invokeLater() and invokeandwait () methods provided by
the swingUtilities class.

copyright © Sun Microsystems, Inc

7Tof7 11/13/2011 12:06 PM

6,05 /)
b oP-Set \P"S‘/z /Z
Last P-od]

éM (Omm//!‘(wle wj Sorver

= Jott M
e e fhend oo oedy guess
O P Bl 6 e Bl befonae
N@QJ, - gare *
Lo for eqth ey
Ofled — moddl code |
Med & Keadd e I/Laqa!&”y
S how sTAE fhrns
Clge ot buk
AC{TL/Q/LL[L\amiwu"j s nih rpd b be
pl)d"t Con),g

angbl Can ¥ cobra 717@ oo
(’nﬂ(lb T doalf fq.ﬂl] WF\) j

3

Y

» b fo /GMC
i 5;6’@ " a él\ﬂf@({ [0(&'“01

b roddy shad dd ook
et .

le « fte gl ¢
WM\L;AL@J },(\QL C{gu{%@

T male g8 b /'NL(

Mgt pabe s cefun o v,

"""‘VD‘I& Nnow
— Qi Sl (/[Mw&a

- B ? b} (O %‘/(‘/d‘ /wa’\L% t/lr(l@/(t L,/W Jﬂ/7{‘(dﬁfgf

-—--h--—-—‘_-——-

Tfj doaf W/ Uit +eof3[,
Wail) Mo, ot A1)
@J Vot ems 0@

2 V% sl ik mal(;(

9
mlna, C(Mﬂg({ M@/]Lg Abﬂﬁl wlm f@‘;\/H [Qﬁ/‘/&{
| VﬁooldﬂL@ %IN, {Mq,(}/\e//r
g2 G
%{H’ (/T w/ A/gwﬂyﬂle bion #
Tttt [\LO}W(

Tf’“l &w&o‘w\mﬂ ol v e
Hcllle’; Qmp’fr wiqdvv

gee, Cxumle

IBY

Hue,
g S

e Lot teds Cofily ot
~ Job (UL
Lg a T},«w

b T Paoe \
4 «umﬁ 0 ol Cule

Y

\/\M}L pes 1/4 whh GZ{;/’
<+f7 '}[o Co"bb;fe :f\ ({/’/67

Tef J e
§@WM 6/0/00 = cpf?w anom - (0

-~ %M%{@{@ 6@[9 (’hocwb/e/ bag _ Colum
l S0 mJﬂmj‘ WLL

M‘l ae we (Jé[J N Lawmt AN e
“Oh ne - hwe wgd

Ty Dl # edd T “ot o
16wk wad e Ly craaktl (F

Viezan {oled

e [
- T owdl posme ok 4 ok
o e
Ok Wow @ whit l((p b/
N ?‘LO‘\Q
G\K QA ﬁ"(‘“j /”Q@iﬁ M\’L l/@(‘(’ + o Ez 9004

W

./\M M?L Jﬁ@(‘i

/ ot | Sﬂmﬁk‘% [y ot 03/7 ”I ’/’/
O e w1 ol
T ol dot gt o oyt otied)
Moo rod To lably bbrs @t gyt
J ek e '
Thy el + seqetd iy & wd
@ Al UL Lok (LUWL

\ow | glors
NQ@&_ action

”\ow \/pmlq,\tg W@C

QW@”‘L o Dk Lol
’@ [laky H B H 0n (/\/mlww (Mt/\o(’\

gk vl fgale b ke 2)

b
NOW LQ d/bl{/ Jﬂ() cll'# Cq"“@r

6}%/[& S
. O Q(‘[[J " A/
@ D ore ~ Geftuny Tkp 6;2 1)?(mﬂﬁ

Sy 3 Mk v b

”(flow [hoo Zher e/ |
Tk Bl - T detry

Hie a 6€PWL5 (/chdf, (v T@b/@

HOW]LJ) ln/rH@ - g\ml' \]@}/@)4{‘1/

[(Cf@ﬁ(Now JTQ/HQ QCZ(/[« ‘il/w//t'
Teoad Lo IF can do Thok

.
i‘f)qnjr Whee — on w;n Cﬂ

OLL Can Yy —((/!@b

@M~%dh%AWWMMd
L Ydgh 5l«aju (LCL‘J /

NK C‘NN\&Q, [V PVZZ«[@ ﬁ,;,tj

TR e

é}(l no "\{3‘{ 1\ow][\/PJCMLD ;1(-
(HJ +P Lwe Oﬂ@g

(4

Oh bt Wbl -t & Lable
(@13 _Hwt é-;/kL)
/ Yl il e

bbu'k no \/Pd,l,{g

Talle wa MW

o My b e w\w p/ﬂb/eﬂ\u@

Ak T weded b add ol

@ \,/Or(m(zrﬁ Now W/ D@’C‘W H TLOLME Maaﬂd

/!A'J/‘L 5(.{@” PWLQ {’o b@ Fdf‘br
T(“{;AC) fo qot bt 4, 6\/\0\4/

Al gojr o ~mols b 1. 4oq

—

LJL Low (Lmpp. VNVJ\M/]
~ 4(itm UL

9

N@V« netd 1Lo (Péw}kwit Msge ﬁ’ vpl@k %Mjﬁ

Pf\wws 5 d les

(No @mmmflf ‘\/\)

o Thiow el

No wl b .
o ,

registes o busite

ad b b e anpled

ok 5 et reght

[‘\ri - puss pack

C@n I

Wik b ol wat to do 6owefhty

(an ¢ plat ey (00 G0

o e b plle pohd

f:gjv% has_ p%ﬁl\'m il /epen
o o b o Clubleg o
Nog NI IWP}

<~ Diazza

%
(

9) ,,
(Qk - Jq . OG/Q(”L d’“‘"ﬁ@ [Zﬂtf’«ﬂ/‘
Lo we B it
Lt i mdo 1+ blak
I L e
\/O\& obu JW\M(Ngc!& /o (‘:- A GynC wa
~don ed o Einty h s weglond

Wl bkt T ot

--/—_—_-’—

T chald ket o hwd!
éw\mo Wae
-\ a WU ed Fuf Dspieh
—%H Vo eamyd Sondllihthes “/B
AWy o (a 1 2'1 26 fex ! 3 \
hd de) St D
Go alss Wed fo ppo rolel of Thed

Ao{awfay resd po'm’rzf € pm(

\{O\y [F volko ” (@
[sontlires put peod bede G (en%i«)

/i_
k901\ Nw 6&[@ !‘Wb{' d{“/
Lﬂ+ M ']\'(\1 u/o \m./d(Ldﬂtp/
L'M)/Lb J(Oo*
QUQUE A é,U()){H‘l/ Fgm
m\{ P(mmém LS W M’}jz(vy A poMLh?/ TLO
| Pl o B woldl -~ panled 4o [
@ 6"“"’@ F(‘n:\ﬁké

/\——’

foie,. ot

/Sl ks mmanuglly

So pass met;, flu“ fé“@(

-_—

/F(\&Q({ WC[@M Sonp

Now J—F(d% - Pc(ne/' (J{(éé/(ﬂ@ftc/

Leo(/b ﬁW!‘
Al spus oy

QU@&ﬂmnj

= Thed allbal
ACCQSS]Lo SIE (‘n (h\ %(
Ewwféo aal ba

B TPl s T
J buall Fae

Dd’%zy m%f)

“’(/55%”18({45 \NLLU/)lﬁ /wm(«y

Ned Some ol bud f@(@(g
ﬂm{i Uty for re frad)
_—A’QH/ E/LVoIHLL@J@/ |
= Ut 4 vove
_91/6 A L rmdlle
oo teting o shd of (UC
- Jﬂ‘e

— A5 0{56%#‘24 TMVL Vb/r/lg Sw(lnﬂ (/]‘””95

0

TO YM/L@ C[?cm: (4, e m{”(w

W e_w /I My !

?M)Ie’ M7 L @ld puss s/
C ul?cwlxb MFM f"/b P, &w[w)

M JBH@ pM/[- mher c&% Hf\af ;aﬁfemﬁs Ca(,// @4

(Wh’/x Wy (Hcqu;&)
I

JottoMpdtd
fare)

o/
So s ad med b ocallbak dyh
Jat call bedy

Regl wayt male 4l

d;&(, CW@@ [,11575947 Cdmnﬂf/ ngszx) =
—wll hge g choed gty

PML @ G&L(Q fsselt 4 Lstoy to Yol l

0
@\'ﬂ bl e

Ziwu te fodel = bt Thes]L{*% S wz’ny

iﬁbﬁﬂ “’PW’7 moflod §
—No il

M “(n hoe J%auhl wllls £ Lrells

-—C@/\\ hae. om)nplewmked / @bgi\/“d\ MW}J
— (gt~ CK%@’WL Mary ﬂfm { C[aﬁﬁ al 4 Jf/‘/"%

ol s oty oo o dtbid Jit, Wdsl date by
—not Jiedly b [k

CC(M JOHo CLw«cde, L;JW/

(OUH/ b j?a,/@l — wgu}(l/ é@, grcufa(l S

~wh Thel ol ke gl
\'Lg &METL (Ve

-O CWL P* ;/\ Bf%uboaiwb

Y W~ ke oo ol
=5 i b g bk

TSR o —dip g e Thah worhens
Oy wiln ot Thie

g

| (ouad
7 leudy for Chanye
7. et Eaoy 1o it

Mo b e vy :Ww
T[QH/ML? oy lwt L
N \C}kpﬂh)

B o SPold gt Vae g clysod

Pl poi o sud rep s " &%‘W
I s}wM hae (eqd c@%(gw%% (lose,

Bk T an gtlls md e o dobk Chidy oo

k005 | J5 il
Mo /Fille fedec
D\ Qoeseiny

[] |anbly opesity

I3 fonglliond a},\e(b

ﬁ 1/15\/\(3/ () (JQK {u/\(/ 10 2

%7 0»/1‘/ d\/& \Muf

i 1 ek M -1 P Wl

\ — ows 91 mew g (4,/
P(o) (l leo\(‘E /\Qﬁ+ UVQO/\ “’H c/tv/udéﬁ O/t{ mafy d’/
uy\ v, {@r’ +elmb ﬁ%ﬁ [/\/%\i
uQ §' Jm{ of C(l%

L\M Y\O(M\ \%WQ
D\Uf [ew\q,f on ({w% (Cv l@uf
No (Qw wl‘ofl oc '6(,(7//% UCTQ ‘D»L/F

- P{M‘M
%{ﬁlﬂ* M ﬂr b o ﬁqve boe (adg (Jucki abod v
Bﬁ ﬂ((Q, 4 QI_N, {GV\@ (&j% 71(”/"5 hire

\ TSee it
Cdr\ \)(‘, 9 l“l’d{ N Pﬂ/f’@/\

Azq{?wﬂ/ [Noeo

.\ (Wol (f ‘(or} (0de ({L%ﬂﬂwj
_-—'Eor Wor Wlﬁ on g@Mm

¥

]EW ﬂwd al 11]@)4@, 0O du ﬁmﬂa'y

- ﬂMﬂL (/w‘;lﬁ WP@
 (onboiny — i blow,'y

Vil e A ¢ Tho i
— (an ere@/o{fG Py‘f%m //HLO IM{

\f\/(m a \ } 1[0{/(e ((1; ‘/»”i ({;/()J
) \ Ol D\C /Q M o 0 A g
‘gjrs QWC Shtae ([F/{oef‘/ éh)

\[tHQf il Ey Sﬁegc

qu/ ‘HQ(/Q@/é lefa s @56}&&(‘“‘/7 E}M ‘f/ﬂ ﬁ“fé 5@;/(
AM(M &Mhﬂ(ﬂ

- \N@"é_ 0vdn I’\WQ JCMk f‘f}“’“g‘e‘F
<Gty i (covls wil ‘qrge ot dutahy

5@1@[F/7 o« sequene of eloanb n fh
mc)b%[m /EY ThdlZF7
T | FLI Thede ey tedorl)

b | g [130 wtll

5%&@ ,
m(r (}96 (’/ 2'/9
L Tple € odtel | (,.lfi.f

Showd € septie of Sy | e It

L the/abk ._sz *1}’& (i)O@:JL hlﬂ&@, Mm’d)

la
— - Jh{ })0({1 Of éf)00
“ oy Seqeng

= (AQ N][unuﬁﬂn % 6@ aﬁ()p}}% fo @/WZ g@{uw
e (E9F) 4l E7 S4 LF7
a6 Lo, - enal) <Fle), o tle]

| %
©yma syt Zl,%‘b[@
)10 0, %0, q,O]

NVFQ no PU(’/I/H“@:J ~ [Qé@)@ g\}ad\mq @[emdw

qufefrfg b Golion by hew
Cﬂn 28

{= gt
Nov,

— [fundor
é%é+/~/5 M=) hvy

<
| M
go gq[f (6861} Vo (o Paéi aoud

{\M\t{)ﬂ) (4 5l 0[@%5 o Vil

D (an naw
) (o Pasé it as (W Guaf

!
e |

) (p% it h 4“ ui5//70k%'52551~

pub\\m"“@%

\
(ate - " r R
A (s = Jus
‘é//‘l(/ﬁﬁ’/”

3\[%0/\ . w;ﬂ[/& ‘MM/)@((W o 707]7%

@’\ ;F\{W”L i xéfwf'b@ b j\t hftM
— e\ @noHo? fis da,ss ahjﬂd
Gl Wb b heds g (e oo, Ghed]

\,W\f\“d{’v Ql\{y(’,&i‘lﬂ L L‘f’“ o [/]forw, Na.\g/ i M‘VBZ

(il Gyl for m)

C{le-eo Nw Anlym ¢ Qm on 6(7

[Flal) bt e

;\[manl- g (]Q , [l) 3 3’\@)
(oIl ke
Jol o K o (V /obm 2o #
mof (e 0fTuo [00, 3,4

1

\ |
8* LC‘ vvoflllL (R FOMK a(Twp g

Jl/b)r 5”'/{
oy { Lo bl 'Zwk/zb%w])

X
A 2 1Qm1931(

oVl M
oaled by O 20-%) yeus btoe O

N \ ; 4
Sile 4 atding ononmy tan sy ‘. Tomt

w M@b M v ;H/m, M|L5L7

F Mo
£ bell « &g VE7 9 S (€7
+Gb}e. PF-EJWLG

l‘;h 11& gﬁﬁf‘(
Pd{ {““w\ﬁr mdifﬁq

'E}LHQ((PI Leo, ““/@H]) - Ze") /3(8.27

fr\
et

§9 l]bjr (,()(“W l(’O/Lb]lm

\,M ;n WMS MM]

fank 1 15 il Cult

(/{GUILWAJ"L \&t‘ X%Z sz | J Z\l},g/q/ﬁ}
hurs] 1,557
Oaly (¢ Yorns Ol& ki

e (sk by, 4092)
P 7%\ Jreh s}ﬁrg 0 5%[/ af? d«cmf@/ﬁ
B Y
dﬂi /Q]L(//ﬂb “SJ C/()ﬂ[/) YSQ %[P}L{ C&Wu%

Mg

efee
T bl of B oo
- (Wl ol Yo ol r«// o

- b4 me ol

(FE3F) & lEx> F

(leeh3)+3) <6

(bu\lHS v C0nbos O\C \HLQM on

0L dogs o rtd b be sand Wb
;Q {3 7Lv/n “J OL s {[’I‘Lp S?Z(Iﬂj

OP:(61%/&9 x A K’ g-}(} ,m)

feda [ambdad s, S5t (e) , [(} 73) "

Tl 7
degunint g}’%

<<Q‘li mlr(lD +5nlf(2)> t ;ff(g)l: 193"
(W aly e foll et

(16(26660)

Pilln does foll [t
—

J
AL b o il ~coll & el vy
@fr Jort mﬂ@; malfe

oot amL fom (114 :
(el /eipc@([d[(m(# ot [7)

[0,17 L)

Wil Yton o whin o b w0 e Sub- dleduss |

(/99 Can clg f@(t/f\';’(

6.005 Software Construction
Fall 2011
Prof. Rob Miller

L15: Map, Filter, Reduce

Today

o Map/filter/reduce

o Lambda expressions

o Functional objects

o Higher-order functions

Example

Suppose we're given the following problem: write a method that finds the words in the Java files in
your project.

