Massachusetts Institute of Technology
6.005: Elements of Software Construction
Fall 2011
Quiz 2
November 21, 2011

Name: S OLUTIONS

Athena User Name:

Instructions

This quiz is 50 minutes long. It contains 7 pages (including this page) for a
total of 100 points. The quiz is closed-book, closed-notes.

Please check your copy to make sure that it is complete before you start.
Turn in all pages, together, when you finish. Write your name on the top of
every page. Please write neatly. No credit will be given if we cannot read
what you write. Good luck!

Question Name Page Maximum Points

Points Given
Design Patterns 2 20
Interpreter/Visitor 3 16
Map/Filter/Reduce 4 12
Concurrency 5 16
Deadlock 6 16
Thread Safety [20

Name:

Design Patterns [20 pts]

For each of the following statements, name the design pattern that it best describes, from the list
below.

Interpreter
Visitor
Event Listener
Map/Filter/Reduce
Client/Server
Model/View/Controller
Composite
You may use a design pattern more than once in your answers. If you're torn between two best
answers, you can give both, but in that case you should justify both answers.
(a) This design pattern produces tree-like data structures.
Composite
Interpreter or Visitor given partial credit, because these are often
used to write producers of a tree-like datatype

(b) This design pattern is used for operating over sequences of elements.

Map/Filter/Reduce

(c) This design pattern uses higher-order functions.
Map/Filter/Reduce

Visitor also given full credit, because a Visitor is a functional object
(d) This design pattern is used to separate concerns in user interfaces.
Model/View/Controller

Event Listener also given full credit, because events decouple models from views
and input from output

(e) This design pattern is used for message passing over a network.

Client/Server

(N}

Name:

Interpreter/Visitor [16 pts]
You want to write a program to perform operations on all your Foos.
A Foo can perform lots of different tricks, like bazzle and glibble.

There are (and will always be) exactly 4 types of Foo, each of which does something different
when they bazzle or glibble.

But every so often your Foos learn a new trick, and you must update your program to include the
new operation.

For example, last week your Foos learned how to joople.

a) Would it be better to use the interpreter pattern or the visitor pattern for implementing the
datatype representing a Foo?

Visitor, because the variants of the Foo datatype are fixed, but new operations
appear from time to time.

b) Assuming you designed your program according to your choice in part (a), now you want to
add the joople operation. Explain what classes and methods you will change, or what classes
and methods you would add, in order to support the joople operation.

Add a JoopleVisitor class implementing the Foo's Visitor interface. JoopleVisitor
needs to define a visit() or on() method for each of the four variants of Foo.
(Optional: also add a static method that makes it easy to call joople on a Foo, by
encapsulating the construction of the JoopleVisitor.)

Name:

Map/Filter/Reduce [12 pts]
Suppose you want to rewrite the following Python code using map, filter, and reduce:

def ssp(list): # sum of squares of positive numbers in list

result = 0
for- % an lists
if % > 03
result += x*x
return result

Fill in the blanks in the map/filter/reduce version below.

def ssp(list): # sum of squares of positive numbers in list
return reduce(r, map(m, filter(f, list)), 0)

def £ P)
return x > 0

def m(®) :
return RO

def r({ Fip. N)

return X + vy

Name:

Concurrency [16 pts]
Read the following code:

public static void main() {
Thread tl1 = new Thread(new Runnable() {
public void run() {
System.out.print ("0");
System.out.print ("Y");
}
by
Thread t2 = new Thread(new Blue());
System.out.print ("R");
El.starcti(}):
System.out.print ("G");
t2.start();
System.out.print ("1");
tl.join();
System.out.print ("V");
t2.join();
System.out.print ("K");
}

public static class Blue implements Runnable {
public void run{() {
System.out.print ("B");
}
}

Assume that print() is threadsafe and atomic. Which of the following sequences can be printed by
this code? Circle possible or impossible.

A

ROYGBIVK sfonssible;; impossible

e st

P i
ROYBGIVK possible QEEEE@

gt

RGOYIBVK {;Egssible;} impossible

; P
OYBRGIVK possible (mpossibie)

Name:

Deadlock [16 pts]

You have two threads (T0 and T1) and two locks (X and Y). Which of the following situations can
lead to deadlock? If deadlock can occur, circle the method call in each thread where the thread
would stop in the event of deadlock. If deadlock is impossible, circle “no deadlock.”

a)
TO: T1:
X.acquire(), X.acquire(),
Y.acquire(); Y.acquire();
Y.release(); X.release();
X.release(); Y.release();
nS‘”‘E’éé}i’i’éck >
b)
TO: (same as TO above) T1:
X. acqugﬂ Y. acqmre()
Y.acquire(); Cxacquire(1
Y.release(); X.release();
X.release(); Y.release();
no deadlock
c)

TO: (same as TO above) T1:

X.acquire(); Y.acquire();
Y.acquire(), Y.release(),
Y.release(); X.acquire();
X.release(); X.release();

A
o,

G no deadlock D

s

Name:

Thread Safety [20 pts]

Consider the following code, and answer the questions on the next page.

public class Widget extends Thread |
public static List<String> strings
public int count;
public List<Integer> numbers;

new ArrayList<String>();

public Widget () {
count = 0;
numbers = new ArrayList<Integer>();

}

public void run() {

for (int i = 0; i < 1000; ++i) {
synchronized (this) |
count++;

synchronized (numbers) {
numbers.add (i) ;

}

synchronized (Widget.strings) |
Widget.strings.add (“x");

}

}

public statiec void main(String([] args) |
List<Widget> widgets = new ArrayList<Widget>{():
for (int 1 = 0; i < 1000; ++i) [
Widget w = new Widget();
widgets.add (w) ;
w.start () ;

for (Widget w : widgets) {
synchronized (w) {
w.count++;
synchronized (w.numbers) {
w.numbers.add(1000) ;
}
}
synchronized (Widget.strings) |
Widget.strings.clear();
}

for (Widget w : widgets) {
w.join();

You are reviewing a concurrency argument about this code. Circle whether you agree or
disagree with each of the following statements in the concurrency argument, and add a brief (1
sentence) justification of your answer.

(a) Accesses to the widgets list are safe because the list is confined to the main thread.

>

e etm——

Name:

AGREE DISAGREE

The only reference to the widgets list is the local variable widgets in main(),
which is never shared with any other thread.

(b) Accesses to the numbers list are safe because they acquire the list's lock.

R g

C_AGREE) DISAGREE

e

All accesses to the numbers list happen inside a synchronized(numbers) block.

(c) Assuming that the program terminates without throwing an exception, count for every widget
is 1001 at the end of main.

——

il AGREE_ “y DISAGREE

s ——

All accesses to count are guarded by the Widget object’s lock, and the Widget's
run() increments it 1000 times while the main() loop increments it once,
producing 1001.

(d) Assuming that the program terminates without throwing an exception, strings has size 0 at
the end of main.

AGREE (D[SAGREE "y
M

"eas,
e

The strings.clear() in main() races against the strings.add() calls in run(); even
though both are threadsafe, it may be that the last operation executed against
strings is an add().

END OF QUIZ

Project 2: Instant Messaging

| of 6

http://web.mit.edw/6.005/www/fall/assignment.html

6.005 Elements of Software COnstruction | e it

Fall 2011 Lo
Project 2: Instant Messaging ciaroe | 40
__Monday, November 21

Due Dates:

Milestone 1: midnight, Tuesday, November 29 %;n.-.-.--..
Milestone 2: midnight, Tuesday, December 6 €

Possible amendment: Wednesday, December 7 & ncbcrz:'\'-;‘:; In DA tha
Prize consideration: 11am, Tuesday, December 13 e Samantin Gyt Lo
Final version: midnight, Wednesday, December 14 | S SR &2
Reflection: midnight, Thursday, December 15 LAUNCHEast Rardin m T

ary W - Buwy

I STATION! [l Bl
Pr0b|em The Reason
Purpose
Tisj(é) oz Qragun played: Ths s the
Infrastructure . inge Boostaton
Deliverables and Grading Y,] R AR
Hints

Problem

Instant messaging (IM) is a staple of the web and has been around almost since its inception, starting with
simple teXt=based programs like talk and IRC and progressing to today's GUI-based IM clients from Google,
Yahoo, Microsoft, AOL, etc. In this project you will design and implement an IM system, including both the
client and the server. The following characteristics constrain the design space of an IM system:

* Real-time communication. An IM conversation happens in real time: one person types some text,

presses "enter," and the other person (almost) immediately sees the text.
* Number of parties. An IM conversation can happen between two or mare people. Some systems only

allow two people to communicate; others allow more than two people. Most systems allow a person to
be involved in multiple conversations at the same time.

» Based on typed text. The main mode of communication is via text, as opposed to voice or video.

» Connected over a network. The parties involved in the communication may be in physically remote
locations, and are connected over the internet.

Your task will be f6 design an instant messaging system with the above properties, as well as additional
properties that you will incorporate into your design. This system will include a server component that handles
the transfer of messages and other data, and a client component with a graphical user interface.

Sevel 5 midﬂef
Purpose -

The purpose of this project is twofold. First, you will use several Java technologies, including networking (to
support connectivity over a network), sockets and I/O (to support real-time, text-based communication), and
threads (to support two or more people communicating concurrently). State machines may be useful to
specify certain aspects of the system's behavior.

—
Second, you will have to think about the best way to present your chat system, this will required a graphical
user interfaces. You will:

e become more familiar with Swing, a graphical user interface (GUI) toolkit for Java, that is similar to

11/22/2011 9:29 PM

i ://web.mi / / ignment.html
Project 2: Instant Messaging http://web.mit.edw/6.005/www/fal 1/assignme

many other such toolkits; . '

e use important GUI programming concepts, including the notion of a view hierarchy and the model-
view-controller design pattern; . ‘

» use the event-listening design pattern in several ways, not only in your GUI but also in the more

general gu i!l:ish—su bscribe sehse.

