

Reading 4.2: Composit Abstractions of SMs

9/25

- instead of build 1 complex state machine

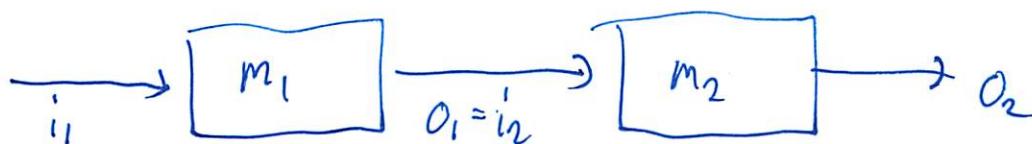
- combine multiple simple SMs (PACP)

- look at data flow

- sometimes conditional

- sometimes sequential

Cascade

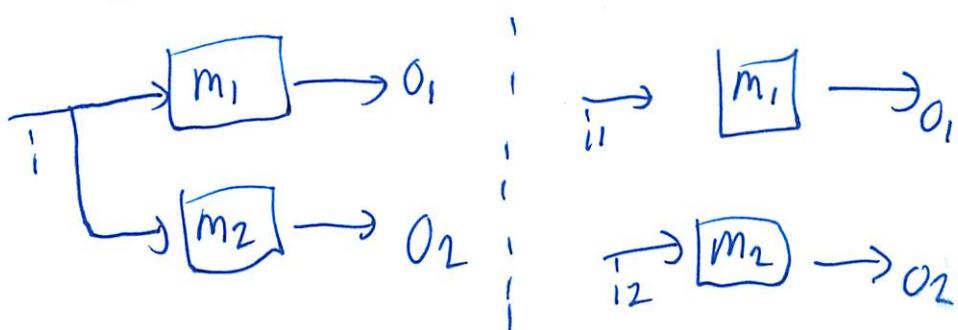


- ie combine 2 delay machines to delay at 2 positions

$$o_2[t] = i_1[t-2]$$

- order matters of course

Parallel



Class Parallel

- initializes 2 machines

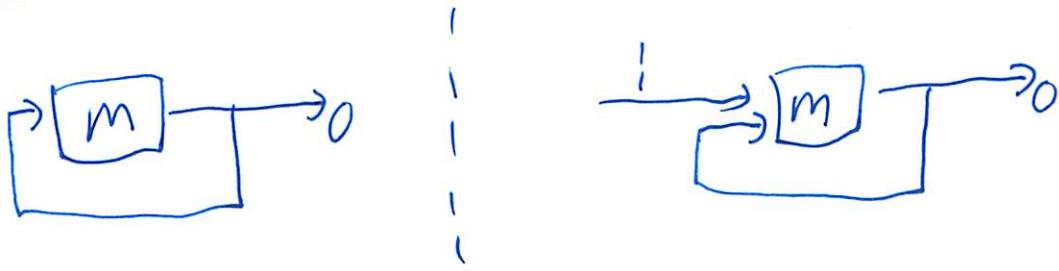
if - runs item separate (in parallel)

if each takes a different ^{input} list/tuple

- then inp is a list/tuple

- and script splits values

②

Feedback

- output of machine is fed back in
- in and out must be same format
- example

$$\begin{array}{ll}
 S = \# & n(s, i) = i + 1 \\
 I = \# & o(s, i) = n(s, i) \\
 O = \# & s_0 = 0
 \end{array}$$

$$O[+] = i[+] + 1 \quad \text{and} \quad I[+] = o[+]$$

* Machine must not have a direct dependence of its output on its input

∴ So what, must have a delay or what??
(confused)

- ~~~~~
- can feed undefined in ft.
 - because we don't know what input should be (??)
 - so need to add condition to get NextValue method to just pass along "undefined"
 - so going to define SafeAdd + safeMul

(3)

inp is ignored
-(jh)

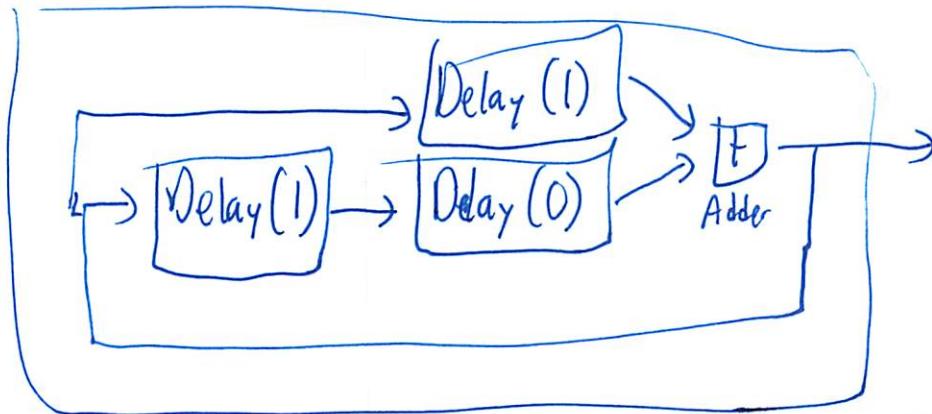
and o is fed into the next input

Now can combine w/ an Increment method

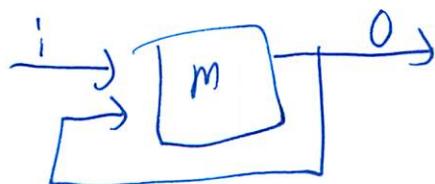
Fibonacci

- getting fancy \rightarrow complex machine out of trivial components
- 1, 1, 2, 3, 5, 8, 13, 21, etc

\sim sum of 2 previous inputs



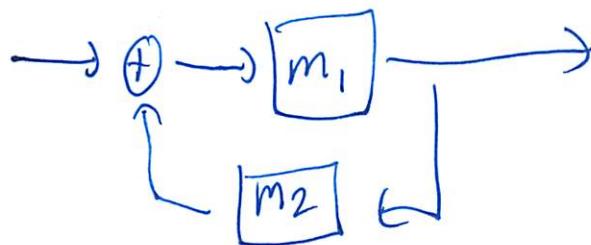
Feedback 2



and they show code to implement
(look at when problem comes)

④

Feedback Subtract + Feedback Add



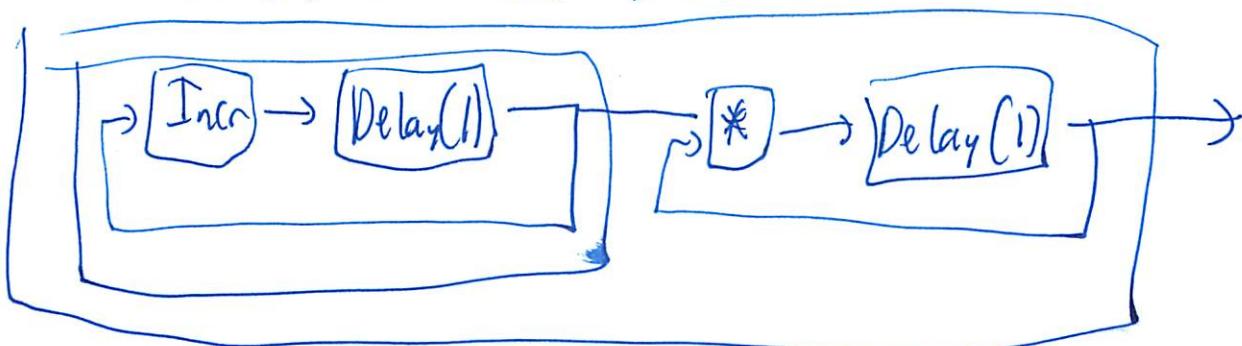
$\text{new } M = \text{sm. Feedback Add } (m_1, m_2)$

$R(0)$ Wire
Delay just passes through

Factorial

- $1!, 2!, 3!$

- multiplying previous values \cdot index

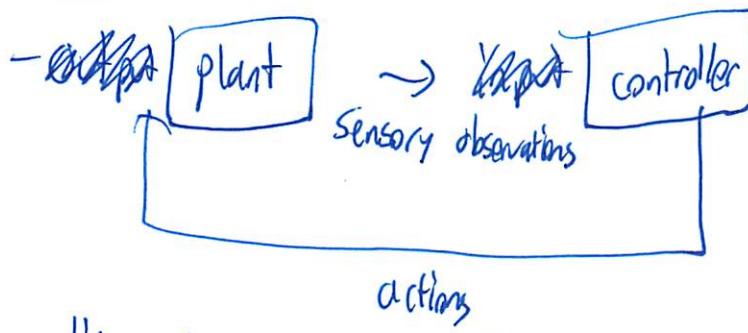


5

Plants + Controllers

- couple a "controller" and a so called "plant"

- plant = factory or outside env to control



- like the soar env/robot

- example

$$\begin{array}{l} S = \# \\ I = \# \\ O = \# \end{array}$$

$$\begin{array}{l} h(s,i) = h(d_{\text{desired}} - i) \\ O(s) = s \\ S_0 = d_{\text{init}} \end{array}$$

Conditionals

- make choices at runtime

Switch

- runs 2 machines in parallel
- at each input decides which machine to send to

Multiplex

- update both machines each step
- use condition to select which output

IF

- only used in complex contexts, skip

(6)

Terminating state machines + seq. compositions

- all machines before will \Rightarrow run
- add I property \rightarrow to terminate w/ $d(s)$ done function
 - \hookrightarrow true if done
 - \hookrightarrow false if not

- Never terminate:


