Introduction to Algorithms: 6.006
Massachusetts Institute of Technology February 6, 2012
Professors Silvio Micali and Constantinos (Costis) Daskalakis Handout 1

Course Information
This handout describes basic course information and policies. Most of the sections will be
useful throughout the course. The main items to pay attention to NOW are:

1. Please note the dates of the quizzes on the course calendar and plan trips accordingly. Notfy
the staff if you have an unavoidable conflict, e.g., an exam in another class.

2. Please note the collaboration policy for homeworks.

3. Please note the grading policy.

1 Staff

Lecturers: Silvio Micali 32-G644  617-253-5949
silvio@csail.mit.edu
Constantinos (Costis) Daskalakis 32-G694 617-253-9643
costis@csail.mit.edu

Teaching Assistants:  Alan Deckelbaum 32-G604
deckel@mit .edu
Rafael Oliveira 24-321

rmendes@mit.edu

Shaunak Kishore
skishore@mit.edu

Dragos lonescu
dionesculmit.edu

Jeff Wu
jeffwul@mit.edu

World Wide Web: http://courses.csail.mit.edu/6.006/springl?2
Email: 6.006-staff@mit.edu

2 Prerequisites

A strong understanding of programming in Python and a solid background in discrete mathematics
are necessary prerequisites to this course.
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You are expected to have taken 6.01 Introduction to EECS I and 6.042J/18.062] Mathematics
for Computer Science, and received a grade of C or higher in both classes. If you do not meet these
requirements, you must talk to a TA or a professor before taking the course.

3 Course 6 requirements

Under the new curriculum, 6.006 serves as a Foundational Computer Science course. It is a pre-
requisite for 6.046, which serves as a Computer Science theory header.

4 Lectures

Lectures will be held in Room 32-123 from 11:00 A.M. to 12:00 p.M. ET on Tuesdays and Thurs-
days.

You are responsible for material presented in lectures, including oral comments made by the
lecturer.

5 Recitations

One-hour recitations will be held on Wednesdays and Fridays. Please go to the section assigned to
you by the registrar. If you have a conflict, please email staff (see email above) and we will try to
accomodate you.

You are responsible for material presented in recitation. Attendance in recitation has been
well correlated in the past with exam performance. Recitations also give you a more intimate
opportunity to ask questions and interact with the course staff.

6 Problem sets

Six problem sets will be assigned during the semester. The course calendar, available from the
course webpage, shows the tentative schedule of assignments, and due dates. The actual due date
will always be on the problem set itself.

A large portion of each problem set will be a coding assignment to be done in Python. Any
code for submission must uploaded to the class website, and the final submission will be graded.

e Late homework will generally not be accepted. If there are extenuating circumstances, you
should make prior arrangements with your recitation instructor.

An excuse from the Dean’s Office will be required if prior arrangements have not been made.
e We require problem set solutions (other than code) to be written in LaTeX using the template

provided on the website. They should be uploaded to the class website in PDF form by
11:59PM of the due date.
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Be sure to fill in the “Collaborators” section of each problem. If you solved the problem
alone, write “none”.

7 Exams

There will be two evening quizzes, whose dates will be updated on this handout and one the website
soon. We will announce the dates for the quizzes soon.

There will also be a final exam during finals week.

8 Grading policy

The final grade will be primarily based on 6 problem sets, two quizzes, and a final. The problem
sets will together be worth 30 points, each quiz will be 20 points, and the final exam 30 points.
The specifics of this grading policy are subject to change at the discretion of the course staff.

Grading of Code

Code will be graded for correctness and for the algorithm used.

Correctness You will be given a public set of unit tests to test your code. For grading purposes,
we may run your code against a more thorough private set of unit tests. Your code must run
within the time allotted (which will vary by assignment).

Algorithm Your code must come well-commented describing the algorithm used. Your code must
be readable so the TAs will believe that your code does what it claims to do. Your algorithm
should be efficient.

9 Collaboration policy

The goal of homework is to give you practice in mastering the course material. Consequently, you
are encouraged to collaborate on problem sets. In fact, students who form study groups generally
do better on exams than do students who work alone. If you do work in a study group, however,
you owe it to yoursell and your group to be prepared for your study group meeting. Specifically,
you should spend at least 30—45 minutes trying to solve each problem beforehand. If your group
is unable to solve a problem, talk to other groups or ask your recitation instructor.

You must write up each problem solution by yourself without assistance, even if you col-
laborate with others to solve the problem. You are asked on problem sets to identify your collabo-
rators. If you did not work with anyone, you should write “Collaborators: none.” If you obtain a
solution through research (e.g., on the web), acknowledge your source, but write up the solution in
your own words. It is a violation of this policy to submit a problem solution that you cannot
orally explain to a member of the course staff.
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Code you submit must also be written by yourself. You may receive help from your class-
mates during debugging. Don’t spend hours trying to debug a problem in your code before asking
for help. However, regardless of who is helping you, only you are allowed to make changes to your
code. A suite of algorithms will be run to detect plagiarism in code.

No other 6.006 student may use your solutions; this includes your writing, code, tests, docu-
mentation, etc. It is a violation of the 6.006 collaboration policy to permit anyone other than 6.006
staff and yourself read-access to the location where you keep your code.

Plagiarism and other anti-intellectual behavior cannot be tolerated in any academic environ-
ment that prides itself on individual accomplishment. If you have any questions about the collab-
oration policy, or if you feel that you may have violated the policy, please talk to one of the course
staff. Although the course staff is obligated to deal with cheating appropriately, we are more un-
derstanding and lenient if we find out from the transgressor himself or herself rather than from a
third party.

10 Textbook

The primary written reference for the course is the Second Edition of the textbook Introduction to
Algorithms by Cormen, Leiserson, Rivest, and Stein.

The textbook can be obtained from the MIT Coop, the MIT Press Bookstore , and at various
other local and online bookstores.

We also recommend Problem Solving With Algorithms And Data Structures Using Python by
Miller, and Ranum.

11 Course website

The course website http://courses.csail.mit.edu/6.006/springl?2/ contains links
to electronic copies of handouts, corrections made to the course materials, and special announce-
ments. You should visit this site regularly to be aware of any changes in the course schedule,
updates to your instructors’ office hours, etc.

12 Extra help

Each TA will post the time and location of his or her office hours on the course website. Of course,
you are also encouraged to ask questions of general interest in lecture or recitation. If you have
questions about the course or problem sets, please mail 6. 006-staff@mit .edu as opposed to
an individual TA or lecturer — there is a greater probability of getting a speedy response.

Extra help may be obtained from the following two resources. The MIT Department of Elec-
trical Engineering and Computer Science provides one-on-one peer assistance in many basic un-
dergraduate Course VI classes. During the first nine weeks of the term, you may request a tutor
who will meet with you for a few hours a week to aid in your understanding of course material.
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You and your tutor arrange the hours that you meet, for your mutual convenience. This is a free
service. More information is available on the HKN web page:

http://hkn.mit.edu/act-tutoring.html.

Tutoring is also available from the Tutorial Services Room (TSR) sponsored by the Office of
Minority Education. The tutors are undergraduate and graduate students, and all tutoring sessions
take place in the TSR (Room 12-124) or the nearby classrooms. For further information, go to

http://web.mit.edu/tsr/www.

13 Guide in writing up homework

You should be as clear and precise as possible in your write-up of solutions. Understandability
of your answer is as desirable as correctness, because communication of technical material is an
important skill.

A simple, direct analysis is worth more points than a convoluted one, both because it is simpler
and less prone to error and because it is easier to read and understand.

You will often be called upon to “give an algorithm” to solve a certain problem. Your write-up
should take the form of a short essay. A topic paragraph should summarize the problem you are
solving and what your results are. The body of your essay should provide the following:

1. A description of the algorithm in English and, if helpful, pseudocode.

2. Atleast one worked example or diagram to show more precisely how your algorithm works.
3. A proof (or indication) of the correctness of the algorithm.

4. An analysis of the running time of the algorithm.

Remember, your goal is to communicate. Graders will be instructed to take off points for
convoluted and obtuse descriptions.

This course has great material, so HAVE FUN!
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14 Key Dates

For the details on the schedule, please refer to the calendar on the course website.



6.006 calendar Spring 2012

Tue Feb 7, 2012

11am - 12pm Lecture 1 - Intro

| Calendar: 6.006 calendar Spring 2012
| Created by: konstantinos.daskalakis@gmail.com

Thu Feb 9, 2012

All day pset 1 out
Thu Feb 9, 2012 - Fri Feb 10, 2012

Calendar: 6.006 calendar Spring 2012
Created by: konstantinos.daskalakis@gmail.com

11am - 12pm Lecture 2 - Divide & Conquer, Peak Finding
Calendar: 6.006 calendar Spring 2012
Created by: konstantinos.daskalakis@gmail.com

Tue Feb 14, 2012

11am - 12pm Lecture 3 - Binary Search Trees
' Where: 32-123
Calendar: 6.006 calendar Spring 2012
Created by: rafaeloliveira.mit@gmail.com

Wed Feb 15, 2012

10am - 11am Recitation with Shaunak
| Where: 36-153
i Calendar: 6.006 calendar Spring 2012
' Created by: rafaeloliveira.mit@gmail.com

11am - 12pm Recitation with Shaunak
Where: 36-153

Calendar: 6.006 calendar Spring 2012
Created by: rafaeloliveira.mit@gmail.com

12pm - 1pm Recitation with Alan
Where: 34-302

Calendar: 6.006 calendar Spring 2012
Created by: rafaeloliveira.mit@gmail.com

1pm - 2pm Recitation with Jeff
| Where: 34-302
| Calendar: 6.006 calendar Spring 2012
| Created by: rafaeloliveira.mit@gmail.com

2pm - 3pm Recitation with Rafael
Where: 36-156
' Calendar: 6.006 calendar Spring 2012
| Created by: rafaeloliveira.mit@gmail.com

3pm - 4pm Recitation with Dragos
{Where: 36-153
| Calendar: 6.006 calendar Spring 2012
| Created by: rafaeloliveira.mit@gmail.com
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3pm - 4pm Recitation with Rafael

'Where: 36-156
| Calendar: 6.006 calendar Spring 2012
' Created by: rafaeloliveira.mit@gmail.com

Thu Feb 16, 2012

11am - 12pm Lecture 4 - Balanced Binary Search Trees

| Where: 32-123
| Calendar: 6.006 calendar Spring 2012
| Created by: rafaeloliveira.mit@gmail.com

Fri Feb 17, 2012

10am - 11am Recitation with Shaunak
Where: 36-153

Calendar: 6.006 calendar Spring 2012
Created by: rafaeloliveira.mit@gmail.com

11am - 12pm Recitation with Shaunak

Where: 36-153
Calendar: 6.006 calendar Spring 2012
Created by: rafaeloliveira.mit@gmail.com

12pm - 1pm Recitation with Alan
'Where: 34-302
' Calendar: 6.006 calendar Spring 2012
| Created by: rafaeloliveira.mit@gmail.com

1pm - 2pm Recitation with Jeff
'Where: 34-302
' Calendar: 6.006 calendar Spring 2012
| Created by: rafaeloliveira.mit@gmail.com

2pm - 3pm Recitation with Rafael
Where: 36-156
 Calendar: 6.006 calendar Spring 2012
| Created by: rafaeloliveira.mit@gmail.com

3pm - 4pm Recitation with Dragos
'Where: 36-153
| Calendar: 6.006 calendar Spring 2012
| Created by: rafaeloliveira.mit@gmail.com

3pm - 4pm Recitation with Rafael

; Where: 36-156
| Calendar: 6.006 calendar Spring 2012
| Created by: rafaeloliveira.mit@gmail.com

Tue Feb 21, 2012

All day No class, due to Monday Schedule!
Tue Feb 21, 2012 - Wed Feb 22, 2012

| Calendar: 6.006 calendar Spring 2012
| Created by: rafaeloliveira.mit@gmail.com
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Wed Feb 22, 2012

All day Problem set 1 due
Wed Feb 22, 2012 - Thu Feb 23, 2012

Calendar: 6.006 calendar Spring 2012
Created by: rafaeloliveira.mit@gmail.com
Description: At 11:59pm

10am - 4pm Recitations 10-4

Where: 36-153
Calendar: 6.006 calendar Spring 2012
Created by: rafaeloliveira.mit@gmail.com

Thu Feb 23, 2012

All day pset 2 out
Thu Feb 23, 2012 - Fri Feb 24, 2012

Calendar: 6.006 calendar Spring 2012
Created by: konstantinos.daskalakis@gmail.com

11am - 12pm Lecture 5 - Hashing | : Chaining, Hash Functions
Where: 32-123

Calendar: 6.006 calendar Spring 2012

Created by: rafaeloliveira.mit@gmail.com

Fri Feb 24, 2012

10am - 4pm Recitations 10-4
| Where: 36-153
| Calendar: 6.006 calendar Spring 2012
| Created by: rafaeloliveira.mit@gmail.com

Tue Feb 28, 2012

11am - 12pm
| Lecture 6 - Hashing Il : Table Doubling, Rolling Hash of Karp and
| Rabin
;Where:32-123 '
| Calendar: 6.006 calendar Spring 2012

§ Created by: rafaeloliveira.mit@gmail.com
Wed Feb 29, 2012

i10am - 4pm Recitations 10-4
| Where: 36-153
{ Calendar: 6.006 calendar Spring 2012
| Created by: rafaeloliveira.mit@gmail.com

Thu Mar 1, 2012

11am - 12pm Lecture 7 - Hashing Ill : Open Addressing
| Where: 32-123
| Calendar: 6.006 calendar Spring 2012
| Created by: rafaeloliveira.mit@gmail.com
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Fri Mar 2, 2012

10am - 4pm Recitations 10-4
| Where: 36-153
i Calendar: 6.006 calendar Spring 2012
| Created by: rafaeloliveira.mit@gmail.com

Tue Mar 6, 2012

11am - 12pm Lecture 8 - Sorting | : Insertion Sort, Merge Sort, Master Theorem
Where: 32-123
Calendar: 6.006 calendar Spring 2012
| Created by: rafaeloliveira.mit@gmail.com

Wed Mar 7, 2012

All day pset 2 due
Wed Mar 7, 2012 - Thu Mar 8, 2012

Calendar: 6.006 calendar Spring 2012
Created by: konstantinos.daskalakis@gmail.com

10am - 4pm Recitations 10-4

Where: 36-153

Calendar: 6.006 calendar Spring 2012
Created by: rafaeloliveira.mit@gmail.com

Thu Mar 8, 2012

All day pset 3 out
| Thu Mar 8, 2012 - Fri Mar 9, 2012

 Calendar: 6.006 calendar Spring 2012
| Created by: konstantinos.daskalakis@gmail.com

11am - 12pm Lecture 9 - Sorting Il : Heaps, Heapsort
| Where: 32-123
| Calendar: 6.006 calendar Spring 2012
| Created by: rafaeloliveira.mit@gmail.com

Fri Mar 9, 2012

All day ADD DATE!
| Fri Mar 9, 2012 - Sat Mar 10, 2012

| Calendar: 6.006 calendar Spring 2012
| Created by: rafaeloliveira.mit@gmail.com

10am - 4pm Recitations 10-4
| Where: 36-153
| Calendar: 6.006 calendar Spring 2012
| Created by: rafaeloliveira.mit@gmail.com

Tue Mar 13, 2012

11am - 12pm Lecture 10 - Sorting lll: Lower Bounds, Counting Sort, Radix Sort
| Where: 32-123
| Calendar: 6.006 calendar Spring 2012
| Created by: rafaeloliveira.mit@gmail.com
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Wed Mar 14, 2012

10am - 4pm Recitations 10-4
Where: 36-153

Calendar: 6.006 calendar Spring 2012
Created by: rafaeloliveira.mit@gmail.com

7:30pm - 9:30pm Quiz 1

Where: 32-123

Calendar: 6.006 calendar Spring 2012

Created by: konstantinos.daskalakis@gmail.com

Thu Mar 15, 2012

11am - 12pm Lecture 11 - Searching |I: Graph Search and Representations
' Where: 32-123
Calendar: 6.006 calendar Spring 2012
Created by: rafaeloliveira.mit@gmail.com

Fri Mar 16, 2012

10am - 4pm Recitations 10-4

| Where: 36-153
| Calendar: 6.006 calendar Spring 2012
| Created by: rafaeloliveira.mit@gmail.com

Tue Mar 20, 2012

11am - 12pm
Lecture 12 - Searching Il: Breadth-First Search and Depth-First
lSearch

'Where: 32-123
| Calendar: 6.006 calendar Spring 2012
| Created by: rafaeloliveira.mit@gmail.com

Wed Mar 21, 2012

All day pset 3 due
Wed Mar 21, 2012 - Thu Mar 22, 2012

Calendar: 6.006 calendar Spring 2012
| Created by: konstantinos.daskalakis@gmail.com

10am - 4pm Recitations 10-4

Where: 36-153
Calendar: 6.006 calendar Spring 2012
Created by: rafaeloliveira.mit@gmail.com

Thu Mar 22, 2012

All day pset 4 out
| Thu Mar 22, 2012 - Fri Mar 23, 2012

| Calendar: 6.006 calendar Spring 2012
| Created by: konstantinos.daskalakis@gmail.com

11am - 12pm Lecture 13 - Searching lll: Topological Sort
' Where: 32-123
' Calendar: 6.006 calendar Spring 2012
' Created by: rafaeloliveira.mit@gmail.com
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Fri Mar 23, 2012

10am - 4pm Recitations 10-4

| Where: 36-153
| Calendar: 6.006 calendar Spring 2012
| Created by: rafaeloliveira.mit@gmail.com

Mon Mar 26, 2012

All day Spring Break! NO CLASS!
| Mon Mar 26, 2012 - Tue Mar 27, 2012

| Calendar: 6.006 calendar Spring 2012
Created by: rafaeloliveira.mit@gmail.com

Tue Mar 27, 2012

All day Spring Break! NO CLASS!
E Tue Mar 27, 2012 - Wed Mar 28, 2012

E Calendar: 6.006 calendar Spring 2012
| Created by: rafaeloliveira.mit@gmail.com

Wed Mar 28, 2012

All day Spring Break! NO CLASS!
Wed Mar 28, 2012 - Thu Mar 29, 2012

' Calendar: 6.006 calendar Spring 2012
| Created by: rafaeloliveira.mit@gmail.com

Thu Mar 29, 2012

All day Spring Break! NO CLASS!
| Thu Mar 29, 2012 - Fri Mar 30, 2012
' Calendar: 6.006 calendar Spring 2012
| Created by: rafaeloliveira.mit@gmail.com

Fri Mar 30, 2012

All day Spring Break! NO CLASS!
| Fri Mar 30, 2012 - Sat Mar 31, 2012

| Calendar: 6.006 calendar Spring 2012
| Created by: rafaeloliveira.mit@gmail.com

Tue Apr 3, 2012

11am - 12pm Lecture 14 - Shortest Paths I: Intro
|Where: 32-123
 Calendar: 6.006 calendar Spring 2012
| Created by: rafaeloliveira.mit@gmail.com

Wed Apr 4, 2012

All day pset 4 due
' Wed Apr 4, 2012 - Thu Apr 5, 2012

| Calendar: 6.006 calendar Spring 2012
| Created by: konstantinos.daskalakis@gmail.com
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10am - 4pm Recitations 10-4
' Where: 36-153
§ Calendar: 6.006 calendar Spring 2012
| Created by: rafaeloliveira.mit@gmail.com

Thu Apr 5, 2012

All day pset 5 out
Thu Apr 5, 2012 - Fri Apr 6, 2012

Calendar: 6.006 calendar Spring 2012
Created by: konstantinos.daskalakis@gmail.com

11am - 12pm Lecture 15 - Shortest Paths |i: Bellman-Ford
Where: 32-123

Calendar: 6.006 calendar Spring 2012

Created by: rafaeloliveira.mit@gmail.com

Fri Apr 6, 2012

10am - 4pm Recitations 10-4

| Where: 36-153
' Calendar: 6.006 calendar Spring 2012
| Created by: rafaeloliveira.mit@gmail.com

Tue Apr 10, 2012

11am - 12pm Lecture 16 - Shortest Paths lll: Bellman-Ford on DAGs and Dijkstra
| Where: 32-123
| Calendar: 6.006 calendar Spring 2012
§ Created by: rafaeloliveira.mit@gmail.com

Wed Apr 11, 2012

10am - 4pm Recitations 10-4
EWhere: 36-153
' Calendar: 6.006 calendar Spring 2012
| Created by: rafaeloliveira.mit@gmail.com

Thu Apr 12, 2012

11am - 12pm Lecture 17 - Shortest Paths IV: Speeding Up Dijkstra
'Where: 32-123
| Calendar: 6.006 calendar Spring 2012
| Created by: rafaeloliveira.mit@gmail.com

Fri Apr 13, 2012

10am - 4pm Recitations 10-4
| Where: 36-153
§ Calendar: 6.006 calendar Spring 2012
| Created by: rafaeloliveira.mit@gmail.com

Tue Apr 17, 2012

All day NO CLASS {Patriot's day)
| Tue Apr 17, 2012 - Wed Apr 18, 2012
Calendar: 6.006 calendar Spring 2012
| Created by: rafaeloliveira.mit@gmail.com
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Wed Apr 18, 2012

All day pset 5 due
Wed Apr 18, 2012 - Thu Apr 19, 2012

Calendar: 6.006 calendar Spring 2012
Created by: konstantinos.daskalakis@gmail.com

10am - 4pm Recitations 10-4

Where: 36-153
Calendar: 6.006 calendar Spring 2012
Created by: rafaeloliveira.mit@gmail.com