Throughout the project, you will need to design and implement mutable datatypes, paying particular attention
to their specifications, how they interact with one another, and concurrency issues.

Specification
Implemgnt an IM system in Java with the following Aunning the Server
properties: _ e
e Client. The client is a program that opens a Server S
network connection with the IM server at a specified N \ I
IP address and port number. The client should have L aak /\s S N
a way of specifying the server IP, port, and a —

username. Once the connection is open, the client
program presents a graphical user interface for
performing the interactions listed below.

» Server. The server is a program that accepts
conngections from clients. A server should be able to
maintain a large number of open gli_er]t_cgn_n_e_ctions
(limited only by the number of free ports), and
clients §Routd-be able to connect and disconnect as
they please. The server also has to verify that client

usernames are unique and handle collisions
gracefully. e e e

X A/-"

The server is responsible for managing the state of both clients and conversations.

» Conversations. A conversation is an interactive text-exchange session between some number of
clients, and is the ultimate purpose of the IM system. The exact nature of a conversation is not
specified (although the hints section details a couple of possibilities), except to say that it allows clients
to send text messages to each other. Messaging in a conversation should be instantaneous, in the sense
that incoming messages should be displayed immediately, not held until ther\eéﬁ)ient requests them.
You should visually separate messages of different conversations (e.g., into distinct windows, tabs,
panes, etc).

* Client/server interaction. A client and server interact by exchanging messages in a protocol of your
devising — the protocol is not specified. Using this protocol, the user interface presented by the client
should: Rl

o Provide a facility for seeing which users are currently logged in;

o Provide a facility for creating, joining and leaving conversations;

o Allow the user to participate in multiple conversations simultaneously;

o Provide a history of all the messages within a conversation for as long as the client is in that
conversation;

* No authentication. In a production system, logging in as a client would require some form of
password authentication. For simplicity, this IM system will not use authentication, meaning that
anyone can log in as a client and claim any username they choose.

Tasks

20f6 11/22/2011 9:29 PM

Project 2: Instant Messaging http://web.mit.eduw/6.005/www/fal 1/assignment.html

3of6

. Team preparation. Meet with your team and write a team contract.

——

. Conversation design. Define a precise notion of conversation in your IM system. See the hints on

how to do this. Specifically, name the Java classes you will create to implementing conversations, give
specs of their public methods, and give a brief description of how they will interact. Include a snapshot
diagram of a conversation in action.

. Client/server protocol. Design a set of commands the clients and server will use to communicate,

allowing clients to perform the actions stipulated by the specification. Create a specification of the
client/server protocol as a grammar. Also think about the state of the server, and the state of the client
(if it stores any).

. Usability design. Sketch your user interface and its various screens and dialogs. Use these sketches

to explore alternatives quickly and to plan the structure and flow of your interface. Sketching on paper
is recommended. Turn in the sketches you decided to go with for Milestone 2, along witircommentary
as needed to explain non-obvious parts.

. Concurrency strategy. You should argue that your design is free or race conditions and deadlocks. Be

specific about which data structures or design patterns you will use to ensure thread safe behavior.

. Testing strategy. Devise a strategy for testing your IM system. Describe what automated tests you

will use, and what manual tests you will perform. Since UI front-end testing is often most easily done
by hand, documentation of your strategy is especially important. As you think about how to test your
program, you are likely to find that you want to revisit your code design (for example, to make a
cleaner API to permit unit testing independently of the GUI).

. Implementation. As always, your code should be clear, well-organized, and usefully documented. See

the hints for further suggestions.

. Testing. Execute your testing strategy, using JUnit and by performing manual tests of the GUI. In your

report, document the results of your manual tests.

. Reflection. Each team member is to write a brief commentary describing what you learned from this

experience, with one paragraph each about:

o Product. What was easy? What was hard? What was unexpected? What would you do
differently in designing the chat system if you were to do it again?

o Team. How did you feel the group did? How did your team work? How was the coding? How did
you split the work?

o Individual. How do you think you did, personally? What did you do in the project? How do you
feel about it?

Infrastructure

No initial code is provided for this project. However, two runner classes are provided with main methods you
should fill in:

e Running main.Client.main () with no command-line arguments must start an instance of your GUI

chatclient, ™~——

® Running main.Server.main () with no command-line arguments must start an instance of your chat

server.

You should consider using packages other than main to organize your code.

Deliverables and Grading

There are four deadlines for this project.

11/22/2011 9:29 PM

Project 2: Instant Messaging http://web.mit.edu/6.005/www/fal1/assignment.html

For the first deadline (midnight, November 29), you will have a meeting with your TA, and your
deliverables are:

e the team contract;
e the conversation design;
e the client/server protocol;

This design deliverable should be submitted by committing one PDF to the roct of your project repository.

During lecture on November 30th you will meet with your project TA discuss your design and client/server
protocol.

For the second deadline (midnight, December 6), you will have another meeting with your TA, and your
deliverables are:

e concurrency strategy;

» UI sketches (paper sketches);

¢ the testing strategy;

* and a demo of some working portion of the project that demonstrates significant effort towards
understanding a critical or high-risk area of the design.

The code designs and testing strategy must be submitted by midnight on December 6 as one PDF to the root
of your repository. The demo will take place at the meeting with your TA.

Your demo might show, for example, a basic server that sends and receives messages but without a GUI
client. Or you might have a working basic GUI with no server backend but a simple API for connecting to one.
Talk to your TA beforehand if you are unsure about what is sufficient.

You will meet with your project TA sometime Dec. 7-9. Be prepared to show UI sketches, present your
demo, and discuss your design.

On December 7th, the staff may or may not release an amendment to this project. This will mean an
additional requirement or feature to implement before the final deadline. When designing your instant
messaging system, watch out for designs that will make extensions difficult.

For the third deadline (midnight, December 14), your deliverables are:

e the implementation;
» the tests;
* and the testing report.

The fourth and final deadline (midnight, December 15th) is the individual reflection.

The grading breakdown is as follows:

25% for the design, protocol, and usability design, and concurrency strategy
50% for initial demo and implementation

15% for testing strategy and testing

10% for team contract and reflections

The course staff will judge and award prizes to teams whose instant messaging systems embody exemplary
design and implementation.

You may optionally submit your project for pri onsideration on Tuesday December 13. There will
be some time slots during the day for your team to present your system, which you can sign up for in
advance. Your team will give a 2-minute presentation to the course staff in which you demonstrate your
system and describe its design. You must commit your work (up to that point) to Subversion by 10 am on

4 of 6 11/22/2011 9:29 PM

Project 2: Instant Messaging http://web.mit.edw6.005/www/fal 1/assignment.html

December 13th. You are not required to give this presentation (but then you won't win anything, either).

Everyone can continue to work on the project until the final deadline, but only the work demonstrated in this
presentation will be considered for prizes.

Serious award contenders should consider going above and beyond the required specification to implement
their own extensions.

You might add standard instant messaging features like away messages, auto-replies, offline messaging,
password-protected accounts, user icons, graphical emoticons... or you might integrate voice chat, a shared

whiteboard, encrypted conversations with perfect forward secrecy, or something as yet unheard of!
e 5
)

Himts =

Defining a conversation. Part of your job is to determine what a conversation means. For example, does a
conversation have a name, and can other users join the conversation by specifying the name? Is it like a chat

room, that people can enter and exit? In that case, can a conversation be empty (a chatroom can), waiting
for users?

Or is a conversation more like a phone call, where a person "dials" another person? In that case, can the
receiving party deny the conversation?

However you define a conversation, remember to keep it simple for your first iteration. You can always
extend your program with interesting ideas if you have time left.

Designing a protocol. You must also devise a client/server protocol for this project. You should strongly

consider using a text-based protocol, which may be easier for testing and debugging.
e

Services that use plaintext protocols — e.g. HTTP or SMTP — can talk to a human just as well as another
machine by using a client program that sends and receives characters. Think back to the protocol used in
telnet. You can run telnet by opening a command prompt and typing telnet hostname port. The protocol
is simple enough for humans to use and for machines to pass messages to each other.

Handling multiple clients. Since instant messaging is useless without at least two people, your server must
be able to handle multiple clients connected at the same time. One reasonable design approach is using one
thread for reading input from each client but adds a central state machine representing the state of the server
(using one more thread, to which each of the client threads pass messages through a shared queue).

Design for safe concurrency. In general, making an argument that an implementation is free of
concurrency bugs {like race conditions and deadlocks) is very difficult and error-prone. The best strategy
therefore is to design your program to allow a very simple argument, by limiting your use of concurrency and
especially avoiding shared state wherever possible. For example, one approach is to use concurrency only for
reading sockets, and to make the rest of the design single-threaded.

And note that, even though user interfaces are concurrent by nature, Swing is not thread safe. Understand
what code will run in the main thread, threads you explicitly spin, or the Swing event dispatching thread.
Recommended reading: Threads and Swing.

Design for testability. To make it possible to write unit tests without having to open socket connections and
parse streams of responses, you should design your state machine(s) in such a way that they can be driven

directly by a unit test -- either by calling methods, or by putting messages into a queue read by the state

machine's thréad.—

Testing GUIs is particularly challenging. Follow good design practice and separate as much functionality as
possible into modules you can test using automated mechanisms. You should maximize the amount of your
system you can test with complete independence from any GUI.

T ———
Another useful testing technique is the idea of:__ft,utg_(method stubs, mock objects). To test one component of

your system in isolation, you can create trivialimplementations of the other components with which it is
coupled. This miight allow you to test your server without opening network connections, or to test your client
backend with automated rather than GUI tests.

