Mldﬁk omb.,f Bbedetlan O{Q%

o Utsml, of i)y J Comley, Sale machiyy

(omb,w/ f'l‘/u'p}ﬁ 5);@\0]& 91 (PC/“A)
4 [001!\ ar émla, (JOW

~Covelivgs CondiHonul

ooty L delay s b delay H L positon
0L[+]"‘ (A [‘L’Zj

~0rdp by ééi -

Poall . aagpet |
m =0 o |A—,
TC@’“B 0 o[

—
1 ol O/L

(lags Prcallg!

"‘tn:ml}%b’l r’la(/h\v%

—(VhS fem §epera}t (m PM“ g})
o ol o Jiued ot

{fl
126!’\ Mp llé I /7’7'0[{,
o geqpt cplik valve

ot o mackve b5 o4 bad
";/1 Q"J’ 4#'0(/‘* st be Sume Formal-

“Lxanple
¢ NI
Lo 0 CQ,} - (51:
0~ d) il

0
O[ﬂ = 24[{] ri and 5[*]:0[9‘]
E Madyy Mt hae o diad dopendone of s
OApt on llaflﬂL
S ity et e a dilsy or what ('

(Cofﬁfaﬁ&
Py T W
= (Can 'F@QA unéeflwz\, }/\ ﬂ

oty ve don't lpow WW ‘VIM chald be (??)

PN b oald galln b o Nkt Ve mebod
© M s alony gt

I 9‘9‘“5 b dofle Safefdd ¢ cafe i

g

}AP ‘lﬁ ‘IGY\O@(J,
i
and o o Afed b0 e ped inpot

Now caad COm};M) W} An :D(fg,er methyd

F:b pnac

\/—-_-__-_

- Gty {arc; 7 comgley machbe o of frkal compisabs
- l!J} /Z/ gfg/qllg/ VZI/(&;(,

o o 2 prodos Iapls

wod fy ghow Eode o lmplsin
[loﬂlt ab whn Pmblew» 60%)

4

\Feadm Cobbragt + Foadback Add

— H—\m |—
=
Nw 1= $m, Fopdbad Add (V"UMT\?)

4
R(0) L{ﬁ'{‘e
Deloy Jut pastes g

- s '
Wﬁoo]ylng Plwns Vilegs + 1adey

L Bl B il

~

@
_JD ’dme 3 CO/'HD”QG

""CWNQ A /convlro”e« pt 4 g called ;“‘MJF“
—plast < fudory or ol oV PO (oair]

-0 |
- Qn&)/ alwf

0-cHlang
~ll fi S04r (W/Mzol
—Qkaaflp
4 i -!‘;]; V\(ﬁ/})-\ L\(Jiosiﬁ['_:)
’g-- I 00y =
‘ go = len't#
‘*M‘?/ (/l‘bﬂlm’d W{' a/nTllnL
Switeh

-(uny 9 mwkms I,r_ pm”el

—at C0ch MPM} devides wlv(dq machle © Stad L
Mu\ﬁplex

-(/pM@ both Machlas each
~ (/5 CondHlon. |, S lecl

sty

. vhich putpuh

—

~0nly voed |, Complgy Contoxs L Shyp

¢
/E’/mznwﬂ@ State /hada‘tf% VLS%. Com/ﬂﬂ'}c{a@
—all mahings before wll @0

~add 1 me’(’f*‘lé b yominste W/ cl/fs) dot tunchion

Lifff‘/t F dore .
b fake U7

— Neyg Fomlngte | Jg@ doe [5516 Wult)|
(etum Fake

= B 'l’f’m;kq*ﬁ on gy, cont= =
def don [%6[6 ate,),
(ot , Hotul) = shate
refum com =5
Trolumy e (6 ot 755
(@ﬁ%@, do ;f}n ”llf

Tkl & [cout==8"
(d't//t\. feu

@Eﬁ“’f f&b:fe b Faly,

—(epeats 4
6~ Nwe W copears forpype
"Gt < W :

: 7 1 |
“whole puchle pt he dirt N e GE L e stele

Xe

—cun one YUl doe gl watlr, cun L doe S elc
~s‘1m‘ﬂw ’7’ (EPBM'

Repeat Uatil ang Uil

"UV\'m a (er{a}m BDO]@Q,,/L TT/V&
=1 Conditlon ovalvged whiy TUM 15 done

- bk 60""0«{”“‘«5 W pwaab to f@fmrw}é s son &
ﬁ 5 f'ﬁ/{ at Whatwer d‘gw

S0 v 38&1«1&[PV}D"J’Q Unhl Cdmdow{ﬂ"ar

i preuts o Augile
= bt mly A7)

WVeell 3 Hiv x

NOW C €qu '{'u{‘pr }»W
(%(‘W 1 Waghiay
Neo fo ceaf O potes

l
T (P 0w [ec\%//(

9
Casadug Mg
STHody b os dexabd i nales
T Bl v gt Slake
"does ol aucluall, Chae Sak?
=8 -}’h:; ls / de(a/ ym{gh;/@;/?
- \/"6“ no/ ;.ué} St/‘%fﬁl'ﬂ/o}//@
1(09[= sm. (ascade Cﬂ,m_m_/ L)
VEGH' (gr Ié ?,-)
Cacdul P15 et b shd o
- Poafl . foles Sovs o
"STLML 57[4;1[9. (s ,
e of s i gt of (mf,s}mm/ 5%2:5}0/%{&

-% st can gow fo WHFJ(‘WWH

4
Wl L o (,asccale, ne noallel

’60 d.‘?f\‘ [
P sol)) 4 el chibe

Otss f J.O % L%ﬁ” bade of A Wi sheles
” Phat (Jl%@ﬂfé hee (s hat ¢ g~
L@“‘“ﬁ‘ef&' | ARNE
gt dnd W‘Lft/‘L A'e dnd(e Jabes!

'

Tty w2 doley fonclions

a W@p l«,g ’5} *(\’('

“bA T Lot b ke S

“dond call diedl, gotNet [t

o Gy - sm.Ca,scaJa[Sm. D@[@Cl), sm %&‘7@)}
s skt ()
(’or?‘sjref (3)

(
t

b\)(pCors }r\ +df0ﬁ -5 OZ fe{'P/éA(gJ
e b Cepelag o Torp
gttt ervor

~oh rar T 3

6@&’ T ﬂés C!gn PV

h v o on i e g
SMG

@69 Wi c/b“"j Jﬂﬂ:f (cucacﬂe machin ”/

"aﬂ.é‘/ \Hl 9,(1& MO‘;‘J‘Q, ‘lr\f‘k Wf\fh. 0(hoJ' O'L'

now e e and cocret

o T scwed 4 & lL dab L\,P%w ny cody !
ozt Whor

Pap
- %\9‘1/\ \
P j ‘FJ'\GJ(IOM as m@\/n’g/ﬁ,j

o sl mgghla,

-2 4 ‘
gond '
) - N peotedore ¥
_’(e'fvmg [tai" }37 ﬂp)o)‘f;ﬂj Pfo(ﬁd//e
Mgt vse |k Comprglgpsip

‘ao\sylf
Cetain [\CG‘) foc X ;q [j
N+ 5';,,,PL€

POt fohor

U
Pack) sum Ml
SR R
Ve Lt Gndin
- W) pca (odure }ufhﬁ}aj
TR ML am 4 oalg

’feh//‘ns SUM of- fh abs vale of f ¥s
T (n, ﬁo{“%, L\ow to s M?r;
" Yeah gl have gum

—wll Altumylyly,

T Mlwmilgtor + Obs [fnp) :O‘/PP‘}
“Mw dllym|
bt bt v Ve s
T be A mlelr |
\\)«/\ how o g T Q“UNV[‘J’W(?

L v basic o “b*
~0n ’i have aess fo outea 3

“Oh Can ;‘{ f@@ferw Q F(‘om §vp’f‘ C{assf?
“nope

?@ﬁ(}% b foo Ve b Coo fes cast

| \
Ok(). ﬂw Ca,H Sumbbs o O“’” nok N“PL""’}(S”"M%)
0 T (g map Lk -

Stocuge

i

Maks G moe Sonon pow!

Dt

Pa(*?} map gd,(/af@
=

"J’dL%] A Gyl 1 Pm(m” “/) avgndate aqd
% Th mhimgon gt Comprt by,

“[{(w) fr x i Lofroy [J
.\g‘* T’Ml does [[/ /l(3{ Z/q, é/ 26{0
ww;[[(,’z, 0 L4 2.4,9]

“heod 2 |k ComP/EL@n&lOfsfj

- 9c [@(\F,y)/qx,\,)] 2NN

il [Cy) e v 1) b o b 7
,‘M(O/ ; Z/g amm‘
\[/‘)fé(d\hfferem Joes ol prorli)

Tld 6D b €) 6 s s

@%ﬁ Do

v 141

6

ﬁ—g F(/n(/ﬂaﬂ MW/W/@

_ t
(/,J\Lq MWLI@ 5”5 Wiaf a pure ﬁ/‘ncf“iﬂn mwh/’,y W
Can ho gy ‘"
- cbes not hasg SML@

- QL@HM ﬂls (ure ﬁ/noﬂoﬂ bfl)c);gg ‘Ol@(/[q

A (ascad g

~ Qot i+ lfr\ Ind 1L/7
. ¢ 2l
i (\C)
Sel(,xc :@
Out (/60‘(/2 (58[5/ #ﬂfjf(, t'ﬂp)‘

Cetun ghate, solf £ iap)

T Hi!
(ovld o Of““/\m) 2 Byash
~ Pacallg)

R ;‘%{wiﬂ” ;Jv\/ 1 oftrdhs

~how agd o Cobira ﬁ may of T 2
- thuation, ovee NN Sel,

& I pun a4 e e Longtam \/faﬁ%/?

“Oh et Lgnae 0ro”
WA W nd ding mar

6.01: Introduction to EECS 1

Week 4 September 28, 2010

6.01: Introduction to EECS I

Signals and Systems

Week 4

Lad of q Sectlony

September 28, 2010

Outline

e Signals and systems view
e Operations on signals
o Feedback systems

Reading: Sections 5.1 — 5.4

(ortr wl“ag cor €

Understanding systems

State machines as models

Good news:

¢ Have seen how state machines can control system's response to
input

e Can build complex state machines to control our robots.

Bad news:

o Can't pred& how our controllers are going to work, except by
running them, possibly several times, and gathering data.

¢ When they don't work well, we don't have any systematic way
of changing them to make them work better.

Solution:

¢ Make models of the controller and of the robot and its world.
¢ Analyze the models mathematically to characterize performance

and understand how to improve it. (‘8&”‘{ ‘L’F&!’ﬁ
&YA‘G’ Ja)

Caxade v/ fpalbust

desired
output control

Controller
|__.
model of Tl vorld

¢ Make a state machine model of the plant: that is, the aspects
of the wthat you are trying to control

e Make a state machine model of your controller

e Connect the state machines (cascade and feedback)

¢ Run it to see what happens

output
Plant -

A

f v t T
YM UVL!(%U-L W (\}dh“ m

Computer programs are unpredictable

LTI systems are predictable

Could we figure out what will happen without running the simulation,
just by looking at the definitions of the controller and the plant?

Wl be grmH

In general, no.

It is impossible to predict even whether a general computer pro-

gram will always terminate and produce a result.
¢ Known as the [‘Halting Problem"/— very important result in com-
putation.

qu\' SLOW mjl H' {5 no~} Po.ﬁs;b\t

—
Consider simpler class of state machines:

e State: last j inputs to the system, plus last k outputs of the
system
e Output: a fixed function of the input and the state

Linear time-invariant (LTI) systems:

e Can be analyzed mathematically, to predict behavior without
simulation

¢ Are compositional: cascade, parallel, and feedback compositions
of LTI systems vield LTI systems

@ Yo prodidable
M /‘fa"f‘(xcuu’f
ot &0 bad, goed raf ot

[A ggﬂ_%{' d_ .'\‘
—

6.01: Introduction to EECS 1 Week 4 September 28, 2010

The signals and systems abstraction Signals and systems: widely applicable
Describe a system by the way it transforms inputs into outputs. Signals and systems abstraction has broad application: electrical,
mechanical, optical, acoustic, b1olog|cal financial,
(t) wit)
J(}VL (W[%r — r:g‘s;:: — AQSC(
system
signal signal % f\;
— | system |—» V]
in ¥ out olt) L TI
-[rolt) ra(t)
hy(t)
ri(t) | § —] tank |/ St
system
.'u(t)l | l
Signals Systems
Primitives: unit sample, sinusoids adder, gain, delay sound.In soundiiodt
Combination: delay, scale, add cascade, feedback)))) sound out
- 3 % eil
Abstraction: signal system function PRpm— .;Elm
sound in System
Signals and systems: modular Signals and systems: hierarchical
The uniform representation allows us to combine models of processes Primitive representations can be combined into new representations.

that operate upon different physical substrates.

Composition of cascaded systems:

B Y) the output of one is the input to the next
sound out
sound| [cell | E/M P oLy P E/M | cell | |sound
in phone fiber phone out
sound in)))
\
6apl'l 4 a LTTL fyeﬁq The new representation can be treated just like primitives.
sound| cell E/M optic E/M [cell |sound

: > - > > sound sound

in |phone Rl BT phone| out —n_ | cell phone system out
focuses on the flow of information, abstracts away everything else
Continuous and discrete time Linear time-invariant systems
Inputs and outputs of systems can be functions of continuous time e linear: dependence of output on inputs is linear

—

o time-invariant: the same relationship between inputs and outputs
holds for any value of n (i.e. for any instant in time) iO% nm(J{ ﬂé Iy
e causal: sample response at time n only depends on values at the ’ﬂ

same or previous timfa steps ‘ ImL
LJC‘h ‘I’ bol{. i 1{,{1)((7.
or discrete time. Any LTI system can be described using a difference equation:
. a T ynl=coyln—1]+ey yln -2+ ... + cp—1 yln — k]
Al dgcloims

+dg xn] + dy ofn - 1] + ... + dj z[n - j]

Pl Goc Smetd ko

c(bch Output y[nr] is a linear combination of
I: ‘lhi.\k e k previous output values, y[n—1],...,y[n— k|,
e j previous input values, z[n —1],...,z[n — j], and

We will focus on discrete-time signals and systems. o current input, z(n].

6.01: Introduction to EECS 1

Week 4 September 28, 2010

Feed-forward systems

Step-by-Step solutions

Difference equation defines the output of a system at a particular
time point in terms only of its previous inputs.

Example:

y[n] = z[n] — z[n — 1]

Difference equations are convenient for step-by-step analysis.

Let z[n] equal the "unit sample” signal 4[n],

"l

1

5n] = { :

0,

if n=20;
otherwise.

z[n] = d[n]

n
-1012 3 4

This is our first example of a “primitive” (building block) signal.

Step-by-Step solutions

Block diagrams

Difference equations are great for step-by-step analysis. Let

{ 1 ifn=0
z[n] = .
0 otherwise
Using the diff eq: yn] =z[p]—an-1]
y[0] =z[0] —x[-1] =1—0 =1
yll] =z[1]—z[0] =0-1 =-1
y[2] ==z[2] —z1] =0-0 =0
y3] =z[3] —=z[2 =0-0 =0
z[n| = d[n] y[n]
io—o—o—o n n
-101 2 3 4 -10 234

Block diagram is alternative representation — captures interactions
of components in graphical way

Difference equation:
y[n] = x[n] — z[n — 1]

Block diagram (delay, adder, gain):

x(n)

& A i
Jovia ~> o] Figly 44{3
Same input-output behavior, different strengths/wea

difference equations are mathematically compact.
block diagrams illustrate signal flow paths.

& b,

dixnte dibrrmilstor

Block diagrams: Step-by-step solutions

Signals

[
Using the block diagram. Start “at rest.” & . {' 0

0 »{ + 0
hpte
> o DT
2ln] = ol o Fedbad of
l predasy anty
-101 2 3 4 " -10 2 3 4 "

s

A signal is an infinite sequence of sample values at discrete time
steps.