Following good practice, we break it down into several simpler steps and write a method for each
one:

* find all the files in the project, by scanning recursively from the project’s root folder
* restrict them to files with a partcular suffix, in this case .java

* open each file and read it in line-by-line

* break each line into words

Writing the individual methods for these substeps, we’ll find ourselves writing a lot of low-level
iteration code. For example, here’s what the recursive traversal of the project folder might look like:

/** Find all the files in the filesystem subtree rooted at folder.
* @param folder root of subtree. Requires folder.isDirectory() == true.
* @return list of all ordinary files (not folders) that have folder as
their ancestor.
* @throws IOException if an error occurs while accessing the filesystem
*/
public static List<File> allFilesIn(File folder) throws IQException {
List<File> files = new Arraylist<File>();
for (File f: folder.listFiles()) {
if (f.isDirectory()) {
files.addAl1(allFilesIn(f));
} else if (f.isFile()) {
files.add(f);
)
}

return files;

¥

And here’s what the filtering method might look like, which restricts that file list down to just the
Java files (imagine calling this like onlyFilesWithSuffix(files, “.java”)):

/** Filter a list of files to those that end with suffix.
¥ @param files list of files (all non-null)
¥ @param suffix string to test
* @return a new list consisting of only those files whose names end with
suffix
4

‘These lecture notes have been collaboratively anthored, with contributions from Sanan Amarasinghe, Srini Devadas, Michael Ernst, John
Gﬂl!a'.g. Daniel _]ark:w.l. Rob Miller, Martin Rinard, and Armando .\'-'J/:r.ruh'{m;,w. (,'a‘{‘:)'r}fgb,‘ © MIT.

public static List<File> onlyFilesWithSuffix(List<File> files, String
suffix) {
List<File> result = new Arraylist<File>();
for (File f : files) {
if (f.getName().endsWith(suffix)) {
result.add(f);
3
}

return result;

}

Today we’re going to talk about map/ filter/reduce, a design pattern that substantially simplifies the
implementation of functions that operate over sequences of elements. In this example, we'll have
lots of sequences — lists of files; input streams that are sequences of lines; lines that are sequences of
words; frequency tables that are sequences of (word, count) pairs. Map/ filter/reduce will enable us
to operate on those sequences with #a explicit control flow — not a single for loop or if statement.

Along the way, we’ll also see an important Big Idea: functions as “first-class” data values, meaning
that they can be stored in variables, passed as arguments to functions, and created dynamically like
other values. This is unfortunately not well-realized in Java, as we’ll see. It’s possible to write first-
class functions in Java, and useful at times (we’ve already done it!), but it’s verbose, so it won’t give us
the extra simplicity that we want for map/filter/reduce. So to demonstrate the power of

map/ filter/reduce, we’ll switch back to Python.

Abstracting Out Control Flow

We’ve already seen two design patterns that abstract away from the details of iterating over a data
structure: Iterator and Visitor.

Iterator gives you a sequence of elements from a data structure, without you having to worry about
whether the data structure is a set or a token stream or a list or an array — the Iterator looks the same
no matter what the data structure is. Visitor abstracts the details of traversal of a recursive data type.

The map/filter/reduce patterns we’ll be looking at today do something similar to Iterator and
Visitor, but at an even higher level — they treat the entire sequence of elements as a unit, so that the
programmer doesn’t have to name and work with the elements individually. In this paradigm, the
control statements disappear: specifically, the for statements, the if statements, and the return
statements in the code above will be gone. We’'ll also be able to get rid of most of the temporary
names (i.e., the local variables files, f, and result).

Map

Let’s imagine an abstract datatype Seq<E>, which represents a sequence of elements € E
e.g. [1,2,3,4] € Seq<Integer>

Any datatype that has an Iterator can qualify as a sequence: e.g., array, list, set. A string is also a
sequence, of characters, although Java’s strings don’t offer an Iterator. Python is more consistent in
this respect. Not only are lists iterable, but so are strings, tuples (which are immutable lists), and
even input streams (which produce a sequence of lines). Python’s syntax is also more compact, so
we'll be using it for code examples for the next few sections.

We'll have three operations for sequences: map, filter, and reduce. Let’s look at each one in turn, and
then look at how they work together.

Map applies a unary function to each element and returns a new list containing the results, in the
same order.

map : (E — F) x Seq<E> — Seq<F>
(in Python)

from math import sgrt

map(sqrt, [1,4,9,16]) # ==> [1.0, 2.0, 3.0, 4.0]

map(str.lower, [‘A’, *b’, ‘C’]) # => ['a", 'b", 'c']
Map is straightforward to implement in Python:

def map(f, seq):
result = []
for x in seq:
result.append(f(x))
return result

This operation captures a common pattern for operating over sequences: doing the same thing to
each element of the sequence.

Functions as Values

Let’s pause here for a second, because we're doing something unusual with functions here. The map
function takes a reference to a function as its first argument — not to the result of that function. When
we wrote:

map(sart, [1,4,9,16])

we didn’t cal/ sqrt (like sqrt(25) is a call); instead we just used its name. In Python, the name of a
function is a reference to an object representing that function. You can assign that object to another
variable if you like, and it still behaves like sqrt:

mysqgrt = sqrt
mysqrt(25) # ==> 5.0

You can also pass a reference to the function object as a parameter to another function; that’s what
we’re doing with map here. You can use function objects the same way you would use any other
data value in Python (like numbers or strings or objects).

Functions are first-class in Python, meaning that they can be assigned to variables, passed as
parameters, used as return values, and stored in data structures. First-class functions are a very
powerful programming idea. The first practical programming language that used them was Lisp,
invented by John McCarthy at MI'T. But the idea of programming with functions as first-class values

actually predates computers, tracing back to Alonzo Church’s lambda calculus. The lambda calculus
used the Greek letter A to define new functions; this term stuck, and you’ll see it as a keyword not
only in Lisp and its descendants, but also in Python.

We've seen how to use built-in library functions as first-class values; how do we make our own? One
way is using a familiar function definition, which gives the function a name:

def powerOfTwo(k):
return 2**k

map(powerOfTwo, [1,2,3,4]) # ==> [2, 4, 8, 16]

When you only need the function in one place, however — which often comes up in programming
with functdons -- it’s more convenient to use a lambda expression:

lambda k: 2**k

This expression represents a functon of one argument (called k) that returns the value 2% You can
use it anywhere you would have used powerOfT'wo:

(lambda k: 2**k) (5) # ==> 32
map(lambda k: 2**k, [1,2,3,4]) # ==> [0,1,2,3]

Python lambda expressions are unfortunately syntactically limited, to funcdons that can be written
with just a return statement and nothing else (no if statements, no for loops, no local variables). But
remember that’s our goal with map/filter/reduce anyway, so it won’t be a serious obstacle,

Guido Von Rossum, the creator of Python, has written a blog post about the design principle that
led not only to first-class functions in Python, but first-class methods as well:

http://python-history.blogspot.com /2009 /02 /first-class-everything.html]

More Ways to Use Map

Map is useful even if you don’t care about the return value of the function. When you have a
sequence of mutable objects, for example, you can map a mutator operation over them:

map(I0Base.close, streams) # closes each stream on the list
map(Thread. join, threads) # waits for each thread to finish

Some versions of map (including Python’s builtin map) also support mapping functions with multiple
arguments. For example, you can add two lists of numbers element-wise:

import operator
map(operator.add, [1,2,3], [4,5,6]) # ==> [5, 7, 9]

Filter

Our next important sequence operation is filter, which tests each element with a unary predicate.
Elements that satisfy predicate are kept; those that don’t are removed. A new list is returned; filter
doesn’t modify its input list.

filter : (E — boolean) x Seq<E> x — Seq<E>
Python examples:
Filter(str.isalpha, ["x’, i, 427, 3% "a"]) # = %", "v% "a"]

def is0dd(x): return x % 2 == 1
filter(isOdd, [1,2,3,4]) # ==> [1,3]

filter(lambda s: len(s)>@, ['abc', '', 'd']) # ==> ['abc', 'd']

We can define filter in a straightforward way:

def filter(f, seq):
result = []
for x in seq:
if f(x):
result.append(x)
return result

Reduce

Our final operator, reduce combines the elements of the sequence together, using a binary function.
In additon to the function and the list, it also takes an /uitial valne that initializes the reduction, and
that ends up being the return value if the list is empty.

reduce : (Fx E —) x Seq<E>xF — F

reduce(f, list, init) combines the elements of the list from left to right, as follows:
resulty = init
result; = f(result, list|0])

f(resulty, list[1])

Il

resulty

result, = f(result,.q, list|n-1])

result, is the final result for an n-element list.

Adding numbers is probably the most straightforward example:
reduce(operator.add, [1,2,3], @) # ==> 6

There are two design choices in the reduce operation. First is how to whether to require an initial
value. In Python’s reduce function, the initial value is optional, and if you omit it, reduce uses the
first element of the list as its inidal value. So you get behavior like this instead:

resulty = undefined (reduce throws an exception if the list is empty)
list[0]

f(resulty, list[1])

result;

results

resulty = f(resulty, list[n-1])
This makes it easier to use reducers like max, which have no well-defined initial value:
reduce(max, [5,8,3,1]) # ==> 8

The second design choice is the order in which the elements are accumulated. For associative
operators like add and max it makes no difference, but for other operators it can. Python’s reduce is
also called fold-left in other programming languages, because it combines the sequence starting from
the left (the first element). Fold-right goes in the other direction:

fold-right : (E x F — F) x Seq<E>xF — F
where fold-right(f, list, init) of an n-element list produces result, from this pattern:

init

I

resultg

result; = f(list{n-1], resulty)

f(list[n-2], result;)

resulta

Il

resulty = {(list|0] , resulty.1)

Two ways to reduce: from the left or the right

foldRight : Seq<E> x (ExF—F) x F ~+ F
foldRighe([1.2.3].—, 0) =2

1 o foldLeft: F x x (FxE—*F) x Seq<E> ~+ F i 2
foldLef(0,-, [1.2.3]) = -6

The return type of the reduce operation doesn’t have to match the type of the list elements. For
example, we can use reduce to glue together a sequence into a string:

reduce(lambda s,x: s+str(x), [1,2,3,4], '') # ==> '1234"'

Or to flatten out nested sublists into a single list:

reduce(operator.concat, [[1,2],[3,4],01,05]], (0D # == [1,2,3,4,5]

This is a useful enough sequence operation that we’ll define it as flatten, although it’s just a reduce
step inside:

def flatten(list):
return reduce(operator.concat, list, [])

More Examples

Suppose we have a polynomial represented as a list of coefficients, a|0], a[1], ..., a[n-1], where a[i] is
the coefficient of ». Then we can evaluate it using map and reduce:

def evaluate(a, x):
xi = map(lambda i: x**i, range(®, len(a))) # [xA@, xAl, xA2, ..., xAn-1]
axi = mapCoperator.mul, a, xi) # [a[@]*xAQ, a[1]*xAl, ..., a[n-1]*xAn-1]
return reduce(operator.add, axi, @) # sum of axi

This code uses the convenient Python generator method range(a,b), which generates a list of integers
from a to b-1. In map/filter/reduce programming, this kind of method replaces a for loop that
indexes from a to b.

Now let’s look at a typical database query example. Suppose we have a database about digital
cameras, in which each object is of type Camera with observer methods for its properties (brand(),
pixels(), cost(), etc.). The whole database is in a list called cameras. Then we can describe queries on
this database using map/filter/reduce: '

What's the highest resolution Nikon sells?
reduce(max, map(Camera.pixels, filter(lambda c: c.brand() == "Nikon",
cameras)))

Relational databases use the map/filter/reduce paradigm (where it’s called project/select/aggregate).

SQL (Structured Query Language) is the de facto standard language for querying relational databases.
A typical SQL query looks like this:

select max(pixels) from cameras where brand = “Nikon”

cameras is a sequence (a list of rows, where each row has the data for one camera)
where brand=“Nikon” is a filter
pixels is a map (extracting just the pixels field from the row)

max is a reduce

Finishing the Example

Going back to the example we started the lecture with, where we want to find the Java files in the
project, let’s try creating a useful abstraction for filtering:

def fileEndsWith(suffix):
return lambda file: file.getName().endsWith(suffix)

fileEndsWith returns functions that are useful as filters; it takes a filename suffix like “.java” and
dynamically generates a function that you can use with filter to test for that suffix:

filter(fileEndsWith(".java™), files)

fileEndsWith is a different kind of beast than our usual functions. It’s a higher-order function,
meaning that it’s a function that takes another function as an argument, or returns another function
as its result. Higher-order functions are operations on the datatype of functions; in this case,
fileEndsWith is a producer of functions.

Now let’s use map, filter, and flatten to recursively traverse the folder tree:

def allFilesIn(folder):
children = folder.listFiles()
descendents = flatten(map(allFilesIn, filter(File.isDirectory, children)))
return descendents + filter(File.isFile, children)

The first line gets all the children of the folder, which might look like this:
[“src/client”, “src/server”, “src/Main.java”, ...]

The second line is the key bit: it filters the children for just the subfolders, and then recursively maps
allFilesIn against this list of subfolders! The result might look like this:

[[“src/client/MyClient.java™], [“src/server/MyServer.java™], ...]

So we then have to flatten it to remove the nested sublists. Then we add the immediate children
which are plain files (not folders), and that’s our result.

We can also do the other pieces of the problem with map/ filter/reduce. Once we have the list of
files we want to extract words from, we’re ready to load their contents. We can use map to get their
pathnames as strings, open them, and then read in each file as a list of lines:

pathnames = map(File.getPath, files)
streams = map(open, pathnames)
lines = map(list, files)

This actually looks like a single map() that we want to apply three functions to, so let’s pause to
create another useful higher-order function: composing functions together.

def compose(f, g):
"""Requires that f and g are functions, f:A->B and g:B->C.
Returns a function A->C by composing f with g."""
return lambda x: g(f(x))

Now we can use a single map:
lines = map(compose(compose(File.getPath, open), list), files)
Better, since we already have three, let’s design a way to compose an arbitrary chain of functions:

def chain(funcs):
"""Requires funcs is a list of functions [A->B, B->C, ..., Y->Z].
Returns a fn A->Z that is the left-to-right composition of funcs."""
return reduce(compose, funcs)

so that the map operation looks more like this:
lines = map(chain([File.getPath, open, list]), files)

Now we start to see the power of first-class functions — we can put functions into data structures and
use operations on those data structures, like map, reduce, and filter, on the functions themselves!

Since this map will produce a list of lists of lines (one for each file), we need to flatten it to get a
single line list, ignoring file boundaries:

allLines = flatten(map(chain([File.getPath, open, list]), files))
Then we split each line into words similarly:
words = flatten(map(str.split, lines))

And we’re done. As promised, the control statements have disappeared.

Benefits of Abstracting Out Control

Map/filter/reduce can often make code shorter and simpler, and allow the programmer to focus on
the heart of the computation rather than on the details of loops, branches, and control flow.

By arranging our program in terms of map, filter, and reduce, and in particular using immutable
datatypes and pure functions (L.e. functions that avoid mutating data) as much as possible, we've
created more opportunities for safe concurrency. Maps and filters using pure functions over
immutable datatypes are instantly parallelizable ~invocations of the function on different elements of
the sequence can be run in different threads, on different processors, even on different machines,
and the result will still be the same.

First-class Functions in Java
We've seen what first-class functions look like in Python; how does this all work in Java?

In Java, the only first-class values are primitive values (ints, booleans, characters, etc) and object
references. But objects can carry functions with them, in the form of methods. So it turns out that
the way to implement a first-class function, in an object-oriented programming language like Java
that doesn’t support first-class functions directly, is to use an object with a method representing the
function.

We’ve actually seen this before several times already:

* The Runnable object that you pass to a Thread is a first-class function, void run().

The KeyListener object that you register with the graphical user interface toolkit to get
keyboard events is a bundle of several functions, keyPressed(KKeyEvent),
keyReleased(KeyEvent), etc.

The Visitor object that we created to implement functions over recursive datatypes did
indeed represent a function -- with several variants, one for each variant of the datatype.

This design pattern is called a functional object or functor, an object whose purpose is to represent
a function.

For the sake of implementing map/filter/reduce in Java, let’s generalize this notion to a generic
unary function interface:

/**
* A Function<T,Us> represents a unary function from T to U,
* i.e. f:T->U.
®/
public interface Function<T,U> {
/**
* Apply this function.
* @param t object to apply this function to
* @return the result of applying this function to t.
4
public U apply(T t);
3

Then we can write map() like so:

/**
* Apply a function to every element of a list.
* @param f function to apply
* @param list list to iterate over
* @return [F(list[0]), f(list[1]1), ..., f(list[n-1])]
w5/
public static <T,U> List<U> map(Function<T,U> f, List<T> list) {
List<U> result = new ArraylList<U>();
for (T t : list) {
result.add(f.apply(t));
}

return result;

And here’s an example of using map():

// anonymous classes like the one below are effectively lambda expressions
Function<String,String> tolLowerCase = new Function<String,String>() {
public String apply(String s) { return s.tolowerCase(); }
};

map(toLowerCase, Arrays.asList(new String[] {"A", "b", "c"}));

Obviously verbose, and Java is not practical for functional programming. But the notion of functors
is widely used, and useful, as we’ve seen from examples like Runnable and Visitor.

Higher-Order Functions in Java

Map/filter/reduce are obviously higher order functions. But let’s look at two others that we
introduced in today’s lecture: compose() and chain().