S5o0f6 11/22/2011 9:29 PM

Project 2: Instant Messaging http://web.mit.edw/6.005/www/fal1/assignment.html

Implementation. Develop in iterations. Focus on important modules first, and defer making cosmetic
improvements to your user interface until after all the code is well-organized and thoroughly tested. Make use
of assertions.

6 of 6 11/22/2011 9:29 PM

0.005 Pe~2
o V'Ied‘mj
Brc waib o by rehimns
P brea

|

Milestort. |

pﬂ‘w{um ’Pfofowl
L xmL "faa/i7 For CLWj@/’
p {o{’% — (ontr |

‘ { 1
E[L ’(on/erﬁaflhn D%(@WJ

‘OF s Spy Mon

~———

ch@e Pects

gﬁ/(/@ - P(Q@-
W@Mk“& UWL - Eri((/
buT ek~ /Arfl@mq

@ Contract

éﬂ[‘s :§f’“1£ “’/ ﬂC\L @%J @f@@
(oot . ol (g
gl Gals o foun fhig
ha €
) gralt
OML e ILIIWQ
"‘Q(/H’(q,' iSb"‘@ﬁ

Pd[1L (}4% %/M('M

1 547 /Af '1 05 9
L il gﬁf A £ & all TW 0"”

ot e Eolly ﬁd}mz}y P/‘Zfé‘f

K (,«e(“ St how Mok fa/b

ol vorlls e sl

3 tedu
Ww:@jb @//t‘/gj (,‘ZMS i @”H ‘"‘Z&fv/&
Lebe nexary
Dl
(ls fine o edkings N geggy
e ying "*ﬁ@f}/Lﬂj
Mudes =T will &b+

-
— GUNV (epo s
0 Dogs

Lk

3 he foe)
UnCleds
M(/\Lm‘\/z a4/eg

L\ff“th iov/tf'\
kst gl d%ﬂw b (o mly
(e by Cag ooty

b
Dosn
Nw&o(if‘/
Consenss bt
l/fato((\ ,0(2/50/: ol L:: on '{M,’/ PCM*

T il M p@cya{fisf pats —nepl fisle by b

LM (it

—— g

Wl QLLTpQ
Thetlaz
7\

(
kv Vo ol Wirdawo

@fa}mb‘%@ﬂn (chSqﬂU‘M d%fg/{ nov”

@
Onf | hibtay 3 s
)0 Qf{waWt r Saﬁ@ el

SPNG/)
~ Sy J&f (ohes fule?

@raow@ _adl, ol

e (10 50 0390
E Uy 180 3004

g 79 S05 9907

(05 Pojegk
@o CM‘}(«U‘(%qw . (‘f)'}(imq,”xf laf(’,

% SV | Con Ve QI&S;@V]
NQ@QL o b feady 1(;/ CLMWE

e e

Wr Model ~wll flegse C}W@

/Jf (\Ld r\r\c\

éé\m Jﬂ\'my
i

S(WQ(25‘)Vﬁ} &\ POLSS'\/IMWM ﬁ]r pgggmg(
ar 90/659409

(r
CLMF o byke M() o e 0 " (Al

@ﬁ(m%‘f&%ﬂ {'\60 (/YLJW{Q qbeafﬁlc !r/L TO ([lfﬂz‘i

[W\ CLW\ﬂ(i m"j W@

M(ngc CMLJ@/ f naTﬁ(qﬁaqf(
. pot "”“L@d Y,

OEHM SApot —nony,

NOM WM S0 (000 mll/f
Db s P"(

(itowi Caee chw/ﬂf

Tt Sorn s tonacld fron gpre God P95

(¥
l Jor oo g\\‘mi
U@Q WP '“Qai%/

Wnea doae wc‘«\doav vM [wﬂafﬂj

bad comsabin ok of sy o all s o Hed
(O/\\/W S@Kf :ﬂf,

I
g peop‘e, b om0t € 4 spuds

Megrae to e smoeon L}o?n

Cfcwpz netacks agh S/ fe

M& (o 1 o @\ fresugs

9
IJ@ ('MTLC ‘(ow -99\ 10 C/{’LW .qutc/al
L Seﬂd]m}m Qv]Lg QTZ{/ qu F 7

A'&O /\M Usgr \/254% WH et 4w sends
XNL LMJ m@)&a\fjéﬁ
H‘lﬂ/ “(@ Whtcﬂ’

pt/ﬁ "/Ofﬂ@/f{)h/ nim

COYW(‘od/ﬂ 00 (065 !{74

Non (¢

N (,L(L%c 4

~Gees of M{tc o Thad

B M}y {@f Seagr
/C’b(f/[((o, IﬁL

.E\/(’l YOI{)/ Oq(W f!'f? o0 { ’(7 4 (L
Mf‘@y\ §F//(j \(jf,{_) }\ w@ = Mj fl m /(f//f)

—— Sads ﬁ@%‘w /«'JL ()u 5 o0l

Eﬂ@f

5 | ;
/_0 (L/()/ vl {) l@ [(0r ((‘ Ui‘(f\ (el ._}f U l"le"if\

(//‘;(-‘_/ A v \/['() il) '\QN)

E(Zok wm 0[0 c“emL + S/

————/__

m)@ nogd émtpblml il
- how 0]OILS gk move ﬁ‘OﬂW

—

% 1[0% on hov Gt (s b meddle

6%1\0}: vl‘wga‘\
—SYeken
il

——6Q(‘/Qf

lf2g

N

ék‘%e\(\ >
<o v 3
S,

L3N 4*“*\& ’

</*‘%*‘p

/29

oL
POreseae, - adl Uy, C)
~ (emoe U&{’/’C)
Monbers - 6@{' Vé@@ C)
W)\M K&tflnﬂ , 6#237

Q)(Myﬁeﬁ m@éﬂgﬁé 'ﬁr@% W/Inmf“l 6‘(\0;(/3 aor
Conmﬂm) 5 6@\@0#

hut _
Qﬂ/ K On l;fr;()
" g O?lff (2 0
_ @&/@W(/ﬂhﬂ/}

Uﬁ%m WWP/ Com/e/%ﬁo@ A L‘w
%9 6% Aray| g locdonn
/ ~ ot P [J
= Jeae Conasafin
- 504 losugy)
~ Rece Mg)
MIC IDAV*@(W""@’j MO s
/
meéscc@g OpHors
o

Steng Sl Me Bl
fronl fernare \fmml&rlp% it meoege

PM &&‘l’vm ([0

N r |
w\wtﬂﬂ erema/l (e s % 62”7
({ (
ﬂ\ur (M(W) e s BMZE

Ny 2R str b wadk

b
I b s g A |
IENY b Lot b e fonl 4

A/ Mby

B\A\ w\“l an 1 (ab;ﬁ’\ﬂ élm% teh
(D’@_ ﬁw(blt(, fCO]Lj (/vo(l

B et ey ol
U(? ?PIT Gl 0 d“”M[mi(
I borly éefwe/;‘

I ({(/{ rfl»(, T f\w({ h £ ﬂ:b
6& 6 A /L,! a

e sl b vk

qn \[wm/[

¢

SWM 5@6‘3
(. (/rm\mﬁ R \Dﬁ
G\Nu Qlo CLLL Comptafy) 1. (466(’/

Vi Ay §, b b do
ﬁw{ NﬂL

\ ;_}, l ’
IV /'Lt/obk o)/ Sinp 90n¢ &%{f(

0

}EMP%’ bﬂfo (4',: Non J: 'fhz{a(

6.005 Team Project 2 — Deliverable 1

ezuk-moshary-theplaz

11/29/2011

**NOTE: We all agree on the team contract, we just couldn’t
quite figure out the Adobe signatures...

ezuk-moshary-theplaz Team Contract

11/29/2011

[2 B =~ I

[=> B | - -~

Goals

. Get a good grade: fully functional project highest priority

. If you really want an A, put in the effort

. We will talk about the contest later

Threats

. Unclear instructions

Lack of time

Unforseen technical issues

. Integration of components

Meetings

. Meetings will preferably be held during class time

. Anyone can ask that the group should meet

. All team members should attend the meeting

. If you miss a meeting, you get an angry email from the other team members
. If the problem continues, the team members will talk to the course staff

. Try to keep Skype open to chat during the other times

Work

. Do not submit code that breaks compililation to the SVN repositiory
. Ask for help if you need it

. Work as many hours per week as our needed

. Mutually agree on work distribution at later point

. Write down what each person should work on

. Set internal deadlines to review work before deadline

. Do the project to the best of our ability without hindering our performance in other classes

. If you see something you don’t like, talk to the person. If you can’t work something out: fix it yourself.

6.005

Page 1

ezuk-moshary-theplaz Team Contract 11/29/2011

5 Decision Making

ezuk

1. If you think a decision will make someone angry, ask them, and have a discussion
2. Majority rules, but a consensus is better
3. Each person works on their own part

4. If the decision involves someone else’s part: ask them

Digaiy signed by Micheel E Plasmeier

DN c-US, si=Massachusetis,
m . e p b: o=Massachusets instiuie of Technology.
W ousChent CA v1, erehichael E
Plaamaier, emad sthepiaz QM T EDU

moshary theplaz Dwia: 2011.11.2921:18.33 0500

6.005 Page 2

Brief System D_escri'gtion

As modeled in our snapshot diagrams and java class layout, we will create the IM system through a
series of connections between clients:)

-All client interaction is relayed through the server, which parses Message objects from one client
according to the client-server protocol, and sends the appropriate information to the intended
recipients.

-The server will maintain a list of client IDs currently online.