Common notational conventions:

X: the whole input signal

z(n]: the value of signal X at time step n
Y: the whole output signal

y[n]: the value of signal Y at time step n

signal

signal
i out

system
in A

Systems transduce input signals into output signals.
——

6.01: Introduction to EECS 1

Week 4 September 28, 2010

Operations on signals

Operators manipulate signals rather than individual samples.

fundionals

X »(+ Y

L%

Wires represent whole signals (e.g., X and Y).
The boxes operate on those signals

Unit sample signal

Only crucial #Imitive in our PCAP system:'

1 ifn=0
dn] = .
0 otherwise

Other useful primitives are step and sinusoid signals. Discussed in
software lab and readings.

builll

Jp PCAP

T
Operations on signals: scaling /aq,{,.l
= +4

Operations on signals: delay

Multiply a signal X by a constant e:
1
Jépwhm on ﬁi’m\
(e- X)[n] =c-zn]

46
4

-3.38

Constant ¢ often called a gain.

—
2

—_—

Shift signal X to the right (forward_in history), getting RX (Think
of this as delaying the input signal so that it shows up one or more
instances of time later):

L& right
"

(RX)[n] =zn—1]

Lty ¢
Uifor higlorical reasan
Sk matpy eack vale by

Operations on signals: addition

Abstracting signals

e

Add signals X; and X together to get a new signal X + Xo:

(X1 + Xo)[n] = z1[n] + w2(n]

38 + 4RE — 2R2S
4

§+ R +RY

[,lli 1.1

0 n
n | l

B ean bJ‘au any

Scaling, delay, addition all return new signals that can be further
combined

Abstract by naming
——

Y=3i+4R5-2R% fya Jpemfc 0a

Z =Y +03RY

5

Any signal with finitely many non-zero samples can be constructed
from 6 with delay, adder, and gain operations.

S T
'C‘"ﬂfhn{ hwi\r\

6.01: Introduction to EECS 1

Week 4 September 28, 2010

Operator notation

Operator notation: Check yourself

Representing the difference machine

X (AR
2/ -

X X

with R leads to the equivalent representation

Y=X-RX=(1-R)X

[Let Y =RX. Which of the following is/are true:]

y[hf= KCI‘ *O

y[n] = x[n] for all n

@ yn+ 1) =zn] foralln =
3. yln|==xn+1] for all n
| %

4. yn-1]= u:f‘n] for all n

5. none of the above

Y0 u'|“pul-

Operator algebra

Operator algebra: commutativity

Operator notation prescribes operations on signals, not samples:
e.g., start with X, subtract 2 times a right-shifted version of X, and
add a double-right-shifted version of X!

. n
X “10123456

—2RX : 10] 23456
+R2X : . g

Y =X-2RX +R2X : -10] 23456

Expressions involving ® obey many familiar laws of algebra, e.g.,
commutativity. Xq\{,;- Yo X
R(1I-R)X =(1-R)RX

This is easily proved by the definition of R, and it implies that
cascaded systems commute (assuming initial rest)

x ~(D-+[Detar} v
}»
is equivalent to

X —=| Delay L

»(+ Y

Operator algebra: distributivity

Operator algebra: associativity

Multiplication distributes over addition.
"__—'_'—"'-_._’-——_'-'__-—-—
Equivalent operator expressions:
R(1-R)=R -R?

Equivalent systems

X

N0 T

-

> Delay »(+ Y
.b.w_. Delay]

The associative property similarly holds for operator expressions.

Equivalent operator expressions:
(1-R)R)2-R)=(1-R) —R))

Equivalent systems

> Delay e Y

@'Y
Delay » [Delay [»[Delay]

foat just Nl dllgghry

6.01: Introductlon to EECS 1

Week September 28, 2010

ale {h p(pﬂ@)h% of Yo opehtn ',

Check Yourself --N)-l’ 'h(, S(ﬂﬂ“l N

System Functional

" onelie each pwce - JORP

How many of the following systems are equivalent?

I et
e

I) o Delay
Y= YiHyRw —rmﬂ%@* J

Vix .~

X—T+!ﬁHﬂ*]b~ﬂl¥%+iﬁﬁﬂ+[>>+C>+Y)QZR

W
W =XT'P\K > X—|—>|7Delay]—>(?—>| Delay|—>[>—~(?-> ;

P

i)
= Juilay

The system is completely characterized by the relationship between
the input signal X and the output signal Y.

We call this relationship,

Y

X
the system functional. It is independent of any particular input
signal.

So far, the system functionals that we have seen are polynomials.
More generally, they will be ratios of polynomials.

Cdn Sda y fl\w abot {03 575{73"'
¥ o any x

¥ - ’zlﬂw
@QQHQH’) X

Feedforward and feedback systems

Explicit and implicit rules

Feedforward: output depends only on previous inputs

Feedback: output depends on previous inputs and outp

X —(3) Y

uts

Recipes versus constraints.
=

Recipe: output signal equals difference between input signal and
right-shifted input signal. =

X —(+) ¥
Y=RY+X

1-RY =X

Constraints: find the signal Y such that the difference between Y
and RY is X. But how?

7
Example: accumulator / (qh;,\@‘h}/‘
d vV

Example: accumulator

Step-by-step analysis always works. Start “at rest.”

x[n] —(4) y[n]

Find y[n] given z[n] = é[n): y[n] = z[n] + y[n —1]

yl0] =z[0) +y[-1] =1+0=1

2k
|

An equivalent system:

6 4 fhog potmomt ‘.

vl =] +yl0] =0+1=1
=l il 0411 R T G S
x[n] = d[n) o y[n] ! "' R-}—& Z TN Ny
Y=(1+R+R2+R34+..9)X [,&ﬂ
s is equivalent to
n n [’ﬂ
-101 2 3 4 -1012 3 4 (1-R)Y =X
Persistent response to a transient input! Proof in readings. p.__RrL
S
2
Can 5Till maqy Jlm}«(R

6.01: Introduction to EECS 1

Week 4 September 28, 2010

Linear time-invariant systems

Examples

Any LTI system can be described using a difference equation of the
form:

yinl=coyln—1]+cryln -2 +...+ cp—y yln— k|
+do z[n] +dy z[n— 1] +... + d; z[n - j]
State is
e k previous output values and
e j previous input values.
Output y[n] is a linear combination of:
¢ k previous output values, yln —1),...,y[n — k|,
s j previous input values, z[n—1],..., z[n - j|, and
e current input, z(n].

ynl=coyln—1+ecryn -2 +... + e yln— k)
+do zn] + dy 2ln =1 + ...+ dj 2[n — j)

e Output at step n is 3 times the input at step n:
y[n] = 3z[n]

dCoeffs: 3, cCoeffs: none
e Output at step n is the input at step n—1:

yln] = =[n -1

dCoeffs: 0 1, cCoeffs: none
e Output at step n is 2 times the input at step n —2:

yn] = 2z[n — 2

dCoeffs: 0 0 2, cCoeffs: none

balt algghea for opoatoss

Combining modules

LTI systems as state machines

Assign names to all wire;‘;‘m?‘k
4

Write operator equation relating input(s) and output of each com-

ponent
Y =kE
E=X+2
Z=TRY -R%Y

Solve for output
Y =kX +kRY —kRZY (ol P“” ot mf)a‘
ofF PPL/M{'&[3

Convert to difference equation

y[n] = kx[n] + ky[n — 1] — ky[n — 2)

X

+ Y

L%

podel i

class Diff(SM):
startState = 0
def getNextValues(self, state, inp):
return (inp, inp - state)

Diff () .transduce([1, 0, 0, 0]
= Y S‘igw'
Or - op

£ ol ohy they caled i Hhat
A7

diff = sm.ParallelAdd(sm.Wire(),
sm.Cascade(sm.Gain(-1), sm.R(0)))
diff.transduce([1, 0, 0, 0]) {rﬂe[a?

Wy You cun & badn ¢ Eutard L/w

Multiple representations of LTI systems

This Week

—

« difference equations: good for step-by-step simulation

o block diagrams: good for signal-flow intuition

¢ operator expressions: good for compact description and com-
bining systems

+ Python SM subclasses: implementation of difference equation

¢ Python combination of primitive SMs: implementation of
difference equation, but easier to get right

Software lab: Class for manipulating signals; can do same opera-
tions as a feed-forward system

Design lab: Constructing and using LTI model for robot control

To get help:

¢ Email 6.01-help@mit.edu

e« Go to lab hours (see course web page for times)

o Remember to check your due dates/times on the tutor

e Interviews will be held on October 17 and 18; and on November
14 and 15

Weok Y Lechn

(mfmuifnﬂ a 51{;‘@;71

\
= 5&7 J(“N(/lg s

TS%0r fo Spase Your [005”"0/’ n x (cmﬂ

_Jﬂlm Collect /'\[W(ony
90
3 ohravight’;
rgh
cught
r‘uﬂ}
bk
\ ot
\ et
bt over stour
US‘M()’ LTE’,

T Comblad prlaifle o abshut ploplom
*amllft—e

Absmei@ Signals

~Unit M L 0aY }3 '
gl Y has Stgng| ey regl

— Uik 81 ~ges fy nit sk =5, aley Posis sigeal
T (e o Auggad glgaaly wlth hi,

29

Y

(g:l
R xix]
i[?:{_
) g{)
K)
X i;[X
nn

Arﬁ .
:14

{

)

*<£
rvlj
)
]

=0

e

5

-

.
:996
ol
4%

gpreged

ﬂwugM 5

___/-—'—'__F

S pfepm re bad for math

Lﬁ D ocn lewn it
~d b visvadlged 3 bes case
~ il P S yedede
“’Jdﬁ i o 90 S{W H/M%hqd
“M«(C{/\ ’I{de/ be@n Q[omy
— bt ot Sfméahnj
T wy Dt fon g vou
Really Il whn 64 appls o el wpyld
=
“Pro)
‘"(n?/\ Can U‘LMH’N
~hay My 'tqh"?‘vr)

T looed o mdlle schotl
—dot got conbortable

~n a,L.,ap @6{' better

e

6.01 SWLab 4: Signal Class — Fall 2010 1

Software Lab 4: Signal Class

Setup

e Using a lab laptop or desktop machine: Log in using your Athena user name and pass-
word; in the terminal window, type athrun 6.01 update. Work in the directory Desk-
top/6.01/1ab4/swlLab.

e Using your own laptop: Download the zip file for software lab 4 from the Calendar tab of the
course web page, unzip it, and work in the resulting directory.

Starting Idle so you can make plots:
If you are using your own laptop, be sure you have Numpy installed. (See the software tab
of the course web page for instructions on how to do it. Note that Numpy doesn’t work

with 64-bit Python on Windows.)
e If you are using a MacOS, Linux, lab laptop or desktop machine: type idle —nin a

terminal window.
e If you are using a Windows machine: download and unzip the idle-n.bat file under

Week 4 on the Calendar page. Then, to start idle, run the idle-n.bat file.
If you have trouble doing this on your computer, ask a staff member right away.

Introduction

The software lab for this week is to implement a Python class that provides methods for perform-
ing operations on signals. You can think of any signal as an infinite sequence of sample values.
We will represent signals using a function that can be called with any time index, returning the
value of the signal at that index.

We will use object-oriented software techniques to organize our software for implementing and
manipulating signals. An abstract superclass, called Signal, will have methods for performing
operations on signals, no matter how they are represented. The Signal class will only assume
that every instance has a method called sample, which takes a time index, n, and returns the
value of the signal at time n. Then, we will have several subclasses of Signal whose only job is
to implement the sample method in an appropriate way.

The simplest signal we could imagine having is one with a constant value. Here is its class defin-
ition:

3.

Step 1.

6.01 SWLab 4: Signal Class — Fall 2010 2

class ConstantSignal(Signal):
def __init__(self, c):
self.c = ¢
def sample(self, n):
return self.c

The UnitSample signal has value 1 at time 0 and value 0 at all other times:

class UnitSampleSignal(Signal):
def sample(self, n):
if n == 0:
return 1
else:
return 0

Somewhat more interesting is a sinusoidal signal; we implement this with a CosineSignal class,
whose constructor takes a frequency omega and a phase phase:

class CosineSignal(Signal):
def __init__(self, omega = 1, phase = 0):
self.omega = omega
self.phase = phase
def sample(self, n):
return math.cos(self.omega * n + self.phase)

A method plot(self, start, end, newWindow, color) is also defined for all signals. It
plots the signal from start to end. If newWindow is a string, it will make a new window for this
plot and give it that title, otherwise if newWindow is False it will plot this signal in the currently
working window; color is a string specifying the color of the new curve to be added to the plot.
The parameters start, end, newWindow and color all have reasonable default arguments, so you
can just specify the ones you need.

Plotting will only work from idle if you start it with the —n flag. Currently, the first signal plotted
in a new window sets its size; plot the signal with the largest range first.

Play with Signals

e Open the file s14Work.py in Idle. It imports our implementation of the module sig, which
defines all of the classes and methods described in this handout. So, you can use those classes
and methods in calls that you make in this file. For instance, to make a unit sample signal, you
can do:

s = UnitSampleSignal()

e Add a Python command in that file that will make a plot of the unit sample signal. If s is a
signal, then

Qn\\i

6.01 SWLab 4: Signal Class — Fall 2010 3

s.plot (-5, 5)
will plot that signal in a new window, with samples from time steps -5 to 5.

Choose Run Module in Idle (under the Run menu in the window with the s14Work. py file).
You should see the plot. Be sure it makes sense to you.

Now make a cosine signal and plot it, in the same way. Try different values of omega and
phase.

New Kinds of Signals

This section describes several new subclasses of Signal. In this lab, you will start by doing an
exercise using our implementation of them, and once you have some experience with using these
signal classes, we will ask you to implement your own version of them.

StepSignal (): has value 0 at any time n < 0 and value 1 otherwise.

SummedSignal(sl, s2): takes two signals, s1 and s2, at initialization time and creates a
new signal that is the sum of those signals. Note that this class should be Jazy: when the
signal is created, no addition should happen; values only need to be added when a sample of
the summed signal is requested.

ScaledSignal(s, c): takes a signal s and a constant c at initialization time and creates a
new signal whose sample values are the sample values of the original signal multiplied by c.

R(s): takes a signal s at initialization time and creates a new Signal whose samples are
delayed by one time step; that is, the value at time n of the new signal should be the value at
time n — 1 of the old signal.

Rn(s, n): takes asignal s at initialization time and creates a new Signal whose samples are
delayed by n steps.

Polynomials in R

We have built up an algebra of signals, which is very general. We can add, scale, and delay signals.
One way to express combinations of these operations on a signal is to describe them in terms of a
polynomial in R. So, we will implement a procedure to construct a new signal by operating on it
with a combination of sums, scales, and delays described by a polynomial in R.

So, if X is a signal, then we can describe a delayed version of X as RX, and a version of X that
has been delayed by two time steps as RRX. That same signal, scaled by 7, would be 7RRX or
7R2X. If we added 7R?X to X, then we’d have 7R%X + X, which we can think of as the signal X
transformed by a polynomial with coefficients [7, 0, 1]. So, we could define a procedure

polyR(s, p): takes an instance of the Signal class (or one of its subclasses), s, and an in-
stance of the Polynomial class, p, and returns a new signal that is s transformed by a polyno-
mial in R.

Step 2.

Step 3.

6.01 SWLab 4: Signal Class — Fall 2010 4

Constructing Signals

First, we will use an existing implementation of the signal constructors to build complex signals
from primitive ones, in order for you to get an intuition about how they work.