```
def done(self, state):
    return False
```

- or terminate on state. $count == 5$

```
def done(self, state):
    (count, total) = state
    return count == 5
```

\uparrow returns true if $count == 5$

(so cute how they do it in $l1$ line)

I would do if $count == 5$:

```
return True
else:
    return False
```

Repeat

- repeats n times

- if $n = \text{None}$ it repeats forever

- state = ~~list~~ $\}, n$

- whole machine must be done when leave it in done state

⑦

Sequence

- run one till done, start another, run till done, etc
- similar to repeat

Repeat Until and Until

- until a certain Boolean = True
- \uparrow condition evaluated when TSM is done
- but sometimes we want to terminate as soon as it is true, at whatever step
- So use general purpose Until combinator
 - it executes the machine
 - but only ~~one~~ once

Week 3 Hw

9/25

Now regular tutor Hw

(cascading Machines)

Need to read course notes + review lecture

9/26

Cascading Machine

~~Q1~~ Write it as described in notes

- get next Values + start State

^T does not actually change state

- so this is 2 delay machines?

- well no, just superstructure

$\text{foo1} = \text{sm. Cascade}(\underline{\text{sm.}}, \underline{\text{sm.}})$

- $\text{init}(s_1, s_2)$

^T actual SMs \rightarrow need to start up

- Parallel in notes shows how

- start state is a list of $(\text{sm1.startState}, \text{sm2.startState})$

- same w/ state

- so state can grow to multidimensional!

②

- Well I want cascade, not parallel
- so don't need multidimensional state
 - guess I do to keep track of ~~if~~ both states
 - what is difference here is that $o_1 = o_2$
~~complete~~
 - input and output are single values!
 - try w/ 2 delay functions
 - works 1st try!
 - but I forgot how to use SMs
 - don't call directly `getNextValue`
 - but `foo = sm.Cascade(sm.Delay(1), sm.Delay(2))`
`foo.start()`
`foo.step(3)`

:

but errors in tutor \rightarrow o_2 referenced before assignment
try to reproduce in IDLE

- get different error
- oh now I do
- oh when say `sm. _____` function it goes to
SM 1.6

③ So it was using their cascade machine!!!

- and in 2nd machine input write 0, not 02!

now no errors and correct

- so I screwed up a little and bypassed my code!

- passed tutor

Map

- passing functions as arguments
- no state machines

Part 1 mapList

- 2 arguments: procedure, list

~~Procedure~~

- returns list by applying procedure

- Must use list comprehension

↑ I was going to try anyway

easy!

Return $[f(x) \text{ for } x \text{ in } l]$

nice + simple

passed tutor!

4

Part 2 Sum Abs

- use mapList function
- w/ procedure sumAbs
- use built in sum + abs
- returns sum of the abs value of the #'s
- "any storage, how to do it?"
- Yeah must have sum storage
 - well accumulator
 - accumulator + abs(inp) = output
 - = new accumulator
- but does not ~~use~~ use sum
 - must be accumulator?
- but how to store the accumulator?
- can't do w/ basic map list
 - only have access to current #
- Oh can it reference ℓ from super class?
 - nope
- ~~try~~ try sb try tutor to see test case
 - oh!! they call sumAbs ~~on~~ (list)
 - And that must use map list

not mapList(sumAbs...)

6)

Makes far more sense now!

Done

Part 3 map Savare

- takes 2 arguments: procedure w/ 2 arguments and a list
- so this multidimension list comprehension
- $\{f(x, y) \text{ for } x \text{ in } l \text{ for } y \text{ in } l\}$
- but that does $\{1, 2, 3, 2, 4, 6, 3, 6, 9\}$
- want $\{[1, 2, 3], [2, 4, 6], [3, 6, 9]\}$
- need 2 list comprehensions?
- or $\{[f(x, y), f(x, y)] \text{ for } \dots\}$
- well $\{([f(x, y) \text{ for } x \text{ in } l]) \text{ for } y \text{ in } l\}$
- tutor: 2/3 correct
 - wtf, difference does not work!
 - fixed if I do $f(y, x)$ for some reason

~~Done~~ HW! Done

⑥

#3 Function Machines

- when making SMs want a pure function machine that can be used in a cascade
- does not have state
- define this pure function building block
- got it in 2nd try

init(^{self}f)
self, f = f

get next value (self, state, inp):

return state, self.f(inp)

Done HW!

(could do optional) \rightarrow Branch

- Parallel
 - use built in
 - if works w/ 2 outputs
now need to return the max of the 2
- iteration over non self
- do I even need the pure function wrapper?
- Oh just ignore error?
- but it's not doing max

6.01: Introduction to EECS I

Signals and Systems

Week 4

September 28, 2010

2nd of 9 sections

Controlling car

Understanding systems

Good news:

- Have seen how state machines can control system's response to input
- Can build complex state machines to control our robots.

Bad news:

- Can't predict how our controllers are going to work, except by running them, possibly several times, and gathering data.
- When they don't work well, we don't have any systematic way of changing them to make them work better.