-When a user wants to go online, he creates a new client, and offers a connect message to the server
along with a desired username. If connected, he is given a unique client ID.

-A client can create a conversation object, which hosts a specific identification number, a user given
name, and a list of members. A client must specify another client to join the conversation.

-If a client accepts an invitation to a conversation, they create a Conversation object on their local
machine

-Each client in a conversation will have separate but identical ID Conversation objects hosted on their
local machine. These conversation objects will be represented by separate windows in the GUI.

-A message sent from one client in a conversation will be sent to the server, where it will be distributed
to the associated clients in the conversation, and to their appropriate Conversation objects.
-Disconnections from conversations and disconnections from Server will be represented by Messages
sent to all Clients currently conversing with the disconnecting Client.

129

b
(L@L] {JOOAH@U
[+ - g O?h‘f () 0
i / ROV
¢ “@ﬁ .

Uff/ N WM()/ OJWQ’/%]!(M@ O/\ l"lrﬂ
%ﬂ G fraylld ook

- / = ;W/lllﬂ ﬁGﬂb?rC)

= Jeae Conemo
- g0nd g
< Rete Mg, ()
ik TDronke M m
éjr('\hg 5(_/’@ {'Mﬂa\o Lei{f@
/
/‘]l%ﬁ&@g Q(}H?z@

/

foogenare. Cwnlber i, i e

Client. java

package client;

import java.util.ArrayList;

/1'r+

* GUI chat client runner.

¥y

public class Client {

// user specified username

private String username;

// random gensrated user ID number

private String IDNumber;

// list of conversations that client belongs to
private ArrayList<Conversation> conversations;
/7 client online or offline

private boolean online;

/x*

* Constructor for Client object

* @param
* @param
* @param

.k/

usernams
IDNumber
conversations

public Client (String username, String IDNumber, ArrayList<Conversation>
conversations) {

this.
this.
this.
this.

}
/-.‘-c*

username = username;
IDNumber = IDNumber;
conversations = conversations;
online = false;

* Constructor for Client object
* @param username
* @param IDNumber

*f

public Client (String username, String IDNumber) {

this.
this.
this.
this.

}
[x*

username = username;
IDNumber = IDNumber;

conversations = new ArrayList<Conversation>();
online = false;

* Constructor for Client cbject
* @param usernzme

%/

public Client (String username) {

this.

username = username;

//TODO: randcm generate ID number

this.IDNumber = "";
this.conversations = new ArrayList<Conversation>();
this.online = false;

/*-k
* Constructor for Client object
x5/
public Client () {
//TODO: random gensrate ID number
this.IDNumber = "";
this.conversations = new ArrayList<Conversation>();
this.online = false;

* Connect to chat with desired username
@param desiredUsername: desired user name for client
* @modifies online: sets 'true' 1if specified user name not taken
* @returns true if online;
% false if reguest denied
5
//TODO: implement
public boolean goOnline (String desiredUsername) {
boolean returnValue = false;
return returnValue;

/**
* Disconnect from server
* @modifies online: sets 'false' if disconnect successful
'k/
//TODO: implement
public void goOffline () {

/**
* Start a new conversation
* @param title: name of conversation
* @param desiredUser: specified user to join conversation
* @modifies existing conversations
*of
//TODO: implement
public void startConversation(String title, String desiredUser) {

S
* Start a GUI chat client.
B
public static void main(String[] args) {
// YOUR CCDE HERE
/¢ It is not required {or recommended) te implement the client in
// this runner class.

Conversation. java

package client;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;

public class Conversation{
// user-specified conversation name
private String title;
// random generated unique conversation ID
private String IDNumber;
// map of conversation members; Key->IDNumber, Value->Username
private HashMap<String, String> members;
// local text history of conversation
private List<Message> messages;

/**
* Conversation object constructor
* @param title
* @param IDNumber
* @param members
*/
public Conversation(String title, String IDNumber, HashMap<String,String>
members) {
this.title = title;
this.IDNumber = IDNumber;
this.members = members;
this.messages = new ArrayList<Message>();

}
/-\ir-k

* Conversation object constructor

* @param title

* @param IDNumber

*f

public Conversation(String title, String IDNumber) {

this.title = title;
this.IDNumber = IDNumber;
this.members = new HashMap<String,String>();
this.messages = new ArraylList<Message>();

}
/r*

* Conversation object constructor
* @param title
,k/
public Conversation (String title) {
this.title = title;

// TODO: must change to gensrate a random conversation ID hash-cede
thig.IDNumber = "";

this.members = new HashMap<String,String>();

this.messages = new ArrayList<Message>();

[k
* Invite a user to the conversation
* @param clientID: client ID to be added to the conversation
* @modifies this.members: adds clientID to list of members
9

//TODO: implement

public void inviteMember (String clientID) {

}
[ek
*

Leave this conversaticn
* Send a message to everyone
* ?and close this object
i
//TODO: implement
public void leaveConversation() {

}
A

* Remove a ussr from a conversatiocon
* (When we receive a message that the user has gone offline)
* @param clientID: client ID to be removed from the conversation
* @modifies this.members: removes clientID from list of members
wyf

//TODO: implement

private void removeMember (String clientID) {

}
/-k*

* Send message within a conversation
* @param conversationID
* @param users
* @param text
* @modifies this.messages: adds message to list of messages
*y.
//7TODO: implement
public void sendMessage (String conversationID, ArrayList<String> users,
String text) {

}

/'7*

* Receive message to a specified conversation
* @param conversationID

* @param text

* @modifies this.messages: adds message to list of messages
74
//TODO: implement
public void receiveMessage(String conversationID, String text) {

}

Message. java
package client;

import java.util.Date;

Vaid
* A single message
=/
public class Message {

//from

private String fromUsername;
private String fromUserIDNumber;
//time

private Date time;

//message

private String message;

/%% Constrictor
&

L4
public void Message(String fromUsername, String

fromUserIDNumber,

Date

time, String message) {
this. fromUsername = fromUsername;
this. fromUserIDNumber = fromUserIDNumber;
this.time = time;
this.message = message;

1
/e

* Gets the user's username

* @return String Username of the user that sent the

=
//TODO: implement
public String getFromUsername() {

}

/++

* Gets the user's IDNumber

* @return String UserIDNumber of the user that sent the

'F(/
//TODO: implement
public String getFromUserIDNumber () {

}
f'l'r‘k

* Gets the message's sent time
* @return Date Timestamp of message
o

//TODO: implement

public Date getTimestamp () {

message

message

}

/ir')—
* Gets the message's message
* @return String text of message
7

//TODO: implement

public String getText () {

}

Server. java
package server;
import java.util.ArrayList;

import java.util.HashMap;
import java.util.List;

/*-k
* Chat server runner.
e
public class Server {
// map of conversation members; Key->IDNumber, Value->Username
private HashMap<String,String> onlineMembers;

/**
* Constructor for server object
*/
public Server () {
this.onlineMembers= new HashMap<String,String>();

* Adds a member to the list of online members
* @param username: username to be added
* @param userID: userID of username to be added
@modifies onlineMembers: adds the user to the map of online members

* Checks for duplicate usernames before adding

[+

*ofl
//TODO: implement
public void addUser (String username, String userlID) {

* Removes a user from the list of online members

* @param username: username to be added

* @param userID: userID of username to be added

* @modifies onlineMembers: adds the user to the map of online members

*/
//TODO: implement
public void removeUser (String username, String userID) {

}

/ﬁ*
* Retrieves a copy of the list of online members
.

//TODO: implement

public HashMap<String,String> getUsers () {

}

/**
* Process a message from a client, and send it to the appropriate
clients

* @param conversationID

* @param users

* @param text

*/

public void processMessage (String conversationID, ArrayList<String>

users, String text) {

}

/*4-
* Start a chat server.
*/
public static void main(String[] args) {
// YOUR CODE HERE
// It is not reguired {(or recommended) to implement the server in
// this runner class.

Client to Server Protocol

Message ::= Begin

(Connect|MessageBody|Disconnect|UserListReq|AddUser|LeaveConversation) End

Connect::= From ConnectMessage
Disconnect::= From DisconnectMessage
UserListReq::= From UserListReqMessage
MessageBody ::= From To+ Title Content

AddUser::= From To+ <addUser> User </addUser> Title

LeaveConversation ::= From To+ <leaveConversation> User </leaveConversation> Title

To::= <to> Text </to>

From::= <from> Text </from>

Title::= <title> Text </title>

Content::= <content> (Text| Newline | Tab)* </content>

Begin ::= <message version=1.0 type=
(connect|messageBody|disconnect

End ::=</message>

Text::=[™pu}*

UserListReqMessage ::= requesting user list
ConnectMessage::= connecting
DisconnectMessage::= disconnecting
Newline::=\n

Tab::=\t

userListReqladdUser

leaveConversation) >

Server to Client Protocol

Message ::= Begin (MessageBody | UserList | Welcome | FailedConnect | Goodbye | UserArrival
| UserDeparture) End

UserList::= FromServer <userlist> User* </userlist>
MessageBody ::= From To+ Title Content

Welcome::= FromServer welcome <userlist>User*</userlist>
FailedConnect::= FromServer <nameTaken>User</nameTaken>
Goodbye::= FromServer goodbyve

UserArrival::= FromServer <userArrival>User</userArrival> Title
UserDeparture::= FromServer <userDeparture>User</userDeparture> Title
ChatArrival::= From To+ <arrival> User </arrival> Title
ChatDeparture::= From To+ <departure> User </departure> Title
User::=<user> Text </user>

To::= <to> Text </to>

From::= <from> Text </from>

Title::= <title> Text </title>

Content::= <content> (Text| Newline | Tab)* </content>
FromServer::= <from> server </from>

Begin ::= Begin ::= <message version=1.0 type= (messageBody | userList | welcome |
failedConnect | goodbye | userArrival | userDeparture) >

End ::= </message>
Text:: = [Mn\t]*
Newline::=\n

Tab::=\t

An Explanation of the Grammars

1) Client to Server: The client will send the following types of messages to the server

a.