To do tutor problem Wk.4.1.1, do the following steps:

e Go to the 6.01 web page, look under the Reference Material tab, and click on Software Doc-
umentation. If you look at the documentation for the module sig, you can see the various
methods and functions discussed above, which are defined in the sig module.

e Edit the file s14Work. py in Idle to construct new instances of signals by making combinations
(e.g., sums, scalings, and delays) of instances of the basic UnitSampleSignal and StepSig-
nal classes, as specified in the tutor problem. You can use any of the classes or procedures in
the sig module. You should not write any new Python classes for this problem!!

o Plot them to be sure they’re right.

e Remember that the polyR class takes as a second argument an instance of the Polynomial
class. You can create new instances of this class via poly.Polynomial (c) where c is a list of
coefficients.

[Wk.4.1.1 Do tutor problem Wk.4.1.1.]

Implementing Signals

Now, we will implement the classes we just used to make complex signals out of simple ones.
Our implementations should have the same behavior as what you experienced in the previous
section. .

The remaining problems ask you to implement each of the new subclasses of Signal, as
described above. Each one only needs to supply an appropriate sample method, and possibly
an __init__ method. We have provided you with a file, sl4Skeleton.py, that you can use
to debug your implementations before entering them in the Tutor. You should enter your
new class definitions at the end of s14Skeleton.py. You can test them by putting your test
cases in sl4SkeletonWork.py, which imports s14Skeleton.py, and using Run Module on
sl4SkeletonWork.py in Idle.

You can only use the methods and classes that are defined in s14Skeleton. py; you will extend
that file to be a complete implementation of the sig module.

It is very important that, for testing, you use s14SkeletonWork.py which imports your class
definitions, rather than s14Work. py, which imports our class definitions.

Step 4.

6.01 SWLab 4: Signal Class — Fall 2010 5

Check Yourself 1. Whenever you define a new signal class, make an instance or two and plot
them to be sure you're getting something reasonable.

- J

()
Wk.4.1.2-4 Do tutor problems Wk.4.1.2 through Wk.4.1.4

(. J

P ~

Check Yourself 2. We have defined usamp to be an instance of the UnitSample class. What
does the signal polyR(usamp, poly.Polynomial([3, 5, -1, 0, O,
3, -2]1) look like?
Do you see how you could use polyR to construct any signal (with finitely
many non-zero values) out of the unit sample?

. S

Implement the procedure polyR(s, p), which takes an instance of the Signal class (or one of
its subclasses), s, and an instance of the Polynomial class, p, and returns a new signal that is s
transformed by a polynomial in R. So, for example, if p is an instance of the Polynomial class,
withp.coeffs = [3, 2, 10], then the result of polyR(s, p) is a signal

3RRs + 2Rs + 10s

In your implementation, you can use any of the previously implemented signal constructors, in-
cluding Rn. Note that you don’t need to define a class to do this: just writing a single procedure
will suffice. Depending on how you choose to write your code, you may find it helpful to remem-
ber that any list, such as test, can be reversed by calling test .reverse ()

Wk.4.1.5 Do tutor problem Wk.4.1.5.]

Sl s
Need 1um py

Pef(afmfmj C)Pemffoﬂj i Slgmds

Oo_wpardass ﬁg%(
- - 5qm,ﬂlf pefhad
= cedyrns 5?3:\4} at e n
“Mugh (mPlonat

UM 1} 51(9‘14[y\()ﬂl A ’;a‘{’ [_,h..J
N0 Samply

“N i Gt 4}3"“’ fime

61‘3"“” [ﬂj & what T rhij_
‘;Cih syl geaater

~ plo? ?r@de Limd

- (oo’ T

I I o B A P
‘"‘h‘j (os

"noJ

" ket e it FP“”‘S& i 1 —rad s &

@ Mw Sbcass of sigadl
'}»uf‘vh o€ e
Algeba o 54 ndls
L < dolay
RR=QY =7 dowos
X sk by 7

TRRY = dy
tX Jcm adl > MMM;WZM "
IR X e

s Lk polynomial [7/(), IJ
POI\/ &[5[P)

»w T fpolynomw} C[(,q,)
5,,1:\(&
(\ass 2~
v ye
L {(A(i\’fe)
ﬂé.banw

Mo UL rae)
..5‘{9%\ Carotictocs P(@d@{(mm

Al clises e aqi ae Jofiaed
H(O/\s{'ﬂuo]l L, {faﬁfwls

—-<]'€f)h/‘9 l/“t“ WI/‘VLE Latésﬁzjhﬁl ;A [amj{
Pl R tales py ponial

P b mite s gpgr s pight

~wat ¢s fo ’"“d‘g?’ O[Cl JJW ch
- JQ.I{, 51MH, ele old 5(3:10,/

Sty
Sl Pamo] ook
T hal 1°
bt haw
51pr] : 511{’/ Sl ()
6Jrepl, ga?n (3
Crb s o e maie
\(,lg notmgl G
~ ot Vbin “""’M@M
P Cummpd Qﬂndl
Gin D Stbd Sig v wly e on s
® e s
pob sl s g GV

rob P ek fodeg

ﬁm Ivas wmg

-/ {’f{ W/ Jw”f
(g deth(Step Seqral) 3)
o whal o 40;19

n=-| =0 Al pzl 3

1 e sﬁ\\\‘\))
T L

- ol = 3 ~So Scale é(cwp} (Je(kz” (5}&45}5%[0, 3)/ 3)
v e

'&{ 5501,[6 5((qftﬂf![cl@[ay h(éf@p § tqug] C)/ 7) =)

/ Dore

SJr(lp Up dow 1l

\‘"”"':/_g’gm e 3£ 4£1§
= O}QJ((V““SP
._HA Cn ~ov Ut 6*({ [+1

oy | sty L

-(cfm Onr adé
Qé(\/ - O{ [}. 4’9 5~)01‘(6{(/}

— 4 f@adfz A
gdrﬂ(’\.ﬂ((, g‘(qw/[(6%3}) [/ 5+€/J 7’)
= ym\go &
~for] »cd 3+ -3 :0

/
Jm’ﬁq st fat |

“how Lok ia hae dot 1 fegU«!(“f%S
—guw wwll b b, fhat

wb)’ \MN\Q f\‘3+ have ‘H/pvtfm a(cjﬂf@ l# Mt h“{
gt o Pl
%) Pol; R olass

—-L(l “)\tO
L% 3.0
§ 9, 50

OThew o, = O

“POII R Pre&@[tﬂ(ﬂj fe 6
”(MLA'} Jdo T boand {‘g g@&i 1’4

561{(, [Jgﬂzyﬂ (61!’@9’); g)f) 1 Smfg“&‘ﬂcyn (51pr/ 3) 2) 2

£ X:ﬁh’P 5‘(9%(
SRXL 03k + |k

[5-/0/3/0/ //Oj

7 r
RS /U
-5 polyR (5%9,0 [5‘ 0,%,0, ,Oj)
MH !2'/" L]
(/‘ﬁﬁqfe of h[&{,,[
/l}\f)w (JG% “ Vol QJrf‘p vp Jowl(;
ok Ans
6 ‘ |
| e
L -
2 34 573 % o
"'OL(ha+ W‘W”
—Thile Negitie

[s 3,3, 1,0]

Uk Hn what vp FMFWQ,W
Scazl{’/é(Rn step, €, -5)

tadl b Pal, (1

/
Ob‘mgo /g modibed Yoy

*]Lhtts 25 {1(;4,&4 6'/4
Nw Fe b Chidn
“th st Unt Sample Sigml

A% bayy
~cleane

“bd T ke b T aled of O

ULl

'—/_—

T mplostal §ignals
Yo mabe more Comflex 5&3%[5
~a5 bqal g olass

" e Samplo () mothod aad po(;‘ffﬂﬁ ~ wth -

S e loan
i Iy ol
P Gl p\,g) "

Ttel ek fl, b, bl

hes yabe 0 gt A n <
{ Oﬁe/w’ésé

go L oncp
[OTIefWg‘bQ

©)

% sl () wofhel
~ (onyert (/n‘ntéa,np'é 5 2@ nul

- b“MQ (st Jm@

bummd + Scaled 5l
’;mp[&»en1t samflp ()

S
than S« t52n
n T
S lE, sll.
O 5_1 [n]

“heod Ame Allessor ethad

W~ Ganple! Sanflp (n}

~0h A/(ZP%‘J& wheh v ft/r? foom 1n]:/JLE whey]
\f*md(l,v) 06)9“ D (vn In ﬂ@[eﬁm Vork E{]
5@[{, sJ.mpie Kn) +5g(f.52t5mﬂk(”)

ple
) WOAU

Sealed

o
69“’ ‘ $ S’QmP(ﬁCKJ) "AL
lf,

Il\
Sty Farggﬁ} 1

Checke ' Filye
v Gok L

@j précl‘d‘lﬂ"“l bobclusses 1 R and Rq

Sl Lows bl ey, ipealsd
~mon L hae To do it

~Veah Thats o+

QU
= faalle (a-\)

/9 boulf. 6€ course
ingy

Yls Rl @ o Geguls

T ad_Rmd_ae e
b Zean 25
ool s g Jr

. [‘ r

Melﬁ{ 5P€0c£‘z 51LW\L W«L/t tf Lae pyﬂm»’i; 9://-/\() éb;# c‘ﬂ

e{{/ml, aq. 5{'3‘%{ Curction
nd ‘ pp[\lqom('v

T Bl ¥ i e b ol By polyromey)

' (
~Can vy poly qomal [(14 LAy il ¢lasy

©

ﬂ'l’ honﬁ Now

9wt 4T vad b b
'/}WH;ﬂl'(G'zgul b/ Pg(wﬂ/ﬂatr

50,9 0187 < SR TRk] Y

T s q iyl
“ha R Qn

6o gach- ‘
\(l'(P pol\fﬂm%‘

for ¥ R4 b, ¥ Pos}ﬁnq
Scaled. Mol ply for vale

"11(7 fﬂ(/o‘mg (fd@
Comploty — pot 'a mind st Gor 1ty
new by asfal Auppy
"ot we ang\
%(Wu 0o 4o (\u&-f()r
e UM
“led adaling feon el
— pow b rls, Quess v hd o ds flat
»ék“us’;,lj i @ol, lib
”T ’mmk "H\'(; vv‘t”))Q O\{é’w stess

Urg

(i

:[5 Tk/Q oA Wﬁm(‘ 6/ Cnd;dj Pﬂzzﬂﬂm{d l@ﬂd/?;!' {’
hOw (ind may

- or 6Jﬁ(qL from bo‘HOM
r?};md»’f&i 60@{’&»54j

“u 1| f[zjlrf

“ guessd at mas [eaght
" hed s

"~ hope ~ 1al oven (lee!
0K ks fop A

-;’l \NOrLJ,(_J v lpa r [‘00‘\ WL hL ,V?fr'{v[

(95(@
R AT A
o b
T L ok anyfiing b vht 1oy o o
_ "y
ih Ly

Wu)w' fhajﬂr f@;[

”ﬂzy JQH LM Po’yﬂm;a!,m@ﬁ(ot Wé‘d/ /LZ 'fi’ﬁl
Pob nod ooty 4, g, 4 Thef \om

I omail 4, C.ol —help

hag)
9\@?" 09y romniy | OA us g /)

v de
- bt ij ﬁ :j ol alf

_— [hat (*// Mt Tign
Loolod Jp COl ottt
“s wefts varall

~bt g Caeﬁﬁm o fhod
e (oeﬁﬁ(

AAJ_ L Comomdedd ped €0 pork w/ ifn/ﬂ-/f{
~ it Hads ot foat 2 nepd o S2 A
“hiee vk

-k med f fake (MML” QEQM”\

“ 6 otep af fat vabe n

= 0C JVV" 5
T Wt élcgm/

~ cool sune (XA m thovs -y
\)\/00+ U‘ ‘l’ —(Lg]{@d Z\L O«/} !
Do }v&i heot pre Mb

Do Lo b 731

—

Jl{(o/m eqye ﬁon Math

\/[ﬂj" (oy[“”‘JW‘ ¢, \/[h-—Z] Foos ¥CH}'['1““J T Q[o an]f
&t')([h"j)uﬁ ot ¥ KJJ’X[nJJJ

ek dl ad [Gt
Ko ;anl'
Y= odph

O & gpee oF o

Oc}}ng Océf ’f‘tm hoo s E,’n{mﬁ{; (,M[(/q’(;j N
Y ;’iw\\ml to Jo A

t ¢ ¢

TR Cead ing”?
Iile [d:} fff/w
\,(fm./tovg OJM

J @)WfM MM

lneac combho 0 Prus odbs +) predas Lo 4 curax[)

IS,

¢
’ o ghpid
Tlece ae no Sum @ xamies w lafre
hathiag n course A0F¢
b 6@0@\
= hafiieg v fV"\f"\?ftg or
ramply
Tt {ud g botter
ot < Sx[n]
423 o
\/["] = ?([n 4-)
d-0 | AOvg
ylags B [ng]
00 2 naw
AE Ty [n-1]
hore v
Ml = Y-+ v[n 7]
ot Ll
f lcx\wi« 6ee

_ bt \N\NA s Sum of P“‘# valves
nem, [0 L] o~ how Lac

9

M\(ds Jﬂ((P/W:A@ 4 hﬂ[ﬁp’/’:ﬂ
:,)M e fsponse oy PMH fron botary
i o Al otng 'n halt b g
"N ofbr w fona
“oc (ot i+ Qﬁo?ﬂid
and T Jodd

/-—-_—-\

dél 6\//1@ o cewse aofe)
—ho help

Wi fo miss Aang 4/9?

b mue oy Yo

y[njf"([n-U+ y[n~d
=01 ¢=0 |

hetd Lo cover kol fh'wk}"’y
“tororing (g |

e

Oh Jut for ny @fabtﬂd
nNo/Q (

| |

U
Q\ch(req\t past OV} WL
!

]0;400 l

Nang 4 1%

\—/
C‘Mﬁfﬂd d 5;@.40{[

)(\L(,JYO \Sfu\

Rk T

] [(
Oh e vy eyl
’NJ(dofieg.

n = aév(/f“ ‘

POITQ [O/ [0 2{%

J e
"I/\WP \ok 0(

ndt Sptw (59,6

CO»’[E V(yﬁ on Coe?,g o0
“how R do°
— folle
“hodw e b
~% got lf2 donp

6.01 DL4: Hitting a wall — Fall 2010 1
Design Lab 4: Hitting a Wall

Introduction

This lab should be done with a partner. Each partnership should have a lab laptop or a personal
laptop that reliably runs soar. Do athrun 6.01 update to get the files for this lab, which will be
in Desktop/6.01/1ab4/designLab/, or get the software distribution from the course web page.

The relevant files in the distribution are:

e dl4Work.py: A file with appropriate imports for making state machines and plotting their
outputs.

e wallFinderWorld.py: A world with a wall for the robot to approach.

e smBrainPlotDistSkeleton.py: A simple brain with a place for you to write the state ma-
chine for the controller.

Be sure to mail all of your code and plots to your partner. You will both need to bring it
with you to your first interview.

In Design Lab 3, you developed a “distance-keeping” brain to position a robot a fixed distance in
front of a wall (even when the wall moved). This week, we will develop a model of that system,
and we will use the model to understand the performance of the brain/robot system (Were the
responses fast or slow? Did they overshoot or oscillate?).

The brain/robot system is an example of a simple control system with a single input (the desired
distance to the wall) and a single output (the actual distance to the wall). We can think of the
control system as having three subsystems: a controller (the brain), a plant (the robot’s locomotion
system), and a sensor (the sonars).

error command
X —>®—> controller > plant

v
o

—T sensor |«

Figure 1 Structure of Control System

Think of the input as being set by a user (e.g. you) or by some planning system that the robot uses
to navigate in the world (e.g. a state machine that moves the robot from one target point to the
next in some sequence). Thus, the input might stay constant for some period of time, and then
change to a new value for some period of time, and so on.

Generally, we design the controller to command the plant so that its (the plant’s) output Y tracks
some desired value X. For example, in the case of asking a robot to stay a particular distance from

6.01 DL4: Hitting a wall — Fall 2010 2

a wall, we want the output Y to be as close as possible to the input X. Since the plant is typically
a physical system, the output of the plant (e.g., the position of the robot) is not easily compared
directly with X. Rather, the physical output is measured by the sensor, whose output (which is
typically electronic) can be subtracted from X to determine the error. Ideally, the output of the
sensor is proportional to the output of the plant. More generally, however, the sensor introduces
its own distortions, delays, and noise.