Thu Apr 19, 2012

All day pset 6 out
Thu Apr 19, 2012 - Fri Apr 20, 2012

Calendar: 6.006 calendar Spring 2012
Created by: konstantinos.daskalakis@gmail.com

11am - 12pm Lecture 18 - Dynamic Programming |

Calendar: 6.006 calendar Spring 2012
Created by: rafaeloliveira.mit@gmail.com

Fri Apr 20, 2012

10am - 4pm Recitations 10-4
| Where: 36-153

i

i Calendar: 6.006 calendar Spring 2012
| Created by: rafaeloliveira.mit@gmail.com

Tue Apr 24, 2012

11am - 12pm Lecture 19 - Dynamic Programming Il

} Calendar: 6.006 calendar Spring 2012
| Created by: rafaeloliveira.mit@gmail.com

Wed Apr 25, 2012

10am - 4pm Recitations 10-4

Where: 36-153
Calendar: 6.006 calendar Spring 2012
Created by: rafaeloliveira.mit@gmail.com

7:30pm - 9:30pm quiz 2
Calendar: 6.006 calendar Spring 2012
Created by: konstantinos.daskalakis@gmail.com

Thu Apr 26, 2012

All day DROP DATE!!!
' Thu Apr 26, 2012 - Fri Apr 27, 2012
; Calendar: 6.006 calendar Spring 2012
| Created by: rafaeloliveira.mit@gmail.com

11am - 12pm Lecture 20 - Dynamic Programming Il|

' Calendar: 6.006 calendar Spring 2012
. Created by: rafaeloliveira.mit@gmail.com
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Fri Apr 27, 2012

10am - 4pm Recitations 10-4

| Where: 36-153
| Calendar: 6.006 calendar Spring 2012
| Created by: rafaeloliveira.mit@gmail.com

Tue May 1, 2012

11am - 12pm Lecture 21 - Dynamic Programming IV

Calendar: 6.006 calendar Spring 2012
Created by: rafaeloliveira.mit@gmail.com

Wed May 2, 2012

All day pset 6 due

Wed May 2, 2012 - Thu May 3, 2012

Calendar: 6.006 calendar Spring 2012

Created by: konstantinos.daskalakis@gmail.com

10am - 4pm Recitations 10-4

Where: 36-153
Calendar: 6.006 calendar Spring 2012
Created by: rafaeloliveira.mit@gmail.com

Thu May 3, 2012

11am - 12pm Lecture 22 - NP Completeness

| Calendar: 6.006 calendar Spring 2012
| Created by: rafaeloliveira.mit@gmail.com

Fri May 4, 2012

10am - 4pm Recitations 10-4

| Where: 36-153
' Calendar: 6.006 calendar Spring 2012
i Created by: rafaeloliveira.mit@gmail.com

Tue May 8, 2012

11am - 12pm Leciure 23 - Numerics |

' Calendar: 6.006 calendar Spring 2012
| Created by: rafaeloliveira.mit@gmail.com

Wed May 9, 2012

10am - 4pm Recitations 10-4

' Where: 36-153
i Calendar: 6.006 calendar Spring 2012
5 Created by: rafaeloliveira.mit@gmail.com

Thu May 10, 2012

11am - 12pm Lecture 24 - Numerics li

' Calendar: 6.006 calendar Spring 2012
| Created by: rafaeloliveira.mit@gmail.com
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Fri May 11, 2012

10am - 4pm Recitations 10-4

| Where: 36-153
| Calendar: 6.006 calendar Spring 2012
| Created by: rafaeloliveira.mit@gmail.com

Tue May 15, 2012

11am - 12pm Lecture 25 - Crypto

Calendar: 6.006 calendar Spring 2012
Created by: rafaeloliveira.mit@gmail.com

Wed May 16, 2012

10am - 4pm Recitations 10-4

| Where: 36-153
| Calendar: 6.006 calendar Spring 2012
| Created by: rafaeloliveira.mit@gmail.com

Thu May 17, 2012

All day Last day of classes!
3 Thu May 17, 2012 - Fri May 18, 2012

‘ Calendar: 6.006 calendar Spring 2012
| Created by: rafaeloliveira.mit@gmail.com

11am - 12pm Lecture 26 - Surfing

| Calendar: 6.006 calendar Spring 2012
| Created by: rafaeloliveira.mit@gmail.com
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6.006-Introduction to Algorithms

' ................ ~
AORBLG L R EEY

Lecture 1
Prof. Costis Daskalakis

“Al-go-rithms”: what?

Nothing to do with Log-arithms ©

Def: A well-specified method for solving a
problem using a finite sequence of instructions.

Description might be English, Pseudocode, or
real code

Key: no ambiguity

Today’s Menu

Motivation

Course Overview

Administrivia

Linked Lists and Document Distance
Intro to “Peak Finding”

Al-Khwarizmi (780-850)

7,/7

\ Bjn)rﬁ ) ‘l



Efficient Algorithms: Why?

 Solving problems consumes resources that are
often limited/valuable:

— Time: Plan a flight path
— Space: Process stream of astronomical data
— Energy: Save money

* Bigger problems consume more resources

* Need algorithms that “scale” to large inputs, e.g.
searching the web...

» Market value: 6.006 is useful in all kinds of job
interviews ;-)

Class Content

8 modules with motivating problem/pset

Linked Data Structures: Document Distance/
Flight Planning

Divide & Conquer: Peak Finding

Hashing: Efficient File Update/Synchronization
Sorting

Graph Search: Rubik’s Cube

Shortest Paths: Google Maps

Dynamic Programming: print justification
Wildcard: numerical/NP-hardness/crypto

Efficient Algorithms: How?

Define problem:

— Unambiguous description of desired result
Abstract irrelevant detail

— “Assume the cow is a sphere”

Pull techniques from the “algorithmic toolbox”
— [CLRS] class textbook

Implement and evaluate performance

— Revise probleny/abstraction

Generalize

— Algorithm to apply to broad class of problems

Administrivia
Course information: class website
Profs: Costis Daskalakis, Silvio Micali

TAs: Deckelbaum, Ionescu, Kishore, Oliveira, Wu
Sign-up to the homework submission website:

https://alg.csail.mit.edu (same as https://sec.csail.mit.edu/)

Piazza: online discussion
Preregs: 6.01, 6.042 (if you don’t have them, talk to us)
Python

Grading: Problem sets (30%)
Quizl (March 14 (?): 7.30-9.30pm; 20%)
Quiz2( April 18 (?): 7.30-9.30pm; 20%)
Exam (30%)

Read collaboration policy!



Document Distance Problem Definition

 Given 2 documents, how similar are they? * Need unambiguous definition of similarity
—if one “document ” is a query, this is web search « Word: sequence of alpha characters
— if the two documents are homework submissions, — Ignore punctuation, formatting

can detect plagiarism
» Document: sequence of words

¢ Goal: algorithm to compute similarity * Word ﬁeQPenCIGSI
D(w) is number of occurences of w in D

» Similarity based on amount of word overlap

Vector Space Model Vector Space Model

* [Salton, Wong, Yang 1975]

» Solution: Normalization

 Treat each doc as a vector of its words — divide by the length of the vectors
— one coordinate per word of the English dictionary _thoels
'dog’ [[D1]] - || D2]|

€&  docl = “the cat”
doc2 = “the dog”

~ measure distance by angle:

0(Dy, Dy) = acos ( D1 o Dy )

— similarity by dot-product the’ | D1]] - || D]

Dl o] Dg = ZDl('w) ¥ Dg(’w)

Loat e.g. 6=0 documents “identical”
— ¢ e i it Aledn =1 (if of the same size, permutations of each other)
— {rouble: not scale mmvarian =

documents “the the cat cat” and “the the dog dog’
will appear closer than docl and doc2

’

0=m/2 not even share a word



Algorithm

Read file
Make word list (divide file into words)
Count frequencies of words

Suppose each document has been processed into a list
of distinct words with their frequencies

Compute dot product

— for every word in the first document, check if it appears in
the other document; if yes, multiply their frequencies and
add to the dot product

« worst case time: order of #words(D,) x #words(D,)

— micro-optimization:

= sort documents into word order (alphabetically)

+ after having sorted, can compute inner product in time
#words(D,) + #words(D.)

Inputs:

Jules Verne: 25K
Bobbsey Twins: 268K
Francis Bacon: 324K
Lewis and Clark: IM
Shakespeare: 5.5M
Churchill: 10M

Python Implementation

+ Docdistl.py (on course website)
* Read file: read_file(filename)
— Output: list of lines (strings)
» Make word list: get words_from_line list(L)
— Output: list of words (array)
+ Count frequencies: count_frequency(word list)
— Output: list of word-frequency pairs
* Sort into word order: insertion_sort()
— Output: sorted list of pairs
* Dot product: inner_product(D1, D2)
— Output: number

Profiling (docdist2.py)

* Tells how much time spent in each routine
— import profile
— profile.run(“main()”)
* One line per routine reports
1. #calls
2. #total time excluding subroutine calls
3. Time per call (#2/#1)
4. Cumulative time, including subroutines
5. Cumulative per call (#4/#1)



v auk:=/Class/6006 ectvies/I01£

f”ﬂ\ﬂMWbﬂiiﬂﬂTﬂM

DARAD AN BRI FEY @ B

docdist1.py - C:\Documents and Settings\David\My Doc... Q@

i..t.-.vammmm.umn x|

ti.verne, txt td,arabian, tat /. termi[T{on. txt ~ "

2. bobsey. TxT tS.churchill.txx t8. shakespeare. txt 3 EIB dit Format un quons ﬁh\dows ﬂﬁb
t3,1wis¥txt 14, onemill{on, tut t9. bacon. gxt E’ &

auk:101> python sourc-/docdistz y data/t2.bobsey.txr datasri, lewls. txt
File dnl:a/t2 bobsey.txt : 6667 11nes, 49785 words, 3334 distinct words
File datast3. Tewls. tat : 15996 1ines, 182335 words, B330 distinct words
The distance between the documents 151 0.574160 (radians)

3861660 function calls 1n ©4.738 CPU seconds

HHBREHBHHBERRBBBHBHERERBRBRBHBRERUNABR R RS EE R HE
# Operation 2: split the text lines into words ##
HHEBHBHHARARBHBBEE S HERERBBBHGRHBRABRBHRBHHHERERE
def get_words_from line list(L):

teerer

ordered by: standard name
ncalls tottime percall
1 0.000 0.000

cumt ime per'caﬂ f1‘|ename Tinena{function)
0,000 0.0 a3

1241849 4.320 0.000 4.3
4.4
0.7
1.3

00

20 0.000 0 lppend)

2432 0,000 :0(isalnum)
72 0.000 :0 101n)
:0(len)

1300248 4.432 0. 000
232140 0.772 0.000
368314 1.300 0.000

=1

Parge the given list L of text lines into words.

A Gl S8 tua  ads laown Recurn list of all words found.

z 0000 0.000  0.000  0.000 10 apan)
2 0,000 0,000 0.000  0.000 ange)
2 0.008 0,004 0.008 0.004 o rn Tines) L L
1 0.000 0.000 0.000 0.000 0 supruﬂ le)
1 0.000 0.000 0,000 990 :0(sqrt
% !2 966 13?3; ?:;%g ?.;’ RZB’ ;;:ih;g) :vff’i'g‘;“z;ﬂg: fregquency) .
2 7 4,800 0,781 4.890 docdist2.py: 122§ﬁns.rt'.onn'snr word list = []
2 0.000 0.000 94,438 47,219 docdist2.pyi144(word_frequencies_for_ file - = 5
) for line in L:
Wt e 15 Five = -
; 0:88; 3:833 932333 8173 docases! 14 et 9 words_in_line get_vor rom_string(line)
peﬂzg:gga “:381 32%33 33 %gg gxg::b s; g; ;:: wrg,)srm qm: 13“) 'U'OI".'d_l ist = word____lisl: + wurds_in_line
2 2.4 . rom_strin
Tl 000 0.000 94,738  94.736 profile: o?{un 35‘ i AELIN return word list
0 0.000 0.000 of{1e:0(profiler) —
232140 1.424 0.000 2.1B4 0.000 string.py: 1EE‘ic~er) -~
232140 1.396  0.000  2.168  0.000 string.py:306(join)
li.ru 130|Col: 18
auk:lol> N g
Ready ssh2: AES-256 41, 10 41 Rows, 67 Cols  VTI00 CAP  hasd 7
W ’s with +? Soluti
hat’s wi . oation
L=L1+L2 is concatenation of arrays » word_list.extend(words_in_line) : appends list
113 H ¥ EE] s [ L 1
Take L1 and L2 named “words_in_line” to list named “word_list

Copy to a bigger array  Takes time proportional to length of list

Time proportional to sum of lengths words_in_line

Suppose n single-word lines * Total time in example of n single-word lines: ©(n)

Time 1+2+...+n = n(n+1)/2 = O(n?) * resulting improvement:

— get words_from_line_list 2352>0.12s



Further Improvements Next time: Peak Finding

Docdist4.py: count frequencies of words using
dictionary: total to 42s

5.py: Process words instead of chars: to 17s

6.py: merge sort instead of insertion sort: 6s

7.py: remove sorting altogether and use dictionary s N P
(again) for inner product: 0.5s X Ladiven 2L

* Overall improvement from 94 s to 0.5 s. * nx ntable of numbers (heights of points)

i : A * Find int that is bi than its neighb
+ This is the equivalent of 12 years of progress in R R R

: . - = * i.e. a local maximum
32;(;:;%;6 (if Moore’s law still held, which 1t « can do this by querying O(»?) locations of table

» faster?
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6.006 Intro to Algorithms Recitation 01 February 2, 2011

Asymptotic analysis

Asymptotic analysis or “big O” notation is a way of describing the growth of the runtime of an
algorithm without without having to worry about different computers, compilers, or implementa-
tions.

For functions f(n), g(n), O(g(n)) is a class of functions such that f(n) € O(g(n)) if there
exist M, zy such that

|f(n)] < M - |g(n)| forall z > x.
Similarly, f(n) € Q(g(n)) if there exist M, zq such that

|f(n)| > M -|g(n)| forall z > .
If f(n) € O(g(n)) and f(n) € Q(g(n)), then we write f(n) € ©(g(n)).

// 100 By .. g
oo / “r //// |
7
600 - 400 | /
X /,-/ / e X
400 /
~%2/750 .
T =__ _ (:g?) M=___,xg=___ ()
f= ... (log 5] M=___,z9g=___ (2)
120000 | f wiiL 2AX / 10"“1 2
- / | 800000 P
80000 / i
// - 00008 |- I
o | x"3 // ol I
‘::: : 3 i 200000 [ XAS /f‘:"
_emniomg T T

o 10 20 30 0 s0 [ 10 20 30 40 s0 60

=___ (29 M=___,zo=___ (3)



6.006 Intro to Algorithms Recitation 01 February 2, 2011

Python

This class uses Python 2.6. Do not use Python 3. If you’re not familiar with Python, there are
numerous resources available on the Internet:

e Python tutorial: http://docs.python.org/tutorial/
e Python libraries: http://docs.python.org/library/

e 6.006 resources page: http://courses.csail.mit.edu/6.006/springll/resources.
shtml

Docdist code samples

Insertion sort

def insertion_sort (A):
for j in range (len(A)):
key = A[]]
# insert A[Jj] into sorted sequence A[0..j-1]
i=j-1
while i>-1 and A[i]>key:
A[i+1l] = A[i]
i = 1i-1
A[i+l] = key
return A

Count frequency

def count_frequency(word_list):

nmnnmn

Return a list giving pairs of form: (word, frequency)

L =[]
for new_word in word_list:
for entry in L:

if new_word == entry[0]:
entry[l] = entry[l] + 1
break

else:

L.append([new_word,1])
return L



6.006 Intro to Algorithms Recitation 01 February 2, 2011

Improved count frequency

def count_frequency(word_list):

nnn

Return a dictionary mapping words to frequency.
nnn

= I}
for new_word in word_list:
if new_word in D:
D[new_word] = D[new_word]+1
else:
D[new_word] = 1
return D

Get words from line list

def get_words_from_ line_list (L):

Parse the given list L of text lines into words.

Return list of all words found.

word_list = []

for line in L:
words_in_line = get_words_from_string(line)
word_list = word_list + words_in_line

return word_list

Improved get words from line list

def get_words_from_line_list (L):

mnn

Parse the given list L of text lines into words.

Return list of all words found.

nman

word_list = []

for line in L:
words_in_line = get_words_from_string(line)
word_list.extend (words_in_line)

return word_list



6.006 Intro to Algorithms Recitation 01 February 2, 2011

Inner product

def inner_product (L1,L2):
nmnn
Inner product between two vectors, where vectors
are represented as alphabetically sorted (word,freq) pairs.
Example: inner_product (
[Lan" 3] ; LMt 20 ["EREY ;511 :
[["and", 4], ["in",1], ["of",1], ["this",2]]) = 14.0

nnn

sum = 0.0
i=20
3 =20

while i<len(Ll) and j<len(L2):
# L1[i:] and L2[]j:] yet to be processed
if L1[i][0] == L2[]j]1[0]:
# both vectors have this word
LI[i][1] = L2([j]1[1]

elif L1[1i]1[0] < L2[3j][0]:
# word L1[i][0] is in L1 but not L2

i +=1

else:
# word L2[j][0] is in L2 but not L1
j 4= 1

return sum

Improved inner product

def inner_product (D1,D2):
nnmn
Inner product between two vectors, where vectors
are represented as dictionaries of (word, freq) pairs.
Example: inner_product (
{mand":3; "ot 12;"the":5};
{"and":4,"in":1,"0f":1,"this":2}) = 14.0
mmwn
sum = 0.0
for key in D1:
if key in D2:
sum += D1l[key] * D2[key]
return sum
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6.006- Introduction to
Algorithms

Aicia

ALGORITHMS

Lecture 2
Prof. Silvio Micali

Peak Finding: 1D

Consider an array A&[l = .f] : !

b 5ils s e

Element A[i] is a peak if not smaller than its neighbor(s).

ifi # 1, n: A[i]>A[i-1] and A[i]>A[i+1]
Ifi=1: A[l] > A[2]
Ifi=n: A[n] > A[n-1]

Problem: find any peak.

Menu

Problem: peak finding
1 dimension

2 dimensions

Technique: Divide and conquer

Peak-Finding Ideas ?

Algorithm I:
Scan the array from left to right
Compare each A[i] with its neighbors
Exit when found a peak
Complexity:
Might need to scan all elements, so T(n)=G(n)



Next Idea

Algorithm II: R e

Compare middle element with neighbors
If A[n/2-1]>A[n/2]
then search for a peak among A[1]... A[n/2-1]
Else, if A[n/2]<A[n/2+1]
then search for a peak among A[n/2]... A[n]
Else A[n/2] is a peak!

Running time ?

Algorithm II: Complexity

Time needed to find
peak in array of length n

/
T(n) = T(0/2) + O(1)

+ Unraveling the recursion,
T(n)= @(1) +8() ot @)(9 = B(log n)

IY
og, n

 log n is much much better thann !

Time for comparing A

P We have / Recursion [n/2] with ncighbors

Algorithm II: Complexity

Divide and Conquer

« Very powerful design tool:
— Divide input into multiple disjoint parts

— Conguer each of the parts separately
(using recursive call)

 Occasionally, we need to combine results
from different calls (not used here)



Peak Finding: 2D

Consider a 2D array A[1...n, 1...m] :

1

loRs 5
500 L
s
6s 3

Ali] is a 2D peak if not smaller than its (at most 4) neighbors.

Problem: find any 2D peak.

Algorithm I:
recycle better 1D algorithm
Return
. I ]
For each column j, find its global maximum FU] 12 8 5
Apply 1D peak finder to find a peak (say B[j]) of B[1...m]
L5 (o)

COTTeCtiess: .. w 9| 2
Complexity: ©(n-m) m

“Map it 121 o 6

back” oz

Recycling 1s an art. ..

2D-Peak-Finding Ideas?
&
® ¢
e
Algorithm 0:

For each row, until you find a peak:
1. find a row-peak
2. compare it with North- and South-neighbors
3. If >, then done

(')

Algorithm I’: use the 1D algorithm

« Recall: 1D peak finder uses only

O(log m) entries of B 120 808
« Modify Algorithm I so that it only i 36
computes B[j] when needed ! e
« Total time ?
' S led bl
...only O(n log m) !
— Need O(log m) entries B[j] 2 2 6

— Each computed in O(n) time



Algorithm 11

Pick middle column ( j=m/2 ) i
« Find global maximum a=A[i,m/2] in that column
(and quit if m=1)
»  Compare a to b=A[i,m/2-1] and c=A[i,m/2+1]
+ Ifb>a
then recurse on left columns
Else, if c>a

» Pick middle column ( j=m/2)
+ Find global maximum a=A[i,m/2] in that column

then recurse on right columns
+ Elseaisa?2D peak!

Algorithm II: Correctness

Claim: If b>a, then there is a peak among the

left columns
e i 12485
gil'gi]ue Pvr;]llils; have a neighbor b1 with 1=L1 3 6
ﬁ;ﬁglvﬁﬂf have a neighbor b2 with ] 00* = 9 . 9.
81411

We have to stay on the left side — why?

(because we cannot enter the middle
column)

But at some point, we would run out the
elements of the left columns

Hence, we have to find a peak at some
point.

Question: Does the above claim suffice for the
proof of correctness of the algorithm?

Algorithm II: Example

(and quit if m=1)

Compare a to b=A[i,m/2-1] and c=A[i,m/2+1]
If b>a

then recurse on left columns

1= D | Oy [N

« Else, ifc>a

then recurse on right columns
Else a is a 2D peak!

Algorithm II: Complexity

Recursion

* We have
T(n,m)= T(n,m/2) + G(n)

Scanning middle column
* Hence:

e T(n,n)= G(n) + G(n) +...+ G(n) = B(nlog m)
L9 J

10,;2@1



Faster than O(n log n) ?