Connect: A connect message request to the server. The From field will be read
as a requested username. If it is taken, the Server will reply with a
FailedConnection message and terminate the connection.

MessageBody: An actual message to be sent to other users. There can be more
than one designated recipient. The title will be a unique conversation
identifier.

Disconnect: A message to notify the server that this user will be leaving the
chat program.

d. UserListReq: A request to have the server send a current list of users.

AddUser: Gets the server to send a notification that a new user is being added
to a previously existing conversation.

LeaveConversation: Gets the server to send a notification that a user leaving a
previously existing conversation.

2) Server to Client: The Server will send the following types of messages to the Client

a.

&

SIS

i.

Notes:

MessageBody: A message from another user to this client. This has basically
just been passed along by the server.

UserList: A list of users currently connected to this server.

Welcome: A confirmed connection to the server. User will receive the user list
and can begin im-ing

FailedConnect: The attempted user name is taken. Try to connect again.
Goodbye: A confirmed disconnect from the server.

UserArrival: A notification that a user has arrived on the server.
UserDeparture: A notification that a user has left the server.

ChatArrival: This user has been added to the chat with this title.
ChatDeparture: This user has left the chat with this title.

- We are including XML type tags to help with parsing
- Words in blue are terminals (actual strings to be sent)

bIOT Gp s T
Th . plep 1)

U\/\Wg b Wiong Wi '00”')

ILO&M ot ot s name ah and. TD

LW }D wihe ConV i 0 t/n{,@(/c
—ovouM /1864’{3 fra :.cl>

_5066(%]@{ Seevly pra%;f ~dn 't W 'Lf Serer fele)

(
T wd @l b w tlhe sk

el copy of presee |l
(ﬂ’f'l [/I U()@L/

‘ {
Now Convss a}&ﬂn (5 e d |
gt pavediedy

—l\gw 5@@&*9— P%M & pt”&ﬂ’l d"(‘), (
‘*—"\?a «LQ, an,t‘mﬁ tldw&af@ \5,‘6}

fogh
Y\omfj IMJOP

lwl"Q/\ e [Pe/fﬁona ;0[& *?@664&1 €/zft(/e, UgL
“‘(@\/u Serv(L uPM{

0

bt difealle

_ g
J)@ @HE’/ {\o }OM%G

L\Wg }qu,‘«, Mess &3& (Dasé\ty
(b + s
juk debsy pruak

el UL globdes
Nk g Tlon 1y b bl cn oo

Doleale & mat T |
Gd ety ch Jire by Mon myhing

y b Mogage /m‘%ij paree
~ loey not oo gammw 615(

heame — UT olehles
p [C(‘Z“ = T%Hflg éjf/aj((iy /

Fr - Cm@/rwz 3{@35/

B CMWG s moie//(/;@u’

Gog

NO ne %tbﬂ \/uo Q[(Mﬂ anjhzno \(@F

éo e ik Testig 6%/@4@)
dnd PW {or Cave

o fd q et M@g,

\60 b‘/‘t [AV \,\blt mg 9@//€/
(a‘r\w e Catled tety J

@Haw A9 (g P‘ﬁ ’Shﬂr@(

4
l

’tbk had Gome Conpte il

Joles
W@(% (Q/d € g/qm,é/

U

VU@‘&({ er Con. P N/ bore iy IL@ h/;)’,u‘
[(Mt‘ll' 9W{‘¥(/h on 5)(/(‘445
U\“’U("\j) ee/
jvlﬁjf' JG\U\S St NL/%O!
ﬁW(z § b bafu |
(l m% OUJ‘WSF dnd @»a“of\)

Lgh ol

C

LTM JW‘\W- ("&C C[%"

J Sopuate pot Mdﬁ?

fLov h oﬁpf‘" LP]" ("‘%g
J%'\s(]

r‘(a“ O"Ll (Mneo&‘ T(KM [56/‘/(7 at mcp{
QAJ I&m will]L/q)(,&

50 AO+ WUt Can dlscww& CW(M/)
(Ad‘/“”\f le‘» ("“ L"/ 8o 1.&6:,/ Cmb%/mipf))

d
Ol &pw\ ~neud b be able o atess 2 Deepl.S

(op ot 0

M ncld ok of colldions -

(

6.9/«/(/ da% of (/bﬁ’r)

= Ué@(‘r\o\fv@

"——"O’JJ(P"’E
Collton, §neimand | o)

Nojr Viry Ll“pﬁ u/ f 51lfwﬂf/(
A "‘ZUL‘"L b bt e

—

SO Sﬁ“ h@@d Pﬂ Jo cov\\;g(mfz!MJ CMJ. Wﬁa@e /qﬁ;z'l

J

(Ow Qlamer —¢n il adt Thet @ng/

r%fwe/ SMU Nﬂl Acm(ﬁe Cﬂn/c’raaf/;@ »-/'gl,/,”f
Rlﬂ‘l\v}’ ‘U&Jl' fornad

(élf daft Save cfom(
[Thaw 0»’9 c/mtebeJ)

\/ ”} &“ﬂtu\‘; gjdj‘mﬁ

Nw oot e Tua oW
Tl kb [B
Ste Wha} 7 oponds
DM“L JW '(9 Loo\t nside
\/ ()O" {sz\t dd& (01 fLe&L

ool o ot plake rifich
Lie can do 9t st tes, bl M

9* 6[(0(qd@“ﬁ Socond e

MM[
GL\ % glead, n we!
fm o Clgabt ~)dy eroro-

(o5 1ty

o <6E1 need b et sew

L y New T}\(@v(d

e - Sﬁﬁw cl:ed
L(QonSL [,(Mw ’\'0]L%L
\/V,ﬂ (vor L\ s]Lomrﬁﬂl

}:0/ fbmm[Mfw/ﬂ on Chfﬂ)[~S0ur ((ML?/%ﬂm

A(\W\M; Zoo(\ at (onw[/wf
- Mc{' (n C(/({va7
~ wyite enlmfe@r

betett ooty
;r)’}(?(m\[Nﬁw\f@flf\

(Ere t Mowa bl fucbd B o wa
s b

(eer\gngr ver el o A
LS}”Y e/t Lomat

2k

0

Np J(\mco%wﬁ ""w/:
S s not e
LH Cltm shovkd (.
(]N,j Congateaey, ()T
Chodl wll by il
(e ey Tl)
T VL e des b fonaticel§

— i d—rt—

§e/ver con pt 4d 1o o led

e lw“ o whgt Wlf/vezuﬁ e] P Mﬂ(@
ﬂ L “
Lhed g ClDﬁ‘i YL}WMj 51{/1‘[

e, szefwl 1\%&0]
Mot fomaa, 701 1 o0 Shpr

&L% b D)
Ay
i]Lf'ﬂ([-1 Cfdh —7fh Galts (b

D@l\wm H@

COMMMf‘ m0‘} 6“ \[Cf'bb/ﬁi 0D /)l((!‘ldfb{, (/VOVZJ V\'f/[/li‘
o £y s ae Chdnge
J\\/d‘ [101[ff v
0(T - Giry haalle
(od (
)geffﬁf (04@ s élwl(/, be mp/{wv/?

L W (oa /o

Wﬁsagc \%/Wov uﬂ\j vy %&7{@ é

C[!Eml —)%v/ 6)\9/(4 b @[)/e Conned
o w/og% ?ULH 15[/“(o T/}
L(/&mj Jf{\(T%fea/ds {Of (235 and 5-3(,

Actaly comd Thar “boe ity

ﬂwu h’éf mqme Mauoce,
— hof ((,p{{z, M&[ﬂ(f
Pk gt dw o fugglad

Lo+l vy tl F/

Tﬂbﬁ[/\j S}mﬁw‘ }4@ ﬁ‘c l[éi/fﬁ

Maﬂn boy 1[@5} b
Ut ted cligt

P D F pu/)\ ﬁgﬂw
Vo W ' fed Jolveable

)
A [l (
H('q'% Jod d@ﬁmj ~ o Gunctiona
~ fged ’){'EHQ/
4

" e Ko, ol
103 CO/W

éun § ’6 PM BLL\Q(§7Lh

Project 2 Amendment htp://web.mit.edw/6.005/www/fall/assignment amendment.html

Amendment
The design amendment is to incorporate a typing status for each user in a conversation. This functionality is

implemented in Google Talk; the UI alerts you when your conversation partner is currently typing, or has
entered text.

Each user should be in one of three states: no_text, is_typing, has_typed. no_text is the start state. A user
can transition into is_typing by starting to type into the UI corresponding to the given conversation. A user
transitions into has_typed if a certain amount of time has elapsed. This time window is up to you to decide. A
user can re-enter the is_typing state from has_typed by typing again, or by backspacing over text they have
already typed. Sending the current message will get you back to no_text. It is up to you to decide if deleting
all the text can also get you back to no_text.

You can display this information as a change in the UI of the conversation (e.g. Alice is typing...), or into the
buddy list UI (by changing the color of the user, or making the user italics, or ...). All three states should be
easily distinguishable in your UI, regardless of how you choose to display this information to the user. This
information has to be pushed to users by the server; it is not acceptable for users to be forced to click a
button in order to get their partner's typing status.

Note that if user A is typing to user B in a conversation between only them, it shouldn't appear to user C that
user A is in the is_typing state. Stated another way, user A should only be seen as typing by user C if user C is
involved in a conversation with user A where user A is typing. Thus, you should logically have a state machine
corresponding to each (user, conversation) pair.