[Wk.4.2.1 If you haven’t already done it, do tutor problem Wk.4.2.1.

Difference equations for wall finder

Make a simple model of the brain/robot system, as follows. Let D, (the ‘0o’ stands for output)
represent the current distance from the robot to the wall, and let D; (the ‘i’ stands for input)
represent the desired distance to the wall. Also let V represent the forward velocity of the robot.
Let T = 0.1 seconds represent the time between steps.

=

I
— D
—..Do

Assume that the robot immediately achieves the commanded velocity when it receives the com-
mand and that it maintains that velocity until it receives the next command. In other words, the
robot is able to instantly achieve a particular velocity, and it holds that velocity constant until
asked to change it.

s ~

Check Yourself 1. Assuming these velocity commands and the initial actual distance to the
wall are as given below, what is the distance to the wall on step 1?

Vo) =1

V[i]:Z D= a_\l Luqﬂ(ri éi ?_Cﬁl/e[

vl gine L

Lade: | | sec latier e W
Assume the system has the structure shown in Figure 1. Assume that the sensor measures the
current distance D, and generates the sensed distance D, which is equal to the current distance
D, delayed by one step time. Let E represent the error signal D; —Dj. On each step, the controller
should command a forward velocity V in proportion to the error so that V = kE. Choose k so
that the velocity is 5m/s when the desired location is 1 m in front of the robot (think about the
previous figure showing the position of the robot in order to help frame this calculation for k).

5=kl

wﬁ.g

6.01 DL4: Hitting a wall — Fall 2010 3

\

Check Yourself 2. Fully label the following diagram for the brain/robot system. Include D,
Di, Ds, V, E.

QL»@E—b controller \/% plant Dp %»

sensor <t

;

Write down, using constants T and k as well as the signals you labeled on the figure, difference
equations that relate the inputs and outputs of

o the controller [\[= kE) | J
o themodeloftheplant[Oq i} VU7 T ﬁ;oo Rz A] lee

gelf
e the model of the sensor[% D;_ 05 }
Je= =B Os-0p¢

Wk.4.3.1.1-3 Enter the coefficients of your difference equations into parts 1, 2, and 3 of
tutor problem Wk.4.3.1.

_ >y

B&@bz(ﬂ dickal

6@6 %M . [0}5 of Wo/‘«1

6.01 DL4: Hitting a wall — Fall 2010 4

Combine these equations to derive a difference equation that relates D, to Dy, by:

1. Converting the difference equations to operator equations in R,
2. Solving for D, in terms of Dy, and
3

. Converting the result back to a difference equation.

~
J

See gtk

Wk.4.3.1.4 Enter the coefficients of your difference equation into part 4 of tutor prob-
lem Wk.4.3.1.

State machines primitives and combinators

We can create all linear time-invariant systems by combining two primitive state machines in
different ways: sm.Gain and sm.R.

The sm.Gain state machine is really just a pure function: the output at step n is the input at step
n, times a constant, k. The state is irrelevant. The reason we create this as a type of state machine
is that we want to use the principles of PCAP to be able to combine it with other state machines
to create new kinds of state machines.

class Gain(SM):
def __init__(self, k):
self.k = k
def getNextValues(self, state, inp):
return (state, self.k*inp)

The sm.R state machine is a renamed version of the Delay state machine. It takes a value at
initialization time which specifies the initial output of the machine; thereafter, the output at step
n is the input at step n — 1.

6.01 DL4: Hitting a wall — Fall 2010 5

class R(SM):
def __init__(self, v0 = 0):
self.startState = v0
def getNextValues(self, state, inp):
return (inp, state)

For the purposes of building LTI systems, the feedback addition composition will be useful. It
takes two machines and connects them like this (note that we are using generic boxes here, those
boxes would be a triangle if the state machine were simply a gain, or would be labeled with an R
if the state machine were a delay, or could be some more complicated feedback loop):

————><:>——> mi =
T m2

If m1 and m2 are state machines, then you can create their feedback addition composition with

A

newM = sm.FeedbackAdd(ml, m2)

Now newM is itself a state machine. So, for example, newM = sm.FeedbackAdd(sm.R(0),
sm.Gain(1)) makes a machine whose output is the sum of the inputs from step 0 up to but
not including the present step. You can test it by feeding it a sequence of inputs; in the example
below, it is the numbers 0 through 9:

>>> newM.transduce (range (10))
fo, o, 1, 3, 6, 10, 15, 21, 28, 36]

Feedback subtraction composition is the same, except the output of m2 is subtracted from the
input, to get the input to m1. (Note the minus sign next to the output o@as it is fed into the

adder.) You can use it like this:
\

newM = sm‘FeedbackSubtract(ml,(és)fﬁ

-—»@_—» ml
T m2

Note that if you want to apply one of the feedback operators in a situation where there is only one
machine, you can use sm.Gain(1.0) or sm.Wire() as the other argument.

Y

A

6.01 DL4: Hitting a wall — Fall 2010

Check Yourself 3. Use gains, delays, and adders to draw a system diagram for the first sys-
tem in tutor problem Wk.4.2.1. (That is, the tutor problem that you did
before coming to lab).

Cor ot

Check Yourself 4. Use gains, delays, and adders to draw a system diagram for the second
system in tutor problem Wk.4.2.1.

Check Yourself 5. Use gains, delays, and adders to draw a system diagram for the third sys-
tem in tutor problem Wk.4.2.1.

6.01 DL4: Hitting a wall — Fall 2010

[Wk.4.3.2 Do tutor problem Wk.4.3.2.

Check Yourself 6. Use gains, delays, and adders to draw a system diagram for the controller
in the wall-finder system.

Check Yourself 7. Use gains, delays, and adders to draw a system diagram for the plant in
the wall-finder system.

Check Yourself 8. Use gains, delays, and adders to draw a system diagram for the sensor in
the wall-finder system.

6.01 DL4: Hitting a wall — Fall 2010

Check Yourself 9. Connect the previous three component systems to make a diagram of the

wall-finder system. Label all the wires. Draw boxes around the controller,
plant, and sensor components.

Checkoff 1.

Show your system diagrams to a staff member. Identify the instances of
cascade and feedback composition for the wall-finder system.

o

Wk.4.3.4

Do tutor problem Wk.4.3.4. We encourage you to write your code in
dl4Work.py and test it within Idle before copying it into the Tutor

J

Withavalueof T = 0.1 and an initial distance to the wall of 1.5 meters, experiment with different
values of the gain. You can do this using the plotD procedure, defined in d14Work.py. For a
given gain value, k, it will make a plot of the sequence of distances to the wall. Be sure to use
your code running within Idle.

-

Checkoff 2.

Find three different values of k, one for which the distance converges mo-
notonically, one for which it oscillates and converges, and one for which
it oscillates and diverges. Show plots for each of these k values to a staff
member. Save screen shots for each of these plots (you can find instruc-
tions under the Reference tab of our home page.)

6.01 DL4: Hitting a wall — Fall 2010 9

Wk.4.3.6 Enter the gains you found into the tutor.

On the simulated robot

Implement a brain for the wall-finder problem using a state machine, as described in Section 2.

Recall that the robot itself is the plant and so we do not need to write any code for that. We have
already implemented a Sensor state machine which outputs a delayed version of the values of
sonar sensor 3 (the robot actually has relatively little delay in its sensing).

Your job is to implement the Controller state machine, which takes as input the output of the
sensor state machine, and generates as output instances of io.Action with 0 rotational veloc-
ity and an appropriate forward velocity. It should depend on dDesired, which is the desired
distance to the wall. Do this by editing the getNextValues method of the Controller class in
Desktop/6.01/1lab4/designlLab/smBrainPlotDistSkeleton.py. Your controller should at-
tempt to make the output of sonar sensor 3 be equal to 0.7, even though sensor 3 doesn’t point
straight forward.

For each of the three gains you found in Checkoff 2, run the simulated robot in the simulated
world specified in Desktop/6.01/1ab4/designLab/worlds/wallFinderWorld.py. When-
ever you start or reset the world, the robot will be 1.5 meters from the wall it is facing. Save
the plot from each of these runs. You can find instructions for saving plots as screen shots under
the Reference tab of our home page.

(—
Checkoff 3. Show your plots of the robot simulations from each of runs to a staff mem-
ber. Compare them to the plots you got by running the state machine

models. Explain how they differ and speculate about why. Email your
code and plots to your partner.

3
(on toler _ V= kE ?
OL“’)?’\ ®) C =no
YA
0 @
g® - A 5%/13

s heéﬁ‘m Sy op g Claggy bl

Wﬂfm['
None, __bs
® 5l ()
N .,5@ hoe (X)
MM ‘Lg, hOJ} L/‘L'
PAY new
A gh sk
el ta
5 D f"‘li a cle
)
Controlly- | bk &
] - /gvm vk

@

(m‘foﬂer éonds, @l Scalled

by sify Do [
T |

V3t = kg
l&’u sl

V= ~5E

~SFT)

Wtk to
W f\e‘i‘(/(’/ |
GV} or @

O -1 @

Stnsac.
) ’CU‘] = D&[n —g
Nong \
® 4« olay

® g

Ry T
18
0\ ()

(ombirgd J eene %
DQZ“J = Ik [M] =3 \J[n-U

Ui (4] hotd «a DE:‘

Stare Madio Conposiflo

Y(% Yer9%." (thf C .)
otpd bofo e

~ Ty peablen
SN N Y S

“lnmbo of S

‘”\‘"MJA Qhhy
oot It Loaduet add (wire, AL i)
U o ()
Lok adB C@ C}n'nt), w;/eﬁ)) oo it an
3d
fed back add

T will e a cCusude
Ceacndlascade (RCt) Gohll)) 1
iy ————

Coseade \// g Goodban asd
(o pA WA

~ Lk e cortuk N
LSRN Ind W reds fo | /
= rpe be ()

vqlgq Wa/ﬁ 5 ’\04' Mlaaclel. l
. bt 'nl‘/ W/]LES”VLQ w/ 1
LR ¢ K [Hﬁ‘ 5)
e

~ h (Acaca‘tn

i adm wabhool/}fy }J7 |$
“ward Q on bo‘mf'l) Lad Qg -
“mt o [itle Foy

~pwv QA “fm"y s A to \O‘ig\‘

o Lok dley it gy be
é:wo

—R &m\a

s Vo he
WM? ~ Wy Probl@m % &(@fr‘ﬂ@d I gHBs
£ vabe s 0 ~p s on ot
pré. Male dalde o ey

%/ Cont m“e(

G

@ Cfh e Thig

/ﬂfw»glﬁ fhegheas ayd tn b dro

Yhal bows toqples
(L“ i cath of hoxes w| Sub UYLFP)

U

2

L@ I

qgt{ Nﬁ?w lDaLL ‘J’ wall pnde/‘ JC@de

lf ¢,
@&“@ Pﬂo(ed«/“’« g

" 6h /‘/f’# {'MP“"-@# demm

n, o)
Flﬂmt

Cascade [Gaia - T)
swr (Fead\,ac\ add (R [(i)) We U})

5#1,?@%9{!4 1‘,0)

i
V.7 Co,n'goncm{’ pa{vtj

-~ w ﬁ@) Feaébmu\@, Hmﬁ(fﬂém(
' m (9hf!>)€f F&m}) 5%4&]

@ o Chde (Dhtago
—%“ éﬁf J’Ddd{

pd\fj(w t\(oppﬂé

T=d)
it Jotaae = 1§

Py ,OOIWML w/ P{IJP
plot w/‘ ot [(gain valés)
| —Qwe {’k "

a[moﬁf‘ [\‘le

12/\/
lL//
4

kg

W = . }’wv H’ 7250 ody to ector

osdldlt & coantrd L

-5
/_/Q\//-\
gt + durg,
Chadkof€ 2V
d
{or _ &

ﬂj Last s !

\ K
. [mpleﬂ'?ﬂ‘l (in—/o”Q/ sm 03 Q‘l /\Q)d (/al

Sgneo@] chald =

— gt in 0\,%“«&{(@ 1“9“1' ‘ O
~ (Qa -L 6{/1[, éom/ (n L{O mia

~ g t5 olrendy Sasoc {3]

bl g tsolabion a7
—Wire (/Mmde 94‘1/‘/‘
it d to CalC erior
s i
~tat sV

- 6h I %02
—naw (4 Stops ot @TL

Convefjgj

T o0 b Senonr Coadlng s Il T gaph

= 5

@On‘_”f/

—([rses T~ may Glnsoc [Qadc'ag
5
o [‘f(ACCUfOL{'e

e

Hw de wed nightt

ﬁ'\la'htt M’O/qa PO&”,;M

fea

6.01: Introduction to EECS 1

Week 5 October 5, 2010

6.01: Introduction to EECS I

Predicting System Performance

Week 5 October 5, 2010

Outline

e System functions: primitives and compositions
e L e

e Modes of feedback systems

e Finding and interpreting poles

Reading: Chapter 6

Midterm exam:

e Tuesday, October 12, 7:30—-9:00 PM

e 32-141 or 32-155

e Any printed material okay

e No computers or phones

e Make-up: Wednesday, October 13, 8:00-9:30 AM;
email welg@mit.edu

Feedback and Control

Feedback and Control

Feedback is pervasive in natural and artificial systems.
’-——-.._____________ -

Turn steering wheel to stay centered in the lane.
Conteolly Plan}

desired | . I
i — —» car ‘——u
position driver

actual
position

Feedback is useful for regulating a system's behavior, as when a
thermostat regulates the temperature of a house.

. heatin
desired —»| thermostat] : >

actual
temperature 1‘ system

temperature

Feedback and Control

Feedback and Control

Concentration of glucose in blood is highly regulated and remains
nearly constant despite episodic ingestion and use.

i : - glucose
st e digestive glucose‘c:rculatory <+ I' > cells &
system system |« D2H L tissues
h Y
glucose I insulin
pancreas
(3 cells)
\
Just
hJ. food ._..®_. body » glucose
I" - concentration
an
Pl' SR pancreas

(3 cells)

concentration

Motor control relies on feedback from pressure sensors in the skin
as well as proprioceptors in muscles, tendons, and joints.

Try building a roboti@ unscrew a lightbulb!

Shadow Dexterous Robot Hand (Wikipedia)

T
Lead bact.
I'u-! 50&“1‘(9

- M (’4}/ ”4 Pq/mpl
c{en& Wﬂ/{& be CM}mUéf

6.01: Introduction to EECS 1

Week 5 October 5, 2010

Important features of behavior

Performance analysis CL[/G{QHL,
I /

We can quantify the performance of a system by characterizing the

signals that the system generates. '
P(‘Of@(hf) o(5\/5!!"1

desired position

wallFinder
JE— | .

& robot
time time

b

desired position

wallFinder
& robot

time f\\ time

{ What are the important features of this outHLt signal? J

l J
OVU’MW{ qni

adverl:h.ak
0 Y .
| setHliy T ey 4 pf

- CDVM) é‘!gﬂtflp ¢d, .IAM' t dmL{;J

Analyzing systems

System functions

Our goal is to develop representations for systems that facilitate
analysis.

signal signal
9 —»| system |——» 9
in out

Examples:

+ Does the output signal overshoot? If so, how much?

« How long does it take for the output signal to reach its final value?
e Does it ever reach a stable final value?

Any(LTf;ystem is completely characterized by the relationship be-
tween the input signal X and the output signal Y.

We call this relationship,

H=2

X
th It is independent of any particular input signal,

just as a mathematical function or a Python procedure is an entity,
independent of its arguments. ' !
~§ha |inear

System functions for LTI systems are always
ratios of polynomials in R.