Solution:

- Make **models** of the controller and of the robot and its world.
- Analyze the models mathematically to characterize performance and understand how to improve it.

relevant aspects

Prove state machine will give you right ans

Computer programs are unpredictable

Could we figure out what will happen without running the simulation, just by looking at the definitions of the controller and the plant?

would be great!

In general, no.

It is **impossible to predict** even whether a general computer program will always terminate and produce a result.

- Known as the "Halting Problem" – very important result in computation.

Can, show that it is not possible
in general

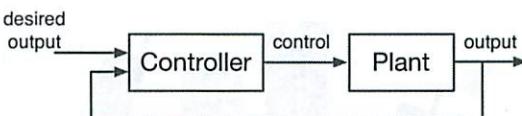
Outline

- Signals and systems view
- Operations on signals
- Feedback systems

Reading: Sections 5.1 – 5.4

State machines as models

cascade w/ feedback



model of the world

- Make a state machine model of the plant: that is, the aspects of the external world that you are trying to control
- Make a state machine model of your **controller**
- Connect the state machines (cascade and feedback)
- Run it to see what happens

LTI systems are predictable

Consider simpler class of state machines:

- **State:** last j inputs to the system, plus last k outputs of the system
- **Output:** a fixed linear function of the input and the state

Linear time-invariant (LTI) systems:

- Can be analyzed mathematically, to predict behavior without simulation
- Are compositional: cascade, parallel, and feedback compositions of LTI systems yield LTI systems

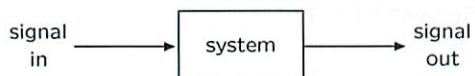
are are predictable

but restrictive

not so bad, good trade off

The signals and systems abstraction

Describe a system by the way it transforms inputs into outputs.



Primitives: unit sample, sinusoids
Combination: delay, scale, add
Abstraction: signal

Signals

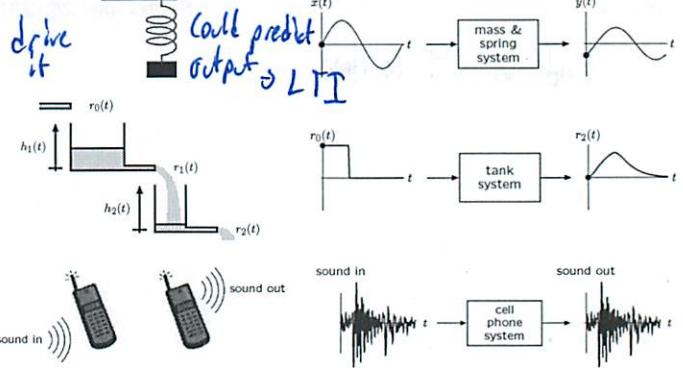
unit sample, sinusoids
 delay, scale, add

Systems

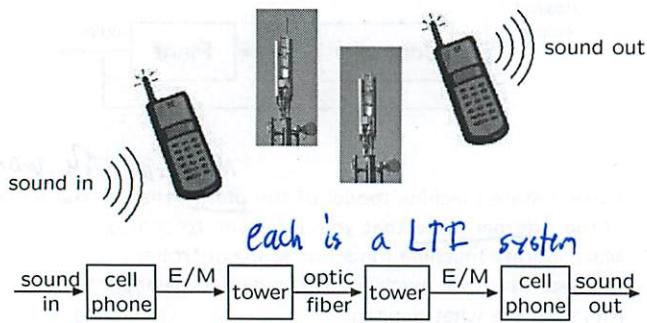
adder, gain, delay
 cascade, feedback
 system function

Signals and systems: widely applicable

Signals and systems abstraction has broad application: electrical, mechanical, optical, acoustic, biological, financial, ...

**Signals and systems: modular**

The uniform representation allows us to combine models of processes that operate upon different physical substrates.

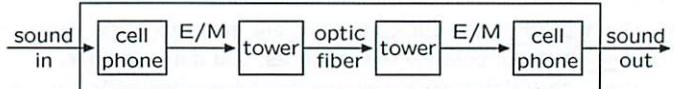


focuses on the flow of information, abstracts away everything else

Signals and systems: hierarchical

Primitive representations can be combined into new representations.

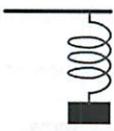
Composition of cascaded systems:
 the output of one is the input to the next



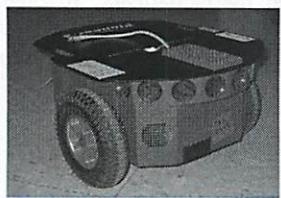
The new representation can be treated just like primitives.

Continuous and discrete time

Inputs and outputs of systems can be functions of continuous time



or discrete time.



all decisions
Sync'd to
clock

We will focus on discrete-time signals and systems.

Linear time-invariant systems

- **linear:** dependence of output on inputs is linear
- **time-invariant:** the same relationship between inputs and outputs holds for any value of n (i.e. for any instant in time) *does not depend on time*
- **causal:** sample response at time n only depends on values at the same or previous time steps

can't look in future

Any LTI system can be described using a difference equation:

$$y[n] = c_0 y[n-1] + c_1 y[n-2] + \dots + c_{k-1} y[n-k] \\ + d_0 x[n] + d_1 x[n-1] + \dots + d_j x[n-j]$$

Output $y[n]$ is a linear combination of

- k previous output values, $y[n-1], \dots, y[n-k]$,
- j previous input values, $x[n-1], \dots, x[n-j]$, and
- current input, $x[n]$.

Feed-forward systems

Difference equation defines the output of a system at a particular time point in terms **only** of its previous inputs.

Example:

$$y[n] = x[n] - x[n - 1]$$

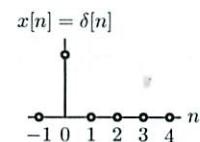
Step-by-Step solutions

Difference equations are convenient for step-by-step analysis.

Let $x[n]$ equal the "unit sample" signal $\delta[n]$,

$$\delta[n] = \begin{cases} 1, & \text{if } n = 0; \\ 0, & \text{otherwise.} \end{cases}$$

\uparrow delta



This is our first example of a "primitive" (building block) signal.

Step-by-Step solutions

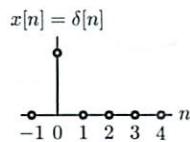
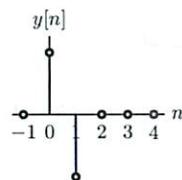
Difference equations are great for step-by-step analysis. Let

$$x[n] = \begin{cases} 1 & \text{if } n = 0 \\ 0 & \text{otherwise} \end{cases}$$

Using the diff eq: $y[n] = x[n] - x[n - 1]$

$$\begin{aligned} y[0] &= x[0] - x[-1] &= 1 - 0 &= 1 \\ y[1] &= x[1] - x[0] &= 0 - 1 &= -1 \\ y[2] &= x[2] - x[1] &= 0 - 0 &= 0 \\ y[3] &= x[3] - x[2] &= 0 - 0 &= 0 \end{aligned}$$

...



discrete differentiator