1ofl 12/7/2011 12:17 AM

(5 Tty

Chy I‘Js vpdate

Laid e ot need 4 P
Fiv Regeh

Lyt of so
i s b el

5/\“4/ (/j_: of conl sa107

e, B o5 Lleet_ar's)
QWH 5050"{/ host * FW/U
6 T

Lo he deberlt
AJJ Wt@ f}fu{/t" f~ ML z'ch

}Léﬁu@
AOW@
T '\{ﬂi:y
l’t((b TL»,YJ: ry

P ({6(@ 7%9&7 }(7(/

"T Pdffuipwb s

¢

(on Cylaly

‘—/-—-—_-—.-‘—

%,{_L Sneod L((e}
Most- drovps bt
Livden @l Jodbd
J@perklz’@ on Tk
/Vow'\ 5&}6’07[’ fny Wbédujg ﬁ See neyr—
T il dn 4 Wak el ke a (e
(Howed bl 4 g hoy]

W

Cheks 2 fgu,

wag/i (bﬂn%r&a/f r'm, 208 [{ 7[(’4
Yok 1

b &)

Werkg, 005 b/
i i

SO M(J/A Yo tO(/‘k &Ovm er\“"ﬂ P@N@m>
Fust be v nane i /ey0x
0k o} fe cegex - inskead d;/p/f@fo,[

O‘Hl?a JJP‘\((WF /4
L’W]F C)%L«d down (‘(ﬁ}”{

6@/&/ %ﬁ-{L VW% 6AUH‘1\A\tj (iﬂvm CO//W/L/},’
W@Q&L b) (1,0 Now Vo5 on 1o

0(WMW‘} @UQ/ Cotr
6144@/ Sl 50@/’[

Now st befte 5 TLC'J{‘CM%?
@W\WH’/‘{J o ot ~ b HA VA aﬁm ﬂew)

H(oo (eason neod G Ny ﬂw{\ e /"c«g

TéU/‘L ((06) vwf* 6{056!

Wt

0

€ w[QWQMJQN‘H
bk now :?L ook £ wOf‘t

1 D\{mlL I: ﬂ\%i 1Lo }mw&e T%ﬁ/lg T?‘/%d"”‘)’

Jfo be c{,b{e ﬁ; Al (ess li’F&rmF T%/ewda

% fed fab ~o T R Y

o0 i va for adluy e
NOW W}W hd‘femov@ Uple
\/25 50@“@ mw; w/pnv?

ﬂ\ml hey uh meJM@ /uwy

I —h\m\ I Am ﬁfﬂ(\((‘r\ﬂ h\/@a[O((J@/(t'rg Cy S
M/c[q EE'/H”(/

—

N) gl‘ﬁ?zr\zg #ital Urors 1 L hiak
6(\ (G%/L{ §ILJPJA(

W)\\/ Jo% H l\an\(/) on W Uﬁ(’rl(:}f/{(,j///

QWM\OQ ‘er wh {‘> §upp/2;§ndz MH ,l

:UWW\&S 0n H? OW/"(

é el 1
T Skl be

I A ot Wf for ouly Seclod
LTUM bén meale !
Y@Wh‘

N(DW OmL st WHQ Soclet (ﬂé&c(Clo—
LF/""L W 1

/»\\{ 6P
NUICR ”Wﬂg\mj

Ee 6@/@@“/@
thr&@r W@n ‘f(10055
(ant Tod
’Dﬂ‘mk thead suft
Aciama, Qﬁdmv . |15t
Chigat @J@, mish
Neads 8&1L + st Tuluds for QV%My

{ \
(wa&(mt)/ A{\{am\“ 1 Efl(‘
Nowd o Unow whn pgw conversatlon com

Notidy G-

R e

(o 9@ ﬂ“ 9

ML\, “&# \/FLML@({

(Vo]Dd('l‘w\liodflh (/chah

(petly o gy f’h:/\xﬂ {1on 5€(¢€f)

1/l

Bock & Vol

-____—__-—-—"'_'_/

é«g 6Ldl(l
ﬁg)@{ j\,/(,{/@ —M IL a9 bx/ﬁy

No Qior mUo509 Now

TH V\ov\M@ on *’50!»%«3 MS6AYCY)

“ N TM]L \‘N, wp/ékj)
LS@ iy &%IL B |k H?m?r

Gl dt coll b hy —ol add o

Voo alted moe ~stil sk Thoe-..
B Hﬂw d\td I](\(& + befve/*
\{\{ J@@\ﬁ(y\j |
L/ hat= am T, [0091'@ ﬁﬁ
PVQ We gt (Wéiftj Caradly ...

O RSPt 1o 15 \[}/A s
TIM\L m‘cd\d\L e peea T),

(\[OW 5 0ne (('iil,\ V1% ‘(/(Uwff
N\L(L fat & o Gf\df«ﬂ rw‘c.

[plgy WPz i« fheed
[due {
Bt bl edde fheal pot fﬂf@),

l/”L s 4)7 mp(a% Ww{mfj “q,[/ ﬁadﬁ% W@/Z\),

E)JJV W\h(6{065 ﬂ‘d)(ﬂ? [/ork a,bm/e
A/WL Tk (om o @f U/sc lz'@f o/afl*ﬁ}«
Oh oag b a0 addl g
C/VOM f(;lflz{\b /’I@M‘~ g
So Sflmply W(Qk ot b/(ole/{/{
LN“ Q)f’flLO\JJ[25 Sdm As é()ﬁ’r& o 1} verlof ,’
90 I’U(PQMS JW ﬂ\bp{ﬂ? czgavi'q (q%@"

T al, }\«ppc@ o oD
LJL fin Do s oiF &

! { ((7
(’5(4@ M ﬁ/f{f

Sleg) \
@Ttwe, (/‘\a,[f} g d({{?’f”iﬁ@/

’—\—/

h@l (m@l\\z CLZQ A O’/Q/p" ﬁt# ﬁt) e %/dg{
glL;,” 1Cq,;l wL@n COMMNHL WF O’@eob

Oc 53/&1«9 ngssage does gl |
(l@:ﬂtﬁ fo (WL e
]Mé\) ti doe WJW’W

vy

Michael E Plasmeier

From: njoliat@gmail.com on behalf of Nicholas Joliat <njoliat@MIT.EDU>
Sent: Wednesday, December 07, 2011 11:15 PM

To: Michael E Plasmeier

Subject: Re: 6.005 announcement: ps6 grades

Follow Up Flag: Follow up

Flag Status: Flagged

Hi Michael,

The thing which | think overrides the ps4/ps6 issue is the need to be consistent with other decisions Rob has made w.r.t.
grading of this particular pset and in general. I've made my decision based on that criteria, in spite of the fact that |
sympathize with you for having lost a large number of points. If you would like to debate this further, please start a
discussion with Rob instead. Good luck on the returnin and let me know if | can help with that; my office hours are 3-
4pm tomorrow in 24-322.

Best,

Nick

On Wed, Dec 7, 2011 at 7:54 PM, Michael E Plasmeier <theplaz@mit.edu> wrote:
> Hi Nick,
>

> Thanks for looking over my code.
>

> As for consistency, | had a similar issue on PS4 (1 had messed up some of the framing code so all automated tests
failed). | talked to Eric Wong <eytw11@MIT.EDU> and he scheduled a time for me to come in and discuss my code. He
then reviewed my code and issued me a regrade where he manually took off points for the flaws in my framing code and
the actual flaws in my implementation. The regrade was higher than my original grade and it replaced my original
grade. In addition, | received the tests | had actually failed so that | could fix my implementation and submit a

returnin. The returnin was conducted with the published returnin policy.

>

> Could I ask what is causing the lack of consistency between PS4 and PS6?
>

> Thank you -Michael Plasmeier

> From: njoliat@gmail.com [mailto:njoliat@gmail.com] On Behalf Of

> Nicholas Joliat

> Sent: Wednesday, December 07, 2011 6:03 PM

>To: Michael E Plasmeier

> Subject: Re: 6.005 announcement: ps6 grades

>

> Hi Michael,

> |'ve looked at your code and there are a number of protocol-related problems.
> - You're not parsing the command line args correctly. As the pset indicates, there are always 1 or 3 args. Currently
your code breaks if there's only one arg (you always look at args[1]) and also you treat the optional 2nd and 3rd arg as if
they were one arg.

> - Your BOARD message that the server sends back is comma-separated; it should be space-separated; please review
the protocol.

> I'm aware that this is a lot of points for these errors, but for the sake of consistency | can't do a special regrade of your

code. |imagine the errors might be reasonably quick to fix, though, so consider submitting a returnin.
> Best,

> Nick

>

> On Mon, Dec 5, 2011 at 11:32 PM, Nicholas Joliat <njoliat@mit.edu> wrote:
>> Hi Michael,

>> |'ll take a look at your code tonight or tomorrow and get back to you.
>>

>>0n Mon, Dec 5, 2011 at 8:11 PM, Michael E Plasmeier <theplaz@mit.edu> wrote:
>>> When can | meet with you to discuss this?