R*dd‘“f/o\clieﬁs/ek/

LO‘M"* onlv prenrls on Pfl?n/;M !"n s/nof M ey o..»fpdﬁ

{ Feed-forward/SFs

Feedback SFs

Gain: Y =kX
¥

H= ¥ = k

Delay: Y =RX

Y
HAX_R

Combinations: Y = 3R2X — RX + 2X

H=Y _sr2_my2

Xk______’l

System functions for feed-forward systems have
1 in the denominator.

Consider a simple system with feedback.

Mpi mdths here

X —{(1)
<G —E
Y=X+pRY
(1-pR)YY =X
- X cbin &
1-mR § Y

System function

Y 1
H_f_ 1-pR

¢ shil hae

‘C)(\ T‘\a} :3 &\{“Ut’ft((
“near gt of it Pt oy

6.01: Introduction to EECS 1

Week 5 October 5, 2010

Feedback

Feedback: Cyclic signal flow paths

The reciprocal of 1 — pgR can be evaluated using synthetic division.

1 +mR +;)%'R2 +pi§7?,"‘ +--

1-pgR|1
1 —mR
mR
mR —pgTs’_"z
J%T\’_z
pg'R,z —;)ﬁ'R:’
pgR:s
pg'f\’.:; 71167\1'1
Therefore
. II?OR =14+pR + pﬁRZ +]aa'R:‘ + pﬂ’RJ: .

Feedback implies cyclic signal flow paths.

—_—

z[n] = 8[n]
oo >)
X = = J Y
L@[
LA S
X 1-pR

i
Show do YW ke hov o ovglate

~7

Feedback: Cyclic signal flow paths

Feedback: Cyclic signal flow paths

Feedback implies cyclic signal flow paths.

z[n] = §[n]

X C\ %Y
Y 1
E—m—lﬁ-p[ﬂa‘fﬂ”

Feedback implies cyclic signal flow paths.

z[n] = &[n]
X =) .Y
N
) oftth 5 nuH)fJ”/d{ eady
¢ fime [}
Y 1 .03 L 904
TNt + poR + pdR2 + piR3 + iR + ...

All cyclic paths must contain at least one delay.

dar “Jw(d’

ﬂ?adclzﬁ fram stad emgly fing

Example: Accumulator

System functions for LTI systems

. N
§=ﬁ=1+72+122+73"+7a“+-~ X‘@TI

If input is non-zero starting at time zero, then can see output will
be governed by

L1+R14+R+RE1+R+RE+RY,--.
Thus, if input is

Ratio of polynomials in R:

y[n] + aryln — 1] + agyln — 2] + agy[n — 3] + - -
= bpz[n] + bizln — 1] + box[n — 2] + baxln — 3] + -+
rrdl form
(1+ @R+ R+ agR% + .-)Y = (by + bR + boR2 + byR> + -

] =2in] D(R)Y = N(R) X
1,1,1,1,++
Y N(R) by+bR+bR2+bgR3 + --- act
If input is X D®R) 10+ a1]’R +agR2 + a;R"’ I ‘634(1, &M{FL P
ali= {D, if n<0;
1, otherwise. Persistent part of response of such a system is associated with de-
1,2,3,4,+-- nominator.
-'_-""-_\—-—_ e
! 1. _ | vord i
A mas b B atud 3 | i = 12t g O O RO
g N |
e Walk g didsisn Y=~2RY+¥
=xampie ANInle=Uy oy

6.01: Introduction to EECS 1

Week 5 October 5, 2010

System functions: Why do we care

PCAP: Primitive SFs

PCAP system on system functions makes it easier to combine models
e —
than manipulating systems of operator equations.
hh_..______.h-_‘_-—-_-__-_.__._—_._--_‘—

System functions expose important analytic properties of the system.
-——

Gain: Y =kX
Y
H—T—L

Delay: Y =RX

Y
Hfj\;fT\’.

Combining SFs: Sum

losured Wluna 6%*0"1 fma{’?an s p s Polynomels ;1,4
—

Combining SFs: Cascade

The system function of the sum of two systems is the sum of their
system functions. This relies on properties of ratios of polynomials:
their sum can be written as a ratio of polynomials.

Yi=HX Yo = Hp X
Hy
X @E—=Y
Ho
Y="+Y -/alr&uly &w, QbJ{(adL"f
=M X+ HoX ~ v)
= (Hy+ H2)X dOﬂ } \M’N Wlld‘) g h Lﬂ“
=HX

where H = Hy + Hs.

The system function of the cascade of two systems is the product
of their system functions. This relies on properties of ratios of
polynomials: their product can be written as a ratio of polynomials.

W=HX Y = HoW

Y = HoW édm as f‘F
= HoH\' X
(€
. versed or&e«

where H = HoHj.

Combining SFs: Negative feedback

wall finder

Concentrate on negative feedback and Black’'s formula:

XY
Y = Hi(X — HoY)

Y + HiHa2Y = Hi X
Y(1+4 HiHg) = Hh X

Y= Hy .
T 1+ HHs
Y=HX
where
—_ H]-
o= 1+ M Hy ~

Control the robot to move to desired distance from a wall.

vin
controller '—H>| plant }——- dg(n]

ds[n]

e[n]

sensor

Controller (brain): sets velocity « error
\
V=KE Pmyorhm‘
Plant (robot locomotion): integrates velocity to get position:

Ds=RD,~TRV W/ atcvadldhor

Sensor: introduces a delay\ f ,_dﬂ".—.-
=2 r J

s =RD,

QT pog
15 dpdp-1 = —TRV

bl ¥ agd u\OM vl -t

6.01: Introduction to EECS 1

Week 5 October 5, 2010

Use composition to find SF

Wall finder

Controller
4
}1& =]5 = I{
Plant
D, TR
B=v=1_%
Sensor
Sl I)s s
Hy= e
Cascade: Controller and Plant
D, -KTR
Hp=g=5-%
Negative feedback: ControllerPlant and Sensor .
Do KIR _KTR Ccl\qmoh’rl’m vhet

D; " 1+R(=ELR) “ 1-R-KTR?

Cobot il 4,

—cotverd b difE

The behavior of the system depends critically on KT,

doln)

e Lt
wrecee Tt
S 11 51

& t f‘fy Sanm

ples A

Geometric growth

Geometric growth

If traversing the cycle decreases or increases the magnitude of the
signal, then the output will decay or grow, respectively.

X =) 7T »Y X —() ST Y

y[n] y|n

wee ses

n n
-1012 3 4

Unit sample response:

— geometric sequences: y[n] = (0.5)" and (1.2)" for n > 0.

These_system responses can be characterized by a single number
(the, which is the base of the geometric sequence.

“long Him X—O .y

behetlor <@
Boifn>=0;
q[rl] _ JJO mn
otherwise.
uln] uln] y(n]
oiLLﬂ_a M n
-101 23 -10 12 3 4 -1012 3 4
po=0.5 po=1 r=12

Check Yourself

Geometric growth

(What value of py represents the signal below?

yln]

@,JO:_.M ¢ 0nky will alleigle 1€ naj\tf:‘uﬁ Snlg
e
v ==k

3. po=0.25 interspersed with py = —0.25

The value of py determines the rate of growth.

yln] y[n] y[n)

G b

(3]

-1 0 1
po < —1: magnitude diverges, alternating sign
—1 < pg < 0: magnitude converges, alternating sign
0 < pgp < 1: magnitude converges monotonically
M > 1: magnitude diverges monotonically

l"\(:)‘“) f)i n?' ng nq

6.01: Introduction to EECS 1 Week 5 October 5, 2010

Second-order systems Second-order systems
The unit-sample response of more complicated cyclic systems is The unit-sample response of more complicated cyclic systems is
more complicated. more complicated.

Not geometric. This response grows then decays.
T i —

Second-order systems: Additive decomposition Additive decomposition: partial fraction expansion
This system function can be written as a sum of simpler parts. 1 o A + B
(1-09R)(1-0.7R) ~ 1-09R " 1-0.7R
X —{(3) Y Cross multiply
1= A(1-0.7R) + B(1-0.9R)

q Collect like terms
1=(A+B)— (0.7A+ 09B)R
! X ®_. ¥ So, we have
Hy 1=A+B
0=0TA+09B
So, A=4.5 and B =-3.5, and

Y = X + 1L6RY — 0.63R?Y
(1-16R+0.63RY)Y = X

., v s s {opd hark

¥ _ 1 = 1 X 1-09R 1-07R
X 1-16R+0.63R? (1-0.9R)(1-0.7R)

1[ac|'0r + ¢olug [0f3 W of math l,

Second-order systems: Additive decomposition / Second-order systems: Additive decomposition
LA %@a{ Operation of sum of systems on a signal §
X 1-09R 1-0.TR
_5 4\&@m (Hy + Ho)S = H1S + HoS
Our system
X + Y _Y _ 45 35
=5 H=%=1"ter 1-om M+l
: Unit sample response:
+ e to H; is a geometric sequence.
¢ to Ho is a geometric sequence.

e to H = Hy + Hs is the sum of geometric sequences.
Actual values

If z[n] = 8[n] then y;1[n] = 0.9" and yz[n] = 0.7" for n > 0.
Thus, y[n] = 4.5(0.9)" — 3.5(0.7)" for n > 0.

Mode with biggest base eventually governs behavior

it

6.01: Introduction to EECS 1

Week 5 October 5, 2010

Sum of geometric sequences

More dramatically

Mode with biggest base eventually governs behavior

yi[n] =07 for n >0

-10 12345678

yaln] = 0.9" for n >0
jTTTTTTT?';;

-10 123456738

y[n] = 4.5(0.9)" — 3.5(0.7)" for n >0

A

O

-10 12345678

< t/Hfl}m“] r J}j

e wig

¢ g Cobltim
dostinafes ot

01, 200 - bismommeom
—-L2R T 1-05R

Analysis of more complicated systems

Analysis of more complicated systems

Rational polynomials can be realized with block diagrams of the
following form:

X —l—v Y
:
R 'Fcul. Forvard

A Uy
JF tedhal. lonp
f 1-1-r11’,0‘?,-{-(1,2'."\’."-i—(z;'n'i’,l

Y b+ bR+ R?+ 3R +

Modes can be identified by expanding system functional in partial
fractions.

Y bp+ bR+ bR2 4 baR3 +
x 1+ a1R + asR? + agR3 + .
Factor denominator:
s b + MR+ bR2 + byR3 +
X~ (1-poR)(1—pR)(1 - p2R)(1 — psR) -+
Partial fractions:
Y C C C
X l—j’(J](]R+ 1—]:1R+ 1—;27?,

b

(dn Aluaysfaro

44+ Do+ D1R+ DoR2 +

One mode of the form pf arises from each factor of the denominator.

IhrlfH‘ ncd VMH% Yo Colve

/Ccﬂ

Analysis of more complicated systems

Easy way to find poles

v

Modal decomposition provides an alternative block dragrag (EF\/N{'_,
e —eee.

v o fuls

X —1(+
-

dele

e

Y v
\ﬁ? [)
5—*@—»6?
h<
™

-4

3

i ~®
huavior) % L

l N
fraiet, iD‘ | T —0

(l\iu, am,‘ M T

The upper part is cyclic; the lower part is acyclic.

The poles are also the roots of the denominator of the system func-
tional when R — L.

Start with system functional:
¥ 1 2 1 3 1
X 1-16R+0.63R2 ~ (1-poR)(1-pmR) (1-0.7R) (1-0.9R)
0.9
r1=0.

Po=0.7

Substitute R — % and find roots of denominator:

¥ _ 1 _ 22 _ 22
X L6 063 7 22-1.624+0.63 (2—0.7)(2—0.9)
L= —t—p A A A
£ FZAN 4| =07 z1=0.9
M N
poles are at 0.7 and 0.9 \, P @7’ q,t/d{m}k,

e

-
6.01: Ihiroduction to EECS 1

Week 5 October 5, 2010

Check Yourself

Properties of signals

Consider the system described by

1 1 1
yln] = —7uln — 1) + gyln — 2| + 2[n — 1] - 5a{n - 2]

B

[How many of the following are true?

1. The unit sample response converges to zero. \/

2. There are poles at z = ’.11 and z = 1.

3. Thereis a pole at z =

4, There are two poles.

5

dv’*‘ '“‘
A signal is transient if it has finitely manM -zero samples. Oth-
erwise, it is persistent.

A signal is bounded if there is exist upper and lower bound values
such that the samples of the signal never exceed those bounds;
otherwise it is unbounded.

e A transient input to an acyclic (feed-forward) system results in
a transient output.

s A transient input to a cyclic (feed-back) system results in a
persistent output.

V=t RY ¥ R -5 X
\’(! a-‘/q&*j ‘/3\{({’1) e /1R2)

fai

ﬂ,-’i/\!),_ 3
WR-%

Poles: Summary

Dependence on pole magnitude

e The poles of a system are the roots of the denominator poly-
nomial of the system function in 1/R.
¢ The dominant pole is the pole with the largest magnitude.

Giran Aogj not W/H'@f

Response to a bounded input signal, if the dominant pole has
magnitude
e > 1: output signal will be unbounded
e < 1: output signal will be bounded
if the input is transient, output signal will converge to 0.
e 1: output signal will be bounded

A system is stable if the output signal is bounded.

Chaacterizp am 6yskom

Dependence on pole type

This Week

Response to a transient input signal, if the dominant pole is

e real and positive: output signal will, after finitely many steps,
begin to increase or decrease monotonically. NQ 055[

« real and negative: output signal ,will, after finitely many steps,
begin to alternate signs. (,'(

e complex: output signal will; after finitely many steps, begin to
be periodic, with a period of 27/{, where {2 is the 'angle’ of the
pole in the complex plane. (J 3‘5;

L] pecidly - conge b0 ()
7) Pef‘za&‘% < wn bende L

Software lab: Class for manipulating system functions
Design lab: Analyzing robot control system for stability

Midterm exam:

e Tuesday, October 12, 7:30-9:00 PM

e 32-141 or 32-155

e Any printed material okay

e No computers or phones

e Make-up: Wednesday, October 13, 8:Q0-9:30 AM:C{C‘
email welg@mit.edu

6.01 SWLab 5: System Function Class — Fall 2010

Software Lab 5: System Functions

Setup

e Using a lab laptop or desktop machine: Log in using your Athena user name and pass-
word; in the terminal window, type athrun 6.01 update. Work in the directory Desk-
top/6.01/1lab5/swlab.

e Using your own laptop: Download the zip file for software lab 5 from the Calendar tab of the
course web page, unzip it, and work in the resulting directory.

System Function Class

The software lab for this week is to implement a Python class that represents LTI systems and to
implement useful operations on systems described this way. Section 4 of this handout contains
examples of the operation of this class.

We will represent a system in terms of its system function, as a ratio of polynomials in R. We can
use a SystemFunction class with the following methods:

e __init__(self, numeratorPoly, denominatorPoly): takes two instances of the Poly-
nomial class as input and stores them in this SystemFunction instance as the attributes nu-
merator and denominator.

e poles(self): returns a list of the poles of the system. Remember that the poles are the roots
of the polynomial in z, where z = 1/R.

e poleMagnitudes(self): returns a list of the magnitudes of the poles of the system. The
magnitude of a real pole is simply its absolute value. The magnitude of a complex pole is
the square root of the sum of the squares of its real and imaginary parts. The abs function in
Python does the appropriate computation for both types.

e dominantPole(self): returns a “dominant” pole, that is, one of the poles with the greatest
magnitude (there may be more than one with the same, largest, magnitude; in this case, return
any one of them).

Step 1.

6.01 SWLab 5: System Function Class — Fall 2010 2

Edit sfSkeleton.py to contain your implementation of these methods. You can test it using
s15Work.py, which will load your sfSkeleton.py. We have set up s15Work. py to import your
definitions from sfSkeleton.py as sf, so that the examples match those in Section 4.