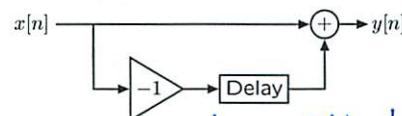
Block diagrams

Block diagram is alternative representation – captures interactions of components in graphical way

Difference equation:

$$y[n] = x[n] - x[n - 1]$$

Block diagram (delay, adder, gain):



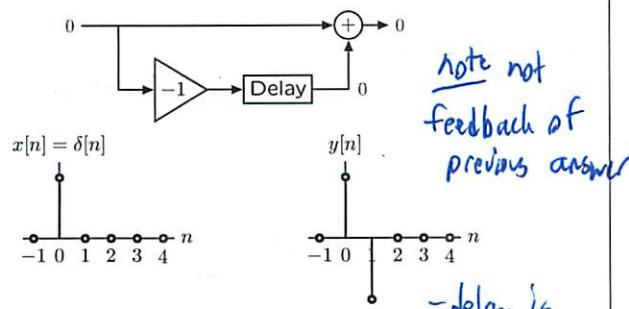
\approx gain \rightarrow multiply input by

Same input-output behavior, different strengths/weaknesses.

- difference equations are mathematically compact.
- block diagrams illustrate signal flow paths.

Block diagrams: Step-by-step solutions

Using the block diagram. Start "at rest." *call 0*



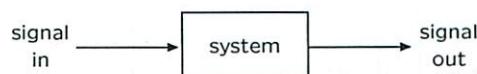
-delay is something we'll never think before

Signals

A **signal** is an infinite sequence of **sample** values at discrete time steps.

Common notational conventions:

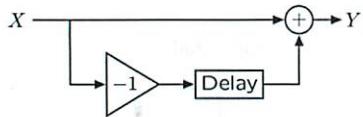
- X : the whole input signal
- $x[n]$: the value of signal X at time step n
- Y : the whole output signal
- $y[n]$: the value of signal Y at time step n



Systems transduce input signals into output signals.

Operations on signals

Operators manipulate signals rather than individual samples.
functionals



Wires represent whole signals (e.g., X and Y).
The boxes **operate** on those signals

Unit sample signal

Only crucial **primitive** in our PCAP system:

$$\delta[n] = \begin{cases} 1 & \text{if } n = 0 \\ 0 & \text{otherwise} \end{cases}$$

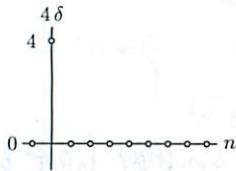
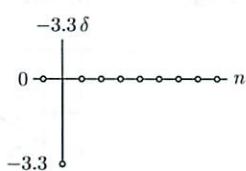
Other useful primitives are **step** and **sinusoid** signals. Discussed in software lab and readings.

Operations on signals: scaling / gain

Multiply a signal X by a constant c :

operation on signal

$$(c \cdot X)[n] = c \cdot x[n]$$



Constant c often called a **gain**.

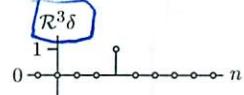
for historical reasons
just multiply each value by

Operations on signals: delay

Shift signal X to the right (forward in history), getting $\mathcal{R}X$ (Think of this as delaying the input signal so that it shows up one or more instances of time later):

R for right

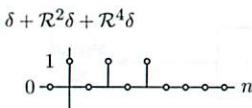
$$(\mathcal{R}X)[n] = x[n - 1]$$

Operations on signals: addition

Add signals X_1 and X_2 together to get a new signal $X_1 + X_2$:

$$(X_1 + X_2)[n] = x_1[n] + x_2[n]$$

$$3\delta + 4\mathcal{R}\delta - 2\mathcal{R}^2\delta$$



can build any

Signal w/ δ
-Complex though

Abstracting signals

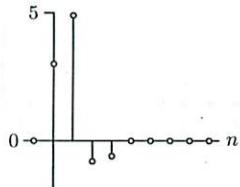
Scaling, delay, addition all return new signals that can be further combined

Abstract by naming

$$Y = 3\delta + 4\mathcal{R}\delta - 2\mathcal{R}^2\delta$$

then operate on Y

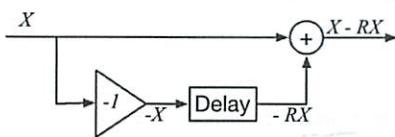
$$Z = Y + 0.3\mathcal{R}Y$$



Any signal with finitely many non-zero samples can be constructed from δ with delay, adder, and gain operations.

Operator notation

Representing the difference machine

with \mathcal{R} leads to the equivalent representation

$$Y = X - \mathcal{R}X = (1 - \mathcal{R})X$$

Operator notation: Check yourselfLet $Y = \mathcal{R}X$. Which of the following is/are true:

1. $y[n] = x[n]$ for all n

2. $y[n+1] = x[n]$ for all n $\Rightarrow y[n] = x[n-1]$

3. $y[n] = x[n+1]$ for all n false

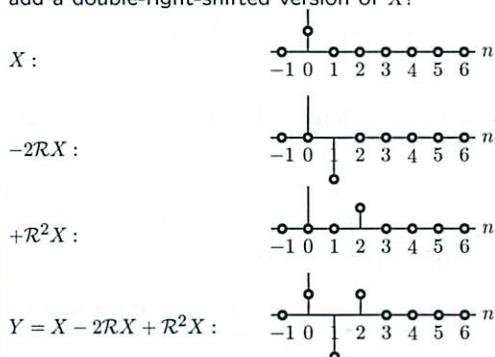
4. $y[n-1] = x[n]$ for all n

5. none of the above

Y = output

Operator algebra

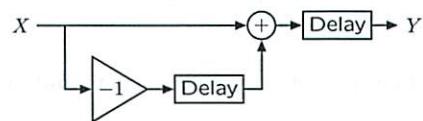
Operator notation prescribes operations on signals, not samples: e.g., start with X , subtract 2 times a right-shifted version of X , and add a double-right-shifted version of X !

**Operator algebra: commutativity**

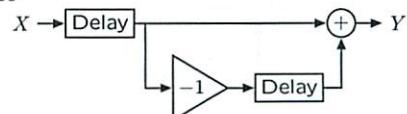
Expressions involving \mathcal{R} obey many familiar laws of algebra, e.g., commutativity. $X \cdot Y = Y \cdot X$

$$\mathcal{R}(1 - \mathcal{R})X = (1 - \mathcal{R})\mathcal{R}X$$

This is easily proved by the definition of \mathcal{R} , and it implies that cascaded systems commute (assuming initial rest)



is equivalent to

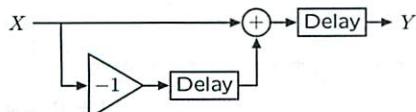
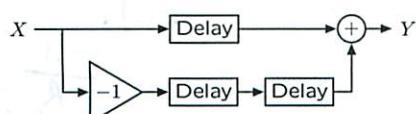
**Operator algebra: distributivity**

Multiplication distributes over addition.

Equivalent operator expressions:

$$\mathcal{R}(1 - \mathcal{R}) = \mathcal{R} - \mathcal{R}^2$$

Equivalent systems

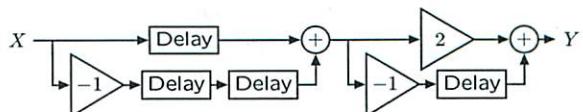
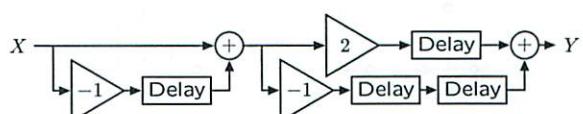
**Operator algebra: associativity**

The associative property similarly holds for operator expressions.

Equivalent operator expressions:

$$((1 - \mathcal{R})\mathcal{R})(2 - \mathcal{R}) = (1 - \mathcal{R})(\mathcal{R}(2 - \mathcal{R}))$$

Equivalent systems



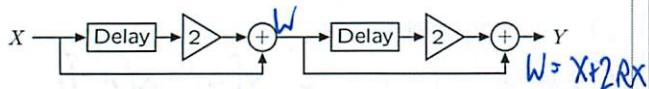
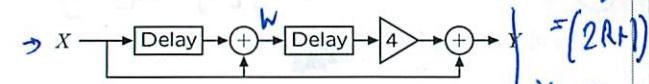
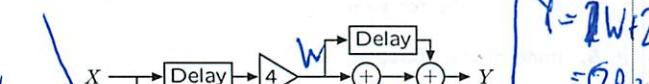
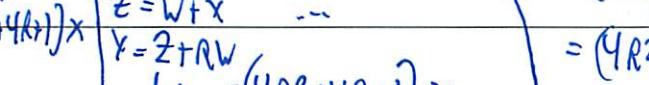
What are the properties of the system?

Check Yourself

- not the signal now

analyze each piece \rightarrow PCAP