* Jdea:

Reading only O(n + m) elements, reduce an array of
n x m candidates to an array of n/2 x m/2 candidates

* Pictorially:

read only O(n +m) elements

Towards a linear-time algorithm

What elements are useful to check?

- suppose we find global
max on the cross

Faster than O(n log n) ?

» Hypothetical algorithm has recursion:

n m

T(n,m):T(E,E

) +0(n+m)

« Hence: T(n,m)z@(n+m)+@(n+m)

2

n-+m

+@( - )

+...+0(1)
=O(n+m) !

Towards a linear-time algorithm

What elements are useful to check?

- suppose we find global
max on the cross

- 1f middle element done!




First Problem Set

Towards a linear-time algorithm
& Out Today !
What elements are useful to check?

- find global max on the » Refer to class website for further information!
CIoss

? - if middle element done!

: - 0.w. two candidate sub- * Good Luck!

squares
- determine which one to

? pick by looking at its ® I-e-: GOOD WORK!
neighbors not on the cross
(as in Algorithm IT)

Claim: The sub-square chosen by the above procedure (if any), always
contains a peak of the large square.

OK, what else is needed for an O(n+m) algorithm?
Hmmm...
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6.006 Intro to Algorithms Recitation 02 February 4, 2011

1D Peak Finding

Objective

Given an array A with n elements, find the index 7 of the peak element A[:] where A[i] > Afi — 1]
and A[i] > A[i + 1]. For elements on the boundaries of the array, the element only needs to be
greater than or equal to its lone neighbor to be considered a peak. Or, say A[—1] = A[n] = co.

Algorithm
Given an array A with n elements:
o Take the middle element of A, A[%], and compare that element to its neighbors

e If the middle element is greater than or equal to its neighbors, then by definition, that element
is a peak element. Return its index 7.

e Else, if the element to the left is greater than the middle element, then recurse and use this
algorithm on the left half of the array, not including the middle element.

e Else, the element to the right must be greater than the middle element. Recurse and use this
algorithm on the right half of the array, not including the middle element.

Runtime Analysis

When we recurse, we reduce size n array into size § array in O(1) time (comparison of middle
element to neighbors). Show recursion in the form of “Runtime of original problem” =“Runtime
of reduced problem” + “Time taken to reduce problem”. Then use substitution to keep reducing
the recursion.
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T(n)=T(g)+c (1)
T(n) =T(§) tete 2)
T(n)=T(%)+c+c+c 3)
T(n) = T(;—k) +ck @)
Substitute k& = log, )
T(n) = T(ZIO%) + clog,n (6)
=T(1) +clogyn (7)
= O(logn) (8)
2D Peak Finding
Objective

Given an nxn matrix M, find the indices of a peak element M [i][j] where the element is greater
than or equal to its neighbors, M[i + 1][j], M [¢ — 1][5], M [¢][j + 1], and M [i][j — 1]. For elements
on the boundaries of the matrix, the element only needs to be greater than or equal to the neighbors
it has to be considered a peak.

Algorithm

Given an nxn matrix M:

e Take the ”"window frame” formed by the first, middle, and last row, and first, middle, and
last column. Find a maximum element of these 6n elements, g = M 4][7].

o If g is greater than or equal to its neighbors, then by definition, that element is a peak element.
Return its indices (7, 7).

e Else, there’s an element that neighbors g that is greater than g. Note that this element can’t
be on the window frame since g is the maximum element on the window frame, thus this
element must be in one of the four quadrants. Recurse and use this algorithm on the matrix
formed by that quadrant (not including any part of the window frame)
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i o
e el

Proof of Correctness

<g i<qg <QI<Q <g]<g1<9

Claim 1: If you recurse on a quadrant, there is indeed a global peak in that quadrant.

Proof: The quadrant we selected contains an element larger than g. Thus we know that the
maximum element in this quadrant must also be larger than g. Since g is the maximum element
surrounding this quadrant, the maximum element in this quadrant must be larger than any element
surrounding this quadrant. This element must be greater than or equal to all of its neighbors since
it is greater than all elements within the quadrant and directly outside of the quadrant, so the max-
imum element in this quadrant must be a global peak.

Claim 2: If you find a peak on the submatrix, then that peak is a global peak.

Proof: The window frame of the submatrix contains an element larger than g. Say m is the
maximum element on the window frame. Since g is the largest element directly surrounding the
submatrix, that means m is larger than all the elements surrounding the submatrix. If mn is a peak
in the submatrix and m is on the boundary, m must be a global peak since it is guaranteed that m
is greater than any neighbors outside the scope of the submatrix. If /n is a peak in the submatrix
and m is not on the boundary, then clearly m is greater than or equal to its four neighbors and thus
is a global peak.

Claim 3: You will always find a peak on the submatrix
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Proof: In the case that we don’t find a peak on the window frame of a matrix, we recurse to
try to find a peak in a strictly smaller matrix. Eventually, if you keep not finding a peak, you will
recurse into a small enough matrix such that the window frame covers the entire matrix (i.e. if the
number of rows and columns are both 3 or below). By claim 1, there is indeed a global peak in
this matrix if we recursed down to it. Since we’re examining the entire matrix, we must find that
global peak.

By claim 2 and claim 3, using this algorithm, we will always find a peak and that peak will be
a global peak.

Runtime Analysis

When we recurse, we reduce nxn matrix into 5x% matrix in O(n) time (finding the maximum of
6n elements). Show recursion in the form of “Runtime of original problem” =“Runtime of reduced
problem” + “Time taken to reduce problem”. Then use substitution to keep reducing the recursion.

T(n) =T(5) +en ©)
T(n) = T(g) + cg +en (10)
n n n
T(n):T(§)+cZ+c§+cn (11)
1R (R
T(n) =T(1)+cn(1+§+ Z+§"‘) (12)

=0(n) (13)
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. _ Overview
6.006- Introduction to Algorithms

¥ e * Runway reservation system:

o ‘ — Definition
ey —How to solve with linked-lists
» Binary Search Trees ®

— Operations o @
« Next time: Balanced Search Trees
Readings: CLRS 10, 12.1-3

http://izismile.com/tags/Gibraltar/

Lecture 3
Prof. Costis Daskalakis

Runway reservation system Runway reservation system

« Example
¢ Problem definition:

— Single (busy) runway

37 41 46 49 56
", : i }—>» time (mins)
now X X X X

Bt

— Reservations for landings

* maintain a set of future landing ti
re landing times _ R=(41, 46, 49, 56)

* a new request to land at time t _ requests for time:

* add t to the set if no other landings are « 44 => reject (46 in R)
scheduled within < 3 minutes from t . 53 =>0k
* when a plane lands, removed from the set * 20 => not allowed (already past)

* Ideas for efficient implementation ? g
I



Proposed algorithm

¢ (keep R as a linked-list)

init: R = [ ]
req(t): if t < now: return “error”
for i in range (len(R)):

if abs(t-R[i]) < 3: return “runway busy"
R.append(t)

» Complexity?
¢ Can we do better?

Binary Search Trees (BSTs)

A tree ...
...where each node x has:

—a key[x]
; P, I3
— three pointers: o @

 left[x] : points to left child
* right[x] : points to right child o e
* p[x] : points to parent
E.g. key[x,]=10 o
lefi[x,]=x,
plx,]=x,
p[x,;]=NIL

Some other options:

» Keep R as a sorted list:

— on request t, it takes linear time to find the right location
in the list where t needs to be inserted
— before inserting t at found location check whether the
numbers on the left and right of the location are <t-3 and

>t+3 respectively

* Keep R as a sorted array:

— takes O(log n) to find the place to insert new t
— but still requires linear time to actually insert (requires

shifting of elements)

Need best of both worlds:

Sfast insertion into sorted list

Binary Search Trees (BSTSs)

* Defining prope
(i.e.fwha n?akelg iftgbinary
SEARCH tree):

+ for any node x:

— for all nodes v in the
left subtree of x:

key[y] <key[x]

— for all nodes y in the
right subtree of x:

key[y] = key[x]

» How are BSTs created?



Growing BSTs BST as a data structure

\y  Supported Operations:
— insert(k): insert de with key k at th
* Insert 10 ;I;l)&;:i'ogargatlg ?gca?igg o?’\t)‘}}lle tre:zy e
e.g. insert
nsert 3 g 2 @ N
* Insert I o
* Insert 6 1 ° e o .
* Insert 7 0 o
BST as a data structure BST as a data structure
 Supported Operations: * Supported Operations:
— insert(k): insert a node with key k at the — find(k): finds the node containing key k (if it exists)

appropriate location of the tree

oot root

\ e.g. insert(37) \ e.g. find(46)
(49, (2)

Aside: Can do the “within 3” check for reservation system
during insertion.



BST as a data structure BST as a data structure

* Supported Operations: * Supported Operations:
— delete(k): delete the node containing key k, if such a node — delete(k): delete the node containing key k, if such a node
exists exists
root root

\( e.g. delete(46) \ e.g. delete(46)

Question: What if we have to delete a node that is internal?
How do we fill in the hole? A: next lecture.

BST as a data structure Next-larger

« Supported Operations:

— insert(k): insert a node with key k at the appropriate next-larger(x):

location of the tree » Ifright[x] # NIL then @
— find(k): finds the node containing key k (if it exists) return findmin(right[x])
— delete(k): delete the node containing key k, if such a node * Otherwise

BRI y < p[x] o @
— findmin(x): finds the minimum of the tree rooted at x i ' =i aht

ile y#NIL and x=right

— deletemin(): finds the minimum of the tree and deletes it B . : 3: ghtly] do Y
— next-larger(x): finds the node containing the key that is Y

the immediate next of key[x] *y < ply] o %

Return y

next-larger(®) = ©®
next-larger(®)



Next-larger

next-larger(x):

» Ifright[x] # NIL then
return findmin(right[x])

« Otherwise

y < p[x]

(10)
] @

While y#NIL and x=right[y] do

ox%y

*y < ply]
Return y

next-larger(®) = ®
next-larger(@)

Back to runway reservation system

« Introducing extra requirements:

e.%. how manly planes are
scheduled to [and at times <t ?

6

(49)
® 3
Augment the BST structure by 2 @ 03

keeping track of size of i
subtrees rooted at all nodes ()

* To figure out how many planes
will land < t:
— Walk down the tree to find where

key t would have been inserted in
the tree...

— ... and for every node where you
forked to the right:

* add 1 + size of subtree on the
left of that node

1 1

€ @

e.g. #planes land < 807
subtree

1T + 2 + 1 4+ 1

69

@

=5

subtree

e.g. #planes land <757

A4

* QOtherwise

Next-larger

next-larger(x): g
o Ifright[x] # NIL then @

return findmin(right[x])

y < p[x] X @

While y#NIL and x=right[y] do ° o

-x(—-—y

*y < ply]
Return y

next-larger(®) = ©
next-larger(®) = @

Analysis

We have seen insertion,
deletion, search, findmin, etc.

How much time does any of
this take ?

Worst case: O(height)
=> height really important

After we insert n elements,
what is the worst possible BST
height ?



Analysis

°

®

°

L]

n-1

so, still O(n) for the runway
reservation system operations

Next lecture: balanced BSTs

Readings: CLRS 13.1-2

Hw: notice correction in question
4: a >’ was turned to a ‘>’
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6.006 Intro to Algorithms Recitation 03 February 9, 2011

Binary Search Tree

A binary search tree is a data structure that allows for key lookup, insertion, and deletion. It is a
binary tree, meaning every node of the tree has at most two child nodes, a left child and a right
child. Each node of the tree holds the following information:

e 1x.key - Value stored in node x
e z.left- Pointer to the left child of node x. NIL if = has no left child
e z.right - Pointer to the right child of node z. NIL if = has no right child

e z.parent - Pointer to the parent node of node z. NIL if z has no parent, i.e. z is the root of
the tree

4

x.parent [oxp. ]
{ ey |

Later on this week, we will learn about binary search trees that holds data in addition to the
four listed above but for now we will focus on the vanilla binary search tree.

A binary search tree has two simple properties:

e For each node z, every value found in the left subtree of z is less than or equal to the value
foundin z

e For each node z, every value found in the right subtree of x is greater than or equal to the
value found in x



6.006 Intro to Algorithms Recitation 03 February 9, 2011

77N

node x [! xkey |
y where / zwhere
ykey<= % /o zkey>=

xkey X / xkey

BST Operations

There are operations of a binary search tree that take advantage of the properties above to search
for keys. There are other operations that manipulate the tree to insert new key or remove old ones
while maintaining these two properties.

find(x, k)

Description: Find key k in a binary search tree rooted at . Return the node that contains k if it
exists or NIL if it is not in the tree

find(x, k)
while x != NIL and k != x.key
if k < x.key
x = x.left
else

x = x.right
return x

Analysis: At worst case, £ind goes down the longest branch of the tree. In this case, £ind
takes O(h) time where £ is the height of the tree
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insert (x, k)

Description: Insert key £ into the binary search tree T'

insert (T, k)

z.key = k //z is the node to be inserted
z.parent = NIL

x = root (T)

while x != NIL //find where to insert z

z.parent = x
if z.key < x.key

x = x.left
else
x = x.right
if z.parent = NIL //in the case that T was an empty tree
root (T) = z //set z to be the root

else if z.key < z.parent.key //otherwise insert =z
z.parent.left = z

else
z.parent.right = z

Analysis: At worst case, insert goes down the longest branch of the tree to find where
to insert and then makes constant time operations to actually make the insertion. In this case,
insert takes O(h) time where h is the height of the tree

find-min (x) and £find-max (x)

Description: Return the node with the minimum or maximum key of the binary search tree rooted
at node x

find-min (x)
while x.left != NIL
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x = x.left
return x

find-min

Analysis: At worst case, find-min goes down the longest branch of the tree before finding
the minimum element. In this case, £ind-min takes O(h) time where h is the height of the tree

next—-larger (x) and next—-smaller (x)

Description: Return the node that contains the next larger (the successor) or next smaller (the
predecessor) key in the binary search tree in relation to the key at node x

Case 1: z has a right sub-tree where all keys are larger than x.key. The next larger key will be
the minimum key of x’s right sub-tree

Case 2: z has no right sub-tree. We can find the next larger key by traversing up z’s ancestry
until we reach a node that’s a left child. That node’s parent will contain the next larger key

next-larger (x)
if m.right != NIL //case 1
return find-min(x.right)
Yy = X.parent

while y != NIL and x = y.right //case 2
X =Y
Yy = y.parent
return y
N - N

node_8 s le chid,
% $0 113 parent iy
{ 15 ] next-larger(node_16)

\\_/;‘

Case 1: next-larger(node_8) = node_15 Case 2: next-larger(node_16) = node_23
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Analysis: At worst case, next-larger goes through the longest branch of the tree if z is
the root. Since £ind-min can take O(h) time, next-1larger could also take O(h) time where

h is the height of the tree

delete (x)

Description: Remove the node = from the binary search tree, making the necessary adjustments to
the binary search tree to maintain its properties. (Note that this operation removes a specified node
from the tree. If you wanted to delete a key k from the tree, you would have to first call £ind (k)

to find the node with key & and then call delete to remove that node)

Case 1: z has no children. Just delete it (i.e. change parent node so that it doesn’t point to x)
Case 2: x has one child. Splice out z by linking z’s parent to x’s child
Case 3: z has two children. Splice out z’s successor and replace = with z’s successor

delete (x)
1f =.left NIL and x.
if x.parent.left = x

X.parent.left = NI
else
x.parent.right = N

else if x.left NIL
connect x.parent to
else if x.right = NIL
connect Xx.parent to
else
% next—-larger (x)
connect y.parent to
replace x with y

{23}

P8

{a) { 16

R

AN

-
{
'

'Hr%/\

right = NIL //case
L
IL

//case
x.right

//case
x.left

//case
y.right

)

b}
23 )

{ 15)
NIL LBy
Case 1: delete(node_15)

2a

2b

Case 2: delete(node_16)

February 9, 2011
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- Wt

P ‘f‘.."

L 16 )
Case 3: delete(node_8)

Analysis: In case 3, delete calls next-larger, which takes O(h) time. At worst case,
delete takes O(h) time where h is the height of the tree

inorder-tree-walk (x)

Description: Print out the keys in the binary search tree rooted at node z in sorted order

inorder-tree-walk (x)
if x != NIL
inorder-tree-walk (x.left)
print x.key
inorder-tree-walk (x.right)

Analysis: inorder-tree-walk goes through every node and traverses to each node’s left
and right children. Overall, inorder—tree-walk prints n keys and traverses 2n times, result-
ing in O(n) runtime
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6.006- Introduction to Algorithms

Lecture 4

Prof. Silvio Micali

Binary Search Trees (BSTs)

* Each node x has:
— key[x]
— Pointers: left[x], right[x], p[x]

* Property: for any node x:
— For all nodes y in the left subtree of x:

key[y] < key[x]

— For all nodes y in the right subtree of x:

key[y] > key[x]

root

f o
leaf

height =3

Lecture Overview

» Review: Binary Search Trees

« Importance of being balanced

» Balanced BSTs o

— AVL trees o @
— Other balanced trees
O © ©

BST Basic Operations

* Find, successor, min, ...

* Remove an element (e 37)
* Insert new element (e.g.; 53)
* Delete & insert: O(h),

where h is the height of the tree @
Useful to “augment” a BST (e.g., w/ tree size) 5 -




The importance of being balanced Balanced BST Strategy

for n nodes:
» Augment every node with useful INFO
* Define a local invariant on INFO
vs. « Show that invariant guarantees ®(log n) height
 Design algorithms to maintain INFO & invariant
Perfectly Balanced Path
h=0(log n) h=®(n)
AVL Trees: Definition AVL trees have height ®(log n)

[Adelson-Velskii and Landis’62]

* Let n, be the minimum
number of nodes of an AVL
tree of height h .

* We haven, > 1+n, ,+n,,

« INFO: for every node, store its
height (“augmentation”)

— Leaves have height 0
— NIL has “height” -1

=1, >2n,

i h-1 h-2
=iy, > 2hiz
« Invariant: for every node x, the ° =h<2lgn,
heights of its left child and right « Optimal?

child differ by at most 1 ‘ '
k k+1



Rotations Insertions
e RIGHT-ROTATE(B)

LEFT-ROTATE(A) * Insert new node u as in the

simple BST
— Can create imbalance

Rotations maintain the inorder ordering of keys:
eVaE o VDEP VcEYy: as<sA=<sbsB=sc. * Work your way up the tree,
restoring the balance

o °

Balancing Case 1: y is right-heavy

+ Let x be the lowest “violating”
node

« WLOG x is “right-heavy’:
Right[x] deeper Left[x]
* 3 Cases (others are symmetric):

k-1

1. y right-heavy 2. y balanced 3. y left-heavy



Case 2: y is balanced Case 3: y is left-heavy

(Same as Case 1) Need to do more ...

Case 3: y is left-heavy Case 3: y is left-heavy

RIGHT-ROTATE (y)
LEFT-ROTATE(X)

k-1

& z 1s left-heavy & z 1s right-heavy
OR ... And we are done!



Complexity

Insertion:
Local rebalancing:

How many local rebalancings after one insertion?

Examples of insert/balancing

X = 29: foft-left case

2
1126) Ge

e d b
W@ @

*=65: left-right case

Recall Case 1: y is right-heavy

Balanced Search Trees ...

L]

AVL trees (Adelson-Velsii and Landis 1962)
Red-black trees (see CLRS 13)
Splay trees (Sleator and Tarjan 1985)

Scapegoat trees (Galperin and Rivest 1993)
Treaps (Seidel and Aragon 1996)



Who invented the Multiplication Algorithm?

" e o

US capitol ~ Mississippi Arkansas ?
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Introduction to Algorithms: 6.006 Problem Set 1
Massachusetts Institute of Technology Feb 9, 2012

Problem Set 1

This problem set is due Wednesday, February 22 at 11:59PM.

Solutions should be turned in through the course website. You must enter your solu-
tions by modifying the solution template (in Python) which is also available on
the course website. The grading for this problem set will be largely automated, so it is
important that you follow the specific directions for answering each question.

For multiple-choice questions, your grade will be based only on the correctness of your an-
swer. For all other non-programming questions, full credit will be given only to the correct
solution which is described clearly and concisely.

Programming questions will be graded on a collection of test cases. Your grade will be based
on the number of test cases for which your algorithm outputs a correct answer within time
and space bounds which we will impose for the case. Please do not attempt to trick The
grading software or otherwise circumvent the assigned task.

1. (15 points) Order of Growth

For each group of functions, sort the functions in increasing order of asymptotic (big-
O) complexity. Partition each group into equivalence classes such that f;(n) and f;(n)
are in the same class if and only if f;(n) = ©(f;(n)). (You do not need to show your
work for this problem.)

(a) (5 points) Group A:

fi(n) =nlogn
fa(n) = n+ 100
f3(n) = 10n
fi(n) =1.01"

Js(n) =v/n- (logn)®

(b) (5 points) Group B:

fi(n) =2"
fa(n) =2%"
fa(n) =27+

f4(?’l.) = 1071



(c) (5 points) Group C:

Solution Format:

Problem Set 1

film) =7
fo(n) =n!
fs(n) =27
fa(n) = 10¥**

Your answer to this problem should be a list of lists of integers. Each sublist should
contain the indices of a set of functions which all have the same rate of growth. The
order of the indices within the sublist does not matter. The sublists should be ordered
from the slowest-growing functions to the fastest.