Hints and cautions

e To create a Polynomial, use poly.Polynomial([...])

e None of the operations that you implement should change any of their arguments. Be
very careful of list operations that modify the input lists; e.g., x.append, x.insert and
X.reverse.

e Ifyouhavealistbound to the variable x, then x . reverse () reverses the order of the elements
of the list x. If you want to avoid affecting the original x you need to copy the list first, for
example, by doing y = x[:]. Note thaty = x does not copy the list, it simply creates a new -
name for the same list.

e You might want to use the procedure util.argmax(1l, f), which takes as input a list 1 and
a procedure f that can take an element of 1 as input and return a numerical score as ouput.
The result is the element of 1 for which f outputs the highest score.

Wk.5.1.1 Once you have debugged your code in Idle, paste it into this tutor prob-
lem, check it, and submit it.

Step 2.

Step 3.

Step 4.

Step 5.

6.01 SWLab 5: System Function Class — Fall 2010 3

Combining System Functions

We can also implement two basic operations for combining system functions, analogous to opera-
tions we saw for state machines. They are described in detail in Chapter 6 of the course readings.

L WKk.5.1.2 Get practice with cascade combination of system functions. }

In sfSkeleton.py, implement the procedure Cascade (sf1, sf2), which takes two instances
of the SystemFunction class and returns a new instance of that class that represents the cascade
composition of the input systems. Although this is a procedure and not a class, we capitalize the
name by analogy with the sm.Cascade class.

Wk.5.1.3 Once you have debugged your code in Idle, paste it into this tutor prob-
lem, check it, and submit it.

[Wk.5.1.4 Get practice with feedback-subtract combination of system functions. }

In sfSkeleton.py, implement the procedure FeedbackSubtract (sf1, sf2), which takes two
instances of the SystemFunction class and returns a new instance of that class that represents
the feedback subtract composition of the input systems. Although this is a procedure and not a
class, we capitalize the name by analogy with the sm.FeedbackSubtract class.

Wk.5.1.5 Once you have debugged your code in Idle, paste it into this tutor prob-
lem, check it, and submit it.

6.01 SWLab 5: System Function Class — Fall 2010

Examples

These examples, drawn from the notes, are included in s15Work. py.
Real poles:

>>> s1 = sf.SystemFunction(poly.Polynomial([1]),
poly.Polynomial ([0.63, -1.6, 1]))

>>> print si

SF(1.000/0.630 R**2 + -1.600R + 1.000)

>>> sl.poles()

[0.90000000000000069, 0.69999999999999951]

>>> si1.poleMagnitudes()

[0.90000000000000069, 0.69999999999999951]

>>> s1.dominantPole()

0.90000000000000069

Complex poles:

>>> s2 = sf.SystemFunction(poly.Polynomial([1]),
poly.Polynomial([1.1, -1.9, 1]))
>>> print s2
SF(1.000/1.100 R**2 + -1.900R + 1.000)
>>> s2.poles()
[(0.94999999999999996+0 . 444409720865779573), (0.94999999999999996-0.444409720865779573)]
>>> s2.poleMagnitudes()
[1.0488088481701516, 1.0488088481701516]
>>> 82.dominantPole()
(0.94999999999999996+0 , 44440972086577957 j)

Driving to a wall example from the notes:

>>>T =0.1

>>> k = -2.0

>>> controller = sf.SystemFunction(poly.Polynomial([k]),

poly.Polynomial([1]))

>>> print controller

SF(-2.000/1.000)

>>> plant = sf.SystemFunction(poly.Polynomial([-T, 0]),
poly.Polynomial ([-1, 11))

>>> print plant

SF(-0.100R/-1.000R + 1.000)

>>> controllerAndPlant = sf.Cascade(controller, plant)

>>> print controllerAndPlant

SF(0.200R/-1.000R + 1.000)

>>> wall = sf.FeedbackSubtract(controllerAndPlant)

>>> print wall

SF(0.200R/-0.800R + 1.000)

>>> wall.poles()

[0.80000000000000004]

oW Lab S 10/

~inglesnt @ LTT 4 gom
~lodt wetls s pth ek e
) 'UV[S»{{)}@ﬂ\ FL/"(/FM C[%S

*C(mlf{ po]mm\(d’ w} PO'\,‘POHM’"}“’)([]>
“obdt shod hod modk, (b

Xy Cse may e reedéd
Coq\{ |igh / Y-_—X [‘] & g0 Muoh Qébé}"fl(
(M) mAX

~(ebfms h‘{)]ﬂ);‘ ¢(ol0 A% OuYLPul
g, ol vheh o okpd highd vale

D e
59 (A (Juk i ﬂ,
L. < V&)
< G

-0k m Gmmpk as ,mfv/e,
~ My gt |

(

a N
Elp \

) —

-1 (g R

beoL Fh |
Moy o wd med fo £l
|

1@2-2, -l0/3 #| & rootea o €ind den

e oleady mplomated Cootes

e oW e @ s aee
- O'LV%HM rzs]’\W o ded ‘f“/

"M T Mprcw\hd?an 1 24 In d““
— not Jhat \e(,WQ @o

~how it5
LQ/J %’L ‘—l‘(‘? H
we want
S
— ~ %}
[7 |
» N
b |
~ work W/

R N Y h) (2-4)
(2+1) (2-2)

27-05 -2

St waks i (galation
~—fhal
._bL/Jr 5}L‘£I[not wl‘ﬂ/‘! ng %Dﬂ_ {n -

C
Oc s 1t mowrstd

["175) 15 1] ontered A
shwld he ok oF

[l, 25 =175 ,foco}b()

Tt B whd 5 b

—gh i+ CoP\iQ))Ilﬁb
—nib poly ot
ot o
— 1 ~Caik
~T sled tho before

’0}\ '>‘(\ h:” 9‘(/(2 @6((5 &Gpeﬂé‘(ﬂ 0n my J(’fﬁ:f)n
Pol yporial

—Came ook quM, hut M0y 6294
“w\tgy as - <
"o omembec (o0} as ;f\‘! s ﬁ‘h"

2+8) [3-19

2=-5 2:=1% €& corgl

Now PORG ”lqgnifvd@
~ ﬁmp?{ Aboy|te alve]fffecf[

s (
(mag nel y ‘ }feﬂ’ . t: Pa(h
- M' Q(Dj does for baty

®

- bd Abs does qof Jo llbﬁ,gw
ol dog

Aom\lnode ¥©,€
—eln gl)L Fo)e
LI | /-‘
—0r foedwf 0r w)'wa !

[-5, 75)
A BN

7} eluin = 9

= o do T owad b b g
((J(”.oﬂj ety (Mﬁs/ A bs C))
41 ! (Sel(,pa!eg./ @bs))

6'4&1/[{{ bﬁ Céle
TAor
Vorled on _’),6 F o v l,

“all b de fodsy

— Ayl new, 6o l/vorl(%me m«fl/l

-

9
[asady Tradice
APt

ap
= vleJodo-g < x] - 2ap)
Ha- YU a7 i)]

Aok &t Lot

H,/ wih] = x[n] 2o lnA] + wfa)
Hz/ 7[«1] < w[an w[h—lz t y[n»)]

W/ e X = 2R% v YR 4
/ o 15 Thet cight”

Hi/ 1= 5¢ & Y R JrYR}%

<X - y-vRex 18X
Y(1-R) = x ~2Ax

e ¥ ~ZR%
[—R

._\-/-- e~ —_

R A

=R

Iy
TRt xR
y(!-ﬁ[{) = \fo&l
y — X+xRt
| -R
Y- |FRE
s LR
=R
Y

va Cdécad(
—octee Joes hel matte,

oty 2 Hy, cote o
\/: X '-ZQX (X"'
T) ([~

[-R

o /—’,—l

W kR
e

|- R

x) (“QA]R'L

[-R

") ik Pal s b M outph of | b ofkr

P e
o y
-k g2 -2k

(\luM o +

/”R R/ﬂﬁ nom S}a{S 4 ame l'-/l\

ko tm’@ malh }M/).
T b 1 bl v Sgaews ooty ¥
=0r C&VL{ \JOv UL f’[‘. -H»
B 0 {nom
fiad (mmon do({{i /Q)
° 3
P\W s B2 g
(&% QT - R3 Q2_Q%
LRE-RR a3 {g=4)
m-m <2002 9 7

Togeth 2-4k
R
VAR
l
l-_- =
| -2 R482-1R5
R S I 2R |- R 22
| =R =R R% DA +|
(late way
TR
=R | —R
l+a7 *-2/{(’2**2&3 e h‘mﬂ mch \g‘rmpfpf
| -28 + -
: - -}

@ Sl (05

Mp‘WJ Casadp hight
- plocete 4 (F1, 52
-

(

I(
2 Gy furciion

y: Q/\l! h'z X

™ Mr .ﬂum?fd%ﬂ */VH fgt/m
tle,romf‘ Mld@nom M') ({(’ﬂp,]

Ol’\ ['/qW' hO‘{' o . =
(P_]/(///] A Now gé

Jue ()

5 Foud bac sb fad peacties

H, & _%/L @FO‘\/ nam:’ﬂ'ﬁ n Q (Mf- -\5]:*()
H’L - s

0,
- Mgt Cafer pot Yogefor
=X Galy

QC’WI - {@9“

()

—

/] (b(;
toed, Aod of Il ok o/ of1 0 ptuml
" o M"vg

“Oh ke o () a@/), N7 e examil
hﬂnbwfd%("5 lf]/ (Qﬁpu{) & N
X < lpd =D

' WONTY D) = N

(
rclﬁfﬁm \Nl/\oxf b»o\/!(] h“d !79/
g

B [gOLL Od l%c{u/q emmf\e

)

the W o
Y - H,(Y‘ H'LY)
\/JFHI ﬁ2 \1{ :HI YY
MEEABEL
Y = o
|+ H
\{ = H[C;Num
L+ H b, e
é}c’ s % @b’(s y
\ r%i{ _Q/D%L .

| | oo
‘)ﬂq ny L\ow T J (J (a4 |
| B M .h\a{,lL was d}{{(m)fn" FO/M[}

JOH o divfsﬂm o\l]owgé

~da Cold aplorert ile hat

,dﬂd 'hfn %p ‘h(ji(ans | "Oé

’Jﬂ“‘f Say male Cure (Ml cmplé

—dd lab 3 v Sm |

| C\é '“f\odéw{%'j s wd N furgh iy
~tiek ol yglug

dr\WU

gn M
hat i T yhat s m“(pfw/

- 5 ¢
’“lrv)\di' 'u, Bla_(,[k; 'Glrflulﬁ
a O)\ r)‘\f‘./" i - __Hi_
T Ikt e port af

79/
-\ oha! was my M Hole 49 e

— ol criue
I,
b
| + M
3%
Nl (J_ m Df 0’2)
— 8 ’ et
D | N, Ny
59 \/! 0 DZJ @
0, (v Ny)

+i cale Dealer oad Pudn. oater

D’L N(@b\rdyo o dd Toy & oF
DQ D, “N[MQ

“0d T papded lo o0 hal ledre mbes clde
—d{| 1k AN lormals Confo

Ny), N,

N, e
D‘(D_gf 4 \S), (DHM)
Oh iv?,” {M“ 03}1* d,bOwL'

OL\ woll 4@\\? shatt 1 had
0 (o Dq)
D| Nl —N—;

N | . :

I/L}W d[d I (lq {’hdli

Tl That

M ' _&_LD{,@:L

0w
N ‘L_D_’l,

——

NiDy i Do
7D, W Wy

,‘!\mrr\ ww‘rl . ”

lez .

f

-

D, No ¢ @BJ Common dhwmb

and T 0%
T had

(&

NDW fﬂ‘?leﬂqﬂ] @
Now pee - lab foc TLWW o/
~Condeak pall Ludor oyedea (enctun

=~ (ontrdlor 6‘:

e LT i —

~ Yales ‘j% - ﬁm of Ol
_(Q {J% Ve l%‘l{ ’
= float SF
h T %‘ns{dp dﬂf‘!ﬂ"
- 1ir\ Pm‘ Veimf |
- O M QCu%l lJ S04 0 cw,
- g ok

M 0 |

— ik ¥ @(99”60((ﬂﬁd’f’oﬂ
~wall (iatte Sytom WA il o yplor
w?éd oot do 'h*-...f) h(uf”/

h 6}\ ‘huﬂ[WS sm
0l o do w| 4F

1 % MﬂL CM«?@ 4
“‘/Wl wored for Cﬁﬂ%m“ﬂ

“ 1o //l l‘l’ D
511(& dg!fij & modh
T 136{4(& { le[Q

B 16 s Ulmd(;fl 55 byt 1 \

s
(ﬂp Fu’ﬂ.{f
P

f Omcffi 6:&9

@ [ne N

= e fh

W(Ma

ﬂ
' {‘!a
}\O

Weel Y tlw /6

~A L'“l (aﬁl(’,/ bb\[é'/e %omﬂfmvu
Tug) atll on 10
b ol desgn (o

.Y, Fadieg Suefems

“O0h e o,
~wl 4y C ooffes
Tl life Cituatio 1y f o

Y[n] = ({‘(a‘g-!‘!g’ﬂ U{ Dot
)])

] - AV ob poovins L topd

E’”’w Cust Cow smbles

Y= (o7 w2/

I\

9l
gl # Coo{{lcoat
~oh T Coamby

C
‘5 5 0@ hor? @
g 15 _zg @
N

=0 ham

el m b obers ~0als AW(’ J Checks

l/\’l’ld _— i P"{ O P"f
N on-l n-2 h-1 n-2
| St 115 d{{ Fp{g,l -[

o0 5 5 0

__C]U'l‘l FO/@(}(\%{*ﬂﬁr;

—_——

Qaﬂ] % (rpda| :'dé'r(’s{ ale
MP\AS: Q"FS}LS ﬂavt \set/
O/(} M = lﬁ!”‘(ﬂ o Prd of el
) v
' d }N‘i’> : ‘ ‘
— B A etk Hil e calls o

Yo Xlny ey ()
Y { .65 @)

~ O]ppoﬁ\((‘ K 66 n 1<()
— Whal T bl Vool s
B progyet

&

~‘owl e 1, E
g of

)ﬁ; %@’}‘T i {h] . X[h\/ } }Og Y {:“_,]

Y= X 4005 Ly

g

@r \/-1105’@\/ = X

y(1-1osf) = x
Yo (-05R) <
X (250
. L
sk
51 / . Y
QF (‘PD]\{MM(C{’Z[}_J} Po {\{farn(c{/ [;DV~/ O\]/
- % how el gl 6
~ny ste”

— QA {of ,oaip \,wobd hase Leﬁn. o mul g{mplﬂf
’_COM \/ou ftﬂ"f /{
W(Oﬂ@ “f}\mg
- ~50 | (1 2/}m T med @ A A P—(CPP /mp

"9 Tl hat doe 0 Sy
—bu fva Complee fp fholy P a !z‘!