>>>

>>>

>>>

>>> | don't know if you have a fixed time; otherwise my schedule is
>>> available

>>> here: http://doodle.com/theplaz

>>>

>>>

>>>

>>> Thanks

>>>

>>> -Michael

>>>

>>>

>>>

>>> From: Michael E Plasmeier

>>> Sent: Sunday, December 04, 2011 6:55 PM

>>> To: Nicholas Joliat

>>> Cc: Samuel Siyue Wang

>>> Subject: FW: 6.005 announcement: ps6 grades

>>>

>>>

>>>

>>> Hi,

>>2>

>>>

>>>

>>> How did | get a 35 on the project? | must have done some little

>>>thing wrong. Can | get a manual regrade, like | got on ps4.
>>>

>>>

>>>

>>> -Michael

>>>

>>>

>>>

>>> From: Samuel Wang [mailto:samuelsw@MIT.EDU]
>>>

>>> Sent: Sunday, December 04, 2011 6:28 PM
>>>To: Samuel Siyue Wang'

>>> Subject: 6.005 announcement: ps6 grades
>>>
>>>

>>>

>>> Note: This mail was sent to all students in the stellar class
>>> Software Construction

>>2

>>> ps6 grades

>>>

>>>

>>>

>>> |'m pushing ps6 grades in the next 5-10 minutes. Email Nick
>>> (njoliat@mit.edu) for questions.

>>>

>>>

>>>

>>>This announcement was made in Stellar on 2011 December 04 by Samuel
>>>Wang

>>>

>>>The announcement is also posted on the class website:

>>> https://stellar.mit.edu/S/course/6/fa11/6.005/

bo05 4
(Q\O/ILVVA ()

OL\ Cdn (pnty]06 ij
AA& t'F %W‘L cjﬂ/o{/ty oy s 3 E
5 N3 QQFEM‘H/& 5 dv?td
LLMW b /Eqd

(,1 hate felmin —% ““"‘]“44
Q\N UQH H(ML wl Gonma (i:ﬁ[efmf ',

1:(\\12/(_)\'q}g{‘; U hﬁy wozl\
BJ{ 40 OV99 Lw/{)/(&/(

QH“[does S0 f@/xéam Pl
LM\ 9pn I\

I 5‘\9”&1 [mt@ft ’er\@{‘ '/L/jf (L{)r\ 17[MfﬂL b m,
el o s what dd T 4

A Pty

12/

@Myolktaﬂ / e s o

Lk L seb chuge 2ol
/%@{* n ﬁmn{

ld o ey
ge@% o ok
Omz]Lou}))e 0n 0/0
Bujr (MJ me f@PNd‘/‘é’

St ot n o m for M\OLCLél’@/ Lad &’”4
L hwad b Wl

Dt wodh o

Noe (005 (L4 Tedig

’jwﬂg S99 esfs

bl Bl s, e O
C led)

5

Lead DR, docs -.
A D dull bl 6wt ced,
Lok Tk is by g e
bt by 5 it (@Mafﬁj 2l -

{Am T (@d(m& lz'dw @0({\({;

R

Tiflae savs Ceddy -
Lk Weags Ready <. "‘// W}

(e /D'@%?’ 0T gths mesed o
471 aenchg Uy
5o 1 met b watded -

@
0(Me W prfmtf'@ M l!l'nl WM /wf /lc&cféé ‘

Lk ahoas prat 2 Lo
élo bloks whn omusdd
Now i p(;rm% cght 4
Lge ot et ’0[:41’}
Iﬁ o UtS for Sm feum's(
6@% er

0 CMm@:Ag ot bosd wlle
Tt soms fovuk el B
NOW 5}%" }b Fd/(be .

@E@ Lot stE passes
L.
(\: A M’m%d I ‘Odmt[s mitesat fo lqgl//ﬁ hfs M(.f,)

b\/\\‘z d\b(l/ Com%/l/“ﬂﬂ ﬂﬁ MIL %b/@(/[t (\f L@[(o/g,n

T+ 4 }\Mgé al fhe m/ww!

N(Zw J@»! W/ s fjvlmg Off [-”[f
Ll/\/l” 'Lghort';/r

Lo [tk somr ks
et for

Ié ’(‘lr é[wl}uzﬂ@p’
O not /fépﬂftd(‘a]{

1[_\\/@\ whin no (s Pore i sf%

A\&l WM (Cmovg Ht’rt 199@6 H Sl eads

i
k Pf &L J[f’rflo[fﬂw

¢.00S Th
Help (1
5)
A“@‘P/MH;@ /Ie,lﬁ o U1 opdm‘fmﬁ
Testing chob
e Gulf g splate (

‘@mpu Messeyes Soaf
(T b by fobe gotlug Shia oo/

“Now (0T can of Clod
Got & doe
100/“" \No[“] a/bp‘/[‘ ﬁ“t(; ;nifﬂfoﬁ)ﬂn

St Jest Mﬂfnﬁ
/\JGW Sedn bﬁfw
Tod sags 2421
(] bty fes shotlen —all by A

- Qq(l [05e Cmvmq/f W/

- 5AU+ {U{BM + theads @ﬁ

O’\“ﬂb; m%ﬂ\ ?’éﬂlﬁ St o (i /Ej[;/
bt T oy
If ge‘r ol of foordon 1f Pﬁﬁﬁé(‘
J Yot !
m: foils 0(%5!@7?&
Lobe ol ~Gld b onvmerallon
*(Wti sl (efum fe;‘f
Pu)f SW%C s Gt 1t
‘DW‘Q, T\(M
(ouu S(gpe(ofh ou{’ Zla (’nJrL/Ild/q/ C[Qééej
L owilh A @@/T/?wa@c () e lhsd

P‘A Pf@ﬂxﬂﬁ @fﬁ Wf’/i@(W}L f"f’g of (il

00 Gen gty

‘ f
?W Ems ‘hoﬂﬂj voe ur Sewt,

[lovey 1

5005 febim 123
RS

Th ot bk ¥ e
j\/o 5me ol
@’@0 ‘f‘/AQS ;A he/p Missge
WM, T oxdly folled e 5/%%!)

@ ig A quue ‘Lb HOL%@J A dé O‘OQ/A/HM
SJ(I,H 9L/C€ad>‘

Vigging w flegpd Squat
A g et

I [Wc o CL/E W{']chmL oy

Qvign Lnsi”/t/oﬂw

Al wlet T "

(/d"";l Som {0 13
(T hd Tl syt
!}{eﬁfm F x%l on To 51[/‘\/'7

(Un fj@ob
Lp(l‘aé hm 5“@!

/
({0/49 CMY ﬁ’-(/lﬂ v

0 ‘
OL'\ (’M(((ﬁf& in for c/u(/c'ﬁwﬂ%

Gﬂ\‘u 16 6o 6}/P]£i ~ootlowny whng st Ty é%‘l)

b
b shinh lods oo

Ll/}al@ﬁ@ M dt/ﬁ
So Cenrt That

Insedd ek ¥ (], ‘
£ g - ’

i 7
I A
RIS Vishle ofée)

0l one s {% flagged stuke

@i dkdm“g I;M “fhfs p@jedt Mot —¢o el éjfu’)(f/ :‘)

(QLOOS Vor b

Ok now M& W@IM
bee gt hanged (a Al
é"‘”"‘ hanyes] "l

Fix (olaﬂ Then it vl g
p/aHW; — (tmovq_ p(:fw(;rlj

Ve“ (/L\uik Jﬂi&ﬁ (‘{/&‘l

go bodks o (emet. s
Tl o mde maldy

M\x{ Jo M Oy f&ﬁllﬁ Vw% F“ffl[7(/
Ol\ p@J{’,o{\ ne (etrelod n Eo/(;ge

boe Do T atulod [t
@Hm& melb

Gl il b W opme éf Jiscarnd
La/hc(Cix m/ OTZU /am(m/fs

Zﬁo W e consabm

0

Do Qe Mo{ ocdir “Sea [o ‘L@d@

PO v/ disond

N@w’ (owrike 'ltﬁb% ﬁ'f[‘”%w

Oc Chk o -do

W /ngp;Jre hﬁ,(/(ﬂ 5%(%“6@3 éf Sy

bop Metiay

Aﬁam‘f ﬂ/of VL [fww /ﬂa 7L@s+ C]{'WL
hojf 5‘((5][@& %03917/{/

@ (1//((’/ﬂ’ MB

by v fake chaf
S

Ve

S o whadly o G
“’(}Ut Wit v W/ e n Jpl

9

/\17]LO Jo;
1‘ &ﬁv‘\ﬂ& T;/‘D@j
A g@uﬂ€7 So /st

A{ ‘LdN

(leat choeld gy e o mesugg
Lunkss force C{‘/ﬂl

ot of 5 (ofe

A‘S‘Uﬂ(Joes Sud A 0tor f@ﬂﬂm”j
Tl spad 1020 ma ga if

s e e a

"

((ﬂa oV fsed an OWM &@M
/ st o me sl s fuf-
| (/Wbmf GL/I

Wh ot l\appe/u, o Sar 7 C)(l@«ﬁl

T‘ ol ks ,t
NY

ffco”’l ;&UL\ on u/ San,

(o Mindow @néy 6%0\@ PO [messge o5 seql

\% lo(b 7{ QZO\MQ, OA f}’/{ﬁ&(\pdm{b tlmz [Z«p_/jw\/@
Ll s @ gl T A clin

T

dﬂ&(mo) Q)U“Z (‘&SL“'({OPS mo;L dﬂ;é M,K/ﬁﬂ‘
)/luf h{&@c(a £ from (St 106/5/;&%/@

(T(bﬂm@ 5}(/6{)

USG(MV"& h\m {d~ (/\/I/@/t
/ Trad

NQW ,\l/\l ﬁ(ﬂﬂj(. -__1790 Eaé
/N Jlup+ (J/}/v’f)

jw"l{)é O/\LT 0N Y ('(Jmp/f@/?
A(‘MN;& ép@ﬂ‘]f’ {1 k\/s on 'h'btf& yr%%(/fzy

g

Y
G0 dvzﬂ\(cw%i Cﬁﬂ“ﬁfémt\ﬂﬂs shoe s WJ% o lndlo

R (/Ow‘%of

,)W;aéou 6(0(/“ 0W§

bfaf o s gt

%ﬁ‘&i guaf”«[(/Al(,cUﬂq
ol net
i chak I qe pOTE

[V l-mmﬁ/\
\NM‘ ()wppcw whin Qi does U

4l Jos. 225

OL& huk o work Lor W

H ”\lb\/‘ﬂ/& Y&ﬁ‘z Ay §{/WW

o Yo o1
'” 2t (1000 tn cole
L'M mast ‘/um, bega dﬂ(“()