Example Question:

Example Answer:

filn) =n
fa(n) =2n3
fs(n)=n+5
fa(n) = n?
fs(n) =n®

# Note that 4 is in a list by itself
# Note that the order of 1 and 3 (and 5 and 2) does not matter
answer_for_example_for_problem_1 = [[1, 3], [4], [5, 2]]



Problem Set 1 3

2. (10 points) Recurrence Relations

(a) (5 points) What is the asymptotic complexity of an algorithm with runtime given
by the recurrence:

T(n) =4T(n/2) + logn.
1. ©(n)
2. B(nlogn)
3. ©(n?)
4. ©(n*logn)

(b) (5 points) What is the asymptotic complexity of an algorithm with runtime given
by the recurrence:

T(n) = 9T(n/3) + n.
1. O(nlogn)
2. ©(n?)
3. ©(n%logn)
4. ©(n?)

Solution Format:

Your answer to this problem should be a single integer for each part. For example, if
you thought the answer to part (a) was 5 and the answer to part (b) was 6, then your
answer should look like:

Il
7]

answer_for_problem_2_part_a
answer_for_problem_2_part_b

I
)]



Problem Set 1

3. (20 points) 2D Peak Finding

Consider the following approach for finding a peak in an (n x n) matrix:

1. Find a maximum element m in the middle column of the matrix.
e If the the left neighbor of m is greater than it, discard the center column and
the right half of the matrix.

e Else, if the right neighbor of m is greater than it, discard the center column
and the left half of the matrix.

e Otherwise, stop and return m.
2. Find a maximum element m’ in the middle row of the remaining matrix.
o If the the upper neighbor of m' is greater than it, discard the center row and
the bottom half of the matrix.

e Else, if the lower neighbor of m’ is greater than it, discard the center row and
the top half of the matrix.

e Otherwise, stop and return m’.

3. Go back to step 1.

(a) (5 points) Let the worst-case running time of this algorithm on an (n x n) matrix
be T'(n). State a recurrence for T'(n). (You may assume that it takes constant
time to discard parts of the matrix.)

(b) (5 points) Solve this recurrence to find the asymptotic behavior of T'(n).

(c) (10 points) Prove that this algorithm always finds a peak, or give a small (n < 7)
square counterexample on which it does not.

Solution Format:

Your answers to parts (a) and (b) should be Python strings. For example, you may
write:

answer_for_problem_3_part_a = ’This is a Python string.’ )\Um(’{ﬂ @f (,{d(a é

answer_for_problem_3_part_b = ’’’
Here is a Python multiline string.

It starts and ends with three quotation marks.
22

If your answer to part (c) is a proof of correctness, then return a string as above. If it
is a counterexample matrix, then write the matrix as a list of lists of integers, not as
a string.



Problem Set 1

ot

4. (30 points) Programming Exercise: Peak In Circle
Write a function find_peak_in_circle that efficiently finds a peak value in a circle of
integers. This function should take a list of integers as an input. Two elements in this
list are adjacent if they arce conscentive clements of the list or if they are the first and
last element. A peak is an element of the list which is greater than or equal to both of
its adjacent elements - your goal is to find the value of any peak.
You may assume that the input list is non-empty. However, you may not change the

entries of the list, and your function should also accept (immutable) tuples. Here are
some example test cases that your function should agree with:

# Both 4 and 5 are peaks in the array [1, 2, 5, 3, 4]
find_peak_in_circle([1, 2, 5, 3, 4]) in (4, 5)

# The element 3 is not a peak in [3, 2, 1, 4] because it is adjacent to 4
find_peak_in_circle([3, 2, 1, 4]) ==

Solution Format:

You should answer this problem by filling in the body of the function find peak in_circle
in the solution template.
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Introduction to Algorithms: 6.006 Problem Set 2
Massachusetts Institute of Technology Feb 9, 2012

Problem Set 1 Solutions

1. (15 points) Order of Growth

For each group of functions, sort the functions in increasing order of asymptotic (big-
O) complexity. Partition each group into equivalence classes such that f;(n) and f;(n)
are in the same class if and only if fi(n) = ©(f;(n)). (You do not need to show your
work for this problem.)

(a) (5 points) Group A:

fi(n) =nlogn

fa(n) = n+ 100
fu(n) =1.017

fi(n) = Vi - (log n)®

Solution:
L[5];[2:31 ;1] [41]

We observe that f; has the smallest order of growth, since it grows sublinearly.
(Recall that logn = o(n‘) for any ¢ > 0.) Next, fo = O(f3), since additive
and multiplicative constants do not affect asymptotic growth. We know that
nlogn = w(n), and finally the largest growth is 1.01", which grows exponentially.

(b) (5 points) Group B:

fi(n) =27
fg(n) = 2211
fa(ﬂ) — 2n+1
fa(n) = 10"

Solution:
[([1,3],[2],[4]]

We observe that 2" and 2"*! are in the same equivalence class, since they differ
only by a factor of two (and constant multiples do not matter.) Next, we observe

that fo = w(/f1), since
92n

lim — = lim 2" = co.
n—=oco 2" noroo
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Finally, 10" = w(2?"), since

il g i &S o (§) = co.
n—eo

n—yoo 22n n—oo 2N . 20 2

(c) (5 points) Group C:

fi(n) =n"
fa(n) = n!
fa(n) =2"
fa(n) = 101"
Solution:
[[4],[3],[2]1,[1]]

The smallest order of growth is clearly f4, since constant functions are ©(1). Next,
we observe that 2" = o(n!), since

23 n_ 1 3\ _
2 3 32,2 \2 = 98

Finally, the fact that n! = o(n") follows from Stirling’s approximation that n! ~
V2mn (%)n, and noting that

n® 1 er

V2mn (%)n ot vV 2mne™m F vV 2mn

which goes to co as n — co. We can also prove that n! = o(n") directly by
expanding n! and n" to notice that n”/n! > %, which goes to co as n — oo.

2. (10 points) Recurrence Relations

(a) (5 points) What is the asymptotic complexity of an algorithm with runtime given
by the recurrence:
T(n) =4T(n/2) + logn.

e B B
©)

TN TN N
=
(3]
—

Solution:

3
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The easiest way to see this is by the master theorem, since n'°%24 = 2 and
logn = o(n?* ). We can also solve this problem by expanding the recurrence to
obtain a sum, and noting that the largest term in the sum dictates the asymptotic
behavior. (Each subsequent term is less than half of the previous term, and
therefore the entire sum is bounded by a constant multiple of the first term.)

(b) (5 points) What is the asymptotic complexity of an algorithm with runtime given
by the recurrence:

T(n) = 9T (n/3) + n>.
1. O(nlogn)
2. ©(n?)
3. O(n*logn)
4. ©(n?)

Solution:
3

This follows by the master theorem, since n'°639 = n2. Since the additive term has the
same asymptotic growth as n'°8:9 we gain an extra log factor.
3. (20 points) 2D Peak Finding

Consider the following approach for finding a peak in an (n x n) matrix:

1. Find a maximum element m in the middle column of the matrix.

e If the the left neighbor of m is greater than it, discard the center column and
the right half of the matrix.

e Else, if the right neighbor of m is greater than it, discard the center column
and the left half of the matrix.

e Otherwise, stop and return m.
2. Find a maximum element m’ in the middle row of the remaining matrix.

e If the the upper neighbor of m’ is greater than it, discard the center row and
the bottom half of the matrix.

e Else, if the lower neighbor of m’ is greater than it, discard the center row and
the top half of the matrix.

e Otherwise, stop and return m/'.
3. Go back to step 1.

(a) (5 points) Let the worst-case running time of this algorithm on an (n x n) matrix
be T'(n). State a recurrence for T(n). (You may assume that it takes constant
time to discard parts of the matrix.)

Solution:
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T(n) = T(n/2) + \Theta(n)

In each iteration, we reduce an n X n matrix to a n/2 x n/2 submatrix. Do-
ing so requires ©(n) work, since we must check all elements in the appropriate
row/column.

(b) (5 points) Solve this recurrence to find the asymptotic behavior of T'(n).
T(n) = \Theta(n)
This follows by expanding the recurrence. We can bound the ©(n) terms above

or below by ¢n, and then bound T'(n) by

e B 2
ATETE T =

(c) (10 points) Prove that this algorithm always finds a peak, or give a small (n < 7)
counterexample on which it does not.

Solution: This algorithm does not always find a peak. One possible counterexample
matrix is given below.

[[0,0,0,3,2,1,0],
[0,0,0,0,0.0,6] ;
[6,0,0:0,7.0.0]
[0,0,0,4,86,0,0],
[0,0,0,0,0,0,0],
[0,0,0,0,0,0,0];
[0,0,0,0,0,0,0]1

When we run the algorithm, it will return 2 in location (0,4), which is not a peak.
The algorithm will first find that 4 is the maximum element in the middle column, and
therefore recurse on the right half of the matrix (since 4 is adjacent to 6). It will then
find that 6 is the maximum element in right half of the middle row, and will therefore
recurse on the upper right quadrant (since 7 is adjacent to 6). It will then find that
1 is the maximum element in the middle column of the 3 x 3 upper-right submatrix,
and will therefore discard all but the top three elements in the column beginning with
“2.” Finally, it will return 2 in location (0,4) as the answer, since 2 is above the 0 in
location (1,4) and is greater than it.

4. (30 points) Programming Exercise: Peak In Circle

Write a function find_peak_in_circle that efficiently finds a peak value in a circle of
integers. This function should take a list of integers as an input. Two elements in this
list are adjacent if they are consecutive elements of the list or if they are the first and
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last element. A peak is an element of the list which is greater than both of its adjacent
elements - your goal is to find the value of any peak.

You may assume that the input list is non-empty. However, you may not change the
entries of the list, and your function should also accept (immutable) tuples. Here are
some example test cases that your function should agree with:

# Both 4 and 5 are peaks in the array [1, 2, 5, 3, 4]
find_peak_in_circle([1, 2, 5, 3, 4]) in (4, 5)

# The element 3 is not a peak in [3, 2, 1, 4] because it is adjacent to 4
find_peak_in_circle([3, 2, 1, 4]) == 4

Solution: An example algorithm is below. Notice that in this algorithm we keep track
of the bounds into the array (instead of copying the array with each recursion) and
we recurse on the side containing the maximum element we have seen thus far. This
algorithm has worst-case running time 9(logn).

def find_peak_in_circle(input):
max_location = 0
if input[-1] > input[0]:
max_location = len(input) - 1

min_bound = 0
max_bound = len(input)
while min_bound < max_bound - 1:
mid = (min_bound + max_bound) / 2
if input[mid] < input[max_location]:
if mid < max_location:
min_bound = mid + 1
else:
max_bound = mid
elif mid + 1 < max_bound and input[mid + 1] > input[mid]:
max_location = mid + 1
min_bound = mid + 1
elif input[mid - 1] > input[mid]:
max_location = mid - 1
max_bound = mid
else:
return input[mid]

return input[max_location]
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AVL Trees

Recall the operations (e.g. find, insert, delete) of a binary search tree. The runtime of
these operations were all O(h) where h represents the height of the tree, defined as the length of
the longest branch. In the worst case, all the nodes of a tree could be on the same branch. In this
case, h = n, so the runtime of these binary search tree operations are O(n). However, we can
maintain a much better upper bound on the height of the tree if we make efforts to balance the
tree and even out the length of all branches. AVL trees are binary search trees that balances itself
every time an element is inserted or deleted. Each node of an AVL tree has the property that
the heights of the sub-tree rooted at its children differ by at most one.

Upper Bound of AVL Tree Height

We can show that an AVL tree with n nodes has O(logn) height. Let N, represent the minimum
number of nodes that can form an AVL tree of height h.

If we know Nj,_; and Nj,_s, we can determine V. Since this V,-noded tree must have a height
h, the root must have a child that has height 2~ — 1. To minimize the total number of nodes in this
tree, we would have this sub-tree contain /N, _; nodes. By the property of an AVL tree, if one child
has height A — 1, the minimum height of the other child is » — 2. By creating a tree with a root
whose left sub-tree has /V;,_; nodes and whose right sub-tree has N, _» nodes, we have constructed
the AVL tree of height h with the least nodes possible. This AVL tree has a total of Nj,_;+Np_o+1
nodes (N,_, and N;_» coming from the sub-trees at the children of the root, the 1 coming from
the root itself).

The base cases are N, = 1 and N, = 2. From here, we can iteratively construct N, by using
the fact that Nj, = Nj_; + Ny_s + 1 that we figured out above.

Using this formula, we can then reduce as such:

Np=Np_1+Npo+1 (1)
Np1=Np_2+ Np_3+1 (2)
Ny = (Nh_-z + Np_3 + 1) + Np_a+1 3)

Ny, > 2Ny 4

N, > 2% &)

log N}, > log 2% (6)
2log Ny > h N
h = O(log Ny,) (8)

Showing that the height of an AVL tree is indeed O(log n).
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AVL Rotation

We’ve shown that if we can indeed keep the tree balanced, we can keep the height of the tree at
O(logn), which speeds up the worst case runtime of the tree operations. The next step is to show
how to keep the tree balanced as we insert and delete nodes from the tree.

height: 3

height: 2 height: 1

@ size: 1

Since we need to maintain the property that the height of the children must not differ by more
than 1 for every node, it would be useful if we could access a node’s height without needing to
examine the entire length of the branch that it’s on. Recall that for a binary search tree, each
node contained a key, left, right, and a parent. AVL trees will also contain an additional
parameter, height to help us keep track of balance.

RiGHT-ROTATE(B)

LEFT-ROTATE(A)

There are two operations needed to help balance an AVL tree: a left rotation and a right rotation.
Rotations simply re-arrange the nodes of a tree to shift around the heights while maintaining the
order of its elements. Making a rotation requires re-assigning left, right, and parent of a
few nodes, but nothing more than that. Rotations are O(1) time operations.

AVL Insertion

Now delegating to recitation notes from fall of 2009:
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@TAT IONS

AVL Tree before insodion | deletion
Ko

‘ﬁ?da) ; 3 :

NO ProbLEM
ke

Tree. PoSs':bic, cygses

AVL ivaviant vio jated |

When we insert a node into node 7, we have three possible cases.

1. Children of n have same height k. Inserting into either sub-tree will still result in a valid
AVL tree

2. The left child of n is heavier than the right child. Inserting into the left child may imbalance
the AVL tree

3. The right child of 7 is heavier than the left child. Inserting into the right child may imbalance
the AVL tree

When the AVL tree gets imbalanced, we must make rotations in the tree to re-arrange the nodes
so that the AVL tree becomes balanced once again. Note that adding a node into a k height tree
does not always turn it into a k + 1 height tree, since we could have inserted the node on a shorter
branch of that tree. However, for now, we are looking specifically at the situations where adding
a node into a k height tree does turn it into a k& + 1 height tree. Let’s examine the case where we
insert a node into a heavy right child.
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Consider A violotim Va7

There are two cases here that will imbalance the AVL tree. We will once again look at the
problem on a case by case basis.

Lage |}

AVL )

Al oSt vok(d)
N = 1yight
gl = et
\Aeft=7
etrn N

In the first case, B had height £ — 1, C had height £ — 1, and a node was inserted into C,
making its current height k. We call a left rotation on n to make the y node the new root and
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shifting the B sub-tree over to be n’s child. The order of the elements are preserved (In both trees,
A <n < B <y < C), but after the rotation, we get a balanced tree.

Case 2.:

Tt oy elE ot
\5,_ =M '\" 'ht )
= M- "Li‘_;«\—t
:f{ﬁd\! W=z \eft ket
z \dte ="
§ lekt=2 .Y'.%Wc
2z .-\-C%‘r\t =V
Y& =

A
qymmedc Rovakion i N,

In the second case, B had height £ — 1, C had height £ — 1, and a node was inserted into B,
making its current height k. In this case, no single rotation on a node will result in a balanced tree,
but if we make a right rotation on y and then a left rotation on z, we end up with a happy AVL tree.

If we insert a node into a heavy left child instead, the balancing solutions are flipped (i.e. right
rotations instead of left rotations and vice versa), but the same concepts apply.

AVL insertions are binary search tree insertions plus at most two rotations. Since binary search
tree insertions take O(h) time, rotations are O(1) time, and AVL trees have h = O(logn), AVL
insertions take O(log n) time.

There are only a finite number of ways to imbalance an AVL tree after insertion. AVL insertion
is simply identifying whether or not the insertion will imbalance the tree, figuring out what
imbalance case it causes, and making the rotations to fix that particular case.

AVL Deletion

AVL deletion is not too different from insertion. The key difference here is that unlike insertion,
which can only imbalance one node at a time, a single deletion of a node may imbalance several of
its ancestors. Thus, when we delete a node and cause an imbalance of that node’s parent, not only
do we have to make the necessary rotation on the parent, but we have to traverse up the ancestry
line, checking the balance, and possibly make some more rotations to fix the AVL tree.

Fixing the AVL tree after a deletion may require making O(logn) more rotations, but since
rotations are O(1) operations, the additional rotations does not affect the overall O(logn) runtime
of a deletion.
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Tree Augmentation

In AVL trees, we augmented each node to maintain the node’s height and saw how that helped us
maintain balance. Augmentation is a very useful tool to help us solve problems that a vanilla binary
search tree cannot solve efficiently. We will learn about another useful augmentation, subtree size
augmentation.

size: 1

16 \ size: 1

In subtree size augmentation, each node maintains the size of the subtree rooted at that node in
a parameter size. The root of a tree containing n elements will have size = n and each leaf of
a tree will have size = 1.

The operations of this tree must maintain the size value of every node so that it is always
correct.

For insertion, as we traverse down a branch to find where to insert a node, we need to increment
size for every node that we visit. This is because going through a node during insertion means
we will be inserting a node in the tree rooted at that node.

Deletion will also require some maintenance. Every time we remove a node, we must traverse
up its ancestry and decrement size of all its ancestors.

If we wanted to augment an AVL tree with subtree size, we would also have to make sure that
the rotation operations maintain size of all the nodes being moved around (Hint: the fact that
z.size = x.left.size + z.right.size + 1 is useful here).

As you’ll see in the problem set, using subtree augmentation can help speed up operations that
normally would be slow on a regular binary search tree or AVL tree.
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6.006- Introduction to
Algorithms

Lecture
Prof. Silvio Micali

Naive Algorithm

* For L =n downto 1

for all length-L substrings X1 of S
for all length-L substrings X2 of T
if X1=X2, return X1

Runtime analysis

—n candidate lengths L

— n substrings of that length in eachof Sand T
— L time to compare the strings

— Total runtime: Q(n*)

DNA matching

Given two strings S and T over same finite alphabet

Find largest substring that appears in both
If S=algorithm and T=arithmetic
Then return “rithm™:  algorithm  arithmetic

* Also useful in plagiarism detection

* Say strings S and T of length n

+ Bynary search

Start with L=n/2
for all length L substrings X1 of S

. for all length L substrings X2 of T
. if X1=X2 (i.e., if success),
then “try larger L”

if failed, “try smaller L”

Runtime analysis
Q(n3 log n) Better than Q(n?)!

3/3/2012
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Via (Balanced) BSTs

Complexity?

ARl
Everythingis a
number |

3/3/2012

M Array indexed by substrings

Waitl!

Substrings are no numbers!

M=o
A\ NN

\N\

P
=<
m
w

\

”S
<
m
w

\

OK, OK
For every possible length L=n,...,1 n

Insert all length L substrings of S into table o(nL)
For each length L substring of T, check if in table O(nL)
Overall Complexity: O(n?)

With binary search on length, total is O(n? log n)
Next time: O(n log n)



Generalizing: Dictionaries

* A set containing items; each item has a key
 what keys and items are is quite flexible

* Supported Operations:
— Insert(item): add given item to set
— Delete(item): delete given item to set

— Search(key): return the item corresponding to the
given key, if such an item exists

Let me see if I understood...

(1) Dictionaries are everywhere
(2) Anything in the computer is a sequence of bits
(3) Dictionaries can be implemented by tables

(1 EG

* Example: English w
— 26 letters in alphalj
= can repIeye
— Antidisestablishmentariag
— 28%*5 = 140 bits
— So, use array of size 2140

* Isn’t this too much space for 100,000 words?

Other Examples

* Spelling correction
— Key is a misspelled word, item is the correct spelling

* Python Interpreter
— Executing program, see a variable name (key)
— Need to look up its current assignment (item)

Hash Functions

* Exploit sparsity
— Huge universe U of possible keys
— But only n keys actually present
— Want to store in table (array) of size m~n
* Define hash function h: U = {1, ..., m}
— Filter key k through h() to find table position
— Table entries are called buckets
* Time to insert/find key is
— Time to compute h (generally length of key)
— Plus one time step to look in array

3/3/2012



U :universe of all possible keys;
huge set

K :actual keys; small set but not
known in advance

(i) insert item1
with key k1

(iii) item3

iteml

item3

with k3

(if) item2 "> 3=
with k2

IF (iv) insert item4 with key k4
and h(k4) = h(k2) ...

h(k1)

h(k3)

1 h(k2) = h{k4)

(collision)

(i) insertitem1

with key k1 temi

item3

(iii) item3

k2
®®
L ] .:. .. ‘RA.B

with ksl—i

e ¢°% %o
) °
®e

(ii) item2 item2

with k2

(iv) suppose we now try to inset item4,

with key k4 and h(k4) = h(k2) ...

Collisions

* What went/can go wrong?
— Distinctkeys x and y
— But h(x) = h(y)
— Called a collision
 This is unavoidable: if table smaller than
range, some keys must collide..
— Pigeonhole principle
» What do you put in the bucket?

3/3/2012

h(k1)

h(k3)

h(k2)



Coping with collisions

* Ideal: Change to a new “uncolliding” hash
function

— Hard to find, and takes time

e Idea2: Chaining
— Put both items in same bucket (thislecture)

* Idea3: Open addressing
— Find a different, empty bucket for y (next lecture)

Problem Solved?