Compose() has a straightforward implementation, and in particular once you get the types of the
arguments and return value right, Java’s strong typing makes it pretty much impossible to get the
method body wrong:

/**
* Compose two functions.
* @param f function A->B
* @param g function B->C
* @return new function A->C formed by composing f with g
*r
public static <A,B,(> Function<A,C> compose(final Function<A,B> f,
final Function<B,(> g) {
return new Function<A,CGG() {
public C apply(A t) { return g.apply(f.apply(t)); }
e
}

It turns out that we can’f write chain() in strongly-typed Java, except in a very restricted form in which
all the functions in the chain have the identical input and output types. This is because Lists must be
homogeneous — List<Function<A,A>>,

/**
* Compose a chain of functions,
* @param list list of functions A->A to compose
* @return function A->A made by composing list[@] ... list[n-1]
A
public static <A> Function<A,A> chain(List<Function<A ,A>> list) {
return reduce(
list,
new BinOp<Function<A,A>, Function<A,A>, Function<A,A>>() {
public Function<A, A> apply(Function<A, A> t, Function<A, A> u) {
return compose(Ct, u);
}

&
new Function<A,A>() {
public A applyCA t) { return t; }
}
B

C:\Users\MichaeI\workspace\s.005\published\lectures\L15-map-ﬁlter—reduce\src\mtr\MapFiIterReduce.java Wednesday, November 16, 2011 11:05 PM

package mfr;

import java.util.ArraylList;
import java.util.Arrays;
import java.util.List;

/**
* The map/filter/reduce operations, and the interfaces they rely on.
"/

public class MapFilterReduce {

/**
* Apply a function to every element of a list.
* @param f function to apply
* @param list list to iterate over
* @return [f(list[0]), f(list[1l]),
*f
public static <T, U> List<U> map{(Function<T, U> f, List<T> list) {
List<U> result = new ArrayList<U>();
for (T t : list) {
result.add(f.apply(t))

ap T1iSETA-17)]

}
return result;
}
/-:'r*
* Filter a list for elements satisfying a predicate. Doesn't

* modify the list.
* @param p predicate to test
* @param list list to iterate over
* @return a new list containing all list[i] such that p(list[i])} == true,
* in the same order they appeared in the original list.
*/
public static <T> List<T> filter(Predicate<T> p, List<T> list) {
List<T> result = new ArrayList<T>();
for (T t : list) {
if (p.apply(t)) {
result.add(t) ;

}

return result;

/**

* Combine the elements of a list from left to right using & binary operator.
* @param op binary operator

* @param list list to iterate over

* @param init initial value

* Rreturn (((init op list[0]) op list[1l]) ...) op list[n-1]

i
public static <T, U> U reduce(List<T> list, BinOp<U, T, U> op, U init} {

U result = init;

-

C:\Users\Michael\workspace\6.005\published\lectures\L15-map-filter-reduce\src\mfr\MapFilterReduce.java Wednesday, November 16, 2011 11:05 PM

for (T t: list) {
result = op.apply(result, t);

}
return result;

}

/-k*

* A Function<T,U> represents a unary function £:T->U.

*f

public static interface Function<T, U> {
/**

* Apply this function.
*
* @param t
* object to apply this function to
* @return the result of applying this function to t.
i
public U apply(T t);

/*‘k
* Predicate<T> represents a boolean predicate over the type T, i.e. a
* function p : T -> boolean. Alternatively, Predicate<T> represents the
* subset of T for which the predicate returns true.
i
public static interface Predicate<T> ({
/-Jr-ic
* Test this predicate on an object.
* @param t
* object to test
* @return true iff this predicate is true for t.
LV
public boolean apply(T t);

}
/**
* BinOp<T,U,V> represents a binary function r : T x U -> V.
L
public interface BinOp<T, U, V> {
/**
* Apply this binary operation.
* @param t
s T value to apply this function to
* @param u
* U value to apply this function to
* @return the result of applying this function to (t,u).
*f
public V apply(T t, U u);
}
/-k-k

* Compose two functions.

9.

C:'.Users\Michael\wcrkspace\S.OBS\puinshed\Iectures\L15-map-filter-reduce\src\mfr\MapFiIlerReduce.java Wednesday, November 16, 2011 11:05 PM

* @param f function A->B
* @param g function B->C
* @return new function A->C formed by composing £ with g
i
public static <A,E,C> Function<A,C> compose(final Function<A,B> f, final Function<B,C> g
) o
return new Function<A,C>() {
public C apply(A t) { return g.apply(f.apply(t)); }
}:

// is the following the same as the chain() we wrote in Python?
/**
* Compose a chain of functions.
* @param list list of functions A->A to compose
* @return function A->A made by composing list[0] ... list[n-1]
*/
public static <A> Function<A,A> chain(List<Function<A,A>> list) {
return reduce(
EiEE ¢
new BinOp<Function<A,A>, Function<A,A>, Function<h,RA>>() {
public Function<A, A> apply{(Function<A, A> t, Function<aA, A> u) {

return compose(t, u):;

1,
new Function<A,A>() {
public A apply(A t) { return t; }

// Examples
public static void main{(String[] args) {
// anonymous classes like the one below are effectively lambda expressions
Function<String,String> tolLowerCase = new Function<String,String>() {
public String apply(String s) { return s.toLowerCase(); }

Y

map (toLowerCase, Arrays.asList(new String[] {"A", "b", "c"h);

.3

C:\Users\MichaeI\workspace\E.DOS\published\leclures\Us-map-ﬁlter-reduce\src\mfr\MapFiIterReduce.py Wednesday, November 16, 2011 11:05 PM

4=

The definitions below show how map/filter/reduce can be implemented
in Python. DON'T USE THESE IN PRACTICE. Use Python's builtin
map/filter/reduce functions instead.

=

def map(f, seq):
result = []
for x in seq:
result.append(f(x))
return result

def filter(f, seq):
result = []
for x in seq:
if f(x):
result.append(x)
return result

def reduce(op, seg, init):
result = init
for x in seq:
result = op(result, x)
return result

HHE#EEEE map examples
from math import sqgrt

map (sqrt, [1,4,9,16]) # ==> [1.0, 2.0, 3.0, 4.0)]
map(st‘:.lower, [NAII' "b", e # => ['a', 'b', '¢']

#

functions are first-class: you can assign them, pass them, return them, etc.
mysgrt = sqgrt
mysgrt (25) # ==> 5.0

defining your own functions: either by name (def) or anonymously (lambda)
def powerOfTwo (k) :
return 2%*k

map (powerOfTwo, [1,2,3,41) # ==> [2, 4, 8, 16]

(lambda k: 2**k) (5) # ==> 32
map (lambda k: 2**k, [1,2,3,4]1) # ==> [0,1,2,3]

import io.IOBase

I

map (IOBase.close, streams) # closes each stream on the list

import threading.Thread
map (Thread.join, threads) # waits for each thread to finish

import operator
map (operator.add, [1,2,3]1, [4,5,6]) # ==> [5, 7, 9]

=

C:\Users\Michael\works pace\6.005\published\lectures\L15-map-filter-reduce\src\mfr\MapFilterReduce.py Wednesday, November 16, 2011 11:05 PM
Fhe#4444 filter examples

T '

filter(str.isalpha, ['x', 'y', '2', '3', 'a'l) # ==> ['®', 'y', 'a'l

def is0Odd(x): return x % 2 ==
filter(isodd, [1,2,3,41) # ==> [1,3]

filter(lambda s: len(s)>0, ['abc', '', 'd']) # ==> ['abc', 'd']

#Hf##H## reduce examples

reduce (operator.add, [1,2,3], 0) # ==> 6

reduce (max, [5,8,3,1]) # ==> 8

reduce (lambda s,x: s+str(x), [1,2,3,4], '') # ==> '1234"

reduce (operator.concat, [[1,2]1,[3,41,01,[511, [1) # ==> [1,2,3,4,5]

def flatten(list):
return reduce (operator.concat, list, [])

#H4444#44 bigger examples

def evaluate(a, x):
xi = map(lambda i: x**i, range(0, len(a))) # ==> [x"0, x"1, x"2,
axi = map(operator.mul, a, xi) # ==> [a[0]*x"0, a[l]l*x"1l, a[2]*x"2,
return reduce (operator.add, axi, 0) # ==> sum of axi

¢ XMn-1]
«; afn=1]*%x""n=-1]

What's the highest resolution Nikon sells?
reduce (max, map(Camera.pixels, filter(lambda c: c.brand() == "Nikon", cameras)))

def fileEndsWith(suffix):
return lambda file: file.getName().endsWith(suffix)

filter(fileEndsWith(".java"), files)

e

C:\Users\MichaeI\workspace\G.OOS\published\lectures\L15-map-ﬁlter-reduce\src\words\Word51.java

package words;

import java
import java.
import java.
import java
import java.
import java.

.1o.BufferedReader;

io.File;
io.FileReader;

.10.I0Exception;

util.ArrayList;
util.List;

public class Wordsl {

Wednesday, November 16, 2011 11:05 PM

/** Find all the files in the filesystem subtree rooted at folder.
* @param folder root of subtree. Requires folder.isDirectory() == true.

* @return list of all ordinary files

(not folders)

that have folder as their ancestor.

* @throws IOException if an error occurs while accessing the filesystem

*f

public static List<File> allFilesIn(File folder) throws IOException {
List<File> files = new ArrayList<File>();

for

}

(File f: folder.listFiles()) {

if (f.isDirectory()) {
files.addAll(allFilesIn(f)):

} else if (f.isFile()) {
files.add(f) ;

return files;

/** Filter a

* @param files list of files (all non-null)

* @param suffix string to test
* @return a new list consisting of only those files whose names end with suffix

*/

public static List<File> onlyFilesWithSuffix(List<File> files,

List<File> result = new ArrayList<File>();

for

}

(File f : files) {
if (f.getName() .endsWith(suffix)) {
result.add(f) ;

return result;

/*‘k

* @param files

* @return

* @throws IOException

*f

list of files to those that end with suffix.

String suffix) {

public static List<String> getWords(List<File> files) throws IOException {
List<String> words = new ArrayList<String>();

for

(File £ : files) {

BufferedReader r = new BufferedReader (new FileReader (f)) ;

-

C:\Users\Michael\workspace\6.005\published\lectures\L1 5-map-filter-reduce\src\words\Words1.java Wednesday, November 16, 2011 11:05 PM

String line;
for (line = r.readLine(); line
// split on \W (non-word characters, like spaces and punctuation)
for (String word : line.split ("\\W+")) {
// split can return empty strings, so omit them
if (!'word.isEmpty()) {
words.add (woxrd) ;

= null; line = r.readLine()) {

}

return words;

public static void main(String[] args) {

try {
List<File> allFiles = allFilesIn(new File(".")):
List<File> javaFiles = onlyFilesWithSuffix(allFiles, ".java");
List<String> words = getWords (javaFiles):;
for (String s : words) { System.out.println(s); }
} catch (IOException e) {
e.printStackTrace(};

2.

C:\Users\Michael\workspace\s.oos\published\lectures\L15-map-ﬁlter-reduce\src\words\Wordsz.py
from java.io import File

from java.lang import String

from operatcor import concat

def flatten(l):

return reduce(concat, 1, [])

def allFilesIn(folder):
children = folder.listFiles ()

Wednesday, November 16, 2011 11:05 PM

descendents = flatten(map(allFilesIn, filter(File.isDirectory, children)))

return descendents + filter(File.isFile, children)

def endsWith(suffix):
return lambda f: f.getPath().endswith(suffix)

def compose(f, g):

"""Requires that f and g are functions, f:A->B and g:B->C.

Returns a function A->C by composing f with g."""
return lambda x: g(f(x))

def chain(funcs):

"""Requires that funcs is a list of functions [A->B, B->C,

sa YRl

Returns a function A->Z that is the left-to-right composition of funcs."""

return reduce (compose, funcs)

readIn = chain([File.getPath, open, listl])

def splitIntoWords(s):
nonempty = lambda s: len(s) > 0

return filter (nonempty, list(String.split(s, "\\W+")))

the whole program

roots = map(File, ["."])

files = filter(endsWith(".java"), flatten(map(allFilesIn,
lines = flatten{map(readIn, files))

words = flatten(map(splitIntoWords, lines))

print "\n".join(words)

-1-

roots)))

Z,(f:h l@ not- ml o thﬂra Sqe. TCWWD
w (,lméi {vﬂvjﬁlm)

US}“J W Obet
=y pass o+ @th
@ (ol ¢ [t = [
{ dion £ ool
vanle (o [fwmb® %) X% 2520

¥

ot Ly

(/6_@ Aindien) ,f [» ,vf/)

el
olty WVTL
fun
vighton. mL BT [gg%l] g
q(&gr’?vw Mdk S

{uv\(/ﬂ@ﬂ Gk B 99
/Z;_EX/E ~>lf

Wy Self \r/ Seed

El E2 EJ] [E1E) P g

(E)H}b +£3 (@sTED %EZ) fEB}

'———-"/-—-—_-—\

l\r?/ &I{ftk MM#
/Q({,(/L@ pr&WlITl TZ 7(37—({] fltht @C(M{)

d@g 0)0 €0m [B,T) (
(¢ orn T(B)

0

5 &}fgde/ for Cxam ﬂ
~utgll oftE Gt T

Weh canr exanple
p\wr}fe/ Vé"ﬂ | COMO@WJ(’M

O‘“‘lf @ (6({&6 1{/\ Uﬁ“L (ompf(ﬂ‘fnszﬂﬂ

(efuin £ilter (tam]od& X X ot [‘iol/m)/.maia(
g‘HP: Shean, [Q{/&“’VJ UD

[b be qwa o r@ﬁ/m Ay f}pe
ﬁm L fole mn,;fﬂ ,;)

pll 4, otn 00 ¢

]OUHQ] aPr‘ﬁ CA d@)

E

Listzhy €ty (Fudind g oeon 7, € it 1)
L Ch et = ’

“

—~

3
3\8\/\01\(6 My Fx/mﬂn’) (mtf ;’lg , %OLM) {
This, flan < foles

3

l}\/\m{ L Mg JrﬂHW &)D{ Vo {9({/06/',
Cd/l &)O(/eﬂ'(%@ TWJ
Vot depindat oo ceulB

Eﬂl/cx Qr@{ka

(005" L Wi
e Lopeps

Uk as M L

L dusie — pale Laagages
R0

PS 7 dJC nw @MLJA‘WZ/“
Vet 2 Sgpgs b, T

Quz 7 o 147 n Willy 9]

L(ML eche ﬁt}u/
LMR_ (o0l byt oo fomamn

R A R R N

oy

) Pay D woh fine alk

/i —
Vo T Y Ty as Ole Lib vales

Scﬁ N

Pm«e@[5(1'%@, Cen 4o MP/I[[HP/ i B ol

<>
O LUQJA ‘l(» Th@ beéﬂ/e

s ~> @@w

A
! Wu’“i o fied ol /%P/@;en,m(m o Y

b wl b ey sy
O fo tesste_bobst

\)26!}% }4{'(3/1(@(@)
e | [

¢ e¥flesin | AT

o (A § <)

dn L\/)\/ {/ 3

on () £~
3

s D?ptwl o Enh%vcrh/ Js

.MLO/ O\b/ﬁflf IQL d{x‘;j
——p&&éﬂtg ot Nﬂ%é

~ bt kg Wanﬂv)@b/

Tm],w,: Pujr é]tulq W@M 1]4?'?) 50/%&“[74/\@ W’L 6/
ealy for Chnyg

5@ CO\/M hae 6\%{ 4// (lafav 'Hﬂﬁ/ & oy

M)(‘J ~) (Q-E(O/dQ/ ")
0
e \
9
\

hod be abl fo MF; i Sl

i b be abe fo b cepelia msie

— (oud - Penﬂe {’"\‘ﬂ/’}fj ganre bwlﬂ M (o a af

(i r{a Yird
—(CAthon - 6m@tﬁf Q]/Lé{ itﬂqmﬂj W sant tm[v/ 0 gﬁ f?eo/ozcj

— {8 0e Cﬁwh

v

il b & T o 05 [l k= foon

f09 @AWy / wfogo/ Q[ﬂﬁ
SW La ah\\fpﬁ bor (Qﬁ//swe f\z/&

flsle = Note(pl Pty o490t b Lt Tt

1 taum # b@ﬂf) ¢ to e
0 y\ ’ T b (o hoe butle) Voees afial
\

Aot mid N A fo(m/
QMM\DI‘@\ i (\)Cb{\b (i : L‘a/b(GJ
* CO{M{N (WA; m“b\“(v M2 va{o)

S kit e of ohjeks will e see al cabh
L T chiped
TE varkd i
+ (o (£ O iag ;i)
Bk e & e Lloylh /7

Q/Jf W/ \W@ (h\@/t 6 W Wy (650%6’# Bmpfy /{;/1
alust Yk ot 0,1, (2), 1

%Mfw

®

(ol abd
T Empﬂ“
b b key H elowh sl b o
Qa1
P

QP@@ ; Ceabr of dafw Ly
" fotes . Sty x Tospunat > Thot
(§

{f "hFE | FEDC]
f(\(tom)}m ép%l\[{o M'MHM [603&7 ‘fo)(‘(/g ,C;
e peple & 0t

y

e 1
ot draton [lote — Jable

6W Ploy " Wi x Gyithlaer 2 vod

Tooa, b e (o gty
5 (reoty iy ay, Mg n Jan
5 Fhaly n AL Gl fo- ol edbal 8

+(“"Wl\ m\/o‘t(, A IML ==} M,g[g
ot of dombuy ,p
(half)

I Y

\ (op O
p® D Ib
n ©

Edeb[')(o J/}ﬂ)no£d€
s oty s it &0 Can ma(/&(/

U\Jm& \Hﬂl?(p(}]%/ Y“GHW

;m%ffce MVO'L(/{‘

e dyuted |

3
@J‘ OUJbo VW’{”

(177 (VEL;ILW[T 7)

il do (fawlh»j i {reg
/{:m%“w? wild / ales o ey
EmpL{ ((%f {Or éla»(q

0
oot e ol
It o Hospe med

Lok 5 noth |
(onat ‘anf\,ﬁ s V02 Chllres

50 beﬁ@/«z 0€ ‘l({ﬂ noﬁlz'/@\‘ u{‘é.:}l?”