How many of the following systems are equivalent?



$$\therefore Y = (4R^2 + 4R + 1)X$$

System Functional

The system is completely characterized by the relationship between the input signal X and the output signal Y .

We call this relationship,

$$\frac{Y}{X}$$

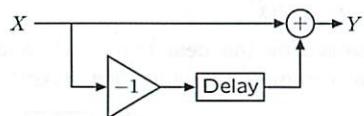
the system functional. It is independent of any particular input signal.

So far, the system functionals that we have seen are polynomials. More generally, they will be ratios of polynomials.

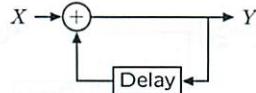
can say things about the system
* for any X

Feedforward and feedback systems

Feedforward: output depends only on previous inputs

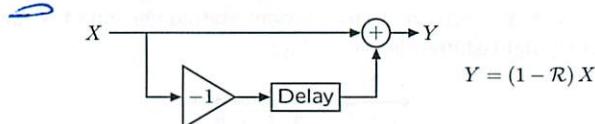


Feedback: output depends on previous inputs and outputs

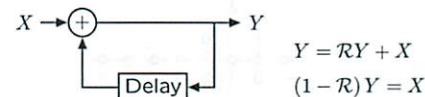


Explicit and implicit rules

Recipes versus constraints.



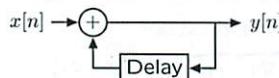
Recipe: output signal equals difference between input signal and right-shifted input signal.



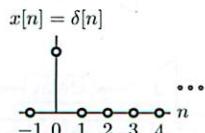
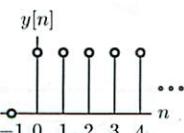
Constraints: find the signal Y such that the difference between Y and RY is X . But how?

Example: accumulator / integrator

Step-by-step analysis always works. Start "at rest."



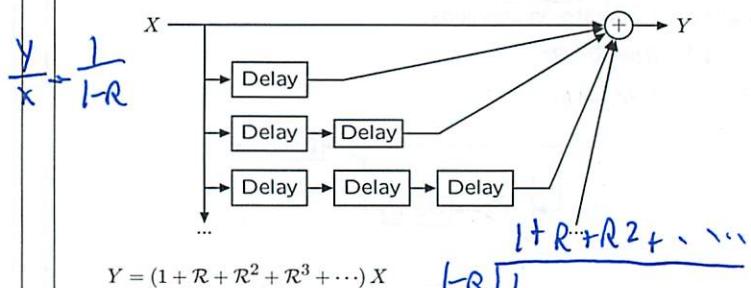
$$\begin{aligned} \text{Find } y[n] \text{ given } x[n] = \delta[n]: \quad y[n] &= x[n] + y[n-1] \\ y[0] &= x[0] + y[-1] = 1 + 0 = 1 \\ y[1] &= x[1] + y[0] = 0 + 1 = 1 \\ y[2] &= x[2] + y[1] = 0 + 1 = 1 \end{aligned}$$



Persistent response to a transient input!

Example: accumulator

An equivalent system:



is equivalent to

$$(1 - R)Y = X$$

Proof in readings.

can still manipulate
as though polynomials

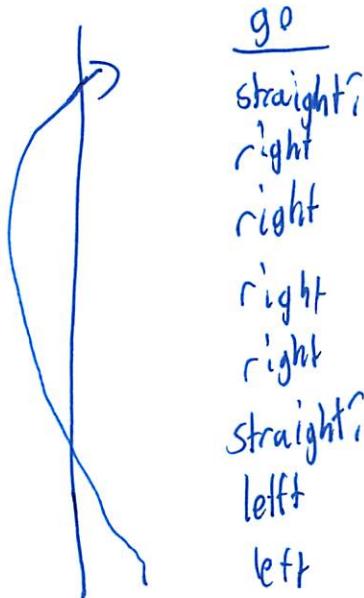
$$R^2$$

Week 4 Lecture

9/28

Controlling a system

- say driving car
- sensor to sense your position in a lane
- then correct if wrong



but oversteer

Using LTI

- combine primitives to abstract problem
- analyze
- ...
- ...

Abstracting Signals

- unit step is only basis signal we need
- unit step - goes to unit sample - so also basis signal
- can create any ~~signals~~ signals with this

②

Commutative

$$R(1-R)x$$

$$R(1-R)x[n]$$

$$R(x[n] - x[n-1])$$

$$x[n-1] - x[n-2]$$

$$(1-R)Rx$$

$$(1-R)Rx[n]$$

$$(1-R)x[n-1]$$

$$x[n-1] - x[n-2]$$

Algebra

- operators satisfy algebra

- have property of closures

Algebraic

Thoughts

9/28

HS prepared me bad for math

but I can learn it!

- if it visualized \rightarrow best case

- like PSet yesterday

- just need to go slow + understand

- which I've been doing

 - but not struggling

 - kinda miss that from last year

Really like when stuff applies to real world

- CS

- Proj

- then can visualize

- and my interests

I learned in middle school

- don't get comfortable

- can always get better

Software Lab 4: Signal Class

1 Setup

- **Using a lab laptop or desktop machine:** Log in using your Athena user name and password; in the terminal window, type `athrun 6.01 update`. Work in the directory `Desktop/6.01/lab4/swLab`.
- **Using your own laptop:** Download the zip file for software lab 4 from the *Calendar* tab of the course web page, unzip it, and work in the resulting directory.

Starting Idle so you can make plots:

If you are using your own laptop, be sure you have Numpy installed. (See the software tab of the course web page for instructions on how to do it. Note that Numpy doesn't work with 64-bit Python on Windows.)

- If you are using a **MacOS, Linux, lab laptop or desktop machine**: type `idle -n` in a terminal window.
- If you are using a **Windows machine**: download and unzip the `idle-n.bat` file under Week 4 on the *Calendar* page. Then, to start idle, run the `idle-n.bat` file.

If you have trouble doing this on your computer, ask a staff member right away.

2 Introduction

The software lab for this week is to implement a Python class that provides methods for performing operations on signals. You can think of any signal as an infinite sequence of sample values. We will represent signals using a function that can be called with any time index, returning the value of the signal at that index.

We will use object-oriented software techniques to organize our software for implementing and manipulating signals. An abstract superclass, called `Signal`, will have methods for performing operations on signals, no matter how they are represented. The `Signal` class will only assume that every instance has a method called `sample`, which takes a time index, `n`, and returns the value of the signal at time `n`. Then, we will have several subclasses of `Signal` whose only job is to implement the `sample` method in an appropriate way.

The simplest signal we could imagine having is one with a constant value. Here is its class definition:

```
class ConstantSignal(Signal):
    def __init__(self, c):
        self.c = c
    def sample(self, n):
        return self.c
```

The UnitSample signal has value 1 at time 0 and value 0 at all other times:

```
class UnitSampleSignal(Signal):
    def sample(self, n):
        if n == 0:
            return 1
        else:
            return 0
```

Somewhat more interesting is a sinusoidal signal; we implement this with a CosineSignal class, whose constructor takes a frequency omega and a phase phase:

```
class CosineSignal(Signal):
    def __init__(self, omega = 1, phase = 0):
        self.omega = omega
        self.phase = phase
    def sample(self, n):
        return math.cos(self.omega * n + self.phase)
```

A method `plot(self, start, end, newWindow, color)` is also defined for all signals. It plots the signal from `start` to `end`. If `newWindow` is a string, it will make a new window for this plot and give it that title, otherwise if `newWindow` is `False` it will plot this signal in the currently working window; `color` is a string specifying the color of the new curve to be added to the plot. The parameters `start`, `end`, `newWindow` and `color` all have reasonable default arguments, so you can just specify the ones you need.

Plotting will *only* work from `idle` if you start it with the `-n` flag. Currently, the first signal plotted in a new window sets its size; plot the signal with the largest range first.

3 Play with Signals

Step 1.

- Open the file `s14Work.py` in Idle. It imports our implementation of the module `sig`, which defines all of the classes and methods described in this handout. So, you can use those classes and methods in calls that you make in this file. For instance, to make a unit sample signal, you can do:

```
s = UnitSampleSignal()
```

- Add a Python command in that file that will make a plot of the unit sample signal. If `s` is a signal, then