* To find key, must scan whole list in key’s bucket
» Length L list costs L key comparisons
» If all keys hash to same bucket, lookup cost ®(n)

Chaining

hik1)

tem1

hik3)

- Each bucket, linked
list of contained items

- Space used is
space of table
plus one unit per item
(size of key and item)

h{k2) = h{kd) »

U : universe of all possible keys

itemd

K :actual keys, not known in advance

Let’s Be Optimistic !

» Assume keys are equally likely to land in
every bucket, independently of where other

keys land
* Call this

the “Simple Uniform Hashing” assumption

— (why/when can we make thisassumption?)

3/3/2012
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; Reali
Average Case Analysis under SUHA iy
» Keys are often very nonrandom
o nitems in table of m buckets — Regularity (evenly spaced sequence of keys)

— All sorts of mysterious patterns
* Ideal solution: ideal hash function: random
» So expected time to find some key x is 1+a h:U - {1,..,m}
O(1) if a=0(1), i.e. m=Q(n) « Solution: pick a hash function whose values
“look” random
* Similar to pseudorandom generators

* Whatever function, always some set of keys that
is bad
— but hopefully not your set

 Average number of items/bucket is a=n/m

Division Hash Function Problems
* h(k) =k mod m * Regularity
* k, and k, collide when k,=k, (mod m) — Suppose keysare x, 2x, 3x, 4x, ....

— Suppose x and chosen m have common divisord

— Then (m/d)x is a multiple of m
* s0ix = (i+m/d)x mod m

— Unlikely ifkeys are random
* e.g. if m is a power of 2, just take low order

bits of key — Only use 1/d fraction of table
— Very fast (a mask) * E.g, m power of 2 and all keys are even
— And people care aboutvery fast in hashing * So make m a prime number

— But finding a prime number is hard
— And now you have to divide (slow)



Multiplication Hash Function

Suppose we’re aiming for table size 2"

and keys are w bits long, where w>r is the machine word
Multiply k with some a (fixed for the hash function)
then keep certain bits of the result as follows

L w bits >

key

x a (our choice)

EEer s

keep this

Conclusion

* Dictionaries are pervasive

Hash tables implement them efficiently
— Under an optimistic assumption of random keys
— Can be “made true” by choice of hash function
How did we beat BSTs?
— Used indexing
— Sacrificed operations: previous, successor

Next time: open addressing

L ]

Python Implementation

Python objects have a hash method

— Number, string, tuple, any object implementing
__hash__

Maps object to (arbitarily large) integer
— So really, should be called prehash
Take mod m to put in a size-m hash table

Peculiar details
— Integers map to themselves
— Strings that differ by one letter don’t collide

Thank youl!

3/3/2012



Multiplication Hash Function
Bit shift
* The formula:
h(k) = [(a * k) mod 2*] >> (w - F)
— Multiply by a
— When overflow machine word, wrap

— Take high r bits of resulting machine word
— (Assumes table size smaller than machine word)

Benefit: Multiplying and bit shifts faster than division
Good practice: Make a an odd integer (why?) > 2¥-1

Implementation

* use BSTs!

+ can keep keys in a BST, keeping a pointer from
each key to its value

* O(log n) time per operation
* Often not fast enough for these applications!

* Can we beat BSTs?

if only we could do all operations in O(1)...

Today’s Topic

“Optimist pays off!”

a.k.a. The ubiquity and usefulness
of dictionaries

[A parenthesis: DNA Matching

3/3/2012
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BSTs?

For L=n downto 1
Insert all length-L substrings of T into AVL tree

For all length-L substring X2 of T,
Try finding X2 in the tree

if failed, try smaller L

Runtime analysis
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Overview of Hash Tables

A hash table is a data structure that supports the following operations:
e insert (k) - puts key k into the hash table
e search (k) - searches for key £ in the hash table
e remove (k) - removes key k from the hash table

In a well formed hash table, each of these operations take on average O(1) time, making hash
tables a very useful data structure.

You can think of a hash table as a list of m slots. Inserting a key puts it in one of the slots
in the hash table, deleting a key removes it from the slot it was inserted in, and searching a key
looks in the slot the key would have been inserted into to see if it is indeed there. Empty slots are
designated with a NIL value. The big question is figuring out which slot should a key & be inserted
into in order to maintain the O(1) runtime of these operations.

Hash Table H
0 NIEE
1 25

20 NI
3

4

Hash Functions

Consider a function h(k) that maps the universe U of keys (specific to the hash table, keys could
be integers, strings, etc. depending on the hash table) to some index 0 to m. We call this function
a hash function. When inserting, searching, or deleting a key k, the hash table hashes k and looks
at the h(k)th slot to add, look for, or remove the key.

A good hash function

e satisfies (approximately) the assumption of simple uniform hashing: each key is equally
likely to hash to any of the m slots. The hash function shouldn’t bias towards particular slots

e does not hash similar keys to the same slot (e.g. compiler’s symbol table shouldn’t hash
variables i and j to the same slot since they are used in conjunction a lot)

e is quick to calculate, should have O(1) runtime

e is deterministic. i (k) should always return the same value for a given k



6.006 Intro to Algorithms Recitation 05 February 16, 2011

Example 1: Division method

The division method is one way to create hash functions. The functions take the form

h(k) = k mod m (1

Since we’re taking a value mod m, h(k) does indeed map the universe of keys to a slot in the
hash table. It’s important to note that if we’re using this method to create hash functions, m should
not be a power of 2. If m = 2P, then the h(k) only looks at the p lower bits of &, completely
ignoring the rest of the bits in k. A good choice for m with the division method is a prime number
(why are composite numbers bad?).

Example 2: Multiplication method

The multiplication method is another way to create hash functions. The functions take the form

h(k) = |m(kA mod 1) | )

where 0 < A < 1 and (kA mod 1) refers to the fractional part of KA. Since 0 < (kA mod 1) <
1, the range of h(k) is from O to m. The advantage of the multiplication method is it works equally
well with any size m. A should be chosen carefully. Rational numbers should not be chosen for A
(why?). An example of a good choice for A is @

Collisions

If all keys hash to different slots, then the hash table operations are as fast as computing the hash
function and changing or inspecting the value of an array element, which is O(1) runtime. How-
ever, this is not always possible. If the number of possible keys is greater than the number of
slots in the hash table, then there must be some keys that hash into the same slot, in other words a
collision. There are several ways to resolve a collision.

Chaining

In the chaining method of resolution, hash table slot j contains a linked list of every key whose
hash value is j. The hash table operations now look like

e insert (k) - insert k into the linked list at slot h(k)
e search (k) - search for k in the linked list at slot h(k) by iterating through the list

e remove (k) - search for k in the linked list at slot 2(k) and then remove it from the list
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With chaining, if a key collides with another key, it gets inserted into the same linked list in the
slot they hash into.

NIL
2514 1
NIL
3 |30
7

DWNRO

m-1| NIL

In the ideal case, all keys hash to different slots and every linked list has at most 1 element,
keeping the runtimes of the operations at O(1). In the worst case, all n keys inserted into the hash
table hashes to the same slot. We then get a n size linked list which takes O(n) to search through,
resulting in O(n) search and remove. This is why choosing a hash function that equally distributes
keys to all slots is important.

If there are m keys in a hash table with m slots, we call the load factor « for the hash table to
be 2. Under the assumption of simple uniform hashing, the length of each linked list in the hash
table is «. As long as the number of keys inserted is proportional to the size of the hash table,
a = O(1), thus the operations on average are O(1) as well.

Open Addressing Collisions

A hash table may use open addressing, which means that each slot in the hash table contains either
a single key or NIL to indicate that no key has been hashed in that slot. Unlike chaining, we cannot
fit more than one key in a single slot, so we must resolve collisions in a different way. We must
have a method to determine which slot to try next in the case of a collision. We still try to put a key
k into slot h(k) first, but if that slot is occupied, we keep trying new slots until we find an empty
one to put the key into.

Linear probing resolves collisions by simply checking the next slot, i.e. if a collision occurred
in slot j, the next slot to check would be slot j + 1. More formally, linear probing uses the hash
function

h(k,i) = (K (k) + i) mod m 3)

Where h/(k) is the hash function we try first. If h(k,0) results in a collision, we increment %
until we find an empty slot. One drawback to linear probing is if keys hash to slots close to each
other, a cluster of adjacent slots get filled up. When trying to insert future keys into this cluster, we
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must then traverse through the entire cluster in order to find an empty slot to insert into, which can
slow down our hash table operations.

Quadratic probing resolves collisions in a similar fashion:

h(k,i) = (h'(k) + c1i + c2i*) mod m 4)

for some constants c;, cz. Instead of linearly traversing through the hash table slots in the case
of collisions, quadratic probing introduces more spacing between the slots we try in case of a
collision, which reduces the clustering effect seen in linear probing. However, a milder form of
clustering can still occur, since keys that hash to the same initial value will probe the exact same
sequence of slots to find an empty slot.

Double hashing resolves collisions by using another hash function to determine which slot to

try next:

h(k,7) = (hy(k) + iha(k)) mod m (5)

With double hashing, both the initial probe slot and the method to try other slots depend on the
key &, which further reduces the clustering effect seen in linear and quadratic probing.

Searching for a key in a hash table using open addressing involves probing through slots until
we find the key we want to find or NIL. If we encounter a slot with a NIL value before finding the
key itself, that means that the key in question is not in the hash table.

Deleting for a key involves searching for the key first. Once the key to be deleted is found, we
remove it by replacing the key in that slot with a dummy DELETED value. Note that we cannot
replace the key with a NIL value, or else searching for keys further down in the probe sequence
will falsely return NIL. We must replace it with a dummy value indicating that a key was once
present in this slot, but not anymore.
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Rolling Hash (Rabin-Karp Algorithm)

Objective

If we have text string S and pattern string P, we want to determine whether or not P is found in
S, i.e. P is asubstring of S.

Notes on Strings

Strings are arrays of characters. Characters however can be interpreted as integers, with their exact
values depending on what type of encoding is being used (e.g. ASCII, Unicode). This means we
can treat strings as arrays of integers. Finding a way to convert an array of integers into a single
integer allows us to hash strings with hash functions that expect numbers as input.

Since strings are arrays and not single elements, comparing two strings for equality is not as
straightforward as comparing two integers for equality. To check to see if string A and string B are
equal, we would have to iterate through all of A’s elements and all of B’s elements, making sure
that A[i] = Bl¢] for all 7. This means that string comparison depends on the length of the strings.
Comparing two n-length strings takes O(n) time. Also, since hashing a string usually involves
iterating through the string’s elements, hashing a string of length n also takes O(n) time.

Method
Say P has length L and S has length n. One way to search for P in S:

1. Hash P to get h(P) O(L)

2. Iterate through all length L substrings of .S, hashing those substrings and comparing to h(P)
OmnL)

3. If a substring hash value does match h(P), do a string comparison on that substring and P,
stopping if they do match and continuing if they do not. O(L)

This method takes O(nL) time. We can improve on this runtime by using a rolling hash. In
step 2. we looked at O(n) substrings independently and took O(L) to hash them all. These sub-
strings however have a lot of overlap. For example, looking at length 5 substrings of “algorithms”,
the first two substrings are “algor” and “lgori”. Wouldn’t it be nice if we could take advantage of
the fact that the two substrings share “Igor”, which takes up most of each substring, to save some
computation? It turns out we can with rolling hashes.

“Numerical” Example

Let’s step back from strings for a second. Say we have P and S be two integer arrays:
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P =1[9,0,2,1,0] )
S =1[4,8,9,0,2,1,0,7 2)

The length 5 substrings of S will be denoted as such:

So=[4,8,9,0,2] (3)
S1=18,9,0,2,1] 4)
S, =1[9,0,2,1,0] &)

(6)

We want to see if P ever appears in S using the three steps in the method above. Our hash
function will be:

h(k) = (k[0]10* + K[1]10® + K[2]10% + k[3]10" + k[4]10°) mod m (7)

Or in other words, we will take the length 5 array of integers and concatenate the integers into
a 5 digit number, then take the number mod m. h(P) = 90210 mod m, h(Sp) = 48902 mod m,
and h(S;) = 89021 mod m. Note that with this hash function, we can use h(Sp) to help calculate
h(S1). We start with 48902, chop off the first digit to get 8902, multiply by 10 to get 89020, and
then add the next digit to get 89021. More formally:

h(Si+1) = [(R(S;) — (10° * first digit of S;)) * 10 4 next digit after S;] mod m (8)

We can imagine a window sliding over all the substrings in S. Calculating the hash value of
the next substring only inspects two elements: the element leaving the window and the element
entering the window. This is a dramatic difference from before, where we calculated each sub-
string’s hash values independently and would have to look at L elements for each hash calculation.
Finding the hash value of the next substring is now a O(1) operation.

In this numerical example, we looked at single digit integers and set our base b = 10 so that
we can interpret the arithmetic easier. To generalize for other base b and other substring length L,
our hash function is

h(k) = (K[0]b%~ + k[1]b5~2 + K[2]b%3...k[L — 1]b°) mod m 9)

And calculating the next hash value is:

h(Si+1) = b(h(S:) — b*18[i]) + S[i + L] mod m (10)
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Back to Strings

Since strings can be interpreted as an array of integers, we can apply the same method we used on
numbers to the initial problem, improving the runtime. The algorithm steps are now:

1. Hash P to get h(P) O(L)
2. Hash the first length L substring of S O(L)

3. Use the rolling hash method to calculate the subsequent O(n) substrings in .S, comparing
the hash values to A(P) O(n)

4. If a substring hash value does match h(P), do a string comparison on that substring and P,
stopping if they do match and continuing if they do not. O(L)

This speeds up the algorithm and as long as the total time spent doing string comparison is
O(n), then the whole algorithm is also O(n). We can run into problems if we expect O(n) colli-
sions in our hash table, since then we spend O(n L) in step 4. Thus we have to ensure that our table
size is O(n) so that we expect O(1) total collisions and only have to go to step 4 O(1) times. In
this case, we will spend O(L) time in step 4, which still keeps the whole running time at O(n).

Common Substring Problem

The algorithm described above takes in a specific pattern P and looks for it in S. However, the
problem we’ve dealt with in lecture is seeing if two long strings of length n, S and 7', share a
common substring of length L. This may seem like a harder problem but we can show that it too
has a runtime of O(n) using rolling hashes. We will have a similar strategy:

1. Hash the first length L substring of S O(L)

2. Use the rolling hash method to calculate the subsequent O(n) substrings in S, adding each
substring into a hash table O(n)

3. Hash the first length L substring of 7" O(L)

4. Use the rolling hash method to calculate the hash values subsequent O(n) substrings in 7.
For each substring, check the hash table to see if there are any collisions with substrings
from S. O(n)

5. If a substring of 7" does collide with a substring of S, do a string comparison on those
substrings, stopping if they do match and continuing if they do not. O(L)

However, to keep the running time at O(n), again we have to be careful with limiting the
number of collisions we have in step 5 so that we don’t have to call too many string comparisons.
This time, if our table size if O(n), we expect O(1) substrings in each slot of the hash table so we
expect O(1) collisions for each substring of 7". This results in a total of O(n) string comparisons
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which takes O(nL) time, making string comparison the performance bottleneck now. We can
increase table size and modify our hash function so that the hash table has O(n?) slots, leading
to an expectation of O(2) collisions for each substring of 7". This solves our problem and returns
the total runtime to O(n) but we may not necessarily have the resources to create a large table like
that.

Instead, we will take advantage of string signatures. In addition to inserting the actual sub-
string into the hash table, we will also associate each substring with another hash value, h4(k).
Note that this hash value is different from the one we used to insert the substring into the hash
table. The h,k hash function actually maps strings to a range 0 to n? as opposed to 0 to n like
h(k). Now, when we have collisions inside the hash table, before we actually do the expensive
string comparison operation, we first compare the signatures of the two strings. If the signatures
of the two strings do not match, then we can skip the string comparison. For two substrings k; and
ko, only if h(k1) = h(k2) and hs(k1) = hs(k2) do we actually make the string comparison. For
a well chosen h(k) function, this will reduce the expected time spent doing string comparisons
back to O(n), keeping the common substring problem’s runtime at O(n).
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6.006- Introduction to
Algorithms

v

LAST TIME...

Lecture 6

Alan Deckelbaum
CLRS: Chapter 17 and 32.2.

Dictionaries, Hash Tables Hash Table with Chaining

* Dictionary: Insert, Delete, Find a key
— can associate a whole item with each key
» Hash table
— implements a dictionary, by spreading items over an array
— uses hash function e %
h: Universe of keys (huge) = Buckets (small) '
— Collisions: Multiple items may fall in same bucket S RET

— Chaining Solution: Place colliding items in linked list, tomz| [ itema
then scan to search

+ Simple Uniform Hashing Assumption (SUHA):

h is “random”, uniform on buckets U : universe of all possible keys-huge set
— Hashing n items into m buckets > expected “load” per bucket: n/m K : actual keys-small set, but not known when

— If chaining used, expected search time O(1 + n/m) designing data structure

hik1)

item1

e
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Hash Functions? Non-numbers?

* Division hash What if we want to hash e.g. strings?

—h(k) =k mod m * Any data is bits, and bits are a number

— Fast if m is a power of2, slow otherwise * E.g., strings:

—Bad ife.g. keysare regular — Letters a..z canbe “digits” base 26.
p— —“the” = t-(26)2 + h-(26) + ¢

Multiplication hash ) k::mllplm =19-(676) + 8-(26) + 5

—a an odd integer = 334157

L

—h(k) = @kmod 2% >>w-r 1

Note: hash time is length of string, not O(1)

keep
this
— Better on regular sets of keys (wait a few slides)
Longest Common Substring Runtime Analysis
. * Binary search cost: O(log n) length values L tested
Strings S,T 8 £ lf:ngth n, want to find longest + For each length value L, here are the costly operations:
common substring — Inserting all L-length substrings of S: n-L hashes
* Algorithms from last time: + Each hash takes L time, so total work ©((n-L)L)=0(n2)
O(n%) — 0(n310gn) - O(nllogn) — Hashing all L-length substrings of T:  n-L hashes
i : . . + another O(n?)
* Winner algorithm used a hash table of size n: — Time for comparing substrings of T to substrings of S:
Binary search on maximum match length L; to * How many comparisons? .
check if a length works: R v R S Gl
— Insert all length-L substrings of S in hash table + Each comparisontakes O(L)
. . S ey
— For each length-L substring x of T - H;"“’ t"?:;“ a“°°zpla"s°";e(nu R
* Look in bucket h(x) to see if x is in S * So0(E] workoraschisgih
+ Hence O(n? log n) including binary search
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Faster?

* Amdahl’s law: if one part of the code takes
20% of the time, then no matter how much you
improve it, you only get 20% speedup

* Corollary: must improve all asymptotically
worst parts to change asymptotic runtime

« In our case FASTER COMPARISON

— Must compute sequence of n hashes faster
— Must reduce cost of comparing in bucket

Faster Comparison Solution: Bigger table!
* First Idea: when we find a match for some length, we * What size?
can stop and go to the next value of length in our binary  Table size m = n?
search. ) - — n substrings to size-m table: average load 1/n
* But, the real problem is “false positives” — SUHA: for every substring x of T, there is 1/n other
— Strings in same bucket that don’t match, but we waste time on strings in X’s bucket (in expectation)
* Analysis: — Comparison work: L/n per string (in expectation)

— n substrings to size-n table: average load 1 — So total work for all strings of T: n(L/n) = L = O(n)

— SUHA: for every substring x of T, there is 1 other string in x’s

bucket (in expectation) * Downside?
— Comparison work: L per string (in expectation) — Bigger table
— So total work for all strings of T: nL = O(n?) — (n? isn’t realistic for large n)



Signatures

* Note n? table isn’t needed for fast lookup
— Size n enough for that
—n? is to reduce cost of false positive compares

¢ So don’t bother making the n? table
— Just compute for each string another hash value in
the larger range 1..n?
— Called a signature
— If two signatures differ, strings differ
— Pr[same sig for two different strings] = 1/n?
* (simple uniform hashing)

Application
* Runtime Analysis:

— for each T-string:
O(bucket size)=0(1) work to compare signatures;
— so overall O(n) time in signature comparisons
— Time spent in string comparisons?
L x (Expected Total Number of False-Signature Collisions)
- n out of the n? values in [1..n?] are used by S-strings
- so probability of a T-string signature-colliding with

some S-string: n/n?
- hence total expected number of collisions 1

so total time spent in String Comparisons isL

fine print: we didn’t take into account the time needed to compute
signatures; we can compute all signatures in O(n) time using trick
described next...