-”——-_

f | , ML
éO \O\/Q(/l&ﬂ w/ b@M{W \/&/ WA
L Gimle nay b ile wa 00{7 CW% W Of Wﬂ

gxo \(Or mub\(c &MH}’Q - Ml o a/[M
+ logithy ([l Mot) m))

Tl ot ~ bt 6 S
b e o Pl
Ddﬁm H)Q ((b @L‘w mﬂ [/ONP%H'E Jafe 7[#{
(ol | Cmﬁd/f, Tog e
oy AL v @ompa‘zhLe ou i1

(wa 1 /\wa A L%) in lc

st badls 1o mse
Jo iy /J qumMj

e

o tov bt (gn Wt @ G g
(o weike (ode |, (:n A ﬂwﬁ)
Dlag (togttte [(o Vs oo, ol (“ aYocbod, q)))

‘()ia\{ U@gm&[(ow s ﬂWf\/ Cj@(dz C‘}fwrz,ssﬂfﬂ(f&ov Yo et
O Chave)/ 4 }))

‘/“\mt Jﬂ/@# A ﬁw OPQ'&YL% Cn)l/dﬂsﬂosé //m(ﬁé{ mig

l/"ﬂ {%PE(J lu\ ;D(eu(;qj [7
(/aﬂ Jofln o
(o Moi x\'ﬂ xt@ig ¢ M = e

folts Wy ik fonctlor

= e Tt
tﬂﬁfﬂ/ﬂ@fﬂf &PW
—efe

w l ,{ML g (Mub {(L e, ﬂ/@ft&)
| 0 cetun Goctlh
You (s applp € lieubo

59 (an /f@fes@th J{[q';,LO; 66{/‘/&17
ow wat oM fo Qo on torty/

fortr : Mg Mc

(ol we do i W/ CO&CJ/I[/’
Lmlzghlt i s pt My eve/M/f/

What
C
/@ Qg_}_ V\lﬁpﬁyj wl‘” ({0 Sam 'My
@ ond b eve Cfm “/ Cueenf
dote Y
o b b ot (i,)

Coeedh pler !
P(ueha/ier Al
mf\ MVW Coﬂ@hm’l =)

Go we add o aw JF"Yp@/[/ﬂUth
ﬁ&é a @ Loy W’d’@

b
Tha Pl““/ Com o o (ﬂ\() b)/ %Cy
0 sl

Pucbd Cooq s o baslie

O
. &mﬁ(‘et{f)ecda basg e s [04(3 a5 cegled

m Mt @55M+0/H7 6 (ode

T/w&&e ls not %(%é

LQ@MW\ (i b mod Gfgd/mvj%{’ed(, L{/IL () 71//:{

2, ‘Domwzfl/conjrﬂ/ﬁ“ speocétc, l&mwa@

L can }npvjr ABC nalation [

Laﬂ/d/ OPQ’ ILHM Y14 Ia ﬁl() {5{/\8% M@é}
P g s -y (o i

— Combinatlors (concat, caam) ““W‘L fors

Little Languages

Rob Miller
Fall 2011

11/16/11

Today s Topics

Functionals

~ Objects representing executable code

Higher-order functions

~ Functions that accept functions as arguments or return them as results
Domain-specific languages

~PCAP: primitives, combination, abstraction pattern

Representing Code with Data

Consider a datatype representing language syntax
~ Formula is the language of propasitional logic formulas
~a Formula value represents program code in a data structure; i.e.
new And(new Var(“x"), new Var(“y"))
has the same semantic meaning as the Java code
x &&y
~but a Foermula value is a first-class object
* first-class: a value that can be passed, returned, stored, manipulated
* the Java expression "x && y" is not first-class

Representing Code as Data
Recall the visitor pattern

- A visitor represents a function over a datatype
* e.g. new SizeVisitor() represents size : List — int

public class SizeVisitor<E> implements ListVisitor<E,Integer> {
public Integer visit(Empty<E> [) { return 0;}
public Integer visit{Cons<E>) { return | + lLrest().accept(this); }

t

A visitor represents code as a first-class object, too

~ A visitor is an object that can be passed around, returned, and stored
~Butit's also a function that can be invoked

Today' s lecture will see more examples of code as data

Today s Problem: Music

Interesting music tends to have a lot of repetition
Let’ s look at rounds, canons, fugucs

A familiar simple round is “Row Row Row Your Boat”: one voice starts,
other voices enter after a delay

Row row row your boat, gently down the stream, merrily merrily ..

Row row row your beat, gently dewn the stream..
~ Bach was a master of this kind of music

+ Recommended reading: Godel Escher Bach, by Douglas Hofstadter
Recall our MIDI piano from early lectures

~ A song could be represented by Java code doing a sequence of calls on a
state machine:

machine.play(E): machine. play(D): machine.play(C):.

#We want to capture the code that operates this kind of machine as first-
class data objects that we can manipulate, transform, and repeat easily

Music Data Type

Let’s start by representing simple tunes
Music = Note(duration:double, pitch:Pitch, instr:Instrument)
+ Rest(duration:double)
+ Concat(m |:Music, m2:Music)
duration is measured in beats

Pitch represents note frequency (e.g. C, D, E. F, G: essentially the keys on
the piano keyboard)

~ Instrument represents the instruments available on a MIDI synthesizer
Design questions

~is this a tree or a list? what would it look like defined the other way!
~what is the “empty” Music object?

= it" s usually good for a data type to be able to represent nothing
*+ avoid null

#what are the rep invariants for Note, Rest, Concat?

A Few of Music s Operations
notes : String x Instrument — Music
requires string is in a subset of abc music notation

abe notation
egnotes(’EDCD |EE E? 1", PIANO)

can also encode
sharps & flats,

i
| beat note 2-beat note | higher/lower octaves

duration : Music — double
returns total duration of music in beats

e.g. duration(Concat(m|,m2)) = duration(ml) + duration(m2)

transpose : Music x int — Music
retwurns music with all notes shifted up or down in pitch by the given
number of semitones (i.e., steps on a piano keyboard)

1 all these operations also |
{ have precondition that
parameters are non-null

play : Music — void
effects plays the music

11/16/11

Implementation Choices

Creators can be constructors or factory methods

Java constructors are limited: interfaces can’ t have them, and constructor
can’ t choose which runtime type to return

+ new C() must always be an object of type C,
+ sowe can’ t have a canstructor Music(String, Instrument), whether
Music is an interface or an abstract class

Observers & producers can be methods or visitors
» Methods break up function into many files; visitor is all in one place
» Adding a method requires changing source of classes (not always possible)
» Visitor keeps dependencies out of data type itself (e.g. MIDI dependence)
~ Method has direct access to private rep; visitor needs to use observers
Producers can also be new subclasses of the datatype
#e.g Music = ... +Transpose(m:Music, semitones:int)
» Defers the actual evaluation of the function
~ Enables more sharing between values

Adding a new subclass requires changing all visitors

Duality Between Interpreter and Visitor

Operation using interpreter pattern

~ Adding new operation is hard (must add a method to every existing class)
 Adding new class is easy (changes only one place: the new class)
Operation using visitor pattern

~ Adding new operation is easy (changes only one place: the new visitor)

~ Adding new class is hard (must add a method to every existing visitor)

Multiple Voices

For a round, the parts need to be sung simultaneously
Music = Note(duration:double, pitch:Pitch, instr:lnstrument)

+ Rest(duraton:double)

+ Concat{m|:Music, m2:Music)

+ Together(m|:Music, m2:Music)

»Here' s where our decision to make Concat() tree-like becomes very
useful

+ Suppose we instead had:
Concat = List<Note + Rest>
Together = List<Concat>
* What kinds of music would we be unable to express!
Composite pattern

~The composite pattern means that groups of objects (=mnaritas) ean b

treated the same way as single objects (primitives) | Music and Formula are |
X ") | composite data types.
FT =G T) ot €0 T) 4 Py) +ot Po) i
composites primitives

Simple Rounds

We need one more operation:
delay : Music x double — Music
delay(m, dur) = concat(rest(dur), m)

And now we can express Row Row Row Your Boat
rrryb = notes(“C C C3/4 D/4 E | E3/4 D/4 E3/4 F14 G2 | ...", PIANO)
together(rrryb, delay(rrryb, 4))
* Two voices playing together, with the second voice delayed by 4 beats
This pattern is found in all rounds, not just Row Row Row Your Boat
 Abstract out the common pattern
canon : Music x double x int — Music
canon(m, dur.n) =~ mif n ==
together(m, canon(delay(m, dur), dur,n-1)} ifn> 1|
~ The ability to capture a general pattern like canon() is ene of the

advantages of music as a first-class object rather than merely a sequence of
play() calls

Distinguishing Voices
We want each voice in the canon to be distinguishable
~e.g.an octave higher, or lower, or using a different instrument
~ So these operations over Music alse need to be first-class objects that
can be passed to canon()
Extend canon() to apply a function to the repeated
melody
canon : Music x int x double x (Music->Music) — Music
e.g. canon(rrryb, 4, 4, transposer(OCTAVE))
produces 4 voices, each one octave higher than the last
transposer: int -> (Music->Music)
transposer(semitones) = lambda m: transpose(m, semitones)
canon() is a higher-order function

~ A higher-order function takes a function as an argument or returns a
function as its result

Counterpoint

A canon is a special case of a more general pattern
~ Counterpoint is n voices singing related music, not necessarily delayed
counterpoint : Music x (Music — Music) x int — Music

~ Expressed as counterpoint, a canon applies two functions to the music:
delay and transform

canon(m, d, f, n) = counterpoint(m, f © delayer(d), n)
delayer :int — (Music->Music)
delayer(d) = lambda m: delay(m, d)

Another general pattern
function composition © : (U —V) x (T — U) — (T —V)

11/16/11

Repeating

A line of music can also be repeated by the same voice
repeat : Music x int x (Music — Music) — Music
e.g.repeat(rrryb, 2, octaveHigher) = concat(rryb, octaveHigher(rryb))
~ Note the similarity to counterpoint():
counterpoint: m together f(m) together ... together f*'(m)
repetition: m concat f(m) concat ... concat f'(m)
~And in other domains as well:
sum:x + f(x) + ..+ 1 (m)
product: x + f(x) - ... f*!(m)
~There’ s a general pattern here, too; let’ s capture it
series ;T x (T xT‘HT) x(T—=T)xint—T
initial value binary op f n
counterpoint(m, f, n) = series(m, together.f, n)

repeat(m, f,n) = series(m, concat, f,n)

Repeating Forever

Music that repeats forever is useful for canons
forever: Music — Music
play(forever(m)) plays m repeatedly, forever
duration(forever(m)) = +=

Double.POSITIVE_INFINITY

Music = Note(duration:double, pitch:Pitch, instr:Instrument)
+ Rest(duration:double)
+ Concat{m |:Music, m2:Music) e S y
why can’ t we implement forever()
+ Together(m|:Music, m2:Music) using repeat(), or any of the existing

+ Forever(m:Music) Music subtypes!

~Here’ s the Row Row Row Your Boat round, forever:

canon (forever(rrryb), 4, 4, octaveHigher)

double actually has a value for this:

Accompaniment

accompany: Music x Music — Music

repeats second piece until its length matches the first piece

melody line
bass line or drum line,
repeated to match melody’ s length
accompany(m, b) =

together(m, repeat(b, identity, duration(m)/duration(b))) if duration(m) finite
together(m, forever(b)) if duration(m) infinite

Pachelbel s Canon

(well, the first part of it, anyway...)

pachelbelBass = notes("D.2 A2 | B.2 *F, | .. |". CELLO)

pachelbelMelody = notes(“AF'2 E'2| D'2 AC"2 | . ||l ||
VIOLIN)

pachelbeiCanon = canon(forever(pachelbelMelody), 3, 16)

pachelbel = concat(pachelbelBass, accompany(pachelbelCanon,

pachelbelBass))

Little Languages

We' ve built a new language embedded in Java

~ Music data type and its operations constitute a language for describing
music generation

~ Instead of just solving one problem (like playing Row Row Row Your
Boat), build a language or toolbox that can sclve a range of related
problems (e.g. Pachelbel’ s canon)

» This approach gives you more flexibility if your original problem turns out
to be the wrong one to solve (which is not uncommen in practice!)

Capture common patterns as reusable abstractions

Formula was an embedded language too

» Formula combined with SAT solver is a powerful tool that solves a wide
range of prablems

Embedded Languages

Useful languages have three critical elements

11/16/11

Java Formula language | Music language
Primitives 3, false |Var, Bool notes, rest
Means of +, %, and, or, not |together,
Combination ==, £§&, concat,

f p—— transpose,

delay,

Means of variables, naming + methods | naming + [unctions in
Abstraction methods, in Java Python

classcs

~6.01 calls this PCAP (the Primitive-Combination-Abstraction pattern)

Summary

Review of many concepts we've seen in 6.005

~ Abstract data types, recursive data types, interpreter/visitor, composite,
immutability

Code as data

Recursive datatypes, visitors, and functional objects are all ways to express
behavior as data that can be manipulated and changed programmatically

Higher-order functions

Operations that take or return functional objects

Building languages to solve problems

A language has greater flexibility than a mere program, because it can solve
large classes of related problems instead of a single problem

~ Composite, interpreter, visitor, and higher-order functions are useful for
implementing powerful languages

~Butin fact any well-designed abstract data type is like a new language

C:\Users\Michael\workspace\6.005\published\lectures\L16-music-language\src\music\MusicLanguage.py Wednesday, November 16, 2011 11:06 PM
from music.MusicLanguage import *

from music.Instrument import *

from music import Pitch

from music.Pitch import OCTAVE

from java.lang.Double import POSITIVE INFINITY # used for duration of forever()

4=

LITITLLI DI PP EE LI LT i i il Fr i 71777777777 777777777777
// Playing the music with MIDI

PP LLLTLETET T 8L EL LT EEEEL EE LR A LELT TR PRLLEL O AL O R

H= = e

from music.midi import MusicPlayer

def play(music):
''' play music with the MIDI synthesizer '''
MusicPlayer () .play(music)

=g

LELETTTEEETE LTI P LL AT P i il i irriiriiridrriiliriliriirrly
i // General higher-order functions

Pl LLL T T T L AL LT DT AL T TR AL L AL T AL LA P FE AP T CEEE LT

1S

def identity(x):
'"'identity:X->X is the identity function.'''
return x

def compose(f, g):
trifeA=3B, guB=2C; returns h:A->C such thet b=f o g.'"'"
return lambda x: g (f(x))

def repeated(f, n):
"' f:X->X, n:int >= 0. Returns f"n, i.e. f composed with itself n times.'''
if n==0:
return identity;
else:
return compose (repeated(f, n-1), f)

def series(e, binop, £, n):
''"'e:E, binop:ExE->E, f:E->E, n:int >= 1; also requires binop to be associative.
Returns e binop f(e) binop f72(e) binop ... binop f*{n-1}(e)."'""'

return reduce(binop, reduce(lambda fs,i: fs + [f(fs[-1])], range(l, n), [el))

LIEELTELI PRI LI P EIPPIPPr PPl il rririlrirry
// Functional objects that transform Music in interesting ways

PUOETTETER V£ LA T EEE LR LT AL LS L TT TR LA LLT T AL LT

TSI

B

def delayer (beats):

C:\Users\Michael\workspace\6.005\published\lectures\L16-music-language\src\music\MusicLanguage.py Wednesday, November 16, 2011 11:06 PM