```
s.plot(-5, 5)
```

will plot that signal in a new window, with samples from time steps -5 to 5.

- Choose Run Module in Idle (under the Run menu in the window with the `s14Work.py` file). You should see the plot. Be sure it makes sense to you.
- Now make a cosine signal and plot it, in the same way. Try different values of `omega` and `phase`.

4 New Kinds of Signals

This section describes several new subclasses of `Signal`. In this lab, you will start by doing an exercise using our implementation of them, and once you have some experience with using these signal classes, we will ask you to implement your own version of them.

- `StepSignal()`: has value 0 at any time $n < 0$ and value 1 otherwise.
- `SummedSignal(s1, s2)`: takes two signals, `s1` and `s2`, at initialization time and creates a new signal that is the sum of those signals. Note that this class should be *lazy*: when the signal is created, no addition should happen; values only need to be added when a sample of the summed signal is requested.
- `ScaledSignal(s, c)`: takes a signal `s` and a constant `c` at initialization time and creates a new signal whose sample values are the sample values of the original signal multiplied by `c`.
- `R(s)`: takes a signal `s` at initialization time and creates a new `Signal` whose samples are delayed by one time step; that is, the value at time n of the new signal should be the value at time $n - 1$ of the old signal.
- `Rn(s, n)`: takes a signal `s` at initialization time and creates a new `Signal` whose samples are delayed by n steps.

Polynomials in \mathcal{R}

We have built up an algebra of signals, which is very general. We can add, scale, and delay signals. One way to express combinations of these operations on a signal is to describe them in terms of a polynomial in \mathcal{R} . So, we will implement a procedure to construct a new signal by operating on it with a combination of sums, scales, and delays described by a polynomial in \mathcal{R} .

So, if X is a signal, then we can describe a delayed version of X as $\mathcal{R}X$, and a version of X that has been delayed by two time steps as $\mathcal{R}\mathcal{R}X$. That same signal, scaled by 7, would be $7\mathcal{R}\mathcal{R}X$ or $7\mathcal{R}^2X$. If we added $7\mathcal{R}^2X$ to X , then we'd have $7\mathcal{R}^2X + X$, which we can think of as the signal X transformed by a polynomial with coefficients $[7, 0, 1]$. So, we could define a procedure

- `polyR(s, p)`: takes an instance of the `Signal` class (or one of its subclasses), `s`, and an instance of the `Polynomial` class, `p`, and returns a new signal that is `s` transformed by a polynomial in \mathcal{R} .

5 Constructing Signals

First, we will use an existing implementation of the signal constructors to build complex signals from primitive ones, in order for you to get an intuition about how they work.

Step 2. To do tutor problem Wk.4.1.1, do the following steps:

- Go to the 6.01 web page, look under the *Reference Material* tab, and click on *Software Documentation*. If you look at the documentation for the module `sig`, you can see the various methods and functions discussed above, which are defined in the `sig` module.
- Edit the file `s14Work.py` in Idle to construct new instances of signals by making combinations (e.g., sums, scalings, and delays) of instances of the basic `UnitSampleSignal` and `StepSignal` classes, as specified in the tutor problem. **You can use any of the classes or procedures in the `sig` module. You should not write any new Python classes for this problem!!**
- Plot them to be sure they're right.
- Remember that the `polyR` class takes as a second argument an instance of the `Polynomial` class. You can create new instances of this class via `poly.Polynomial(c)` where `c` is a list of coefficients.

Wk.4.1.1

Do tutor problem Wk.4.1.1.

6 Implementing Signals

Now, we will implement the classes we just used to make complex signals out of simple ones. Our implementations should have the same behavior as what you experienced in the previous section.

Step 3. The remaining problems ask you to implement each of the new subclasses of `Signal`, as described above. Each one only needs to supply an appropriate `sample` method, and possibly an `__init__` method. We have provided you with a file, `s14Skeleton.py`, that you can use to debug your implementations before entering them in the Tutor. You should enter your new class definitions at the end of `s14Skeleton.py`. You can test them by putting your test cases in `s14SkeletonWork.py`, which imports `s14Skeleton.py`, and using Run Module on `s14SkeletonWork.py` in Idle.

You can only use the methods and classes that are defined in `s14Skeleton.py`; you will extend that file to be a complete implementation of the `sig` module.

It is very important that, for testing, you use `s14SkeletonWork.py` which imports your class definitions, rather than `s14Work.py`, which imports our class definitions.

Check Yourself 1. Whenever you define a new signal class, make an instance or two and plot them to be sure you're getting something reasonable.

Wk.4.1.2-4 Do tutor problems Wk.4.1.2 through Wk.4.1.4

Check Yourself 2. We have defined `usamp` to be an instance of the `UnitSample` class. What does the signal `polyR(usamp, poly.Polynomial([3, 5, -1, 0, 0, 3, -2]))` look like?

Do you see how you could use `polyR` to construct any signal (with finitely many non-zero values) out of the unit sample?

Step 4. Implement the **procedure** `polyR(s, p)`, which takes an instance of the `Signal` class (or one of its subclasses), `s`, and an instance of the `Polynomial` class, `p`, and returns a new signal that is `s` transformed by a polynomial in \mathcal{R} . So, for example, if `p` is an instance of the `Polynomial` class, with `p.coeffs = [3, 2, 10]`, then the result of `polyR(s, p)` is a signal