3/3/2012

Application

» Hash substrings to size n table
* But store a signature with each substring
— Using a second hash function to [1..n?]
 Check each T-string against its bucket
— First check signature, if match then compare strings
— Signature is a small number, so comparing themis O(1)

strictly speaking O(logn); but if n2<232 the
signature fits inside a word of the computer;
in this case, the comparison takes O(1)

FASTER HASHING



Rolling Hash

« We make a sequence of n substring hashes

— Substring lengths L
— Total time O(nL) = O(n?)
+ Can we do better?
— For our particular application, yes!

lengthn

I"i?él'ﬁéﬁant, scripta
HakreRts
length L

General rule

* Strings = base-b numbers
* Current substring S[i ... i+L-1]

S[i] - bi! + S[i+1] - bb2 + S[i+2] - b-2...
—_ S[l] . bL-l

S[+1] - b2 + S[i+2] - b-2...
‘b

S[i+1] - b1 + S[i+2] - b\2... + S[i+L-1] -

+
S[i+1] - b=T + S[i+2] - b2... + S[i+L-1]
=S[i+1 ... i+L]

+ S[i+L-1]

+ S[i+L-1]

S[i+L]

b + S[i+L]

Rolling Hash Idea

* e.g. hash all 3-substrings of “there”
* Recall division hash: x mod m
» Recall string to number:
— First substring “the” = t-(26)2 + h*(26) + e
* If we have “the”, can we compute “her™?
=h-(26)2+ e+(26) +r
=26 (h(26)+e ) +r

=26 (t(26)+ h(26) + e - t(26)2 ) +r

- Gy o

* i.e. subtract first letter’s contribution to number, shift, and
add last letter

Mod Magic 1

+ So: S[i+l ... i+L] = b §]i ... i+L-1]— b S[i] + S[i+L]
* where
S[i ... i+L-1]=S[i] - b%! + S[i+1] - b2 + ... + S[i+L-1] (*)
* But S[i ... i+L-1] may be a huge number (so huge that we may
not even be able to store in the computer, e.g. L=50, b=26)
* Solution only keep its division hash: S[...] mod m
+ This can be computed without computing SJ...], using mod
magic!
* Recall: (ab) mod m =(a mod m) (b mod m) (mod m)
(a+b) mod m = (a mod m) + (b mod m) (mod m)

* With a clever parenthesization of (*): O(L) to hash string!

3/3/2012



Mod Magic 2

* Recall: S[i+1 ... i+L] =b S[i ... i+L-1]- b S[i] + S[i+L]
« Say we have hash of S[i ... i+L-1], can we still compute
hash of S[i+1 ... i+L] ?

» Still mod magic to the rescue!
* Job done in O(1) operations, if we know b mod m

mms) Computing n-L hashes costs O(n)

O(L) time for the first hash
+0O(L) to compute b* mod m
+ O(1) for each additional hash

3/3/2012

Summary

 Reduced compare cost to O(n)/length

— By using a big hashtable

— Or signatures in a small table

Reduced hash computation to O(n)/length
— Rolling hash function

* Total cost of phases: O(n log n)

* Not the end: suffix tree achieves O(n)
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6.006- Introduction to
Algorithms
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Lecture 7
Prof. Silvio Micali

How to convey these
new cool iDEAS?

3/10/2012

Plan for Today:
3 new ldeas, 2 of which GREAT!

Congratulations!

Sit down
Focus
Enjoy

Vote at the end...

Idea 1

VIA: DYNAMIC DICTIONARIES



L

Dynamic Dictionaries

So far: Insert n items in m-size table

Now: arbitrary sequence of insert, delete, find n?
How big a table should we set up?

What if we guess wrong?

too small = load high, operations slow
too large = high initialization cost, wasted space

Wanted: m=0(n) at all times

When to resize?

Approach 1: whenevern > m, m < m+l

Sequence of n inserts:
= Each insert increases n past m causing rebuild
= Total work: ©(1 +2+ ... +n)=0(n?)

Approach 2: Whenever n > 2m
= Costly inserts: insert 2/ for all i:
Thesecost:0(1 + 2 + 4 + .. + n) =0(n)
= All other inserts take O(1) time — why?

= Inserting n items takes O(n) time
= Keeps m a power of 2

3/10/2012

Solution: Resize

+ Start with small constant m
» When table too full, make it bigger
» When table too empty, make it smaller
How?
Build a whole new hash table and reinsert items
(Recompute all hashes, Recreate new linked lists)

Time to rebuild: NewSize + #hashes X HashTime

(For simplicity: ignore HashTime)

Amortized Analysis

« If a sequence of n operations takes time T, then
each operation has amortized cost T'/n

» Some ops are very slow: @(n) for insertion that
causes last resize

But fast amortized cost per operation: 0 (1)

Often only care about total runtime, so low
amortized time is great



Deletions?

+ Rebuild table to new size whenn < m? No: O(n?)
* Rebuild whenn < ?

Arbitrary Insertions + Deletions?
Suppose “just rebuilt™: m =n

= Next rebuild a “grow” = at least m more inserts
before growing table

Amortized insert cost O(2m / m)) = O(1)

= Next rebuild a “shrink™ = at least m/2 more deletes
before shrinking

Amortized delete cost O(m/2 / (m/2)) = O(1)

Welcome to:
On-Line Algorithms!

6

input,
«6’ W
N
| Alg_| 3
L\
decisl r ’ ’ ’

Ignorance vs. Omniscience

3/10/2012

Summary

* Arbitrary sequence of insert/delete/find
 O(1) amortized time per operation

Idea 2

OPEN ADDRESSING



Recall Chaining...

hik1)

item1

hiks)

item3

HE) = hika) g ‘
item2 m

{{ : universe of all possible keys-huge set

] [N

K : actual keys-small set, but not known when
designing data structure

Open Addressing (example)

2
other item h(k,3) collision
other item h(k,1)  collision
k
item;, h(k,4) free spotl
other item h(k,2) collision
m-1

Different technique for dealing with collisions:

No linked lists: if bucket occupied, find other
bucket  (need m>n)

« For insert: probe a sequence of buckets until
find empty one!

* h specifies probe sequence for key x
= [deally, h(x) sequence “visits all buckets™
= Technically, h: U x [1..m] = [1..m]

Universe of keys Probe number Bucket

Operations

Insert:
= Probe till find empty bucket, put item there

Search:
= Probe till find item (return with success)
= Or find empty bucket (return with failure)
* Because if item inserted, would use that empty bucket
Delete:
= Probe till find item

. RemMucket

3/10/2012



Problem with Deletion

Consider the following sequence:

® Insert x

= |nserty
* suppose probe sequence for y passes x bucket
* store y elsewhere

= Delete x (leaving hole)

= Search for y
* Probe sequence hits x bucket

* Bucket now empty
* Conclude y not in table (else y would be there)

What probe sequence?

3/10/2012

Solution for deletion

« When delete x Rip
» Leave it in bucket, but mark it deleted .

» Future search for x sees x is deleted
= Returns “x not found”

* “Insert z” probes may hit x bucket
= Since x is deleted, overwrite with z
(So keeping deleted items doesn’t waste space)

Linear probing

h(k,i) £ h’(k) + i for ordinary hash h’
Problem: creates “clusters”,
i.e. sequences of full buckets
= exactly like parking
= Big clustersare hit by lots of new items
= They get putat end of cluster
= Big cluster gets bigger: “rich get richer” phenomenon



if h{k,1) is any of
these, the cluster
will get bigger

cluster

i.e. the bigger the cluster is, the
more likely it is to grow larger,
since there are more epportunities
to make if larger...

m-1

* E.g., 0.1 <a<0.99, cluster size ®(log n)
* Wrecks our constant-time operations

Performance of Open Addressing

* Operation time is length of probe sequence

* How long is it?

* In general, hard to answer.

If h(k,i) as before, then we “can” make the
Uniform Hashing Assumption (UHA):

» Probe sequence=h(k,1) h(k,2)... h(km)isa
uniform random permutation of [1..m]

Note: this is different to the simple uniform
hashing assumption (SUHA))

3/10/2012

Double Hashing

* Two ordinary hash functions f(k), g(k)
* Probe sequence h(k,i) £ f(k) +i-g(k) mod m
* If g(k) always relatively prime tom, E.g., m=2" g(k) odd

Then probe sequence for k can hit all buckets

Proof: The same bucket is hit twice if for some i,j:

fik) +i-g(k) = fik) + j-g(k) mod m
= i'g(k)=j-g(k) (mod m)
> (i-j)-g(k) = 0 (mod m)
-> m and g(k) not relatively prime
(otherwise m should divide i-j, which is not possible for i, j<m)

Analysis under UHA

Suppose:
= a size-m table contains n items
= we are using open addressing
= we are aboutto insert new item

Q: Probability first prob successful?

m-—n
empty bucketsY _ A
P?‘Ob( all buckets /7 — ¢y p

Why? From UHA, probe sequence random permutation
Hence, first position probed randomly
m-n out of the m slots are unoccupied



Analysis (II)

Q: If first probe unsuccessful, probability second
prob successful?

m-—rm m —mn
m—1 = m Py
Why?
* From UHA, probe sequence random permutation
*Hence, first probed slot is random; the second probed
slot is random among the remaining slots, etc.
*Since first probe unsuccessful, it probed an occupied slot
*Hence, the second probe is choosing uniformly from m-1
slots, among which m-n are still clean

Open Addressing vs. Chaining

* Open addressing skips linked lists
= Saves space (of listpointers)
= Better locality of reference
* Array concentrated in m space
* So fewer main-memory accesses bring it to cache
* Linked list can wander all over memory
* Open addressing sensitive to load o

= Asa => |, access time shoots up

3/10/2012

Analysis (I1I)

« If first two probes unsuccessful, probability
third prob successful?

m-=mn m—-—"n

m-=2- m P

=> every trial succeeds with probability >p

; 1 1
expected number of probes till success? < —= 5
P -

e.g. ifa=90%, expected number of probes is at most 10

-« = ¥ ¥ &8 ¢ 8 3 3§ 8
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What IF?

ldea 3

VIA UNIVERSAL HASHING

3/10/2012

ADVANCED HASHING ?

covered in recitation (for those who care)

Goal

Get rid of simple uniform hashing assumption

* Create a family of hash functions H
* When you start, pick at random h € H

* Unless you are unlucky, few collisions

~Adversary doesn’t know what hash you will use
So cannot pick keys that collide too much



DEF: Universal Hash Family

...is a family (set) of hash functions such that, for any keys x
and y, if you choose a random h from the family,

Prlh(x) =h(®)] = 1/m

Thm: UHF produces few expected collisions
Proof:
E[collisions with x] = E[number of y s.t.h(x) = h(y)]
= E[Ey 1h(x)=h(y)]
=X,E 1h(x)=h(y)] (linearity of E)
=2y ;r[ h(x) = h(¥)]

=n/m

Welcome to Probabilism!

Gh

2. To harm you he must know what you'll be doing

Crucial because:

1. The Adversary wants to harm you

3. He cannot know if you yourself do not know!

And

4. SM's Law: All sufficient complex systems are adversarial!

3/10/2012

THM: 3Universal Hashing Families!
Proof:

Suppose table size= p prime

* Define hyy(x) = a-x+ b (mod p)

+ If a and b are random elements in {0, ...,p — 1}, then h(x) is a UHF
+ mod p is a field, so you can divide/substract as well

* Pick two keys x and y. What is the probability (over the choice of a, b)

that the hashes of x and y collide?
Mustbe a-x+b = q(modp)anda-y+b = q (mod p), for
some q in {0, ...,p — 1}
For fixed g, this is a linear system in a, b
Two variables, two equations, Unique solution: that is,
unique h,, makes this happen
Probability of choosing this h,, is 1/p?
Collision if hg,(x) = hg(y) = q forsome g

* There are p possible values for g, hence overall probability of collision=

p/p* =1/p = 1/m

Cryptography

Secret writing = Adversarial Computation

You pick h in a hash family H (but not which h you picked)
Adversary knows H  (but not which h € H you picked!)
Adversary picks the sequence of keys you must hash
Adversary learns when he has caused a collision
Adversary learns the values h(ky) , h(kz) , ... , h(k)
Adversary can choose h(k;.,) adaptively!

And yet...

“Cryptographers never sleep”

SM

Happy 6:006 = Happy 6.875!



°

Credits

Teenagegirlsvslife.blogspot.com
Goldenstateofmind.com

SMgraphics.home

Vote!

Next Week: Sorting

Summary

Hashing maps a large universe to a small range
But avoids collisions

Result:
= Fast dictionary data structure
* Fingerprints to save comparisontime

Next week: sorting

Better? Perfect Hashing!

Hash table with zero collisions
So don’t need linked lists
Can’t guarantee for arbitrary keys

But if you know keys in advance, can quickly
find a hash function that works

= E.g. for a fixed dictionary

NOT COVERED IN CLASS

3/10/2012
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Fingerprinting

* File backup service

= Major cost in time and money: bandwidth
» How decide whether a file has changed?
= And thus needs new backup
Send whole file?
= Too expensive

Send hash of file (treating file as big number)
= Only send file if hash differs
» Might make a mistake, if hashsame

What are the odds?

« How many prime factors does x-y have?
* It’s an n-bit number
= [t’s the produce of its factors p; .. py
= Eachp,>2
* S0 (X-y) = pypp--Px = 2
= So k < log, n prime factors
« How many primes in range [1..n] ?
* Prime number theorem says about n/In n
= So, Pr[pick wrong factor] = (log n)/(n/log n)
= For better safety, pick bigger prime

3/10/2012

What signature?

File x and backup y, length n bits
Treat as n-bit numbers
Pick random prime number p in [2..n]
Hash/compare x (mod p) vs. y (mod p)
= Send log n bits
False negative if
= x and y different
= but x (mod p) =y (mod p)
= ie. (x-y) (mod p)=0
= ie. pisa factor of x-y

Randomized Algorithms

Hashing/Fingerprinting make random choices

Then you prove they probably work
Prevent adversary from giving you a bad input

Lot of applications in algorithms design
» Take 6.856 some day

11
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Another Approach

* Algorithm
= Keep m a powerof 2 (for faster computation)
= Grow (double m) whenn>m
= Shrink (halve m) when n < m/4
* Analysis
= Just after rebuild: n=m/2

= Next rebuild a grow = at least m/2 more inserts
* Amortized cost O(2m / (m/2)) = O(1)

= Next rebuild a shrink = at least m/4 more deletes
+ Amortized cost O(m/2 / (m/4)) = O(1)

12
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Resizing Hash Tables

Hash tables perform well if the number of elements in the table remain proportional to the size of
the table. If we know exactly how many inserts/deletes are going to be performed on a table, we
would be able to set the table size appropriately at initialization. However, it is often the case that
we won’t know what series of operations will be performed on a table. We must have a strategy
to deal a various number of elements in the hash table while preserving an average O(1) access,
insertion, and removal operations.

To restrict the load balance so that it does not get too large (slow search, insert, delete) or too
small (waste of memory), we will increase the size of the hash table if it gets too full and decrease
the size of the hash table if it gets too empty.

Resizing a hash table consists of choosing a new hash function to map to the new size, creating
a hash table of the new size, iterating through the elements of the old table, and inserting them into
the new table.

Ha§h Tab_le H1 Hash T ble H2

Take n keys, rehash
using h2(k), insert
n keys into H2

AP WNHO

hi(k) mapsto O .. m-1 h2(k) mapsto 0 ... 2m-1

2m-1|

Consider a hash table that resolves collisions using the chaining method. We will double the
size of the hash table whenever we make an insert operation that results in the load balance exceed-
ing 1, i.e. n > m. We will halve the size of the hash table whenever we make a delete operation
that results in the load balance falling beneath %, i.e. n < 7. In the next sections, we will analyze
this approach and show that the average runtime of each insertion and deletion is still O(1), even
factoring in the time it takes to resize the table.

Increasing Table Size

After doubling the table size due to an insert, n = % and the load balance is %.We will need at least
7 insert operations before the next time we double the size of the hash table. The next resizing
will take O(2m) time, as that’s how long it takes to create a table of size 2m.
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0.5m insertions before resize resize
Operation insert insert insert insert + resize
Runtime 0O(1) 0(1) 0(1) O(2m)

Redistribute O(2m) resize cost over 0.5m insertions

0.5m insertions before resize resize
Operation insert insert insert insert + resize
Runtime 0(1) 0(1) 0(1) 0(1)
Amortized Cost| 0(2m/0.5m)| 0(2m/0.5m) 0(2m/0.5m) -

On average, since the number of elements is proportional to the size of the table at all times,
each of the 7 inserts before resizing will still take O(1) time. The last insert will take O(2m)
time as we need to factor in the time it takes to resize the table. We can use amortized analysis to
argue that the average runtime of all the insertions is O(1). The last insert before resizing costs
O(2m) time, but we needed % inserts before actually paying that cost. We can imagine spreading
the O(2m) cost across the 7 inserts evenly, which adds an additional average amortized cost of
O(g22-) per insert, or O(1) per insert. Since the cost of insertion before was O(1), adding an
additional O(1) amortized cost to each insert doesn’t affect the asymptotic runtime and insertions
on average take O(1) time still.

Decreasing Table Size

Similarly, after halving the table size due to an deletion, n = —? We will need at least % delete
operations before the next time we halve the size of the hash table. The cost of the next halving is
O(%}) to make a size % table.

The 7 deletes take O(1) time and the resizing cost of O(%) can be split evenly across those 2t
deletes. Each deletion has an additional average amortized cost of O(:%2™ ) or O(1). This results

0.25m
in maintaining the O(1) average cost per deletion.

Performance of Open Addressing

Recall that searching, inserting, and deleting an element using open addressing required a probe
sequence (e.g. linear probing, quadratic probing, double hashing). To analyze the performance of
operations in open addressing, we must determine on average how many probes does it take before
we execute the operation. Before, we made the simple uniform hashing assumption (SUHA),
which meant a hash function mapped to any slot from 0 to i — 1 with equal probability. Now, we
make the uniform hashing assumption (UHA), which is a slight extension from SUHA. UHA
assumes that the probe sequence is a random permutation of the slots 0 to 7 — 1. In other words,
each probe looks likes we're examining a random slot that we havent examined before.

If the table has load balance «, that means there is a p = 1 — « probability that the first probe
will find an empty slot under UHA. If the first probe is a collision, note that the probability that the
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second probe will find an empty slot is greater than p, since there are an equal number of empty
slots that we could insert in, but were choosing randomly from a pool of fewer slots. In general,
after each collision, there is a probability of at least p that we will probe into an empty slot.

Using principles of probability, if there is exactly a probability of p that we will find an empty
slot at each probe, then we expect to probe  times before we succeed. For example, if p = 1 , we
expect to probe 4 times before we find an empty slot. Since in our case, our probability of success
is actually increasing after each probe, é is a high estimate on how many times we probe before

we succeed. Since p = 1 — «, we expect to probe at most % times. Looking at the behavior of the

ﬁ graph, it is clear that with open addressing, performance is fairly good until o approaches too
close to 1.

Universal Hashing

With a fixed hashing function, an adversary could select a series of keys to insert into the hash table
that all collide, giving the hash table worst case performance. Universal hashing is the idea that
we select the hash function randomly from a group of hash functions. This means an adversary
cannot choose keys that he knows will give worst case performance anymore, since the adversary
doesn’t even know what hash function will be chosen for the table. If we form the group of hash
functions carefully, we can assure that the expected time for each operations is O(1), even if there
is an adversary who is trying to achieve worst case performance.

For universal hashing to work, the group of hash functions H must be universal. This means
that for each pair of distinct keys £, [, in the universe of keys, the number of hash functions in the
group for which h(k) = h(l) is at most ]%l This means, for each pair of distinct keys, the chances
of picking a hash function in which they collide is at most -, which is the same probability given
by the simple uniform hashing assumption.
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Introduction to Algorithms: 6.006 Problem Set 2
Massachusetts Institute of Technology Feb 23, 2012

Problem Set 2

This problem set is due Wednesday, March 7 at 11:59PM.

Solutions should be turned in through the course website. You must enter your solutions
by modifying the solution template (in Python) which is also available on the
course website. The grading for this problem set will be largely automated, so it is
important that you follow the specific directions for answering each question.

For multiple-choice and true/false questions, no explanations are necessary: your grade will
be based only on the correctness of your answer. For all other non-programming questions,
full credit will be given only to correct solutions which are described clearly and concisely.

Programming questions will be graded on a collection of test cases. Your grade will be based
on the number of test cases for which your algorithm outputs a correct answer within time
and space bounds which we will impose for the case. Please do not attempt to trick the
grading software or otherwise circumvent the assigned task.

1. Del or no del? (35 points, 5 points per part)

Consider the following correct Python implementation for deleting a node from a binary
search tree. This function is analogous to the delete method of the BSTNode class
found on the website, except that it assumes that all BSTNode instances have a parent
pointer. (Since the implementation on the website does not include parent pointers,
you will not be able to test this code by replacing the delete method in that class.)
A 265’&) Quf of plee

This delete function t , self, and a value, val. It deletes the node with
that value from the subtree rooted at self, if it exists and if the tree has at least one
other node. The function returns True if some node was deleted.

Assume each node has five properties: its val, count, left, right, and parent. The
left, right, and parent pointers are either other instances of this class or None. Also,
assume that the search method is implemented exactly as in the BSTNode class.
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1 def delete(self, val):

2 # Find the node to delete.

3 node = self.search(val)

4 if node.val != val:

5 return False

6

7 # If there were multiple occurrences of this value, we’re done.
8 node.count -= 1

9 "if node.count > 0:

10 return True

11

12 if node.right is None:

13 if node.left is Nomne:

14 # This node is a leaf. Delete its reference from its parent.
15 if node.parent is not Nonme:

16 if node.parent.left == node:

17 node.parent.left = None

18 else:

19 node.parent.right = None

20 return True

21 else:

22 # We are the only node. Deletion is not allowed.

23 return False

24 else:

25 # Move the old left child to our place.

26 node.val = node.left.val

27 hﬂb node.count = node.left.count

28 node.right = node.left.right

29 0"\l\\;“&node.;*:':i.ght.pa\:rent = node

30 ¢ node.left = node.left.left

31 node.left.parent = node
32 return True
33 else:
34 # We have a right child. Replace this node with its successor
35 # in the right subtree.
36 next = node.right.search(val) i
37 \\&)\Qt‘tif next is not None: @[[Qbhm
38 3 node.val = next.val

(S
i&q\ L\\\\\ node.count = next.coﬁj}c‘__/\qﬁ\(w/‘-l;:' ”ft ‘*(0

node.right.delete(next.va
k- NY 1 return True
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Answer the following questions with True or False.

a. The code is correct if lines 25 — 32 are replaced with the lines

25 # Move the old left child to our place.
26 node.left.parent = node.parent

27 if node.parent is not None:

28 if node.parent.left == node:

29 node.parent.left = node.left
30 else:

31 node.parent.right = node.left
32 return True

b. The code is correct if line 36 is replaced with

36 next = node.right
c. The code is correct if line 37 is removed (and lines 38 — 39 are unindented).
d. The code is correct if all instances of 1left and right are interchanged.
e. Lines 34 — 41 can be replaced with the lines

34 # We have a right child. Replace this node with its successor

35 # in the right subtree.