"'"'heats:int >= 0; returns f:Music->Music that delays music by that number of beats'''
return lambda music: delay(music, beats)

def tempoChanger (speedup) :
"' 'speedup:number > 0; returns f:Music->Music that speeds up music by a factor m'''
return lambda music: changeTempo (music, speedup)

def instrumentChanger (instr):
"1 1instr:Instrument; returns f:Music->Music that plays all the music with instr.'"'
return lambda music: changelnstrument (music, instr)

def instrumentReplacer (oldInstr, newInstr):

1"15]1dInstr,newlnstr:Instrument; returns f:Music->Music that replaces notes played by
oldInstr

with the same note played by newlInstr.'''
return lambda music: replacelnstrument (music, oldInstr, newlnstr)

def instrumentSequence (instrs):

""1instrs:list (Instrument); returns f:Music->Music that replaces instrs[i] with
instrs[i+l].""!

def swapArgs(f): return lambda a,b: f(b, a)

return reduce (swapArgs (compose), map(instrumentReplacer, instrs[:-1], instrs[l:]),
identity)

def transposer (semitonesUp):
''"'"semitonesUp:int; returns f:Music->Music that transposes music upward by
semitonesUp.'"'

return lambda music: transpose(music, semitonesUp)
octave higher = transposer (CCTAVE)

octave lower = transposer (-OCTAVE)

LELLEE LT R L L L LT E PR L L LT T LA L EL L LT T CEL AL L LT b
// Operations for multiple voices: rounds, canons, counterpoint
LLLLLET TR A LLLLT LTSS EL LT AL AL LAFLLL T LT O LLLL LTSS

def counterpoint (music, voices, f}:
'""'music:Music, f:Music->Music, voice:int >= 1
Returns n-voice contrapuntal composition
in which each voice i is given by f7i(m).'"'
return series(music, together, £, voices)

def canon(music, voices, beats, f=identity):

''"'"music:Music, beats:int >= 0, f:Music->Music, voices:int >= 1
Returns n-voice canon in which each voice i is given by £7i(m),
entering after i*beats.''"'

return counterpoint (music, voices, compose(f, delayer(beats)))

-

C:\Users\Michael\workspace\6.005\published\lectures\L16-music-language\srcimusic\MusicLanguage.py Wednesday, November 16, 2011 11:06 PM

LELLEL TPV ELE P LSRR L L T AR L L EE R £ R 83 LT TR TR IL 147

// Operations for repeating

LETT TNt LT TR EE T DAL R AT FEC L B RS TTEE LT E A

= Sk SR

st

def repeat (music, n, f=identity):
'"'"music:Music, n:int >= 1, f:Music->Music.
Returns n repetitions of music, where the ith repetition is f~{i-1} (music)'"’

return series(music, concat, £, n)

def accompany(musicl, music2):
'""musicl,music2:Music.

Reguires musicl or music2 to run forever, or one's duration to be an even multiple

of the other's duration.

Returns a piece of music that plays musicl and music2 simultaneously,

ending at the same time as well.''"'

if musicl.duration() < musicZ2.duration():
return accompany(music2, musicl)

so now musicl.duration >= music2.duration

elif music2.duration() == POSITIVE INFINITY:
return together (musicl, music?2)

elif musicl.duration() == POSITIVE INFINITY:
return together (musicl, forever(music?2))

else:

return together (musicl, repeat(music2, round(ml.duration() / m2.duration())))

St

PELIELTELEL L7 7T LE 7L EEi i rilririidiidrriridriilrd
// Examples

LITTDIITED P E T i T il i i i i i i i iilrriririrrirrrliirsrizizisrizsz/zs/

Erepers

Row Row Row Your Boat
rowYourBoat = notes ("""
C C C3/4 D/4 E |
E3/4 D/4 E3/4 F/4 G2 |
c'/3 ¢'/3 ¢'/3 G6/3 G/3 G/3 E/3 E/3 E/3 €©/3 C/3 .C/3 |
G3/4 ¥/4 E3/4 D/4 C2
mwn - PIANO)

play it and then play it again, an octave higher
rowTwice = concat (rowYourBoat, transpose(rowYourBoat, OCTAVE))

play it as a 4-voice round, each voice coming in after 4 beats
rowRound = canon(rowYourBoat, voices=4, beats=4)

same 4-voice canon, but each voice an octave higher
rowQctaves = canon(rowYourBoat, voices=4, beats=4, f=transposer (OCTAVE))

same thing, but repeated forever
rowForever = canon(forever (rowYourBoat), voices=4, beats=4, f=octave higher);

C:\Users\Michael\workspace\6.005\published\lectures\L16-music-language\src\music\MusicLanguage.py Wednesday, November 16, 2011 11:06 PM

Frere Jacques

frereJacques = notes ("""
FGAF| FGATF |
A BC'2|A _BC'2|
¢'/2 D'/2 €'/2 B/2AF |
GU/2 DV/2 C'/2 BIZAF |
FCF2 | FCE2

mun - PIANO)

4-voice canon, come in after two measures, using four different instruments
frereRound = canon(frereJacques, voices=4, beats=frereJacques.duration()/4, f=
instrumentSequence ([PIANO, TRUMPET, ACCORDION, CHOIR_AAHS]))

Pachelbel's canon
The melody line below isn't complete -- for the rest, see
http://www.musicaviva.com/ensemble/canon/music.tpl?filnavn=pachelbel~-canon-3mndbc
pachelbelMelody = notes ("""

AFPY2-E'2 | DY2 Se'2 | B2 A2 | BZ ~g'2 |

D'2 ~C'2 | B2 A2 | G2 ~F2 | G2 EZ2 |

D"FAG]| "FD"FE| DB, DA | GBAG |

“FDE *¢¥% [D* "F! A% A | BG A 2E | DD D3/2 .1T/2 |
"re, VIOLIN)
pachelbelCanon = canon(forever (pachelbelMelody), voices=3, beats=16)

add a bass line, which starts by itself and then accompanies the melody
pachelbelBass = notes("D,2 A,,2 | B,,2 *¥,,2 | G,,2 D,,2 | G,,2 A,,2", CELLO);
pachelbel = concat (pachelbelBass, accompany(pachelbelCanon, pachelbelBass))

C:\Users\Michaellworkspace\6.006\publishedlectures\L16-music-language\src\music\MusicLanguage.java Wednesday, November 16, 2011 11:06 PM

package music;
import static music.Pitch.OCTAVE;

import java.util.HashSet;

import java.util.Set;

import java.util.regex.Matcher;

import java.util.regex.Pattern; Y\QL&

ok & sAptuy
* MusicLanguage defines static methods for

* constructing and manipulating Music expressions,

* particularly to create \(k@’ HA, ?Q (4?
* recursive music like rounds, canons, and fugues.
ki
public class MusicLanguage {
// Prevent instantiation
private MusicLanguage() {}

Pl L L LELL T TR LA P LT TR LD LA L CE BT
// Factory methods

LITITLIT LTI 00 L7 dr i i i iiriilirriririirtrrrliizsl

/**

* Make Music from a string using a variant of abc notation

* (see http://www.walshaw.plus.com/abc/exanples/).

* The notation consists of whitespace-delimited symbols representing either
* notes or rests. The vertical bar | may be used as a delimiter

* for measures; make() treats it as a space.

* Grammar:

* notes ::= symbol~*

* symbol :: = . duration for a rest

% pitch duration for a note

* pitch :: = accidental letter octave*

d accidental ::= empty string for natural,
* _ for flat,

s ~ for sharp

¥ letter ::= one of A-G

¥ octave = ' to raise one octave

* , to lower one octave

i duration ::= empty string for one-beat duration,
* /n for 1/n beat,

n for n-beat duration,
n/m for n/m-beat duration
* Examples (assuming 4/4 common time, i.e. 4 beats per measure):

* C guarter note, middle C
* A2 half note, high A
* _D/2 eighth note, middle D flat

@param notes string of notes and rests in simplified abc notation given above
* @param instr instrument to play the notes with
b

-

C:\Users\Michael\workspace\6.005\published\lectures\L16-music-language\srcimusic\MusicLanguage.java Wednesday, November 16, 2011 11:06 PM_

public static Music notes(String notes, Instrument instr) {
Music m = new Rest (0);
for (String sym : notes.split ("[\\s|]+")) {
if (!'sym.isEmpty()) {
m = concat (m, parseSymbol (sym, instr)):

}

return m;

// Parse a symbol into a Note or a Rest.
private static Music parseSymbol (String symbol, Instrument instr) {
Matcher m = Pattern.compile (" (["~/0-9]*) ([0-9]+)2(/[0-9]+)?2") .matcher (symbol) ;
if (!m.matches()) throw new IllegalArgumentException("couldn't understand " + symbol

String pitchSymbol = m.group(l);

double duration = 1.0;
if (m.group(2) '= null) duration *= Integer.valueOf (m.group(2)):
if (m.group(3) !'= null) duration /= Integer.valueOf (m.group(3).substring(l)):

if (pitchSymbol.equals(".")) return new Rest (duration);
else return new Note(duration, parsePitch(pitchSymbol), instr);

// Parse a symbol into a Pitch.
private static Pitch parsePitch(String symbol) {
if (symbol.endsWith("'")) return parsePitch(symbol.substring(0, symbol.length()-1)).
transpose (OCTAVE) ;
else if (symbol.endsWith(",")) return parsePitch(symbol.substring(0, symbol.length
()-1)).transpose (-OCTAVE) ;
else if (symbol.startsWith("~")) return parsePitch(symbol.substring(l)).transpose(l);
else if (symbol.startsWith(" ")) return parsePitch(symbol.substring(l)).transpose(-1
¥

else if (symbol.length() !'= 1) throw new IllegalArgumentException("can't understand
" + symbol);
else return new Pitch (symbol.charAt (0))
}
/**

* @param duration length of rest, must be >= 0
* @return rest of duration beats
*7
public static Music rest (double duration) {
return new Rest (duration);

LA AATLLLTLLLTELLS LS TS ALLLLT LTSS L LS LLLT AT
// Producers

s

C:\Users\Michael\workspacel6.005\published\lectures\L16-music-language\src\music\MusicLanguage.java

TEETHIT T AP LT AR L E L B L LT PR bR R LR

/**
* @param ml first piece of music
* @param m2 second piece of music
* @return ml followed by m2
*/ .
public static Music concat (Music ml, Music m2) {
return new Concat (ml, m2);

/**
* @param ml first piece of music
* @param m2 second piece of music
* @return ml played at the same time as m2
¥y
public static Music together (Music ml, Music m2) {
return new Together (ml, m2);

/*-{r
* @param m music to loop forever
* @return music that repeatedly plays m in an endless loop
=/

public static Music forever (Music m) {

return new Forever (m) ;

LILIELEIL PSPPI P77l 7777777777
// More operations on Music

PUEL T LB B TV T AL LT AL L TV AL LT

/-A-*
* param m piece of music
* @returns set of instruments used by m
#y
public static Set<Instrument> instrumentsUsed(Music m) {
final Set<Instrument> instruments = new HashSet<Instrument>() ;
m.accept (new VoidVisitor () {
public Void on(Note m) {
instruments.add(m.instrument ()) ;

return null;

})

return instruments;

/**
* Pause before playing some music.
* @param m piece of music

W

Wednesday, November 16, 2011 11:06 PM

C:\Users\Michael\workspace\6.005\published\lectures\L16-music-language\src\music\MusicLanguage.java Wednesday, November 16, 2011 11:06 PM

* @param beats length of delay in beats, must be >= 0
* @returns rest of duration beats followed by m
*y
public static Music delay(Music m, double beats) {
return concat (new Rest (beats), m);

* Speed up or slow down a piece of music by a factor of speedup.
* For example, changeTempo (m,2) returns music that plays twice as fast as m.
* @param m pilece of music
* @param speedup factor to increase speed of music, must be > 0
* @returns m' such that m'.duration() = m.duration()/speedup
*/
public static Music changeTempo(Music m, final double speedup) {
return m.accept (new IdentityVisitor() {
@0Override
public Music on(Note m) {
return new Note (m.duration()/speedup, m.pitch(), m.instrument());
}
@Override
public Music on(Rest m) {
return new Rest (m.duration()/speedup);

o I

* Change all the notes in a piece of music to use a single instrument.
* For example, changelInstrument (m, PIANO) returns music that is played
* entirely by the piano.
* @requires m, instr != null
* @returns m' such that for all notes n in m', n.instrument() == instr,
% but otherwise m' is identical to m
®/
public static Music changeInstrument (Music m, final Instrument instr) {
return m.accept (new IdentityVisitor() {
@0verride
public Music on(Note m) {
return new Note(m.duration(), m.pitch(), instr);

})z

}
/-k-k
* Replace all notes that use oldInstr with notes that use newInstr instead.
* @requires m, oldInstr, newlInstr != null
* @returns m' such that for all notes n in m such that n.instrument() == newlnstr,
i the corresponding note n' in m' has n'.instrument() == newlnstr.
* Otherwise m' is identical to m
it

public static Music replaceInstrument (Music m, final Instrument oldInstr, final

s

C:'.Users\Michael\workspace\E.D05\published\lectures\L1G-music-ranguage\src\music\MusicLanguage.java

Wednesday, November 16, 2011 11:06 PM
Instrument newlInstr) {

return m.accept (new IdentityVisitor() {
@Override

public Music on(Note m) {

if (m.instrument().equals(ocldInstr)) return new Note (m.duration(), m.pitch
(), newInstr);

else return m;

}
b
}
/**
* Transpose all notes upward or downward in pitch.
* @Grequires m != null
* @returns m' such that for all notes n in m, the corresponding note n' in m'
* has n'.pitch() == n.pitch().transpose(semitoneslUp). Otherwise m' is identical
R = 1
*i/

public static Music transpose(Music m, final int semitonesUp) {

return m.accept (new IdentityVisitor() {
@Override
public Music on(Note m) {

return new Note(m.duration(), m.pitch() .transpose(semitonesUp), m.instrument

()

|3

-5-

L m@ (mplmd JfOo

"\Ow Can Moty H/[|
L‘{M\U@ﬂ/‘{ EOMZM@ 0n Wd@[/'

50 0\,&4 CL\CM(JJQ tblLMr(QMB asﬂe/) { |

Chaagp Listeq, St CW«\M Oj’
4

(BJQI il VR chu “h‘lb ’fo {(fv(/‘
P—J‘M\D *ﬁ do# O\W{ H

T\/ﬂ@ w® Gt esqghions

Q 005 Q@%@ﬁﬂq

) ub}(OFQ \I Q\L% 2 (QQV:@W
B \ l]
o (g Vig jeﬁord», —fsfrle 9and

- N) : {
BVl i class g
~ o on p ast OLUI?

SLEE Slae
0 o (mcvffw7
~C
—

‘“‘Jﬁ//\d‘wn W' P{@@fﬂ{mfl/?