Yt2 Reprsprlalion;
—% S 0 toeff Ceoel

- L\ﬁt ﬂ?dd'qu a ?"({Of_ﬂ
Aoy ALY,

T gne -
(ondyy (@o) e \reeh ,30/-

Ry

’)fo'“é (W’Ul{ }m ,,{” _/0}’0/)
yiﬂj - ﬁi{){(n—ﬂ I “l X[h.@
” 5
O | ~l@| hee @

o /
Qk {, ~whal 9 { ttote |

0 Q] o0 6

— o ‘H !fé /v‘dx OJ(M 69(/}}
“*Q((O(dﬁa La [)as}* GO(nots

Ve X< xR
¢ sam thia
0 { “’(Nnove (x ? g
Jues not
7/

XR - - ;/
A ()

No mah e (hengle x p\‘C

il gl Ly Suet il
YIng < x[n] 4l [+1] + Ox[al b))

. }]ﬁhﬂ[]\Iw & J;N
“”Dol« \,/1_]{Lﬁ//@ notes

h 0\55\1% Va ‘/c\u{{s I/\a,!{tw(7 |

W= F =1 xR
Vil <] RRW 4 2Ry
fow plvg -

Vs - g [xR) 4R [xx6) 9 G i

Y R YRS, Jex -IRTX
X Q% -9R7% ;72 Ry

-7 2 OCX)) ot (

v 3|
/'fftiz{} ZTT SM ld/g
“ bw}’ Comlg 4 5 Mool ,f p el
TPV Rl g

LT 5 L) how (an ‘{0 m,ll A‘MLL 'h”l)
"l/qh) ISM(‘J Q’@"{/ c:(ﬂc’!ﬁf/ P({’W;M In/ f/eJ;O«b d?/f’) t{/fﬁr@q

- T why negd bot

{’lpr Goeng ho o sum formgt-
~ Oh Joml nem*%hn%/, a4l Ty Hm(
(4} poc b

“lr-’k?/ l‘oﬁl f\

-~ Rews ke o e e
) =3

LT sm(T), I7)

Y

de W&oh\h"
I3 = x[nd]

LI Lo 1o [OLH)

Oh 5p€cd(f€fl A~ [~

Bool s s i
| N Pdes Aty
0% e T g
= J(q &0929'"“”@ e
~ h-|
Yl = X y [2-1]

h ke mgt ot “”f”‘t

o | g 0
. 0 9

Can “F be

~ Vol e e}

O |

Y94 T nplou LT g
i cialghe

IS0)37 04)
y(n] < x(n] + 2x[n) +y(n-] X[= #3

st | 034, Y17 =
Off\ = 1 + 723 L{ = ” @ “b e does
SR R O R Sl

A S+ 202 +fs =272 0
Ten o Y L3y 22 = 37 @
Ysn s sy 29 v+ <45 @
ddds fu prw}ol/s 2 b awmolafdr

———— s

Now ol i yp
~ bk b S s

" Inpleagat 0 vt vdle p
bt o to Pre(6e Co efficnts

~(ommbee o} Peodet fonchon

~Ahink Jﬂﬂrvug Cases w) A/C @@((QMP’L7
- S0 comnby sm Thigklay
vt €4 cnly Tl i bl
=w| poly postal
ph
~ Lot Mt 6 yﬂanl

"% A4 whd Y b 50 T@fﬂ@" a lf o fe
"‘J copff Sm ¢l

Tl polypnial goo, That
~ % lefg v9e E’mmpf? to ﬂ}ak Thmvgh

"60 T}tm/@h d Coeff ﬂd(uftj
‘6{‘ X I { Ca@fﬁ(,

%X';apkﬁl tans =AAS ’"J*’i Charye ‘"‘”ﬁ""’ﬂlr
éﬁt’“ X Eq (OG'FLC
X o el Nod Vb [) 42 o
_ Cor wll dh be i de,{(?
M . May need o et w l\%f
W/ mtf‘W, %é?@ #’
- negd A<l

Too what 16T W cnmetiley gzy

:}O:j}i)?h)(ﬂ) £ (¢ gug wery Hiog (6%@55 ﬁovgl,/

@ (Lo

50 ‘hb gHﬂLG kuN }G

(3,4) |
.t \ledhL b 77@, ‘rfl Teed $ Mﬁ]% he "
- 6}\0\1 vl wL gu\(u_ ﬁ«oﬂ (9 ‘o.mL ol ¢ [ds

— 4 m [K[r’lv,])/Zh I) :ETL ‘1’2&[;{”;5&
“or (Cxlw) %,wm)

T bt Itrn({bctb)
what ¢ [Mn N,y o), ya))
hih 1o what el fe
=5 Stute W\WA\N COarcies % H“f’
~ No A~ oy pont be sl

— & Ihot Rnough ‘m};L Hnmg, T2 p /) (A
wou ld Cctor

A5 Glyte
M Forg Oukpot (n)

‘mpv‘oL (V\) | "
"% Ot ped- vl Ul([(on C_M_lﬁ be o g 7
S 'l b iy 200,9

(b e
= al)
6\ 0
gttt Lor y 0 d gt
>< %«@ +adns = ans
kql’ 1"hu wll bo, MW
: 6 W, }W ‘apt/\L
‘F (7’ <
0 | > e lo] [
for % 0 ool (il km cefor)
0] ’(o ¢ 5‘@, [o
Ko &’\f ‘2 dns = A
Ve %040
(et (0\/\5/5«{6,}9)
T@o b ofke way acod

-alo ned o charg slake 7z w L ool #
JRAUR state qns L psh m&! i
N Glale log e o i
(:MPJ‘]‘/ Omé)

Tph what o Mo fhan o peL gpeolﬁé(

fn i whob m’\g ol be blanked
On Kol (un

MU b aped tue of gk of)
“dnd & gwwe ol vahe
ey T —rele o ned (bl oeebiod)

>
LRV (O/x)
-ok 6\/{ A+ a '!77

@) kel 14t frll |
~nade tested once .
~Athaght thogh ey earitial posubliy

——

Jm, e bank probleq [My o pefsona/ 'LfV)

LTT 1 [[\]/[ﬁ) ZO]/ [OJ) retsile [UOO/0,0(OJ
05 d

noed oc fﬂmemf

.

ho gets R omyllor
Jg d(ﬂatu

.
Oh duh [0S
(A/O(J{’! 90‘)— ;7L 6“(@a;\stfl

1

Uld, 5 Taadued Signg |
—9'&/(7/\

A 5/‘7 I 5\(3 we (dn @46{7%"(N Séng[
—dut Only wocks 7 ()

% ,bﬁ?(mj b what T vl f G0 before 770

| | or Son@f'hf'
"¢ oy o ol fum ot slowh T b

< Svbclas
’]\fd%c{&g (yna) / Signc{))

- - :n‘lL_;(ée{(/ 6/ M)

T .
Inp‘fl émlﬂ(“ 5t
523%&[

e Samply ()
| — ebns vyl A A

~ St J}'%ﬁ?max/ﬁrg fomgadd) b frak vl

6 Dis w iy My Inpwl()/g(ﬂpml () Ection (IJea(
“WMll oyl rej‘% in of 't

- Ve

- _22 —hot bfedk‘@ midd)

~ ;q Q{:\C ‘(((’fll p o S
TG ache for Thons pouts .
Do actvl hing pons

"élk S hegd {‘o ((o m‘oﬁ én A 70

SM, ‘Wtdvce (g‘fgrwcl)
“Pbmt OnLy {'0 n
4 cofrn frat alg

Therd weife own {ogh g
“*Qlﬂ\(n\‘

il @ sigral and M

(4n 1 fansdue @ Mf‘)
Py 7
—will can b for valsy ;"L most o ﬁ/l’
“b A Signal iaghag
- Signdl, sumflp [n)
e
bt pegd o vp fo it <"
G
e G i bl L 7N

ﬁ 5»)7’6(/“"\ 1@[«)Pf‘fld (S, Sﬂmplét:y)
dnd 7ta , ’ffdn({'/‘d (6%/(%1)

~1 optad a |44

o Hat fodowt!
A lop il
“oh U ot (vt .
ML) 5
“dd gl o

—

~ ok Nw b omeed 4%0’4[7 cefong
) (e bale / rol= whole fmasa[/# Y b fau P
advall; skl that!

‘"th/b‘l' (on Zagf* ore,(

So 19 M.I[fa/lpnfwoe (jjrtm)
n, 5{’@’) (Sh’m)
i
+/“{ tr{‘ ‘Uf'
J&W A l/&'ftﬂ /fr‘sr't as a S/

“hanhy b dettng o o aumpy %
“Qar

~~f£wé/ foh Ll [mnl

Pope ok ooy

Winda oy G+ V —nt ot

“han St e [l vl of i b’
4 lxch,

- pop !
J ks

Now on mpe bak qv

"Ileeép anpd gegnal
" Ay thing
“LTITY o b
= comgbck Ggaal Fonsbaing 9gal ot sy

o

~@ll jut & LTTon
vin] - % [ﬂ l] N X[V‘j

¢ €an e sy

(00 gin 0
10
50

= U ?@ly R

~ ook e better M?l‘

e T dd lask Y _a o
“ b e |tam widll @ E oG b
tany ﬂ,\pﬁa\
- ok go+ (b
~bow Can T gag
—0Oh L(.‘r@fe dL o 5,\(@ L% s q[oc/y 5@10\;06 (n @3
ot gell b Lut reprigd o) k-

@ OL“ dorﬂ/

haf\o 59\ [0 /7

e

— plahirg

l Ly &‘ Y\“’

A

ok o do po \)\/

%
y[n): Qf“\) \/["”O F @Fﬁ) X[”) ! b){mtj
y=lra) k= (g pn,

y(\“‘(“‘”)@
¥ bt e (W
X | — f—a&

(x-«]) ﬁ% ot Q Ix

v 12/

6.01 DL5: Staggering proportions — Fall 2010 $ |

Design Lab 5:
Staggering Proportions

Introduction

This lab should be done with a partner. Each partnership should have a lab laptop or a personal
laptop that reliably runs soar. Do athrun 6.01 update to get the files for this lab, which will be
in Desktop/6.01/1ab5/designLab/, or get the software distribution from the course web page.

The relevant files in the distribution are:

propWallFollowBrainSkeleton.py: A brain with a place for you to write the proportional
controller.

wallTestWorld.py: A world with a wall for the robot to follow. (This file appears in the
worlds subdirectory)

d15Work.py: A file with appropriate imports for making system functions and finding their
properties.

Be sure to mail all of your code and plots to your partner. Each of you will need to bring
copies with you to your first interview.

In this lab, we will program the robot to move along a wall to its side, maintaining a constant,
desired distance from the wall. We will use a simple proportional controller, and model it as a
system with the same structure that we used for last week'’s wall finder system.

error command
D; —*@—> controller » plant > D,
T sensor |«
The steps in this lab are:

Build a proportional controller for a robot and test it in simulation with different gains.

Build an analytical model of the controller-plant-sensor system, both by hand and using the
SystemFunction class.

Use the model to gain understanding about the best gain to use for the controller and what
kind of behavior to expect from the system.

6.01 DL5: Staggering proportions — Fall 2010 2

Definitions of symbols

Here are the definitions of various symbols we will use in this lab. The descriptions might not yet
make sense to you, but we put them here so you can refer back to them as you work.

e k: gain of the controller, a constant number

e V: forward velocity of the robot, a constant number

e T: the amount of time between discrete samples of the signals, a constant number

e D; : desired distance of the robot to the wall, a signal whose samples are d;[n]

D, : actual distance of the robot to the wall, a signal whose samples are do [n]
e E: error, equal to D; — D,, a signal whose samples are e[n]

© : robot’s angle with respect to the wall, a signal whose samples are 0[n]

Q : robot’s angular velocity, a signal whose samples are w(n]

Proportional wall-follower

Oln—1]
do|n]

]
[}
]
[}
] >
l
Ol .
=
g
Oy diln] =04 m
1 =

The figure above illustrates a robot in a hallway, with its desired path a fixed distance from the
right wall. We can build a controller with a fixed forward velocity of V = 0.1m/s, and adjust
the rotational velocity w(n] (not shown) to be proportional to the error, which is the difference
between the desired distance di[n] = 0.4 m to the right wall and the actual distance d,[n]. The
constant of proportionality between the error and the rotational velocity is called the gain, and we
will write it as k. Notice that when the rotational velocity w[n] of the robot is positive the robot
turns towards the left, thus increasing its angle 6[n].

Look in the file propWallFollowBrainSkeleton.py. The brain has two state machines con-
nected in cascade. The first component is an instance of the Sensor class, which implements a
state machine whose input is of type io.SensorInput and whose output is the perpendicular
distance to the wall on the right. The perpendicular distance is calculated by getDistanceRight

Step 1.

Step 2.

Step 3.

6.01 DL5: Staggering proportions — Fall 2010 3

in the sonarDist module by using triangulation (assuming the wall is locally straight). All of the
code for the Sensor class is provided.

The second component of the brain is an instance of the WallFollower class. Your job is to
provide code so that the WallFollower class implements a proportional controller.

Check Yourself 1. What should be the types of the input to and the output from a state ma-
chine of the WallFollower class?

Implement the proportional controller by editing the brain. Then use soar to run your brain in the
world wallTestWorld.py. The brain is set up to issue a command during the setup to rotate the
robot, so it starts at a small angle with respect to the wall.

Experiment with a few different values of the gain k of the controller (within the range 0 to 20).
Generate slime trails to illustrate how the system’s performance depends on the value of k; how
does it affect the convergence of the output to the desired value? Be sure to take and save screen
shots of at least three slime trails.

Checkoff 1. e Show your slime trails to a staff member, and explain the implications
of the slime trails for choosing a good value of k.
e Compare the kinds of behaviors exhibited by the wall-follower system
to the range of behaviors of the wall-finder system from last week.

Mathematical model

Picking gains and trying them on the robot can become tedious, so we will build a model of the
wall-follower system, and use it to understand, analytically, how the performance of the system
depends on the gain. (Section 6.5 of the readings illustrates a similar modeling effort for the
wall-finder system).

Controller model: Assume that the controller can instantly set the rotational velocity w[n] to be
proportional to the error e[n]. Express this relation as a difference equation.

(|

6.01 DL5: Staggering proportions — Fall 2010 4

Step 4. Plant model: Write difference equations describing the “plant,” that is, an expression for do[nl],
that depends on w. It is useful to break this problem into two parts:

o Plantl: Write an expression for 8[n], the robot’s angular orientation with respect to the wall,
that depends on w. (Remember that the robot (or state machine) can only set new values for
variables based on values that were computed at previous times, or in other words, each of
the state machines in a brain update their variables in synchrony.)

i |

e Plant2: Write an expression for d,[nl, that depends on 8, by linearizing the relation between
d, and 0 using the small angle approximation (i.e., if 8 is small, then sin 6 ~). This approx-
imation makes our model linear, allowing us to analyze it easily. It is useful to think about
what its consequences are, for large angles, however.

| |

Sensor model: To keep things simple, we will model the sensor as a wire: that is, assume it
introduces no delay.

The subsystems represented by the three difference equations above connect together to form a
system of the following form. Label each wire in the block diagram with the name of the cor-
responding signal. You may also find it useful to label each of the boxes in this diagram with
the element of the model (controller, plantl, plant2) corresponding to each of the three difference
equations you derived.

G by

QL@_E.L\“’”:% . ;

Step 5.

6.01 DL5: Staggering proportions — Fall 2010 5

Wk.5.3.2 Enter the system function into the tutor by entering the numerator and
denominator polynomials.

4 Software model

Manipulating equations, as you did above, is useful because you can keep constants like k and T
as symbols, and see how they factor into the model. However, manual manipulation of equations
can be quite error prone. In this section, we will explore the use of our Python SystemFunction
class to model and analyze the wall-follower. The only drawback is that we will only be able to
ask it to do so for particular numeric values of k and T.

The SystemFunction class provides two primitive kinds of system functions: gain (sf.Gain)
and delay (sf .R). They are implemented as Python procedures, but named with uppercase vari-
ables by analogy with the sm.Gain and sm.R state machines.

def Gain(k):

return sf.SystemFunction(poly.Polynomial([k]), poly.Polynomial([1]))
def R():

return sf.SystemFunction(poly.Polynomial([1, 0]), poly.Polynomial([1]))

These can be combined, using sf .Cascade, sf .FeedbackSubtract, and sf.FeedbackAdd to
make any possible system function; and the structure of the combination will be the same as it
would have been to build up the analogous state machine.

Note that while the internal definitions of Gain and R use polynomials to construct them, by
abstraction you can use these system functions, together with our means of combination without
ever having to utilize these internal details.

Step 6.

Step 7.

6.01 DL5: Staggering proportions — Fall 2010 6

\
Check Yourself 2. Use gains, delays, and adders to draw system diagrams representing the

controller and each of the parts of the plant you derived in the previous
section.

=2 J

Edit the d15work.py file to implement Python procedures called controller, planti, and
plant2 that use sf.Gain, sf.R, sf.Cascade, sf.FeedbackSubtract, and sf.FeedbackAdd
to construct and return instances of the SystemFunction class that represent the three blocks in
the mathematical model. Pass the important parameters for each block (e.g., k) as inputs to the
corresponding procedure.