36 next = node.right.search(val)

37 if next.right is not None:

38 next.right.parent = next.parent

39 if next.parent.left == next:

40 next.parent.left = next.right

41 else:

42 next.parent.right = next.right

43 return True y

U\ Comeetin

f. The code is correct if line 48 is moved to just before line 37.

g. The code is correct if lines 40 and 41 are combined into
40 return node.right.delete(next.val)

Solution Format:

You should answer this problem with a boolean value for each part. For example,
if you thought the answer to part y) was True and the answer to part z) was False,
then your answer should be:

answer_for_problem_1_part_y = True
answer_for_problem_1_part_z = False



Problem Set 2

2. Binary search tree sort (20 points)

Consider the following code for a sorting algorithm. Here, the BST class is an im-
plementation of a self-balancing binary search tree. This class supports the insert,
get_min, and delete operations in O(logn) time, where n is the number of elements
in the tree.

def bst_sort(list):

bst = BST()

for val in list:
bst.insert(val)

ans = []

for i in range(len(list)):
min = bst.get_min()
ans.append (min)
bst.delete(min)

return ans

a. (5 points) This function sorts the list: True or False?
b. (5 points) On a list of n elements, the runtime of this algorithm is:
1. O(n)
O(nlogn)
O(nlog® n)
O(n?)
O(n?logn)
6. O(n*log®n)
c. (10 points) Assuming that (comparison) sort is impossible in better than ©(nlogn),

give a short argument that it is impossible to construct a data structure which stores
arbitrary ordered values and supports insert, get_min and delete, each in o(logn).

& b GO b2

Solution Format:

Your answer for part a) should be a boolean. Your answer for part b) should be
an integer between 1 and 6, and your answer for part ¢) should be a (short) string.



Problem Set 2 5

3. An awkward sort of party (20 points)

There are n people who attend a party, labeled 1 through n. Person ¢ arrives at time
a; and departs at time d;. The 2n arrival / departure times are all distinct.

None of the partygoers knew each other before the event. Afterwards, each person
goes on Twitter and follows the people who were there when they arrived at the party,
but who left before they did.

Find an efficient algorithm to determine the total number of new Twitter followings
formed, given the the n pairs of the arrival aﬁparture times of each person. Prove
that your algorithm is correct and find its running time. For full credit, your algorithm
should run in O(nlogn) time.

Solution Format:

Your answer for this problem should be a string, such as:

answer_to_problem_3 = """
I have a beautiful algorithm for this problem, but this tweet is not
long enough to contain it.

nnn
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4. The thinly-veiled ntris problem (50 points)

Two biologists have independently documented the proteins found in two strains of
bacteria, E. foo and E. bar. Each protein is a polyomino: a two-dimensional shape
formed by attaching a number of unit squares along their edges. Two proteins are the
same if one polyomino can be transformed into the other by a rotation and translation.

Each scientist represents a protein as a list of ordered pairs of integers, one pair for
each unit square in the protein. Each pair represents the coordinates of the center
of its unit square. For example, the T-protein (which looks much like the T piece in
Tetris) might be represented by the list [(0,0),(1,0),(-1,0),(0,-1)] or by the list
[(2,3); £2,4) ,(2:2%;(1.8)]:

N oW b

—

2 1 0 1 2 3 4
Two representations of the T-protein.

As a computer scientist working with the biology department, your job is to determine
the number of proteins in common between the two strains of bacteria. Write a function
num_proteins_in_common that efficiently computes the number of proteins in common,
given two lists of proteins. You may assume that the proteins in each list are distinct.
However, you may not assume a bound on the number of proteins or on the number
of squares in a protein.

We have attached some code to help you get started with this problem. Specifically,
we have provided three functions for your use:
e a translate function that translates a polyomino by a fixed offset
e a rotate function that rotates a polyomino by a quarter-turn counterclockwise
e and a compare function that determines if two polyominoes are equivalent after

rotations and translations

(To see more examples of polyominoes, you may want to visit ntris.mit.edu. How-
ever, a high score will not get you any credit for this class.)



D:\Users\Michael\Documents\MIT Junior\6.006\bst.py ] 0 \ Sunday, March 04, 2012 5:42 PM
class BST (object) : @ n Qk*

class BSTNode (cbject):

# This node has two pieces of data: a value and a count. The count is the
# number of times that this value has been inserted.

- » '-_.__..—‘—‘—'—\___
def init (self, wval):

self.val = val

= [
ST Ny ek o

self.right = None

i Replaces this node's count and value with the other's. Used in delete().
def replace data(self, other):

self.val = other.val

self.count = other.count

# search() returns the last node in this node's subtree on the path taken
# when searching for val.
def search(self, val):
if self.val < val:
if self.right is not None:
return self.right.search(val)
elif self.val > val:
if self.left is not None:
return self.left.search(val)

return self

# Inserts val into this node's subtree.
def insert(self, val):
result = self.search(val)
if result.val < val:
result.right = BST.BSTNode (val)
elif result.val > val:
result.left = BST.BSTNode(val)
else:
result.count += 1

# If val is in this node's subtree, delete() removes one occurrence of val
# from this subtree. This function may change the root of this subtree, so
# it returns the new root.
def delete(self, val):
if self.val == val:
# The only case when actual deletion happens is when count becomes 0.
self.count -= 1
if self.count <= 0:
if self.right is not None:
# In this case, we search the right subtree to find the node of
# smallest value greater than val. We move that next node's value to
# this node, and then delete next from the right subtree.
next = self.right.search(val)
self.replace data(next)
next.count = 1
self.right = self.right.delete(next.val)

-
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else:
4 Since this node has no right subtree, we can delete it by moving

4 its left child into its position. The left child is the new root
# of this subtree.
return self.left
# The easy cases: recurse on the right or left subtree and return self.
elif self.val < val:
if self.right is not None:
self.right = self.right.delete(val)
elif self.val > val:
if self.left is not None:
self.left = self.left.delete(val)

return self

# Performs an in-order traversal of the subtree rooted at this node and
# appends the elements to the result list.
def in_order traversal(self, result):
if self.left is not None:
self.left.in order_ traversal (result)
for i in range(self.count):
result.append(self.val)
if self.right is not None:
self.right.in order_traversal (result)

4 DO NOT BOTHER TO READ THIS CODE! Used to pretty-print small trees. Do
# not call on large trees.
def  str_(self):
if self.left is None:
if self.right is None:
return str(self.wval)
right_strs = str(self.right).split('\n')
left strs = len(right strs)*['']
elif self.right is None:
left_strs = str(self.left).split('\n")
right strs = len(left_strs)*['']
else:
left strs = str(self.left).split('\n")
right_strs = stri(self.right) .split:("\n')
left rows = len(left_strs)
right rows = len(right_strs)
if left rows < right_rows:
left strs.extend((right_rows - left rows)*[len(left strs[0])*' '])
else:
right strs.extend((left_rows - right rows)*[len(right_strs[0])*' '])

left index = 0
for i in range(len(left strs[0])):
if left strs[0][i] != ' ':
left_index = i
break
right index = len(right_strs[0])
for i in range(len(right strs[0])):

2.
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if right_strs[0][i] !'= ' ':
right_index = i + 1

top_str = len(left strs[0])*' ' + str(self.val) + len(right strs[0])*'

mid len = len(str(self.val))

second_str = left index*' ' + (len(left_strs[0]) - left_index + mid len + right index
)*'=' + (len(right strs[0]) - right_index}*' '

return '\n'.join([top_str, second str] + [left_strs[i] + mid len*' ' + right strs[i]

for i in range(len(left strs))])

def init (self):
self.root = None

def clear(self):
self. dnit ()

def count (self, val):
if self.root is None:
return 0
result = self.root.search(val)
return result.count if result.val == val else 0

def insert(self, val):
if self.root is None:
self.root = BST.BSTNode(val)
else:
self.root.insert (val)

def delete(self, val):
if self.root is None:
return
self.root = self.root.delete(val)

def in order traversal (self):
result = []
if self.root is not None:
self.root.in_order traversal (result)
return result

def str (self):
if self.root is None:
return "'

return str(self.root)



{)Q(e{(t@ noley T a BoY
~ R 95es d,” ‘(45}‘?&@) LWS q )ngpml /001'4/?/

\/-

el e of g, )
(. — .
¢ e ol wibe vl ’

(p ﬁ///w 774?6 (‘J[ (Mﬂ%
v dble des g | % nalg
> s o e 6w gy bse T

go bﬂ'\%@. CO&(
£ laf = & Pt net node

Cancle oF at

VAl

L

2 sb s

6 b @ (b g



Read books Jilote code

|l = eloafe
& Cl/l;d/?/l -l [((&M and 5/@ A

T 7 n (ff chibed > pfloe 7 o dgh it
DL 5 ho ov () CRI{— aple i
J/,L 2wy lof+ f-[ég"h’

fal 2 Gow v shbl Bo b ul
b Sbhee + ho o Joff child

&J @ab'((wuj 0(0% 0/ (’Ne 1[0/% m) g

/

-I'F hﬂd€ [{ﬂ(ﬁ o hat {0
~/ eimtoc |
A b} ShW[(L My & o oaly chld

So G- wiedt (ode > Mt @

m fixes Dt
" 0 endds

0 o
/) @“, :61‘ "’ (
v '1 &Og nde & nile (pfts paren
€ node (oft WS

f fhi; 25 hal NQ“@



{/\}l’\‘[ W“H Vu)\{( {DWM‘ be /lo‘} mw/(l
e nde et S g ot

o Ende g

[// OC‘WE? cnnde paet [gff
&node lpH

B0

Qe— hode  porent:

\l “hode bVWJQ ﬂ)/f”h( r(‘ﬁlnl
“hde et

o W“D’N\Wﬁé ugh'}
Lohe 4 (E{md,lj

9 L -}H\{L (,][ 5 WAng W}\M ‘M?'M

[{ “d r g e
grizﬁ i moves (of oo 2
1

it ol be on “ﬂ)'h[

OM\ wait =) i goes 5}@%,»1/4 ke of /%P[

Cheld 1)



)

60 '“( ( ‘(qh‘} N Jc

— Guch WQY hard
- ght E+ fo \fhoﬂ(

(bt it date all Dy pot- 51%(”)
"fmﬂ doe it Clusk lor il Jetf s/btres .

t{7 TMHL /eccugfg([ g poa}mf (5&@ ({oes f\o)L (Jo ﬁ@,l
O doowe oot et gitt by Callag drbh<

ot die 2

2 \/z"7 r‘uaM“ ‘{‘/@ﬁ
Sepaly for ik o N,
@ L—}w.\, whai B - pf waﬁwlﬂgﬁ%

\ /e pp(?etb Wb v 1n

;)\ olum‘e Y

H- D'IW l @
(ant
I

M@Mﬁ
®



90 o4} X \/0/[5 PW@MI [@-H Fo Now
}Ljr Y \/Cblﬁ (Dq/mf- - VNCI\L(%

Ob\ b%k o QL/
Abd  f on Jy |of - CWZ

L, (Enade porent
/ ] Enodp ety [off partn |-
: Q C“/wclg {6\({

&
; ”f@ ¢ nade purent

{ 7

) Blerdg ehdy ol pyesy
C’no({( Q@i.



)
(
J
d

0

| ) € nidg

‘\\y
/
@ Sebws o Loy

NQ beVtﬂL Sf/{o(/]
N9 “(,'\( n (@w”b {mll

(Vhat dil we deade on if A iginl 4 conat %ﬂfo)

o foft aid Aght mefy

£¥ Now ( ‘cqw (od¢
~fud wet 1
L{ dha ft@l'rl'

S AR U4
et potat

ek b&\
_()c/r‘uam
“why e e AO‘“‘UW/'

(Aﬂ’. fe (?P(%‘MS 1 57 2{3 Jwn




Y

P Vo5 25 cight chilp




)

T dond G b vk <bb T by po pios
B T(Ovtdh fdf[% )&d) not b@fq j~/v7

o W o gy o]
547 e

Wbyl T th Bty raqh
o many sl (56

{/Cnsf ﬁ(awoh 0ri$ \m bool\ @ Pussts f’]/f/
() Tlekdes Uiy

(l 0 compliated Vn'«s)

‘q No «dﬁdz t/dy[/e L@(ﬁfe /ﬂaﬁbé&q;no —-f@zw/ a0

9] \N\c“ ot (EUM alvay, dylole”
& & {)(%p gnlm@ M( fo ié od@z'wf (afméff
e w \l o P
m \{ﬂlh O/L@M' v (af - Slute 0/
we B wWNa o o

%’J%’ Q[f’/(d\mﬂ o 0
N\t\d 25 w\wo\% 1(0%(1(
ol e Now'



9

N\m CJO\% W{- \,\u,(lﬂ-@fl

W 2 et ale
é g be 0“9/; |
/N il b hige (F ool

. ®
éa e Tre

nd 5 (el as Tre

CH L B]!\O( 1M

/

épd(‘ﬂg 5{,{ 0 In géflé“bd@/to‘if\j Tree
8 -5 Q% ?“Hrm[ ol

@H s ot T [

Afé*%”y b W@Hy clowr




@
!9 Jm‘b i+ wn/kfr

V% o il not /%”7 E’mcmﬁ

Ao |
U&B i T[@‘/ syt w/ Mmi {100
A ﬁﬂ/l
(ot ot i dolok
(vl
' "
TL(%ZUL”L Jelofe

nﬁ@ﬂ 4 " 2%1/)
0o HQ@H

\A/ovu h'k, ILU CO/H[P//‘[ )ﬂw%s /ZUW
Llooted bk Y bk - geoms (igh!



g

O T mion 4t s A < glagy
O % inwalh 4, (sl ot

a\ QOHEL 51Lﬂaft/f5 w)ﬂld{ &vab/Vl) ]L}%g)

N O[Eﬂ 4}

qq@?’ boad Tt 1 ot Aoy ﬂw;

6o lIl«, MAX

—_—

Ww@m !

Ashid hLc "2 A4 ¢
oal abseth ach o beg
W, iy [V) ") ’%mm Enhopkf

—————

Dy b gt pesible
Ok v (an e O /Qdﬂ /J)

B&(btw”7 }n,sd('«g Cagh }&W (M( fﬁ//anfng get ”?:f))
0kl e gl < i b posehe




/QQ |
H 3
/])

(Yﬁ\y]ivad, but
Cﬂ}f@(iop\@ / 1
AN . K
. ‘ d dt
1 a
iy ;




Y

\?OHW peaph Wl“ﬂ wA% 7}1&( whre W///y({

.

o L M) g

wd ot Qalp bofd by oo pectl
" ()[n @9 h)

00wt at u Toig o il e H o pegle why
l/“c” be 1(0}(01«,4, )\ ay (htd{\ z(:, éo%/}

g

Ul good ot fof gy,

‘Bugr ;vblr Th 1%( [09? f CL@{/(\

O(Q Q @(VJT) £’§ m V\a‘(ye ﬂ%ﬁ,. Wit f‘I tos
\ 7 lna‘/e 9 (S
50“‘(,1)»{% L\// {H‘(r s leqy(/ 0 i’h}\/(‘)l('g
Ceeyd - both, .



(om Mly W%Now p(’ﬂp)a wko |t 7&@”(
W’k Mé/eé

. - | sz [,2/} //2/03(/
% s EEv/ ]L/(cmgu/

Ll




bt fye b L) BTN

N people ..% @y people  ondtun |

% twf\g
(an be =~ ceyon Doe g gt o i

i 304 5
| Z,Z Z/Z/J (/2,3@
bo T}Wlﬁ 6/”"?&@%6&

EL/G{‘[WQ_ Oﬁfé/ ey
o 94 73 2, |

—_—

Nb Ore T

o LW@ Wﬁﬂl— e — %o @?(wﬁ//y /€MC
(e dogs nof- (//o/l,7

% 1 ﬂ\@ ‘][(‘lan\g]f, h\\mg O@Qﬁgfl)
\/\/AS (/O (" CXLD/e @Mmdf

b



U

Yoh T 991[ Mo/t

n \

Tn G0 Mf dt ms /—c(ogﬂ\cie Mﬂm

=] Wolfy, v
Tt é SRR
| “ that ‘L) -l
ijr ¢ vord (e pesple }W"j -
Na s N Aol sf pef}O)f s by hat

%%{ has popl mae ¢y ahod-  efs

| = hich ldfﬂ Nt s, Sortey
[.J\ ‘Dl(‘ +(((/L\b We Vﬁ{%(_l

— Haol
= BT & Nt e ple g

whe S0 0/ 6{((([/6;/ o onb Free

y 0%

@ 10

"0 w0 ) of v Bee o artgg

G



Ton o Joave Compre o [ of- lewess
6( 'fh‘zs T ke a /Z CO[“”\“I Match
"’LJF no et vals .

T VAN
1o

A(r‘m\ D@p

(go (lod»i‘t(w”7 ((”6& J/ aad Br/eqM; d/bwc
bt W 0}0& ot Gon 1 W/l(

Anl onclag e <), b bl ouh fire.

@Q"x‘&a Nt %& 0bnent m g0 ol |
:DFV( 196{/@ @mpdhﬂm w/ 4] mmzrm

T ot Lidy il



- 0!

~ /( (¢ ‘oabm, 7L[€€ d(nd ‘I\q/f (:M
4. 50
M qbwﬂl 5 ol Hix

ﬁé RQM\«\\)V Mf-e Aday = hot 9%‘2/\3 ab i 7%»(

O tosed all ‘al free O08) for heloight
01 Lov(a/\cg O[ﬂj /\) T oah ifem

Qe i fabk L



(»
:FF(/( F/O](;{M 6}4@95

~ et oL s

- \I‘/M‘L # 2’1 com O
— (vtaftan +7‘/%[q,ﬁm @llow‘i(‘

VMJI H (f’l Commin
h{ 'oo‘sz e s lf\&bh;ﬂﬁ
Hue franlyly + cofde features
VP@L '\?{/(r@‘? fOO ml,(,)t [,mﬂ IZ )1/7 {@;

@ulr b«s(&“ty \We mL k% b o Vil
C lr\ﬂw (}(0% mffl

M\mt 5 e ot \SW/l

1
CWH buse  cotate 'ﬁl Swﬁf‘fﬂ 5?’?{@@
ok med i

P 9 a VMLO’F 3// Mizﬁgﬁﬁfﬁﬂ



Do e et -4 Jief (‘ML M hﬁm N

A [
L(Q»L ‘lﬁ Q{{ZCG/!A' Aﬁuk Il(/nd (o)

[M wm% W W fo he [‘dmﬂa}

| 0 HYH

Oh + (andlate ;5 }/ojr moY
“rok fly @ L Thoght

[0l lite G| { way
. ally Tk Yk o reed o o Fofion
ﬁ) 1 (omo ) 511@{1['
[]
o )
Gf “let] (j “a,,[
O (oate % ZOAQB{;F [On ;b N Ao#ﬂﬂt?
L elue pob Loy
H‘M“ J\((,HWO;'@
hadh O {unflo




L

QA \Hr; %‘/&H"“ m[ er ILo Mél)

/—-__\_

Mol e g lrgang

O e 00 e ) g (G

0c 3,1 omd L con pae 4d(w /
o dF of ps
To ol Ny d) gt o M'(# of fow
- And B Geiae Y
O can e hes
~ bk oo (o dlal dap do wl- ool
e QWPQ’ ok L aitory



) %
. I
b, TS
L g -t be

bpoont Gt bl gppead
[ ‘—’\
? C ~(an (o -
- (il gv i

-’,W(I[ﬁ(((f ﬂ(@w’r[‘

—00 Tl dee/z/v

——

#3
_flnfmt )045@& ds /%
— 4y Jﬂ’mcj Ua/é 0&7
i\ 0}: (5 sani. ﬁ /{\
B’m(,q qu w/ 0/; })a{c{m@d
\Qemm ~haw wdny als 7% ’ﬁ@ [e#



v B |
Wla Marufe; - and &( /@i Zl’f f”ﬁ/l

Rtre.— fja ol \

ok § w0 |

If o -appad to e BT

%j{ (l‘l ~Flng [om&bpm@‘% A+ remp

[ dnd ddd b conle H of
@lﬂi d 2 (f/l ZMZ Jr/eg/

: }
A; A/{, 07, 01
T il
/A(l A’L A% D( 02 )93
Is - | i =3

00# noed DA bl | e —bit fo sumy

Aodwv”y ~ Coattc Thad wldod lufer
%o (ghk



Gk oy JW)@{W
POP ( Bl T[/ﬂm Fat

‘nC a }45\0/}L EmLp Béb[ A)ér

(/9519 &i \/C(L/(
Ple !
(dmmoe (/L

F(’\& a/i””!l ‘H \TN&‘ TL{L l\/([ 7(0 dn Yﬂ/

&W:l w {4 [@ﬂ/!ﬂq l?t"/{”/@ e

—

(b god ad ik

npﬂﬂl /”'Ju/ QO ‘Mﬁmtg @fﬂ%‘((’/ 7&wm 2
fck(/aovw/lf?
MM (n (edl‘/r( LN)L ‘\M 5{(#&/ 7’20,4 .
<4 74




b) Fid T
Y& cmle

0\/\,\‘1 #0‘( 6 {‘g f( h\r
Wheh sted ! A ﬁé/é

YAl
M,

é\ﬂw nojr C Mg Wﬂ ﬂ Jolete - ./ﬂg
gc(w JLMQ |

}w{uﬂ% n ?90,?‘& ard on 2 b qlst ol

[ ops



E{;seﬂ‘w[y( iy FraslgH.
ihde & Gy ot G pch ok

%}}}D"l L?,H m& z'; O;O

T Mo compue Gk cbo

— (b 8%
- L( 5({% /Q}W)(@ 0[7(

‘“’h&f\ e
go % ﬂwpe 540{{ ;5 d/h/(

gﬂ %L[

@b wﬁ:{f}@ L": YL?’
k for il

@ i Cﬂnon%/ pom}
Hagh

P(QHQ{L L

For eqh

ML’ @ &
A e -
Coﬁm\ )/m%ft ('{fm@ /78



0

(W) e ob & conpae 2 leaght’