’NO p\fJﬂaem Smi?ﬂ‘

M Map d@u%]qu
)5 3yt
Ly K
(O\ﬂ({@ 2 W\okl@(&

(Messge P‘U’;"‘ﬂ
(Mamory Gha ‘mg

0)
T - haee

%L@m - dsn\’r e Miwary —arlal nachie

Ay o P(@(onﬁﬂ(‘w veakens T s pe
vab of on sl

Cpeifing an pxceon s fiom ooy bios s

L MOIE’, (0})%5} %a}ni} CAQ/‘?E

W uagtn

—QUOw) Can t(@f@d on W/M,,m‘)m

é)ooieaq conlainy fleﬂt%t(
te —gee 5oty

9

?@f "{'feemw “’I\Q@(lﬁ }9 ;mplw& (mpo\mbf@

B

[lap]Qqévco/[%l for
\=

md*/(@/[h ' l\! /@D(K@ (&PPM meH,/fla,a [5#/@ /&U)}

(upamg R f?\ﬁ (Tt moe
" Pap (@dvéy
Liy e pualieabl

(ored @S

fedee gl (onbl x + (b ©) X4l *f))
]zﬁ))

\7

|
Concat
resoce (wag(spi, \irb)

7

[

%

/

ﬁ@a({/!ooh oc 6(%

IS

—_—

)
Conteolle, ~ (4l Mﬂuji

Ve — oot
Model - ikl (ep/emﬁ{}m

F)

A E

] =
L(wor Q[‘/L(C C@“ﬁ;]ffﬂt ﬂd@f

UR pont scalp ~ oding galie et
LKO{IH CMWUP, any (o1 tastoaks

Wﬁt M}M(AL oot
P, D

/4 04&1 0(/((o \

l(@[wg“‘ /W /(7{ {(m\ aqd b (ﬂ(/[b)
ot blw fe) %1 (on AN

((?4’ s MYI lrony
M pogan can half e

g,

ot e cm g L/oi@ ot
(Ty hae Wyl Do w4
Lo will bus wi

C/ Gb*““(é V5L 5 @J(Wﬁﬁr H/@JL

The American Idol TV program has changed its voting scheme. Instead of voting for one candidate,
the callers are asked to indicate “candidate A is better than candidate B”. Initially each candidate is
given 10000 points and for each vote “A is better than B”, 1% of points is deducted from candidate
B’s total and added to candidate A’s total. You, as the wiz programmer for American Idol, have to
implement the code that does the vote tallying. Since millions of people dial-in, to handle the peak
load your code has to run on hundreds of processors simultaneously.

public class contestant {
RI: points >=0
int points;
public final int myid; // unique id of each contestant
// Assume there is a constructor that initiates all the fields comectly.
void post(int i) { points +=i; }
int get() { return points; }

)

public class Americanldol extends thread {
H RI: SUM g;_ay_comesuns points = 10000 ° number_of_contestants
static Americanldol Al; // the game object
contestant con[J;
/# Assume there are methods that initiates all the fields correctly and start the threads
public void vote(contestant from, contestant to) {

int mov;
<BODY>
)
}
For the next five questions, consider the following code for the <BODY > of the vote method.
synchronized(Al) { synchronized(from) {
mov = from.get()/100; mov = from.get()/100;
A from.post(-mov); D from.post(-mov);
to.post(mov); to.post(mov);
}
synchronized(from) { synchronized(from) {
mov = from.get()/100; synchronized(to) {
mov = from.get()/100;
synchronized(from) { from.post(-mov);
B from.post{-mov); E to.post(mov);
}
synchronized(to) { }
to.post(mov);
}

synchronized((from.myid > to.myid)?from:to) {
synchronized((from.myid > to.myid)?to:from) {
mov = from.get()/100;
C from.post(-mov);
to.post(mov);

L~ -5
é/f‘? C
{ _x 7)

-

/i‘l’
* BugLocations represents the set of line numbers containing
* bugs in a release of the Doors operating system.
*/

public class BugLocations {
public Set<Number> elts;
// RI: all elements of elts are > 0.

public BugLocations() {
elts = new Set<Numbers>();
}

public boolean contains(Number n) {
return elts.contains{n);
}

public BugLocations copy() {
BugLocations other = new BugLocations|();
other.addall (this) ;
return other;

}

public void add (Number n) {
elts.add(n);

}

public void addAll (BugLocations bl) {
for (Number n : bl.elts) ({
add (n) ;
}
}

[—

/(QWZW LL/ 2

Gk I 500 C@H m@h Cue» ((Om qa hw

Thed b e @ @l pide bl

‘Tl woltl Csed all fre dofe
Ty v e GUT
o ge ol OF tetef

ONL J,,Ll (jvess l('e,mg/
OWA Can (ol D[Oj:\ Baolkﬂfm({ (/) “ 50\7\

B 8 dably gue doe 6l
Al woded oy WHW

o gl
QWLV E%{ﬂﬁf’f\% t Gamugys
Pt Maahlv@) 1 Tebmﬂ

Sp&ozéi(afl%
Mgt dade 1L'fp

(/OJ Ao
({Qﬁ/@& JM‘L '{\7

\/lb c I/V/pm@/

ok \
Q@wwnﬁ o oo

opucs.
Tt g - Pl who g
" Plocondidion Ry Oow} }mp(wﬁtﬁm
— mog 105
= off e{vf r5
-"{)o((cwbb

/20

2
(lded excofn ‘*MW { wo Tl Gld hpra
file [t
A t () cabh C) 0 o /

MW"(J%@
U.(‘\Wéepﬁm ~ s déhiﬁ h i =g o

!\

@{F 0 O(d;HO”S
N

=il 3 W2 sl

Volle = (ov

Reuse. i T — gl Lol

@K Expff— Vdr(él 61%“3) 4 AAJ (/Q‘ Expr/‘ffqof)
om0 11 = Ll B gy] o By

/

________NJW { g
wararh
&(p < f’CP(EsQMLﬂUtM

Y

5
g

Y
k
"
o

i

(0’1

s

G

5

"

o

N

N\o

¢
€
1,

Y|
b
B+

i}i

‘;

f é

]zi <

iiﬁ

;i?

S|

o
]L

o

Ox(

ity

pe

fv

] -

E/\

W
¢ X
o
Ce

i

b

o

(9mbip

(o

9
e ol

AR peyed

é‘M{M E i l (Vaers

e - Wc)\/ AOJ((&

W%agﬁ pa@)

Il“ c__\
lm
J u C{t/ewz

e wb gowr /};mm/

Porasses
Ll o) Con 1y
B SW\chf\fm 0€ ‘OP/(UB %(WQ

O e ok e W ol Gl
oty (ugp

&b{x /Wb own 6?7141(/

(oaxé @E cmw

Uolln] ghaol. e “M

L((ﬂl\ M/L]\w, @Mm,pfo

(TM 1 d@p@w& o Odw 5*% (w AM
(S n04’ prjrefvﬂy One M7

when Mt,a&a% / @r\mﬂ\oy Things J‘“ﬁ/@
LI fucases T 5okt

m&%a@B f@&filfb v M{)/\L(MWL 5;(/[@]3 o @f@(@

WJM- “‘“o'}?q &r Covggpn o ﬁk&ﬂ pal
Wt\ﬁn ;’7[4ibs CO!W(/HOO/ Z7L dflloC@?LCJ X Nge ,oml

PrE ae ot urhal / fle addess 0 o o mplec
(] o it)
U sl bl dak aidlo/ e 2)

i

ke 6zl bAfo agle Comeghys
.p(@qto(p(““&L G/o\mw éﬁ &@e\b{, }’10\4/ C“%‘l £ fawr
Conmimggle b eah ol

()
Gml Pfﬂmtﬁ ke (%dy o Ch”‘@fi P eytos il

Pl PLMOH\ ;a,d‘?p@/wl%f |
“C[\L@nJr (ou[i (ne, w\tfé@‘ “ Jﬂ (ay

“’bt 5\lmple U Ne Tt
—ll b we ()ET,\PUT/ DELEIE

LD st by
U{ WS TLO U h/@w& 55@%%

| Contlomat

bt shio dngliy
4 Tanhable

= VWEWﬁﬂ 6"46!7[

- g whgt & P S0 o nd- Chong
il p \/C{/LVQ M- QW@

U Twed Sade Dalate
S s e iR ﬁ
~6 e gu gl
*ﬂdﬁ{» L)@ nay [Dfumd‘d((% on f(””@

-1 i+ thow 4 woans & NOT -ﬁhfeﬂ/lﬁd’éﬂ

@ L/l[g(jaaonimt\zm

~fall abet PRT PY /3
AMMS
w“LCOM‘!?VOL w/ a QPMVHQ

|
_’[ﬁit A wmq Vv Can pw oy

(N P\/
— (n ml&, pg&f@% U/La/f'r) £ 6;"%/
= Java Y (opy]me\gdg (n byl
— Cin MLQ /unq,hlg # O f hQw C&U’]
e for i ess agtess

(o - lo(q;['\/W‘ta/uﬂ} & d(@ﬁ*(ﬁ (zwé@/& (e q,me Contingd
N

— Ghate Abhs ({’Mﬂ{f@b oo

Pt ot |l e colled
D an pont fo dht b
\ecal \/u‘mble) it ace lﬂ;mﬂy Sl -k g b E‘m{

@LO\M Vaubles Cﬁf@ﬁlz) e i\i\t . fved conlany
—Skov\d no\L VK o,

4)

—(c b)’lM/@”[’Z ﬁ],Lheq/é s

Theasafte, — o I(J@LW% C&W/ﬂ? L/w mo il
Tveads o gl e (oodioakion

((\f)@ CD’H?HM)
T bt it
e A

e

h—/j: b@"l@ /OZQ/z{K e/]L@Hm c{/%wg((

([Le, ahsy e o Ly
“‘%pr ook fla $une ffphmé//v

Chb cold bag il chinga Sty

Saftey = nbiny bl hapes
L@ﬁb ’"t/WMM LC@;/% 7Y
does 50@174«3 geod em%& Qe
- PWO”W
Teads (ost resstts
Gding dibe bl fhog, < et

ok Nead ool ugann
ey b, T
- \((d.. W@d$ a
= lxﬂw ltﬁ Cagh 6£/€(/1L ﬁ\/@d st([“(’ :
—Ong o(Qur L’[TVL\MH}

v
L2 gw&on\(’mﬂm

/__——-\‘-____/

ot

£ anolhor ﬂwg}\ ok |
\ (SV D¢ w(ﬂ jﬁa’/ W}
T g f lach P - /

lodls aﬂbm'ﬂ@vuy W\W%'ﬂ o ety (el

only Tl [, w@ o o ok ol

Syt gmized (oby) 1
(ode
3

Or 0% \/‘W o' é‘\c_n/(ﬂﬂé’i'f/d [io@& o WD)
il Gonl ¥ syae alled— 6o \ady bl

{5 f\O{“ a P(Obl »

2’60(1}5@ {hmﬂh w/g ’O@b(leﬂl

an L7L QUL(&@(Y AVNS Conthtuto
bl B Gl albeeges L el

@ ﬁ/@

MO“‘"W f) Cdjmm [mdf\ oh;%f W/ Jﬂu;
- h‘@, \/@\[w

5 ‘{V\L \@@;h’l m\/h(/{fo/é and \/(l Uy
€ bl chid vl —wob gl o o b
L;r\,\/ﬂ(t%'}' Wf\ 1;(/ l/d/[l/& l&@fb@ (@[fftst"l:/ ﬂ(/&

Q/f)ﬂﬁl 67n,<, €V€[\tt/l4
L@?mw Wol/ [

LIT T
EJWW{ o @ Ve lee

-‘(ﬁﬂzﬂa%'}({
AL
~no Ch g

Juff €/M1L [%‘1@/# Y, manogess
‘ Lm‘(GW/ GMHL COMMM)
Lol
ol L
(Qﬂlzms Send Commuads b PO Gt

| | \
Z/zbJ’Wb We ‘449{6&1/@5 Y Zmp/&%}(

tat Yhopeod [£ ot vt
“ M ods
Mowt

Modd U Contolke (g

————

it b g T osan hefoe

@\
oal
ol
TLJE
,@:1
o
vy
t 4
Q:»
)
VP d
afe
6%
)

ik
'3
V
o
0
ik
|
v

fo.
L
all) ¢

)
-
e
o
sblgjtj)

V}W
I
N
Zf
L/i i/
j)ahc{

(y)

Trshncts of MWL af WY e é'q qon

B | ool & m
Toc ek ab o whole SYstem

P@ (/{Ej.ev@(C@us 6[65@}0/ DL/;/tj M, h&f ;0/]
00 blikae lls mbdo dring Mo bl gytinn
oot hue Y Ay iding b e ghe e,

I d\(ln‘ﬁj I

M/m“@ /t@ ¢ e

-l i T

(

‘“"n‘tce [er Z“/‘j5

- C%“ec{ é\/m(/f!mn@{ P/Oﬂ/dmnfln
- (On%fo) (r%/ ?(0/) COJG d’léaﬁa@@

l
e w%r g,/or(uizj On §e(£veaw>

/

=N (V' P\-[(N]?JU/"(

©
é% 4 E F]/5 5¢q Wé 825 qu Fﬂ’ﬁ f;
Lx UML 2L

£l
Jag | Thable / | 5
\I%m\ole, CE7. teafel)

\ \\zmtt — mulgble []
KN M)IQ “:-mu!w[g[e (/)

Map [scw, I8 . 9/[@])

5 L10,2,0, 3,0], 407
s é)(‘;‘“‘ﬁ - class Laley

?« (adn WWP

Pass A2 /g uayw)
[U%/f/l A

Pujf ok E/\ ﬂ-&h/ {“«/[OIQJ fﬁ-fs/h\

0 ']
p Lankly_txpesin
[t 6 b in Dok 7

Yptete Sgq o g,

May [ZMJ Zl)ll 3/(7]>

f o Tuall) EAE
Ghn gy | Mo lnbd L 284

kg sy
L1,2,549)

b ql

If;)rﬁa(l fr L s Wil o t, lb@‘//lﬂ‘["ﬁ()
Hor

et pawt]
= !r'*lP]QVfQ’V{‘ (/L“ 7,‘{ 6Tw/

cebe (o) [1,23 ¢)

(DE .

(W:lrg ® J{ﬁ oy ot T}‘m\laﬁ 1 0
Mt god of \H/t“\)

P\yﬂ\m F@/Jj F/M\{/E“ ~—)
Locle wattes i come Cogs
Puetd e s Pt b
ia J;u/a,‘, M

objeot o fukor
L[g,o/@j@n,h q (@% 6[;{55 OIQ\/Q(/"

@
/)i \69 WLWO MmOe

R o e B DT ta { B,C7
gl G £ A7

hon ik £ Gy A oA o Gnpe
VQ(T (/\,WJ. er J) ‘M Ta“(

o A R

s i\, mﬂ,w@ﬁ I
o both Cone b+ Jay

LML EO“'@P
(el j avi [/€r7 V/L(/[@m)

16 Ll),ceng s

N

e g il QH closs e fontivs befire v/
LOL//‘ @Lﬁgfm fe [lrser
Also Wi ., it OL&&GF

bukll(l, (L,l/h(H"?'r\
HPQ 06 \/59/8 :r\. o (Ase

®

Ty gpo Lohd The s
N e ‘mj(v(\o@\‘v +vl6!o!zr MHM

Uégg Com post lafa Hype

l‘!’{ va(‘\ Muslc X dw“ﬂ *BMW‘(/
Pahat s ety B bb

go Can 5‘"7 PMC fogm/([OW\(GL/ ﬂ%‘/ J@(@(’f/mp%e[
Row Yo bt OWJ({),CI{)))

(in v b
‘éO/el/er Mg Music |
K
4
LT
\, Pndve

2[COm\ b‘r«%f E/J/L}
3, A botactions

A

N |
M s - clede
W-f 0 M& : [efm {mmu)rc@@fi Ob}em‘

W\/]L CﬁLO/) \l (/l/\,mda 6{{,{%
W ENG Cport Abat 6ﬁf(,

Name:

Athena User Name:

Massachusetts Institute of Technology
6.005: Elements of Software Construction

Spring 2011
Quiz 2 ,
Wednesday, 13 April 2011 P i '
(acice H/.’.O
WA N L, 60O me
‘ J/ Instructions

This quiz is 80 minutes long. It contains 21 questions in 14 pages (including
this page) for a total of 100 points.

Please check your copy to make sure that it is complete before you start.
Turn in all pages, together, when you finish. Write your name on the top of
every page. Please write neatly. No credit will be given if we cannot read
what you write. Good luck!

Question Name Maximum | Question Points
Points | Numbers Given
True/False 30 1-10
Event-based Prog 12 11-12
MVC Pattern 10 13
Generics 14 14-15
Concurrency 14 16-17
Equality 10 18-19
Performance Eng. 10 20-21
Total 100 1-21

Name:

True/False [30 points, 3 points each]

Circle the correct answer:

1.C?
hecode below outputs the following: “Child Called”

i]
s G OO i
6)0(9 éu,gw)
} s
) o Child Gelet— coir

Parent ¢ = new Child();
e ——
class Parent {

public Parent() {
System.out.println("Parent called");

}
}
class Child extends Parent { by o
public Child() { (poold Dol
System.out.println("Child called");)
} g ; f [r
} - { ":"[TI' Nt ff-rf',' (M
o Can ho loccae € (A1 1)
210 (ol Sha Taa be 70 (0n b (e (c (obu)
The value of the variable b is true. < (
<£%quﬂ "
Integer i = 100; o
Integer j = 100; WIop e |
boolean b = (

UM obals s

3. F
@;: value of the variable b is true.

int i = 1000; \o o ool | iy
int j = 1000; /¢) ;
boolean b = (i == j);

¢ a h\/("%('{) }ﬂ{’{/}/ﬂ‘ —f“,-" o (oA
-based programming can be implemented without multi-threading.

()ff uj’

S
%
e

5. T/F) e{/
A protected variable can only be accessed by any class in the same package.

RUASYAYA AMRAT Y ;"" &

(Hhy oot Sy Mb/‘

Name:

N
6.@[{/F a/
‘_The following code is thread safe:

/ [

class A { o .

private int count; ([Jﬂ.;} s [6rF 1
AO) { | — Y 006 mf.
this.count = 0; 0n ([*‘ S %

} Lgi

synchronized public void incrementCount() {
count = count + 1;
}

{Qy&ui?{hentanoe in order to reuse code that is implemented in another
& » / /

8(T \@
(pattern, as described in lecture, decouples the Controller from the Model.
i ~

9. T/F) \z/
Always maKe a copy of listeners before you iterate over them.

10. T [[Fy ’] Why Wit o (M0 Dy

Thecode segment below is legal java that will compile and run.

J he

List{i) listl = new ArraylList<Integer>();
list1l.add(new Integer(6));

L
v only

o/

Name:

Event-based Programming [10 points]

Ben Bitdiddle decides to implement his own file system as shown below.
: / |

class Filesystem { [what s Ingg | |

private Map<File, L15t<F11e>> cache;
b ——

public List<File> getContents(File folder) {

// check for folder in cache, otherwise
// read it from disk and update cache !