Write a Python procedure wallFollowerModel(k, T, V) that calls the previous Python proce-
dures to make system functions for the components and composes them into a single System-
Function that describes the system with desiredRight as input and distanceRight as output.

Wk.5.3.3 Enter the definition for wallFollowerModel and any procedures it calls
into the tutor. Do not enter any import statements.
- -y
'S I
Checkoff 2. Demonstrate to a staff member that, fork = 1, T = 0.1, and V = 0.1,

the system function returned by your model is the same as the one you
derived mathematically.

Step 8.

Step 9.

Step 10.

6.01 DL5: Staggering proportions — Fall 2010 7

Model predictions

Now, we will use our models to understand what the system can and cannot do. Let us assume
throughout this section that T = 0.1 and V = 0.1. These are reasonable values for our robots.

We know how to make predictions about how a system, starting at rest, will respond to a unit
sample signal as input. Our situation here is different, in that the system does not start at rest
and that the input is a persistent step signal (asking the robot to achieve a fixed distance from the
wall). We will see next week that the unit-sample response of the system at rest is nonetheless an
important predictor of behavior in the more general case.

Use the dominantPole method of the SystemFunction class, to determine what your model
predicts, for each of the gains 0.5, 1.0, 2.0, 4.0, and 10.0. In response to the unit sample signal as
input,

o Will the output signal oscillate?

o Will the output signal converge to 0?

e If it does converge to 0, how many time steps would it take for its magnitude to go below 0.01?
(In Python, math.log(v, b) computes logy, v.)

Find an algebraic expression for the poles of the system. Be sure it agrees with the software for
gains 0.5, 1.0, and 10.0.

~

_ v

Find the range of gains, if any, that will make the system stable (have bounded output in response
to bounded input).
-

6.01 DL5: Staggering proportions — Fall 2010

Checkoff 3. e Explain how you found the range of stable gains in the last step. Dis-
cuss how they relate to the behavior observed in the robot simulations
from section 2.

e Explain what can you do with a state machine representation of a sys-
tem that you can’t do with a system function representation of that
same system? What can you do with a system function representation
that you can’t do with a state machine representation?

D% LwL G ZO/Y

~—

= Wall Collomar f 6@4 od vl

2/\‘) < d‘le)ﬂlcﬁ -,
()(/k oF \b ((\/; COV’[MM&; ¢
A o, ﬂcoﬁ”/‘

V - 1) 6 C/:
Negl to Ca{(v{fﬁ[@ é

- Son u[/ba'i“
3 {Z ‘g\(w«ﬁ rfg‘nL %gl{

. i:w !
s
Joh;]]: SPns0r < C((/f @ éﬁ@/ ——({)
T peapo o
o b g Y didue fon g
BT o " e g e
— AT Conghuats

@fforr,ﬁ%% Ackval *‘/J:) |

““‘l‘k: \L ° Cupr

Vo xpCringsy

will i osllake
Sl
Desied and colotle b ‘.
| ol Compas Lr[{

“wll 't peelale

= bt oty \SJ'&f@/@q# ln (»/a,“ tes WH

10 iy it dye lop

\P’ff 5wmg5 01(‘@ Shﬂ kade For
Cdd [0 Swig smallr

220 lads e

= 208yt dogs cudle,

‘{é k"@? W Gre v C'W%Mﬂ (/6! Cﬂuu 981‘ t\l to work
boler \)7 51@@((@ mﬁ

¢

Legs Od@r&homﬂj
(wdofe (@)

(ol [n = L((D flr\j D[J)

Pl
e (;O [ﬂ] {(W)
»P\UM]

—

@[h] =((1a)

C A'C w| rosped 1§ (obo}

o el st

n{@[nj - W[n-} = W[n]

Ly | T
AVis SRy,

do |1 5106 = do[r] 'JO['?J
VIn T

6= 5y (alrly -Sl))

@ O@rg et plak 1
1h Use Affox b <
&[4) ~do[n)

61 - \/Tj\] T

G) < (a1 W BT

Ploct) clocblaad ' o

—_—

iof% i{(g) (ovwg uhat we il boF0€
. g N
S~ ‘ @ (”LQ A‘%]T“I—-&OLMD
gl] ém@ V[nﬂjﬁ‘d j

\Cguf { 6'

C«M

g (o3 1 n}T)vMT o o]

[n a7

do[n] = OLAT VT 10]a-]]

g

e

— \ \ /*}
B b @ gor & i el fed £ R o
[

b Coel b bat, o Tt ﬂ@i
No Tl Planv] |, 2 Seasp

|

'\,\—_ - I

nart b 8
Gortt g = L0 fn7- 0, 1))
oL = 6[n7 t]
(JO[n] B 6[”"0 VT + do[n-{r
ln)= G v] 12y of-1)
- 6?[;% k[0{l) Pofp]) T r do 1)
; (Q + l(@;[\"_bo&l))??(/‘r do R
CVTOR LT 0 R -yT20 0 02 +d)h

hov :
Shastl Jo /’lr/”(ﬁly/f- [(@5@“{9) v ook bacl 5‘/‘0}73{!/% deﬂ’m)
%(/_ T}l(t/ty T mae wa‘blmﬂ

ok ne b My WY

ket
o —dok = VTG A2 AT DR - YT kDo A7

b bR T2U0R2 - YTORY [Ty A
(Js[l"& *VTQRLQ’L) oo

s @@ Uy 1R

—

FYe | —Q rVT2kQE

— (a1 not Ans we m torms of @'
*LML DJ}” d@# A& 0 cofos to O

@L«\J do[))

“éﬂ&&o
VT

b-dh YT b Dy A2 :JJTQCM_:@) 2l
XX

do QT - doT
o+ 00T =dul bl » VTR ks €% = | T2 VOR

o (1T <R AT +yT2h82) < kT2 Ui
di VThpz AT+ 14T @

4

Th Got togtmiay m Q

W= k(01 - Do)
=00y g TR = RV e i
dovw VT +2h 1 e

49 =
o L-do @/W(
(Jo"ﬁ) rde R

do 8% 45 p47Q

L whe ¥ 0\/; — hot (Wug)lf
b (6RrauT)RUT 44, &
(0% + (W (pi-DA)T))AVT + 4 Q

JOQ-dJ R -
(%H + A0, kDo) QYT tdo A
&;«1{)@2% TV 0 -k T2 DA% 1o &

~bBr b2y 12, 02 o = L1Vl
SRR) - L,

o o kr2h & sup
Vo @3 RT LU A e dibmt

0

Pm(,l T(y ﬂgd‘w W g\(aﬁq EA’OH% For @&Ch

?_N_ \N\lm p\q/ i \

0 = oo, > WAL
\ F‘t” ;4 w‘naf” by ¢t eqphﬁ

- W= kE _
e T
\Q’né/ 5 G=6 &*MT@\
L2 660 4 TR o
" G (10 = T w—1\ /l
& 7

w7 TR

Car COtEpls Reviow of Cormtty 0/7

> Ve,
R[nT = x[n) exled] + (o)
a

x5 coekf
y . .
v= X+ XR pyR @/\C‘T& 2

Y7 o
d Cobft (Cﬂi‘(—\ &ﬂléomw ; ‘

T’ l] [l 1\7 %
(\ t TLUiﬂ//Oéde ef
o byt ety

Yo oy
\/(_‘[——R) = x+ xR f@l?”wmz@{{M

LTI i
e oy A
W o q Tegdoad cgl

MF‘

@
Wox
/9 ”}ﬁ 09

fi

JDIJO(\ ¥ (/TQ Q’
do—ds Q= TR G

I it Lo

Myl = cascade

v VIR
-t TR

TRy
ch (1-0)"
Now Mwlfxs oy’ Lor Toedbach,

H(=
Hy = 1 (‘”“fe)

Mottdy, al foms by [I«/{Y
KRV @)
(1-0)* « kT2R2Y
2

ﬂm{ Qn{ejé:‘? 1oregd o 6}mpl7]Co('p

Hjow we e ody
“What e it oty

B 539‘}‘(’:11 F//LC](({GA (/V./MMIW/ &MM)
M
W Cascade (. Ga (7) 56, &)

~daw o blohs e Cacl pat
" obek fo 5 ke Congh 9

@ff@@ e

FL\Ow 4’9 Jo a Feea{baoh qd({ v,// w/e(

st 5. goin ()
6—R-ph ©- >

ug

—BAA- ©

‘\f 0 g@ff%r

laot
Cas cade ol pla{ﬂ J
n ‘Z

Q’Q“moh a’d(\/(,) 9@4)

Twle (yn long blals

N

(1Y
o T g
GF (o & /(L _ g ¢

.,/\ #u(
H- (00 1 QT T; |
L of f2 98 | U=

¢ ha
\~ d L(TQ K’Z \/ P(UQ +C‘4V“j
(1R} + T>RMV

(D)) _ (0] RY
W o (!)(ll)la?f(.)) (;mu 00|R2
R* LR +|
00] &t
ey O
cmo&z@

b dore o Jro&fkf

[Ml Pt of
U’\@(’%Wd el cystm ill & ¥ agf
1= y Vs [) Clghugle

Hﬂw il ‘[Jr regoad 5ol sanfle giﬂ,lf

q{ Confusy @/lgfn},‘j qbot hiir ne Conh ot /
bv)f M [/“l“ QlO 0[“7%/6{7/!]

(/56 (JM;%\LE f{){f, /}a@ﬂwi w/ dlcﬁ%/m']l _9d/}41;

;(/)L 52@% bm &fdﬁ

G ¥ 023T
[036 T
Sl qond
PR
20 30y 7

~ uﬂ/ 056;[4,1’{/ conver 46 to O’[t

T f COnvInggy fo 0 2 how Mary HM, 5@@,05 ﬁ,/
Magade f, V2 ol
~bog V. mat Loy (v, b)
‘““I ﬂ‘mL\ T am ng{fzj e wipny
”](Llﬁ aeﬁlc{b Y .
bt bal was g faddetd signd]

= M\{fa e f@({’} {rrpﬁna (Lwﬂcf éL 5 ,
- W’ Jd n e 1’eﬁL

©

»wplw‘wl« a et & olides

(7) (/mbﬂdadeﬂ
2| bedd /gtabl

fﬁl J(fd'\ﬁ"‘"ﬂ" 2 WE” (orwrge lLo O w&esa;'pﬁm !l[/|nfw4'
“hA w4l J oy

=00 howgbod fﬁy;@ < vl
— lagt i

/%1 70/@ ,IAC(@A'SQ/ J@C/@QSC Ma#ﬂaZ((&[l/
cel 40/9 ey dllomk Sigas

Conplo pe abic

5@ [NMA gd’;n :Oﬁ'f)ole = | B ‘Ld//[de((
dau £ 2 gwle > | cea > pantorcalh

: n bﬂmdg{/
Qain 70 @ﬁ#@y

Pole d7) Comple > pocdic

F{(Ml}\ (({1 O'Fﬂce k/g wﬁ]gq g0 Lor ChedL/Fé

Non™ PaSlogt = perslay |-

(19

A H l,trn‘l@{ UV‘Q

gl \ SP
Valves X 5%;
N lona Yo
Coﬂ\l@’@r{n(@ \/ f)e:ﬁ&hn}
horeafoc (\P"ly}
f‘ 0 t{ nom ol Jehmm
f{ Ca0 (P Y \m‘ﬂL x
}n‘l{“ Y

U
gol/f, for ?@ ¢S

LT
(1-8)” th7* eV

|
601 C’é*)“zlg t
Wank Qoly- pomal in 2
59 4 21 (——(22, 22 g

1061 f Q2

[+A)" + 0l kA ™

|
@ 0ol kR
(941 +, g01 [2

@ 00] L R®

@+M\@&1~2&+)
R=L

000 k(%) 5

4_-——-/

-—

(le0)&E)?-2(8)) 7 2"

00k

0
LeJT 0 (1r0k)
7-

25J0 -0k
3 e
l% (JBPBA& ko @/@
Cass
4 @ P Complex
4

L(Wf positae pole \Hﬁi cilab
Lq)@m;ﬁw%/ -
/ﬁ Nagmfud@ W

_ dha
i Te \00‘ B alwaJ) (F d—) = ¢ fﬂi@7

‘Aéo)\) ")O\MAQJ,, menofoniesl Canseryes ‘ILﬂ S0y Vfé/(
(7 , *) Unborled prondonic | Sl casp
=Wyl
Ceal life Torned owdy Com pal livﬁvg/

Cadir -\ i edl i)

¢
s

‘ ’M@\ o —whe Convygls W/hmﬁfm;f I
mw a ne vl g

—_— ‘ Ogu
fwe b ne ale ke whe oF conees

—h mafter o |k

(@ 4 V1)

Wby S 1%/7

h(;f?‘“‘g ﬂl‘t& QO/ly - ok of Pff)b!?mj
- | ch ‘M i é\(éh’ﬂl ‘QQLLM‘W
bk | Ghabl”
“Sfale € bouded, fragient e o Coneges b () a5nox
__QmLV magtitde of dam'tﬂm(ﬁ ‘00!?/ ;{ gfwl(/ / g((‘[q&%
- W pote oty \ae sellafa perad gt 2

B Nﬂ\l. \‘ V.9 5‘/5'!'@”{ F(//{,‘I:M C‘l}(&) (/V/ flmb
~ (geal, T vl 1o peactee uis)

_T//“X”]: % VSN LSRRIy

¢
Y (1= Shep) = X
N \
A l“‘.?&-&’b

5’(,§yé+0m %M{;Oﬁ(P@ly,POlyY\Pm‘%’ [l]/ (v [I/‘5|O/{/_,)?
-G

/| 3 Joat cort
l?l}) U IDMldéd/(/AbeW @

o) 2 LS W)
o<clatory
~ Wt & e as d()&"&(QJW”
T Saq s)
NO
(6(; 0(\[\[ftg (M on {‘m[ﬂ-
\
)
\ +.§&+ %(LL
~1
s 9 2
W

Sam G5 awet 2 € ewn L % Y
N9
Ao@

q
OOWH -~ wlony ocder

[15/% 5.0/4 /’j
md T go*} |t Ore Vm”ﬂ

“was 1§
h ; Wﬂﬂ/‘ﬂnétgﬁ)’

50 eal f ﬂéth'fe ~y aqeas A[ecf@aw

' f 0 1s Tl osalute 7o

back fo AL

“'175
1S

la\os] L\ 2 bdvdfé/sjmb(e

f\Q@tﬂ“@ J) a,u(iim{g Q[‘@"Lﬁ i
Tossidate ves”

O
(-5 1,75))

l abs] > T8
Ll bw/ﬂ&{ / {,MWQ

C@m?l@‘ S f)Or;m&\Y/ }9{{(&«/\ wlp‘wl
e @ 150 T M@
N5 @ o @ ?ioes OQE//rﬂf;an oo
ny

o5 (J 0 s glabe roaldt ;4.,
@ ! O ond 4 5 ne@‘d‘l/{
Togh i mw 106 & 7]

\ Whaung gl
2Nt
(-5 1 5)
5 Q 5+JT® 1707 ()
v @ .
00y ves () e gttt)

— S Comfli?)c ls Sepidke ¢ o
0C gk Per}atﬂc s 9§£th“’/
Sstypd

po\vl(1 U{& Eq/ b@(\w‘f/of
"Chwse wh O f’l‘«tk Madchos

b T e
0 f\@@d fo -M# “{"b/n “‘”l.

@OA 4

LA
z@ WM@
0 Ll

dne S Y @/o(plé

k-)

g y%jz-% L -% v x x
v
e YA

- 815
st
_ W
Vavs — g5
Lo o 'bﬂu«lé’d
(ﬁ«: \"fdw ‘ 0ssilate
@“@(_ - W?
Undiaded
O6ddte
YO)y
Uqwad;@&

!Ylamﬂ—o./ﬂ C

19 LJ