@
(lhg o of e Bidtg qbot 2f)
NON Thend §Q€H[Py@mn}

Uhoght T dld B
o““! iag s ki Menbps',

[dad b bo(,M/(

T(T M’(plpl"t) } A S Yne b (2

LV\/ope, ot T ! “oaly |

!
Ok ﬁw{ | St- an e 1 Zi(/,('

C\/dfvlm@ CO[fa/T [7
' hoﬂéuz @@opleq

A(\(o\/\v\w‘t ‘}[7 /!%
il adl if W\“’HY Vgl fy

_@H@M T 0l]y @l b
Alana. Eouc U?ZKL 1 lkjw 55 & Calld
Can 1t

o € clrk omads o sty auny fhing
@(LCL T Pﬂo}
O\A on do ot @qvw[/

e L P te)
Pom 4! JV ldn b work
Ufal o

/TQ:); VV’ \[? J\'UA ((
o Wt

0

gt el e b Tk Dyt
"T bl
0"ty St

MML vl e Th 5"?()@%@4/&7

Gt ol of g e

(e ve Clisgy

Q@\ltm {Wml

PI/JF dpe o (optubs

Tadvibal e

Lvl qet Veskge mofuod
A pelicgs bogsht @5 pa.
- v fuel

i
I /@(&//) /Léﬂj é

’

A{‘WM“,(-”uj (an ‘ﬂﬂ Low oy

‘15]15 Bé T Wolsl J&Sz@ﬂ

\%"é]('M TP(LW ku& b

(go ¥ wdt on an'}\]
Thes o Sl

@WO"(‘ Flyob £ Teshs Pass
@ Qart. for 1t AU

Ve e ik
gt Message Heqda
oo s%@; Closs €

Oh P/olo dwl& o ok messagy
ot st ks ..

@ 'DM {0/ [M%VW ~ for (et
leo/‘mﬂ

@anﬁ {W (Omort ey

Do & P \Cﬂm Wﬁ\bd

@ Uo for g bk ot
L@ Teoh éw puss

©
R P ot botte
Lﬂk@i C{,U th 23%, -
W (hhally T kink e ots eft)
WDW ‘/\Vb!/ e z(70 ;a") dee l{f\ goﬁi e
Ol puse proke
U\'(,{M/bh Thé) ‘(D \L;/v{w g//\

@ C (QW@(L \/P /Iq@)fe

@ H(“ Pawe) Jr@oh
{w“ §loof

L0605 Lo 0
Codbawr I

U\/@P\/P

D P@:}% b ads
Q Qut% gawe
Ll (o @A{
bey)) e Jfon(@m'

\D(J ?/ f{f%hoﬂb Q(d@ {‘ompﬂ’ou f\ﬂl«\,)f

kel fe forght

Y

What 1t QOOY abot
= bl 900l 5ot

(el fgdwamw&m

Fso{ltﬁ from bvppwﬁm]f} {
’_'I"eﬂ‘m Vigitor — €asy to “JJ ko
- ntoplo/ - easy b add valiorh
51%{/ (/(N!!/l”ﬁ ’]itbj—m(j

= QOL&[er N eCsqa 1 :mf\g@r ,,O(Jﬂl“‘j
—opecs | ~(liot s/
‘Pf@Cm(Mm; YELTE

— past-condit s ~ah
~ § fate muchve

Mory P‘*ﬂ%
(gl

(EW/ parsts / A bt Gty 160
ay/ (il | fodyee

Tech \1{@(@@1
— JAVK
“HTIE - EOHM
l
~) Und erzf[\wj 3 Junt

~RiE
% r\ﬁ{@us yoo o vour fests cour (ol

(et hod) (s0nds W@/ﬂbﬁ“j)
o @@\\v&
_ m«p
._,L\[é}j
Ty

3

— Skeuns
g JWM)
— ocks
Oby s
177 - Pelorna T, dafobeos
{“q QP/Mﬂ
(QL?B o (/bmbpm/ (035 - (OMP!’/JE/
£fing J i
(1) oopadebit
sy Thigh \evf{/l {esgr
b6y (il &)fpafqmm;@
fip
Gft 320 ’BMHL{@ Cﬁ(b
é, (”0 B W@‘) ﬁogamml’/y Qmpﬂf;}/'ﬂﬂ
-]UV’\ {vo

MEET - Tewvh JGM& Jfo L{el: + P debf{'nw/_é
NESTT = agy JR%W@ 1P Haces

;

P@Q(/WL A s

/ |
‘Bee% e, = Dnoghut
i l
ik o Sods)
SV S LY Sead (O(ﬁ,f,l wods ~

Mﬂb ,@M Jass CW
%

D/(\,l%\/ M{W\Qﬂ, }L@y QXC[W% &
awg{’/ UL as W{ilD
"W o] e agrents ot
M o Ol\ }m/} :
Ol\ UI: \0011\‘) vy ﬁécg
beepulnhid
oty bl grabvont e Do Lt

®

(o M9® S P
i) e

05 fangages

(qn (hange pessthe ford

o o

Y |

L}/L(/ Q(WP urd@& OM
9@6}(SL‘/ D%\‘@a “‘5“’;/ UWL

o~

Tty vietor — pulo
BolLé Tt Cbpmd

~ |vealle/

ol
Lofs of Wmftﬁ Y
e o Dalfas

ot Gz

(O// A Euuy[b

__J’

(Q:,W P_f 9&7{‘ KKJ:&V

Oa py 04
The ve it) 1, e’

gf[(‘[/ 3 To0bs Effo),

LWM "ala Cﬁt](i

% ~lodks peotty 9o o

—Eric hus Sim ”‘fﬂ{@ ﬁ%f’zﬂﬁ
—éc/lL b{;“ﬁ@f #lﬂr\ My 0[2@}@”7

J Gos sa; Sower s /egaz'/ea(fo manhan Shipo
- convas ot
Levkeo 1{
~® (e b rOludor whok (/&5?7,7

h 6{(8 L/f' 28 Mgna

_m é{,(/ |
Ao (aod
0t o) o
ek QW/LC'I%
‘ a(ﬂ! m?(a l/vlbzv [I?L 56{@4{ [;/[Q q
Ml lsgn Ghoica . ..

, |
(s + ceally Jom o C
R V3 R W |

i
8:/23 == b/ 1§/ W/g’;?

Dnversy, f/’b,

2/

Y
WAL frad by, 017
“ne g did 14

“Mmal TN systtns s thal

Vol Yo ik gl e does

= Jid i
/‘{1 Cowvte s Conwrtn]
Yookt 4

ilake S0 4 s caradly

M (0wt gy ol 1o it
Lok el bor fatlyy

L ikl wlel 4,

?ma/ofj }7
72{ Sevty

005 Aughene o

Moo ' Finid (b T8
S

b Mﬁ o€ ‘L“J(\““ﬂ £)
[f\(/a)vw\l/lo) L%p\,,\(j \lr\ GUE ‘“/M Mm%(
Theads hat é\eép

L Machin depeadfal

A(\' 'Toicm ()/(mav]r a/ﬂ o
w’ | GMI&L Congss fd'a;cwm.y
Weoko ety €ile. Sastn. Sl e

(Oh /et ‘f)otff ot

“f
mcL (7,1/6(1,71;

Aj [L/N, ' (
ik N (- el

M s ot Uik fegting
bt /
P W[/v %l@Vl J@Cj

wd%‘égn q(@&u }pfl;m
- [00\& + (ed\[?/

E(w\& éompom;r 5 ‘fwM ﬁe KW

0

UUE(\M, WLH C{/lc(/lﬁﬁ/ Fo &E mye uie
Jm bl v b ws Ok

| { » (
O(/‘@'P ma(rrj@(a /t&t' Gtﬁ convg n Nl '&f (,9@[

Ly fhat
afld Qm({(om/ﬂr

ot e SadConv |
) Fad

Now

/D%(L@n dots t//ﬂ(wL Edj
Mt 4 cf\ﬂ(/\fjcﬁ

g

/Wc /Mlm / (Wi C [as;

€%

OA%L pags 01

O &
[/
Q
/;'/&5
(/(/k
PL
(ﬁ‘

:
A
qu
w';:;
o
i
o
L {
ﬁ;j
| b
y
A
N

6.005 Gradebook

1 of 1

6.005 Software Construction

Grade Report

Grade Report for Michael E. Plasmeier
Assignment/Exam Name

Problem Set 0

Problem Set 1

Problem Set 2

Problem Set 3

Problem Set 4

Quiz 1

Project 1

Problem Set 5

Problem Set 6

Problem Set 7

Quiz 2

Project 2

Instructor's Comments

https://stellar.mit.edw/S/course/6/fal1/6.005/gradebook/gradereport.html

Graph

FEEEREFEEFEERRP

Due Date

09.08.2011
09.15.2011
09.22.2011
09.29.2011
10.11.2011
10.14.2011
10.27.2011
11.03.2011
11.10.2011
11.17.2011
11.21.2011
12.14.2011

Points
97.00
84.00
83.00
85.00

i

R\'&{Ufﬂ‘m& N t(g’h&({ ‘@f Cong. (CdsM

\

m %w\d@; A

Max Pts
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00

1/8/2012 3:20 PM