}

public void deleteContents(File folder) {
for (File f : getContents(folder)) {

cé i (1 (L

f.delete(); — o h L i
// notify listeners that f was deleted

fireChangeEvent(f, REMOVED);

¥

cache.remove(folder); // update cache

} (' \ (¢ Ql

11. His friend Alyssa P. Hacker finds a potential problem with the above code. Can
you identify it? [4 points]

' AL nel ' vi - " /(oe '«
\ % | | /ety
A - N | - 4 ¢ c
ot gl ' ~ bl e fuo fut 7 el
12. Ben wants you to modify the method deleteContents () so the problem goes {Ie“’ Y
away. Your code should compile (with appropriate packages). [8 points] h},\n.
at

public void deleteContents(File folder) {

Nt Hopat of s fetre
) {0 out of o of G“”“tw

4

Name:

Name:

Model View Controller (MVC) Pattern [10 points]

Ben is excited about the application of an MVC pattern to a textbox.

—

Document represents a mutable JTextField is a JComponent that
string of characters can

T be adde to-a-view_hierarchy
/ \\ text change events P—W\
i

Document JTextfield \)

g ﬂve
cursor

edlt text
(KeyListener [

_// KeyListener is a listener
for

keyboard events

/ key press events

13. Help Ben by specifying which circles correspond to the Model, View and
Controller below by writing them into the ellipses. Show how a listener interface can be
used to decouple the dependences shown above between the Model, View and Controller.

[10 points] | : ’ I dtl ’W/‘

Document

odof v

)

KeyListener

(Cf:*‘; :(lor

Name:

Generics [10 points] &Mﬁw 78 Nﬂf“‘d fo (5P(‘*’43[0 AWA H;ﬁ/@)[7/7@5

—

Ben Bitdiddle has been charged with the task of creating a data strycture for a hotel in a

game where the room’s door type is chosen by the guests. I C(/Q « (0/[(‘ " / M \[(}0
public class Room<E>
{ Hype

private E door;

public void setDoor(E door) {
this.door = door;

}

public E getDoor(E door) {
return E;
}

}

Also he was asked to write a hotel worker class that has a static function that checks if an
EnchantedDoor is protected by a firewall to avoid getting burnt.

class Door {...}
class EnchantedDoor extends Door{...}

class HotelWorker {
public static boolean isFirewallProtected(EnchantedDoor door) {
... // implementation is not relevant here
}

}

14. He was then asked to write a function that can only insert an EnchantedDoor or any ‘
subclass of EnchantedDoor that is protected by a firewall. Fill in the blanks for this ! /

function: [9 Points] (! W7 B ne

- aVT (@t T N b
] WOT wha]
public statié:q‘ RX%#Fﬂdb ER void setRoomFirewallDoor J o
™ N . IO~ / 7 lA . %'i
(‘/i;;i (door, [\ \,C,'.-‘ L / r‘OOm) { (I \} '1'6
0 \b
if (isFirewallProtected(door)) { @00/1 Z / ﬁ/pﬁr /? 7 5
room.setDoor(door);

!
} ' e Vo [t?/f% /ﬁ“f(/

Name:

15. In addition Ben was asked to write a method in class HotelWorker that checks if
aroom has a firewall door. He decided to write pretty code and use overloading.
Will the following code work? If not, what is wrong with it? [5 points] <

public static boolean isRoomFirewallProtected(Room<EnchantedDoor> room)

.[

EnchantedDoor door = room.getDoor();
return isFirewallProtected(door);

}

public static boolean isRoomFirewallProtected(Room<HarryPotterDoor>
room) {
HarryPotterDoor door = room.getDoor();
// assume there exists isFireWallProtected for HarryPotterdoor
return isFirewallProtected(door);

L
Hﬁ i oot il ()(“jw p

_ L ’f N [

{ JV I

s Gll Ak bl i Gl

W"u (Qmpve. M(jwéﬁ Cfni{, MHI Wé’la(f

Name:

Concurrency [10 points]

1™ | ! \ p A = ‘, Py £ :
L 1 LQI :,'.i[j 1 {’ More Jn (Onluén '/((Lr*'?j@J \,/ = (//
16. Alyssa P. Hacker writes a concurrent program that contains the following code. ' f
r v

(

private static int a = 5; G,'@}O&{(

private int square(int x) {
return x * x;

}

public void doStuff() {
int tmp = a;
tmp = square(tmp);
a = tmp;

}

She then challenges you to answer the following question. Suppose two threads both call
the method doStuff. Which of the following values might the variable a contain after
both have completed execution? (Circle all possible values) [5 points]

a. 0

b.5
‘iii’ ol Ganf \///
d. 125 /

_ i d [
fo B el 1o el
@5 b {)«f: I | 9(lj’ v / f\‘."” !

Name:

17. Alyssa decides to teach her friend, Ben, how to design a simple database system
in Java. She hacks up the following example.

class AlyssaDB {
private AlyssaRow[] alyssaRows;

public AlyssaDB(int numrows) {
if (numrows < @ || numrows > MAXROWS) {
throw new BadInputException());
}
alyssaRows = new AlyssaRow[numrows];
for (int j = ©; j < numrows; ++j) {
alyssaRows[j] = AlyssaRow.createAlyssaRow(j);
¥ o

1}

}

W A

* swap data from rows with indices index1, index2
*
* @param index1l index of first row
* @param index2 index of second row ,
* / :
public void swapAlyssaRowData(int indexl, int index2) { |
if (index1l >= alyssaRows.length ||
index2 >= alyssaRows.length ||
indexl < © || index2 < @)
throw new BadInputException();
synchronized (alyssaRows[index1]) {
synchronized (alyssaRows[index2]) {
int x = alyssaRows[index1].getAlyssaData();
int y = alyssaRows[index2].getAlyssaData();
alyssaRows[index1].setAlyssaData(y);
alyssaRows[index2].setAlyssaData(x);

Suppose an instance of AlyssaDB is accessed by multiple threads. Are there any major
problems that could arise? (Is the code thread-safe?) Describe a change to the code that
would be necessary to ensure thread-safety, such that it would behave as originally
intended [9 points] (write your answer in the next page)

\/ /‘? |

s
!
|

{

11 { L

o !
‘iéﬁct&mzmdwi 7 dﬁfz ¢ (n if’)‘fu ((/pd@}ﬁ,j & f‘fﬂ\MEE Y

!; '”j{f | :_\// N, : f"" C%Wﬁ/%?ﬁ

ﬁ{%/

3
e@cib %

Name:

11

Name:

Equality [10 points]

After four years at MIT, Alyssa P. Hacker wants to believe that the MIT students are just
a subset of peoﬁle—m‘appen to have a random number associated.

Below is her implementation of Person and its subclass MIT Student:

public class Person {

private String name; . 1o /@qﬁq(
-_J !r\,:}\«,j Nt {,,.;,: { An
public boolean equals(Object obj) {

if (!(obj instanceof Person))

return false;

Person a = (Person) obj;

return this.name.equals(a.name);
} N————

}

public class MITStudent extends Person {
private int course;

public boolean equals(Object obj) {
if (!(obj instanceof MITStudent))
return false;
MITStudent a = (MITStudent) obj;
return this.name.equals(a.name) &&
this.course == a.course;

} T ——

Confident that a correct implementation of equals will reassure her that MIT students and
people are the same at heart, Alyssa hits on the following main method:

public static void main(String[] args) {
Person person = new Person("Alyssa");

Student student = new ‘Student("Alyssa", 6); /)wa';tluf gtj
. - :

System.out.println(person.equals(student));| L
System.out.println(student.equals(person)); 5 TuIn

tdtyf P Son

12

FLZTVK‘ \%th \ﬂ” Pﬂgé ”Cﬂbygtf

e

Name:

18. What boolean values are printed and why? [5 points]

a. true, true: correct implementatiori/

@ true, false: violates symmetry
c. false, true: violates symmetry

d. false, false: person is not course 6

e. the boolean values vary due to the non-deterministic nature of this equals function

In order to more fully explore the relationship between MITStudent and Person,
Alyssa makes the following change to the equals method of MITStudent:

=
public boolean equals(Object obj) { /MT 7 A odtd
if (!(obj instanceof Student)) e = W
return super.equals(obj);— |
Student a = (Student) obj; -h/\(/fﬂ'
return this.name.equals(a.name) && this.course == a.course;

} ' f; : ' ‘, | 4
~qYy (M Al
- v

19. What boolean values are printed by the main method above and why? [5 points]

true, true: correct implementation \/

b. true, false: violates symmetry

|

U [p‘i’) g{ﬂ:/"{' _/_/('(' /

c. false, true: violates symmetry
d. false, false: person is not course 6

e. the boolean values vary due to the non-deterministic nature of the equals function

by wlds Taaitl, 5 all avs foke

7?4%”21/}?7 o A‘—JB il f>(
ﬁm AoC
T Tow

\ Vd’x(f
T (ads [de % Shald be T dnobhe,

Name:

Performance Engineering [8 points]] A , /
\j iy &0 N bing Slow
20. Ben wants to create a s ast version of his class project. He is experimenting

with three statements that allocate the variables T1, T2 and T3. Each provides a different
way to initialize a large integer array to hold a two dimensional data set.

static final int LARGEARRAY
static final int SMALLARRAY

100000;
400;

int T1[][] = new int[LARGEARRAY][SMALLARRAY];
int T2[][] = new int[SMALLARRAY][LARGEARRAY];
int T3[] = new int[LARGEARRAY*SMALLARRAY];

Then Ben measured the time for each of the above three statements. Which one of these
choices should best describe the time taken by each of the statements? [4 points]

a. T1=124 ms, T2=123 ms, T3=126 ms
b. T1=310 ms, T2=308 ms, T3=95 ms

T1=830 ms, T2=231 ms, T3=82 ms
d. T1=241 ms, T2=820 ms, T3=79 ms
e. TI=0ms, T2=0ms, T3=0ms

/Z,D ans e ok (g ot Ay

T = gl
T/L = M[N/dy H Cbaaudz’o*\

Tl= \W%Q ZCS IR Y e

14

Name:

21. When the variable T3 is used, which is allocating a 2D array as a flattened 1D
data structure, Ben tried out two alternative methods for initializing the array.

initA() {
for(int i =0; i < SMALLARRAY; i++)
for(int j =0; j < LARGEARRAY; j++)
T3[i*LARGEARRAY+j] = ©;

}
initB() {
for(int i =0; i < SMALLARRAY; i++)
for(int j =0; j < LARGEARRAY; j++)
T3[i+j*SMALLARRAY] = ©;
}

Again Ben measures the time it took for each of the initialization routines. Which one of
the following choices should best describe the time taken by each of the methods? [4
points]

a. initA=420 ms, initB=423 ms, nearly identical as both code segments do the
same initialization

@ initA=530 ms, initB=1988 ms as initA has better cache behavior due to unit
stride access.

c. initA=1767 ms, initB=423 ms as initB has better cache behavior due to unit
stride access.

d. initA=1891 ms, initB=562 ms as initA initializes more data than initB.

15

Name:

Athena User Name:

Massachusetts Institute of Technology
6.005: Elements of Software Construction
Spring 2011
Quiz 2
Wednesday, 13 April 2011

Instructions

This quiz is 80 minutes long. It contains 21 questions in 14 pages (including
this page) for a total of 100 points.

Please check your copy to make sure that it is complete before you start.
Turn in all pages, together, when you finish. Write your name on the top of
every page. Please write neatly. No credit will be given if we cannot read
what you write. Good luck!

Question Name Maximum | Question Points
Points | Numbers Given
True/False 30 1-10
Event-based Prog 12 11-12
MVC Pattern 10 13
Generics 14 14-15
Concurrency 14 16-17
Equality 10 18-19
Performance Eng. 10 20-21
Total 100 1-21

Name:

True/False [30 points, 3 points each]

Circle the correct answer:

1. T/F
The code below outputs the following: “Child Called™

public class InheritanceTest {
public static void main(String[] args) {
Parent ¢ = new Child();

}

class Parent {

public Parent() {
System.out.println("Parent called");

}

}
class Child extends Parent {
public Child() {
System.out.println("Child called");
}
}

2. T/F (java does caching, we need to ask srini whether to accept true and false)
The value of the variable b is true.

Integer i = 100;
Integer j = 108;
boolean b = (i == j);

3. T/F
The value of the variable b is true,

int i = 1000;
int j = 1000;
boolean b = (i == j);

4. T/F
Event-based programming can be implemented without multi-threading.

5. T/F
A protected variable can only be accessed by any class in the same package.

Name:

6. T/F
The following code is thread safe:

class A {
private int count;

AQ) {
this.count = 9;
}

synchronized public void incrementCount() {
count = count + 1;
¥

7. T/F
Always use inheritance in order to reuse code that is implemented in another
class.

8. T/F

MVC pattern, as described in lecture, decouples the Controller from the Model.

9. T/F
Always make a copy of listeners before you iterate over them.

10.T/F
The code segment below is legal java that will compile and run.

List<?> listl = new ArrayList<Integer>();
listl.add(new Integer(6));

Name:

Event-based Programming [10 points]
Ben Bitdiddle decides to implement his own file system as shown below.

class Filesystem {
private Map<File, List<File>> cache;

public List<File> getContents(File folder) {
// check for folder in cache, otherwise
// read it from disk and update cache

}

public void deleteContents(File folder) {
for (File f : getContents(folder)) {
f.delete();
// notify listeners that f was deleted
fireChangeEvent(f, REMOVED);

cache.remove(folder); // update cache

11. His friend Alyssa P. Hacker finds a potential problem with the above code. Can

you identify it? [4 points]

Listeners are notified that the file was deleted before the end of the method, and
they might try to display the files that are currently being deleted (and may be

corrupted).

12, Ben wants you to modify the method deleteContents () so the problem goes

away. Your code should compile (with appropriate packages). [8 points]
public void deleteContents(File folder) {

List<File> removed = getContents(folder);
for (File f : removed) {
f.delete(); }
cache.remove(folder);
for (File f: removed) {
fireChangeEvent(f, REMOVED); }

Name:

Model View Controller (MVC) Pattern [10 points]

Ben is excited about the application of an MVC pattern to a textbox.

Document represents a mutable JTextField is a JComponent that
string of characters can
e — e DB adq,e_dlo-a--view_h\ierarchy
s \‘\ text change evants/‘y ™ "
/ X N
| Document | JTextfield }
\ !
\ /
.) 2 get text P
e ” 4
Mg e/ MOVE ;
edit text / e °”’5°’/" key press events

| KeyListener [~
\ ,

pt

’ F(eyl.istenar Is a listener
r

0
keyboard events

13. Help Ben by specifying which circles correspond to the Model, View and
Controller below by writing them into the ellipses. Show how a listener interface can be
used to decouple the dependences shown above between the Model, View and Controller.
[10 points]

¥ ~ “extchange events . s
i

N
\

/' Document J [Jtextfield |
\-.\ Model / = View }

. P4 get text

edit tevxt_k_;\’/ \ [press events
/ . \
(KeyListener

\\Controllil" e

Name:

Generics [10 points]

Ben Bitdiddle has been charged with the task of creating a data structure for a hotel in a
game where the room’s door type is chosen by the guests.

public class Room<E>»

{
private E door;
public void setDoor(E door) {
this.door = door;
}
public E getDoor() {
return door;
}
}

Also he was asked to write a hotel worker class that has a static function that checks if an
EnchantedDoor is protected by a firewall to avoid getting burnt.

class Door {...}
class EnchantedDoor extends Door{...}

class HotelWorker {
public static boolean isFirewallProtected(EnchantedDoor door) {
... // implementation is not relevant here

}
}

14. He was then asked to write a function that can only insert an EnchantedDoor or any
subclass of EnchantedDoor that is protected by a firewall. Fill in the blanks for this
function: [9 Points]

public static <A extends EnchantedDoor> void setRoomFirewallDoor

(A door, Room<? super A> room) {

if (isFirewallProtected(door)) {
room. setDoor(door);

} // correct implementation

public static vold setRoomFirewallDoor

Name:

(EnchantedDoor door, Room<EnchantedDoor> room) {

if (isFirewallProtected(door)) {
room. setDoor(door) ;

}
} //the call setRoomFireWallDoo(new EnchantedDoor(), new
Room<Door>()); would not be allowed even though we are allowed to
insert new EnchantedDoor to Room<Door>

public static void setRoomFirewallDoor

(EnchantedDoor door, Room<? extends EnchantedDoor>
room) {

if (isFirewallProtected(door)) {
room.setDoor(door); //2

} // compile error in line 2

public static void setRoomFirewallDoor

(EnchantedDoor door, Room<? super EnchantedDoor>
room) {

if (isFirewallProtected(door)) {
room.setDoor(door); //2

} //the call setRoomFireWallDoo(new EnchantedDoorChild(), new
Room<EnchantedDoorChild>()); would not be allowed even though we
are allowed to insert new EnchantedDoorChild to Room<
EnchantedDoorChild>

15. ° In addition Ben was asked to write a method in class HotelWorker that checks if
aroom has a firewall door. He decided to write pretty code and use overloading.