Hsh o]

_________/"

Olo/ Z/?
010t ¢34 2"
O W ane o Il o

J4 adl @
- }\Cwl ’wal (@(Q},

X "2y
ZX +.._ﬁ22/
X+ 2Ky

(,( Tt o pider
(ot
Pfﬂm
#ﬂl ’

Tt HL qual 6 () 7

2 ¥ *’Z*/



U

COIL((/b:M /d - (Z[ [ dad ¢ c‘rnlefdwg@/
~does %’WW(&T

Ly = st chughey o pisk
(i St we S0 Yy
o nack, Coonl Chused e 27 g0 Mo
ZQ ’Mf"'\lﬂy s 4 oty 2
(wincod |e @(ﬁ(

pss |t a/t wloi Gynlnd @00

—— @5l Tob pws
@ Ww 716{54 (CAsES ncr} ol
w

HM VAl Wﬁ {
@) JW['-% “5+ ﬁ”'(
Budte /\«oL)

()/l iﬂr (W/l

m—ﬂm J)/( {cm{hy (01040

[ad [ pot w5 redof
Tnploart bl s}



b bt lss',
Fired Jialed L‘O?L"” (oleof s
Hashf busel w2000

@ “petd o "
320 oo bete

3{322 5(’,0 ﬂ(@r

ZOZ’(( 2 ?f Sec

é‘) )“51L 5;)8@(‘/ v,
go it f%& d«p{lcmle) a (o?t l,

Q{ Jiws 0{ WWM 7 ch(f/m ’bl
Lé&{ A oWl (oa[ /'1506



0

Vo e b sean D o pbl
Wt Bk, hooh

Lokt mod 7

e we gojw )l Q| wﬂ/(‘,

o 4t 9f digat 3

Wv‘)‘ oll he T (pprox ﬁ(, San,
54(/%(/ s ity Sloer i

, L EPY (19 <7
</ ] ngged G xi1)%
) ook o 290 heh Gy T

@ 233 56 '@/ %7ﬁ$

G bt gt
ﬁ/](h/’ng)t((o

2l i 5 MU/{;/U{\/‘«?)V Zh
77//} E) /‘/fl(“'\tj 177 Zﬂ

\Q-Mav@ sum | @ %2 69 quh




o xeed oy @W,@b (W/%/
xeed  yec 3 ) 41 oh

X/é { y V4 l @ YQ pb
Y < | y&éé I o o
X[[() NEAA ( Sli ghts fasle
cao Y s

e ac af 707 sec

59 N /"/ﬂl yite P 197 A



D:\Users\Michael\Documents\MIT Junior\6.006\pset2_solutions.py \ Tuesday, March 13, 2012 6:58 PM
collaborators = 'Your collaborators here' 60 lO"Lj

# Answer True or False for each part of problem 1.

answer_for problem 1 part a = True
# This also correctly moves the left child into the node's place

answer_for problem 1 part b = False
# This may cause violation of the BST property

answer_for problem 1 part c = True
# This node cannot be None, since the right node exists

I

answer for problem 1 part d True

# Everything is symmetric.

answer_ for problem 1 part e = False

# Replacing next with his right child works, but we forgot to update val and count

answer for problem 1 part f = False
# next.val will change if we recursively delete, causing our updated node.val to be wrong

answer_for problem 1 part_g = True
# At this point, this function must turn True

# On problem 2, your answer to part a) should be a boolean, your to part b)

# should be an integer, and your answer to part c) should be a string.
answer_for_problem 2 part a = True

answer_for problem 2 part b = 2

answer_for problem 2 part c = """

Suppose some data structure supported insert, get _min, and delete of arbitrary ordered
values, in o(log n).

Then, the above algorithm would run in o(n log n) and also correctly sort. This is a
contradiction.

e

# Enter your answer to problem 3 here.
answer for problem 3 = '"'

Sort all arrival and departure times together in an array A, putting a

pointer indicating whether the time in the sorted array is an arrival or

a departure time of a person in the party.

Let T be an augmented BST, where at each node X we keep the number of

elements of the subtree rooted at X. Initially, T is empty. Each node will

be a person that went to the party, where the value of the key is their

departure time. Hence, T will be a BST in which each node is put with value

being its departure time and each node has the extra information described

above. (we are doing this so that we can compute the rank in O(log n)).

Let ANS be the total number of follows we will have in the end. Initially,

ANS = 0.

Loop through the entries of A as follows: (i ranging from 1 to 2n)

If A[i] is an arrival time, then insert the corresponding element E in T and check

its rank in T. Let K e be the rank of E in T. Then, ANS += K e - 1. (because we don't

e
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follow ourselves on twitter :-p)
If A[i] is a departure time, remove element E from T.

Correctness: when we insert E in T, we have that all elements in T are the
people who were at the party when E arrived, since we are inserting E by
arrival time. Moreover, T does not contain people who left the party by the
time we insert E, since they will be removed from T as they leave. Hence,

K e - 1 is exactly the number of people that arrived at the party by the
time the E arrived and that will leave the party before E leaves, since the
tree is constructed by departure time. Hence, ANS will be the number that we

want in the end.

Runtime analysis: it takes O(n log n) to sort the array A. Then, to insert/
delete/compute the rank in T, each of these operations take O(log n). Since
we perform operations in T 2n times, the total time of going thorugh and
performing operations in the tree is O(n log n).

This gives a total running time of O(n log n).

# -- Problem 4 code begins here. You need to finish the last function. --

4 Rotates the polyomino 90 degrees counterclockwise. Returns a new list.
def rotate(polyomino):
return [(-y, x) for (x, y) in polyomino]

4 Translates the polyomino by the offset. Returns a new list.
def translate(polyomino, offset):
return [(x + offset[0], v + offset[1]) for (x, y) in polyomino]

# Checks if two polyominoes are equivalent under rotation and translation. Runs
# in linear time in the size of the two polyominoes.
def compare(polyl, poly2):

if len(polyl) !'= len(polyZ2):

return False

# Translates a polyomino so that it just touches the x and y axes. Returns the
# set of squares in the translated shape.
def get canonical_set (polyomino):
offset = (-min(x for (x, y) in polyomino), -min(y for (x, y) in polyomino))
return set (translate(polyomino, offset))

polyl set = get canonical_ set (polyl)
for i in range(4):
poly2 set = get canonical_set (polyZ2)
if polyl set == polyZ set:
return True
poly2 = rotate (polyZ2)

return False

def get canonical frozenset (polyomino):

Da
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offset = (-min(x for (x, y) in polyomino), -min(y for (x, y) in polyomino))
return frozenset (translate(polyomino, offset))

def add protein_to dictionary(protein, d):
dlget_canonical frozenset (protein)] = True

# Fill in the body of this function for Problem 4.

def num_proteins_in common(protein listl, protein list2):
proteindict = {}
count = 0

for protein in protein listl:
proteindict[get canonical frozenset (protein)] =1

for protein in protein list2:
for i in range(4):
if get canonical frozenset (protein) in proteindict:
count += 1
break
protein = rotate(proctein)

return common_count

i3
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6.006- Introduction to
Algorithms

Lecture 8

Prof. Silvio Micali
CLRS: chapter 4.

The problem of sorting

Input: array A[1...n] of numbers.
Output: permutation B[1...n] of A such that
B[1] £B[2] £ - £Bjn].

ez A=[7, 2,85, 5,96] +B=[2, 5,5, 7,9.6]

How can we do it efficiently ?

Menu

* Sorting!
— Insertion Sort
— Merge Sort

e Recurrences
— Master theorem

Insertion sort

INSERTION-SORT (4, n) > A[l..n]
forj«—2ton
insert key A[/] into the (already sorted) sub-array A[l .. j-1]
by pairwise key-swaps down to its right position

Illustration of iteration j

1 iV n

A: I‘ ! Z/l‘j
sorted ; key

b
’ new location of key




Example of insertion sort Example of insertion sort

8 2 4 9 3 6 8 2 4 9 3 6 Iswap
Moo
Example of insertion sort Example of insertion sort
8 @ 4 9 3 6 8 2 4 9 3 6
N~ o T
2 8 @ 9 3 6 2 8 4 9 3 6 Iswap



Example of insertion sort

Example of insertion sort

4
4

8
8

W W W W

AN Y Y DD

Example of insertion sort

Example of insertion sort

W W W Ww

6
6
6
6

0 swap

3 swaps



Example of insertion sort Example of insertion sort

8 £ + 9 3 6 8 2 4 9 3 6
TR S
2 8 4 9 3 6 2 8 4 9 3 6
2 4 8 @ 3 &6 2 4 8 9 3 6
L L
2 4 8 9 3 6 2 4 8 9 3 6
\‘_\_________/ \_______.____/
2 3 -+ 8 9 6 2 3 4 \8___?/6 2 swaps
Example of insertion sort Meet Merge Sort
8§ 2 4 9 3 6 )
o MERGE-SORT A[1 . . 1]
2 .1/4 9 3 6 divide 1. If n =1, done (nothing to sort).
2 4 8 9 3 6 and < 2. Otherwise, recursively sort
v conquer A[1..n2]and A[n/2+1 .. n].
2 i.__g_.i/3 0 3. “Merge” the two sorted sub-arrays.
I i__g__/6 Key subroutine: MERGE
2 3 4 6 8 9 done

Running time?  O(n?)
e.g. when inputisA=[n,n—-1,n-2,..., 2,1]



Merging two sorted arrays Merging two sorted arrays

20 12 20 12
13 11 13 11
7 9 7 9
B 2 p
output array output array
Merging two sorted arrays Merging two sorted arrays
20 12 | 20 12 20 12 | 20 12
13 11 13 11 13 11 13 11
7 947 9 7 97 9
Pl PIKR

S~— S— S~—
output array output array



Merging two sorted arrays Merging two sorted arrays

20 12 20 12 20 12 20 12 20 12 20 12

13 11 | 13 11 | 13 11 13 11§ 13 11 § 13 11

791 7@|60 7 9017 9 9

2 §D Q 2 p Q

1 2 1 2 7

~— S— S~— S~— S— S— S— S— S— S—
output array

oETT:uT array

Merging two sorted arrays Merging two sorted arrays

20 12 20 12 20 12 20 12 20 12 20 12 20 12 20 12

13 11 13 11 13 11 13 11 13 11 13 11 13 11 13 11

7907 9 9 9 7917 9 9

D@ : p Q

1 2 7 1 2 7 9

S~— N~— o g S— S~— S— S— Ss— S~— S~— S~—r
output array

output array



Merging two sorted arrays

20 12
13 11

20 12
13 11
7 &S

]

2

S—

20 12
13 11
9

N

20 12
13 11

9
S~—r

output array

20 12
13 11

Merging two sorted arrays

20 12
13 11

20 12
13 11
7 &9

R

2

—

20 12
13 11
9

7

—

20 12
13 11

9

S—r’

output array

20 12 20 12
13 13
]l "o
~—

Merging two sorted arrays

20 12

13 11

7 9

25})
1

N—

20 12
13 11
7 9

]

2
g

20 12
13 11
9

7

20 12
13 11

9

S—

N~—r
oufput array

20 12
13

Merging two sorted arrays

20 12
13 11
7 9

P

S—

20 12
13 11
7 9

R

2

S—

20 12
13 11
9

L

20 12
13 11

9

S—"

output array

20 12
13

20
13

12
~—



Merging two sorted arrays

20 12 20 12
13 11 13 11

7 9 7 9
1 2
~— pu

20 12
13 11

i

S~—

20 12
13 11

/

2

output array

20 12
13

Time = ®(n) to merge a total
of n elements (linear time).

Recurrence solving

20
13

Solve T(n) = 2T(n/2) + cn, where ¢ > 0 is constant.

Analyzing merge sort

MERGE-SORT A[1 . . 1] T(n)

1. If n=1, done (1)
2. Recursively sort
A[1..Tn/21]and A[[n/2H]1 .. n] | 2T(n/2)

3. “Merge” the two sorted lists O(n)
1 ifn=1;
Ty = o il
2T(n/2) + O(n) ifn>1.

Recursion tree

Solve T(n) = 2T(n/2) + cn, where ¢ > 0 is constant.
I(n)



Recursion tree

Solve T(n) = 2T(n/2) + cn, where ¢ > ( is constant.

ch |
T(n/2) HT T(n/2)

Recursion tree

Solve T(n) = 2T(n/2) + cn, where ¢ > 0 is constant.

cn

cnl2 = \Lcn/Z

. s N
cnld|  |cnl4]  |enld|  enld)

ok

Recursion tree

Solve T(n) = 2T(n/2) + cn, where ¢ > 0 is constant.

Cch

cnl2 cnl2
et

Tmi4)| [T0v4)| [T0va)| | T(i)

Recursion tree

Solve T(n) = 2T(n/2) + cn, where ¢ > 0 is constant.

cn
\
cn/2 cn/2
e

NS
cn/d|  |cntd]  [enid|  enid]

JE

o(1)



Recursion tree

Solve T(n) = 2T(n/2) + cn, where ¢ > 0 is constant.

cn resssssmannnesasaes
\
/2 /2
cn . cn |
cnld ‘ cnld cnld ’ cn/4
&
(1)

Recursion tree

Solve T(n) = 2T(n/2) + cn, where ¢ > 0 is constant.

- cn \ -1 CH

cn/2 cnl2 =1 CH

/ X A ==
’cn/4 }cn/4 ‘cn/4 Icn 4\J -------- cn

cn

Recursion tree

Solve T(n) = 2T(n/2) + cn, where ¢ > 0 is constant.

cn|
@@ cnl4 cn/4 ‘ cn/4 ‘

Recursion tree

—1cn

ch

Solve T(n) = 2T(n/2) + cn, where ¢ > 0 is constant.

cn|

_cn/2

1Cch

cn

=lgn

o)

g’:ﬂ ; cnld

~lcn

#leaves = n

o)

10



Recursion tree

Solve T(n) = 21(n/2) + cn, where ¢ > 0 is constant.
e

cn

cn
__\
7 .

bow o
Il
&
-
)
3
=

cn/4 ‘ cn/4 cn/4 -

cn

o) - ;
_ Total = 4
#leaves = n
The master method
“One theorem for all recurrences™ (sort of)
It applies to recurrences of the form
size of each . .

n)= a‘/T(n/b +f(i’1)‘,/ combine results

where a>1, b > 1, and [ is positive.

e.g. Mergesort: a=| |

e.g.2 Binary Search: a=| |
Basic Idea: Compare f(n) with nlogb9,

Recursion tree

Solve T(n) = 2T(n/2) + cn, where ¢ > 0 is constant.

/@ . on
cnl2 \[M on
B AN & .

=lgn|| cnl4 cnl4 cnf4 |- cn

= :

Idea of master theorem
T(n) = aT(n/b) + f(n)

Recursion tree:
et 0
L o) [fB)] -+ 11y - afip)
[h=logn|
f?) | f?)| - foved)| ~{af(b?)|
T(l) . nlogbaT(I)
«—#leaves = a" >
= alogbn ?
= plogha

11



Idea of master theorem

Recursion tree: ’—q

T(n)=aT(n/b) + f(n)

Idea of master theorem

Recursion tree:

S(n)

T(n) = aT(n/b) + f(n)

N S IR s S @2 f(n/b?)

I 1)
Fem)[[foB)] - Lfbyk--1afub)
log,n a

[h=1

-2 [(CASE 1: The weight increases
EO)

geometrically from root to leaves. | plogsa 7(1)

= Leaves hold a constant
fraction of total weight!

| O(n'reb)

Idea of master theorem

I(n) = aT(n/b) + f(n)

R jon tree: ,
ecursion tree —@_“& _______________ f(n)|
- }Mbﬂ o)L af )
ogyn
| ) 2 f (/)

SGB?) fb?)] -

5— CASE 3: Weight decreases
7(1) |geometrically from root to leaves.

J nlossa (1)

[-—5 Root holds a constant

fraction of total weight! |

O(An))

Il

log,n

S [f@o)| - f by 1-taf ()
a
S/?) f/b?)| -+ [ ffb?) oo @)
7 :

i j-(CASE 2: Weight approximately
7(1)|the same on each level.

plogsa 7(1)

=  Total weight = )’ i
#levels X leaves’ weight! O (1 %8 logy a)

Three common cases

Compare f(n) with n'oesa:

1. f(n)= O(n'°ee-*) for some constant € > 0.
Le., f(n) grows polynomially slower than n'ogs
(by an n® factor).
cost of level i = al f(n/b") = @(n'orat | (b))

so geometric increase of cost as we go deeper in the tree
hence, leaf level cost dominates!

Solution: T(n) = O(n'oe9) .

12



Three common cases (cont.)

Compare f(n) with nlogs;

2. f(n)=O(n'ealogk n) for some constant k > 0.

Le., f(n)and n'°8? grow at similar rates.

(cost of level i ) = dl f(n/b) = @(n'°e - log _b¥(n/b"))

so all levels have about the same cost

Solution: T(n) = O(n'°8b ¢ Jogk*1 n)

Examplel

Please
don’t!

a =2, b= VseMattef Theofétm) = 1
1. Compute a and b
Casp 1:¢lmpufd b 7(7)!

. T(ri) <SS

T(n) = 2T(n/2) + 1

Three common cases (cont.)

Compare f(n) with nloeb:
3. f(n) = O(n'°eb**) for some constant & > 0.

Le., f(n) grows polynomially faster than n'og4
(by an rn® factor).
(cost of level i ) = ai f(n/b") = O(nloeate . pie )

so geometric decrease of cost as we go deeper in the tree
hence, root cost dominates!

Solution: T(n) = O(f(n)) .

Example 2
T(n)=2T(n/2) + n
a=2,b=2 = ned=pn f(n)=n
CASE 2: f(n) = ©(nlg’n), that is, k= 0

- T(n) = O(nlgn).

E



Example 3
T(n) = 4T(n/2) + 13
a=4,b=2 = nowi=p f(n)=n
CASE 3: f(n) = Q(n2*) fore = 1

- T(n) = ().

Let's go master the
rest of the day!

14
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6.006- Introduction to

Last time:

\—NW orithms - Mergesort for sorting » elements in O(n log 1)
v
-, i, . .
I - This time:
. Vs
Lecture 9
Prof. Constantinos Daskalakis
CLRS: 2.1,2.2,2.3,6.1,6.2, 6.3 and 6.4.
Priority Queue
Lecture Overview Any data structure storing a set S of elements, each associated

with a key, which supports the following operations:
- Priority Queue

- Heaps insert(S. x) : insert element x into set S
- Heapsort: a new O(# log ») sorting algorithm :
P (log:2) B max(S) : return element of § with largest key
extract_max(S) : return element of S with largest key and

remove it from S

increase_key(S, x. k) : change the key-value of element x to £, if
k is larger than current value
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Operations with Heaps

- Max_Heapify (A , i)

Correct a single violation of the heap property occurring
at the root i of an otherwise perfect subtree.
Time O(log ).

- Build Max Heap (A)

Produce a max-heap from an unordered array A.

Build Max_ Heap (Example Execution)

A [a]1]3]2]16[9 [10]14] 8] 7]

Build Max_ Heap(A)

Convert A[l...n] to a max heap.

Observation: Elements A[[n/2] + 1...n] are leaves of the tree

because 2i>n, forall i > [n/2] +1

so heap property may only be violated at nodes 1...]7/2] of the tree

Build Max Heap(A):
heap size(A) = length(A4)
for i « | length[A]/2]| downto 1
do Max_Heapify(4, {)

Build Max Heap (Example Execution)
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Heapsort Heapsort
Sorting Strategy:

1. Build Max Heap from unordered array;

A [a]1]3[2]16/9 1014 8] 7]

Heapsort Heapsort
Sorting Strategy:
1. Build Max Heap from unordered array;

2. Find maximum element; this is A[1];

3. Swap elements A[n] and A[1]:
now max element is at the end of the array!
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Heapsort Heapsort
Sorting Strategy:
1. Build Max Heap from unordered array;

2. Find maximum element A[1];

3. Swap elements A[»] and A[1]:
now max element is at the end of the array!

4. Discard node » from heap
(by decrementing heap-size variable)

5. New root may violate max heap property, but its
children are max heaps. Run max_heapify to fix this.

6. Go to step 2. g 9 0
p 0 <— not part of heap

MAX_HEAPIFY (A1)

Heapsort Heapsort

Max_Heapify(A,1)

g 9 10
e <— not part of heap

MAX_HEAPIFY (A1) \

<—n0tpartofheap



and so on...

Operations with Heaps Summary

Max_Heapify :  correct a single violation of the heap property
occurring at the root of a subtree in O(log »);

. Build Max_Heap:  produce a max-heap from an unordered
array in O(n);

Heapsort :  sort an array of size » in O(n log n) using heaps

Insert, Extract Max ? O(log n)

Heapsort Running Time

- O(n) to build heap
- followed by n iterations:

in each iteration a swap and a heapify is made;
so O(log n) time spent in each iteration.

Overall O(n log »)

Heapsort in a Nutshell
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