Will the following code work? If not, what is wrong with it? [5 points]

public static boolean isRoomFirewallProtected(Room<EnchantedDoor> room)

EnchantedDoor door = room.getDoor();

Name:

return isFirewallProtected(door);

}

public static boolean isRoomFirewallProtected(Room<HarryPotterDoor»
room) {
HarryPotterDoor door = room.getDoor();
// assume there exists isFireWallProtected for HarryPotterdoor
return isFirewallProtected(door);

java will not compile this code since the
compiler will remove the generics and both
methods will have the same signature

Name:

Concurrency [10 points]

16. Alyssa P. Hacker writes a concurrent program that contains the following code.
private static int a = 5;

private int square(int x) {
return x * x;

}

public void doStuff() {
int tmp = a;
tmp = square(tmp);
a = tmp;

}

She then challenges you to answer the following question. Suppose two threads both call
the method doStuff. Which of the following values might the variable a contain after
both have completed execution? (Circle all possible values) [5 points]

a. 0
b. 5

Name;

17. Alyssa decides to teach her friend, Ben, how to design a simple database system
in Java. She hacks up the following example.

class AlyssaDB {
private AlyssaRow[] alyssaRows;

public AlyssaDB(int numrows) {
if (numrows < @ || numrows > MAXROWS) {
throw new BadInputException());
}
alyssaRows = new AlyssaRow[numrows];
for (int j = ©; j < numrows; ++j) {
alyssaRows[j] = AlyssaRow.createAlyssaRow(j);
}

}

/t*
* swap data from rows with indices index1, index2
*
* @param indexl index of first row
* @param index2 index of second row
*
public void swapAlyssaRowData(int indexl1, int index2) {
if (indexl >= alyssaRows.length ||
index2 »>= alyssaRows.length ||
indexl ¢ @ || index2 < @)
throw new BadInputException();
synchronized (alyssaRows[index1]) {
synchronized (alyssaRows[index2]) {
int x = alyssaRows[index1].getAlyssaData();
int y = alyssaRows[index2].getAlyssaData();
alyssaRows[index1].setAlyssaData(y);
alyssaRows[index2].setAlyssaData(x);

Suppose an instance of AlyssaDB is accessed by multiple threads. Are there any major
problems that could arise? (Is the code thread-safe?) Describe a change to the code that
would be necessary to ensure thread-safety, such that it would behave as originally
intended [9 points] (write your answer in the next page)

10

Name:

The code is not thread-safe. A deadlock can occur if setAlyssaData is called with inputs
(x,y) and (y,x) simultaneously. Placing an order on the locks will ensure that no deadlock

occurs. This can be done by changing

synchronized (alyssaRows[index1]) {
synchronized (alyssaRows[index2])

synchronized (alyssaRows[index1>index2?index1:index2]) {
synchronized (alyssaRows[index1>index2?index2:index1])

11

Name:

Equality [10 points]

After four years at MIT, Alyssa P. Hacker wants to believe that the MIT students are just
a subset of people who happen to have a random number associated.

Below is her implementation of Person and its subclass MIT Student:

public class Person {
private String name;

public boolean equals(Object obj) {
if (!(obj instanceof Person))
return false;
Person a = (Person) obj;
return this,name.equals(a.name);

}

public class MITStudent extends Person {
private int course;

public boolean equals(Object obj) {
if (1(obj instanceof MITStudent))
return false;
MITStudent a = (MITStudent) obj;
return this.name.equals(a.name) &&
this.course == a.course;

Confident that a correct implementation of equals will reassure her that MIT students and
people are the same at heart, Alyssa hits run on the following main method:

public static void main(String[] args) {
Person person = new Person("Alyssa");
Student student = new Student("Alyssa", 6);
System,out.println(person.equals(student));
System.out.println(student.equals(person));

Name:

18.

o ®

L

What boolean values are printed and why? [5 points]

true, true: correct implementation
true, false: violates symmetry
false, true: violates symmetry
false, false: person is not course 6

the boolean values vary due to the non-deterministic nature of this equals function

In order to more fully explore the relationship between MITStudent and Person,

Alyssa makes the following change to the equals method of MITStudent:

public boolean equals(Object obj) {

if (!(obj instanceof Student))

return super.equals(obj);

Student a = (Student) obj;
return this.name.equals(a.name) && this.course == a.course;

The intended answer was a, but the fix violates transitivity, so we accepted all answers.

19.

o

What boolean values are printed by the main method above and why? [5 points]

true, true: correct implementation
true, false: violates symmetry
false, true: violates symmetry
false, false: person is not course 6

the boolean values vary due to the non-deterministic nature of the equals function

13

Name:

Performance Engineering [8 points]

20.

Ben wants to create a superfast version of his class project. He is experimenting

with three statements that allocate the variables T1, T2 and T3. Each provides a different
way to initialize a large integer array to hold a two dimensional data set.

static final int LARGEARRAY
static final int SMALLARRAY

100000;
400;

int T1[][] = new int[LARGEARRAY][SMALLARRAY];
int T2[][] = new int[SMALLARRAY][LARGEARRAY];
int T3[] = new int[LARGEARRAY*SMALLARRAY];

Then Ben measured the time for each of the above three statements. Which one of these
choices should best describe the time taken by each of the statements? [4 points]

a

b.

T1=124 ms, T2=123 ms, T3=126 ms
T1=310 ms, T2=308 ms, T3=95 ms
T1=830 ms, T2=231 ms, T3=82 ms
T1=241 ms, T2=820 ms, T3=79 ms
T1=0ms, T2=0ms, T3=0ms

Two dimensional arrays are allocated as arrays-of-arrays. T3 is only one allocation, T2
is SMALLARRAY+I and T is LARGEARRAY+1 allocations.

Name:

21. When the variable T3 is used, which is allocating a 2D array as a flattened 1D
data structure, Ben tried out two alternative methods for initializing the array.

initA() {
for(int i =0; i < SMALLARRAY; i++)
for(int j =0; j < LARGEARRAY; j++)
T3[1*LARGEARRAY+j] = @;

}
initB() {
for(int i =0; i < SMALLARRAY; i++)
for(int j =0; j < LARGEARRAY; j++)
T3[i+j*SMALLARRAY] = ©;
}

Again Ben measures the time it took for each of the initialization routines. Which one of
the following choices should best describe the time taken by each of the methods? [4
points]
a. initA=420 ms, initB=423 ms, nearly identical as both code segments do the
same initialization
b. initA=530 ms, initB=1988 ms as initA has better cache behavior due to unit
stride access,
c. initA=1767 ms, initB=423 ms as initB has better cache behavior due to unit
stride access.

d. initA=1891 ms, initB=562 ms as initA initializes more data than initB.

Ly

Massachusetts Institute of Technology
6.005: Elements of Software Construction
Fall 2011
Quiz 2
November 21, 2011

;F"' i
i

Name: /V l l((_\M { (f‘)({) i 10!

"

)

Athena User Name: T\(\

prog

Instructions

This quiz is 50 minutes long. It contains & pages (including this page) for a

total of 100 points. The quiz is closed-book, closed-notes.

Please check your copy to make sure that it is complete before you start.
Turn in all pages, together, when you finish. Write your name on the top of
every page. Please write neatly. No credit will be given if we cannot read

what you write. Good luck!

Question Name Page Maximum Points
Points Given

Design Patterns 2 20 20
Interpreter/Visitor 3 16 4
Map/Filter/Reduce 4 12 for.,
Concurrency 5 16 \b
Deadlock 6 16 \ e
Thread Safety 7-8 20 |9

Name: ptq ol !g‘ I

Design Patterns [20 pts]

For each of the following statements, name the design pattern that it best describes, from the list
below.

Interpreter

Visitor

Event Listener
educe

Client/Server
ModelMiew/Controller

Cemposite

You may use a design pattern more than once in your'answers. If you're torn between two best
answers, you can give both, but in that case you should justify both answers.

(a) This design pattern produces tree-like data structures.

(Q0 te

(b) This design pattern is used for operating over sequences of elements.
/
W {-
m“? M o [Atue

(c) This design pattern uses higher-order-functions. N

(d) This design pattern is used to separate concerns in user interfaces.

MQJWJI fconkallr

(e) This design pattern is used for message passing over a network.

l
Name: P(g (gr-'LLU

Interpreter/Visitor [16 pts]

You want to write a program to perform operations on all your Foos.

—

A Foo can perform lots of different tricks, like bazzle and glibble.
There are (and will always be) exac(ypes of Foo, each of which does something different
when they bazzle or glibble.

But every so often your Foos learn a new trick, and you must update your program to include the { \ﬂ’\ ¢
new operation. :

Mo
For example, last week your Foos learned how to joople. R4 “’d"
e
a) Would it be better to use th interpreter pattern or the visitor pattern for implementing the \‘,':"E i = '(Gl)
datatype representing a F o’P A ,
Vv f!" {g“"
| .E;:"(;Ow 1 ",:{ ’(
: H % 04 - [| H}
i L“ ’ \! / / I' J'f
P il (, / §
Mae v Thets o L /!

vele) J

b) Assuming you designed your program according to your choice in part (a), now you want to
add the joople operation. Explain what classes and methods you will change, or what classes

and methods you would add, in order to support the joople operation. P
\

T G

155 C)oi \)_)(h’d) (oo() /

{f\.\a(l \

2

() ¢ 1t

.
() C
_ ol)
sl T l},..‘“
. et}
3 W.}m “e
ot(MJ/ (| ¢
“((M 5 <2 ‘WLDIPW‘\(%\
J/u:nj‘g (s o ’ "

N

Name: Mqﬁ*ﬁiﬂl

Map/Filter/Reduce [12 pts]

Suppose you want to rewrite the following Python code using map, filter, and reduce:

def ssp(list): # sum of squares of positive numbers in list
result = 0@ '
for x in list: {C;((QU\\DH
if x > 0: -
result Q} sumtsum- L K

return result

Fill in the blanks in the map/filter/reduce version below.

def ssp(list): # sum of squares of positive numbers in list
return reduce(r, map(m, filter(f, list)), @) HP P”"’"‘" on ((:’_J,.
7 WA

{

def £(_ X T/) (el {;: |
.42"3

eun (X 70)
X 70,

' f_'(}l TR
def m(>(P\L///ﬁ D PV
return Xi X)
def r(>< / \Y J 3. " | |
/ ‘\/ : f?.j\ 0 .cf.‘--. Ie ploun
return K L \I[. 0 ‘ t {0,404
4

H:ﬂk ‘d C{l’i’/

Name: P(e, f*% 0/

Concurrency [16 pts]

Read the following code:

public static void main() {
Thread t1 = new Thread(new Runnable() {
public void run() {
System. out. prlnt("O"),
System.out.print (" ')
} (
5 g
Thread t2 = new Thread(new Blue());
System.out.print("R");)
tl.start(); f
System.out.print("G");
t2.start();

X6 b1 vy

System.out.print("I"); kit G O \/ j:‘ @
'\ (hftl.join(); |“_ i
(\\,O.x\ > System.out.print("V"); O Q\s
l L ":(,"I tZJOIn();
Kniedat i System.out.print("K");

(."7 U }

public static class Blue implements Runnable {
public void run() {
System.out.print("B");
}
3

Assume that print() is threadsafe and atomic. Which of the following sequences can be printed by

this code? Circle possible or impossible. |
ROYGBIVK E@é mpossible.

ROYBGHVK™ possible mp035|b|
RGOY|BY/K p@/

impossible
OYBRGIVK possible d

()]

Name: P{ﬂ(al’”gl(g/

Deadlock [16 pts]

You have two threads (TO and T1) and two locks (X and Y). Which of the following situations can

lead to deadlock? If deadlock can occur, circle the method call in each thread where the thread

would stop in the event of deadlock. If deadlock is impossible, circle “no deadlock.”

1

1

a)
TO: T1:
X.acquire(); X.acquire();

-_— ——

Y.acquire(); Y .acquire();
Y.release(); X.release();
X.release(); Y.release();

b)
TO (same as TO above) T1:
X. acqunre) ><,——— Y.acquire();

Y acquire();— &ﬁ%()
g ré]ease() X.release();
X.release(); Y.release();
no deadlock

c)
TO: (same as TO above) T1:
X.acquire(); Y.acquire();
Y.acquire(); Y.release();
Y.release(); X.acquire();
X.release(); X.release();

no deadlock™
6

& dlap
Lou® 1N

) Cam ()fd“(= 9ﬁ0d
N of

(,j (@ nn JJ\ r."w,] l

wor | Judlods

)\ ease (‘/{)5!5'/.’ 1 .,{ A f(/

i
(

Veuh \/ Mc[/f /Y f-t?r;’_'i,é/s

Mo {J(Oﬂ{w;

Name: P[d,,.@ﬂf

Thread Safety [20 pts]

Consider the following code, and answer the questions on the next page.

public class Widget extends Thread {
public@ist<$tring> strings = new ArraylList<String>();
public int count; == T ¢ =
public List<Integer> numbers;

public Widget() { \ 7 .j.__d-‘“r?/
count = @;) LRt
numbers = new ArraylList<Integer>(); /
}
public void runQ) {
for (int i = @; i < 1000; ++1) {]
synchronized (this) { (,A 'M ég 00 G({'ﬂ,[‘ g‘”
count++; d /

synchronized (numbers) { ~ ([.3,1 ",f A (,‘(
numbers.add(i);

}
synchronized (Widget.strings) { {(,fa(
Widget.strings.add(“x”); c J one
}
3
}
1
public static void main(String[] args) {
List<Widget> widgets = new ArraylList<Widget>();
for (int 1 = 0; i < 1000; ++i) {
Widget w = new Widget(); e < 0
widgets.add(W);c—.; g (¢ p‘..{?.'//‘:'i/ I S 1
w.startQ); dr ¢ g‘;,/_; A [nCUALS

}
for (Widget w : widgets) {
synchronized g___w) {

wW.count++; a (/ -
synchronized (w. numbers) { C 765 i'j /g ’M C f ‘/flﬂl/ 2,

w.numbers.add(1000); ; ;
} e~y o\
} _ 2 Y (j’«. ‘
synchronized (Widget.strings) { {{fp"'((
Widget.strings.clear(); L1
: get.strings.clearQ; 1\ ¢ | { e %
}
for (Widget w : widgets) {
w.join();
}

Name:

You are reviewing a concurrency argument about this code. Circle whether you agree or
disagree with each of the following statements in the concurrency argument, and add a brief (1

sentence) justification of your answer.

(a) Accesses to the widgets list are safe because the list is confined to the main thread.

GRE DISAGREE

\/ éﬂ{e 6(){ N WWA 0/\{'} [\/}w_(;xf.rd

A 11 11(1? & M@ '

1 P“@(Confie{ ~ bt A d\ﬂﬁgo fo past cef |
4

(b) Accesses to the numbers list are safe because they acquire the list’s lock. 6y 1
(’ :" f

a@ DISAGREE Jeigtd TR

M o lodpd s el

L.
i Nod Jfgpd Mmﬁ 14 [ocled , bt th 1s Qumcbct L‘\a‘ o

(c) Assuming that the program terminates without throwing an exception, count for every widget s
is 1001 at the end of main. s e (e
~ - w(,LL .
GRE DISAGREE

r

(7 Gled Lo ok ad 1y
7/% 51//1(@& Ly ho F{ob?()m‘)

(d) Assuming that the program terminates without throwing an exception, strings has size 0 at

the end of main.
AGREE @W
f (sl
//rb\/{\ & dn ‘ L*\ flow—- W h w 6 ‘! UT(I:) “ “‘(“)r'

}

v Olig %, 4o f:iﬁ@rfﬂj

END OF QUIZ

(005
Dol

Wit
KMJ c:»\,]L \)(férlf?ﬁ
ﬂw\m\ (M Ok E 600& AN Mrfhwlf\ﬂ 9/&0

R RS S D S
LD;Q], ijf JILUJJY

“SHI 't realy gof
L [P Y T fl@//éﬁw

BwL wld hae 1(6/30% Craf Syafa) “ fu
Ol hae cied

o,V

6.005 Gradebook

6.005 Software Construction

I Dashboard I Students J Assignments [

Grading Summary for Quiz 2
35

30
25
20

15

10

0 ,T\ [1]

14

20

31

36

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

Number of Scores: 151
Average: 87.63
Standard Deviation: 9.31

l of 1

80 85

90 95

100

https://stellar.mit.edw/S/course/6/fal1/6.005/gradebook/summarychart....

11/21/2011 4:54 PM

	6.005 Unit 2 Part 1
	6.005 Unit 2 Part 2