$$3\mathcal{R}s + 2\mathcal{R}s + 10s$$

In your implementation, you can use any of the previously implemented signal constructors, including `Rn`. Note that you don't need to define a class to do this: just writing a single procedure will suffice. Depending on how you choose to write your code, you may find it helpful to remember that any list, such as `test`, can be reversed by calling `test.reverse()`

Wk.4.1.5

Do tutor problem Wk.4.1.5.

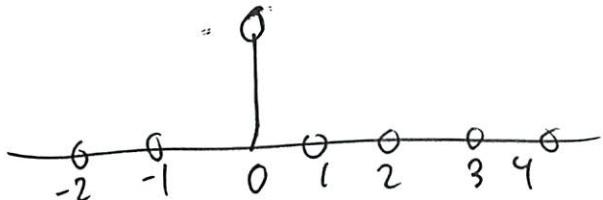
Sh Lab 4

9/28

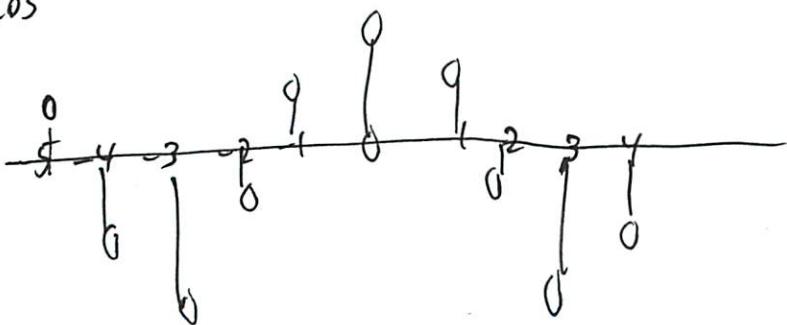
Need NumPy
performing operations on signals

00

- superclass Signal
- - sample method
 - returns signal at time n
 - must implement
- but is signal not a list [...]
 - no sample
 - n is current signal time
 - not signal[n] ← what I thought
- oh signal generator
- plot predefined
- cool



- try cos



- what are omega + phase in: - radians?

② new subclass of signal

- bunch of them

algebra of signals

$R = \text{delay}$

$R R = R^2 = 2 \text{ delays}$

$7X = \text{scale by 7}$

$7R R X = 7R^2 X$

$+ X \rightarrow \text{can add}$

} notation not right
here

$7R^2 X + X$

\rightarrow is like polynomial $[7, 0, 1]$

poly $R(s, p)$

\uparrow polynomial class

signal

class \rightarrow

just did

- generates
signals

tutor (1.1.1)

(generators)

- signal constructors pre defined

- all classes we need are defined

- construct 4 signals

- testing will ~~return~~ \rightarrow will be is signal in range

- polyR takes polynomial

(3)

- plot to make sure stuff is right

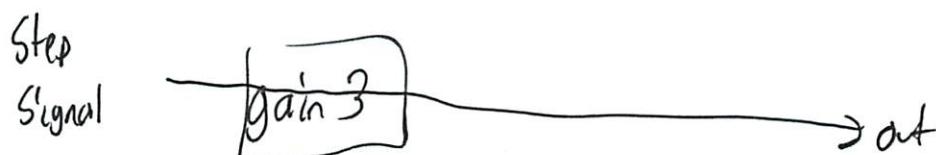
- ok get started

- Step 1

$$\text{Step 1} = \begin{cases} 3 & \text{for } t \geq 3 \\ 0 & \text{otherwise} \end{cases}$$

- want us to modify old signal, right?

- scale, shift, etc old signals



? is that it?

but how

$$\text{Step 1} = \text{StepSignal}()$$

$$\text{Step1. gain}(3)$$

? not it \rightarrow its a state machine

- do normal SM
- not using anything SM
- sum w/ summed signal
- gain $\xrightarrow{\text{use}}$ Scaled Signal

- use only those on sheet

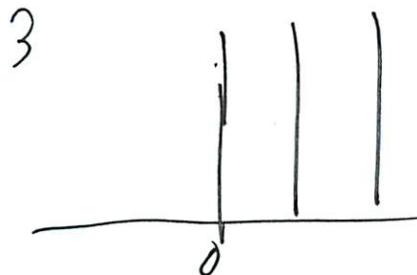
? use this

- prob internally its a SM

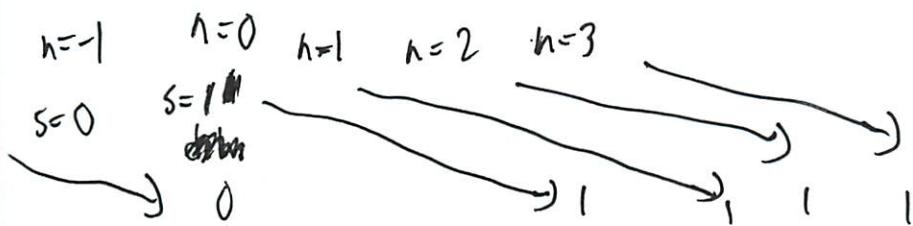
- not like lecture today

④

That was wrong



- ~~and try w/ delay~~
- right $\text{delay}(N(\text{Step Signal}, 3))$
- So what are we doing



- Should = 3 - so $\text{scale Signal}(\text{delay}(N(\text{Step Signal}(), 3), 3))$

✓ Done

Step 2

~~the~~ $\text{Scale Signal}(\text{delay } n(\text{Step Signal}(), 7) - 3)$

✓ Done

Step up down

$= 3$ for time $3 \leq t \leq 6$

$= 0$ otherwise

- think can you use step 1 + 2

(5)

∴ step 1 ≠ step 2

- can only add
- well add - of it to subtract
- already neg

Summed Signal (step 1, step 2)

- bingo
- for $7 \rightarrow \infty \quad 3 + -3 = 0$

done!

- they set that up!
- how would I have done it regardless
- guess would have to do that
- just would not have thought of doing it like that

Step up down Poly

- use Poly & class

$$- f \left(\begin{array}{l} 1 \rightarrow 1,0 \\ 3 \rightarrow 3,0 \\ 5 \rightarrow 5,0 \\ \text{otherwise} \rightarrow 0 \end{array} \right)$$

- poly is predefined for us
- what do I want to feed in

$$\text{scale}(\text{delayn}(\text{step1}, 5) 5) + \text{scale}(\text{delayn}(\text{step3}, 3) 3) + \dots$$

(6)

50 $x = \text{step signal}$

$$5R^5x + 3R^3x + 1Rx$$

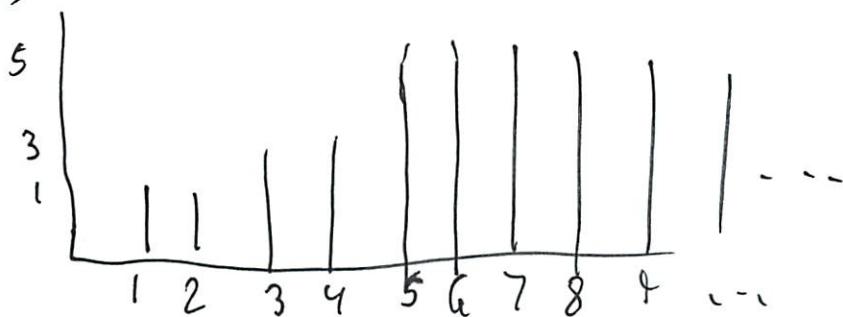
$$[5, 0, 3, 0, 1, 0]$$

$$\begin{smallmatrix} ? & ? \\ R^5 & R^4 \end{smallmatrix}$$

-50 $\text{polyR}(\text{step}(c), \underbrace{[5, 0, 3, 0, 1, 0]}_{\text{well polynomial instance of that}})$

how does it use step up down?

ok ans



-ok not want

-think negative

$$[5, -3, 3, -1, 1, 0]$$

↑ but then what up front ~~add to 2p~~

$$\text{Scaled}(Rn(\text{step}, 6, -5))$$

+ add to PolyR

(7)

bingo ✓ 1st modified try

- this is kinda fun

now time to check

- oh they used Unit Sample Signal

- as a base

- clearer

- but I like how I solved it :)

4.1.2

Implement signals

- to make more complex signals

- as Signal subclass

- need sample() method and perhaps __init__

- define in Skeleton.py

- test in SkeletonTest.py

- test each time by plotting

has value 0 at the $n < 0$
 1 otherwise

$$\begin{cases} 0 & \text{if } n < 0 \\ 1 & \text{otherwise} \end{cases}$$

⑧

- So signal () method
- convert UnitSample Signal
- bingo 1st try \checkmark

Summed + Scaled Signal

- implement sample()

Sum

return $s1, n + s2, n$
 $\hat{\text{self.}} \quad \hat{\text{self.}}$

or $s1[n]$

- need some accessor method

~~self.~~ sample! sample(n)

- oh depends which you run from in TOLE when multiple windows open \rightarrow run in Skeleton Work [F5]

- works $\text{self.} s1, \text{sample}(n) + \text{self.} s2, \text{sample}(n)$

Scaled

$\text{self.} s, \text{sample}(n) \cdot$
 $\hat{\text{self.}}$
 \uparrow stop forgetting

check in tutor
✓ Got it

⑨ Additional Subclasses: R and R_n

- ha I was wondering how they implemented R_n
- now I have to do it!

R

- need st. store somehow

- SM^k ?

- or $\text{sample}(n-1)$

- yeah that's it

R_n

Sample ($n-k$)

↑ self. of course

✓ Bingo

4.1.5 Poly R on Signals

- add_- and Rmul_- are here

- ~~so can 2 scales~~

+ only works on 2 signals

- need to specify start value if use Python's `sum()` built in function

- first arg: signal
2nd: polynomial

- I think it is time to look up my polynomial class

- Can use polynomial class to do work

(10)

9/24

at home now

so what do I want to do

- multiply signal by polynomial

$$[5, 0, 3, 0, 1, 0] = 5R^5x + 3R^3 + 1Rx$$

- returns a signal

- can use R_n

for each

flip polynomial

for each # R_n by # position

Scaled multiply for value

- try revering code

Completely not in mindset for this

need to install numpy

- not working!

- could go to cluster

- or VM

- tried installing from web

- now it works, guess you had to do that

- oh using their poly lib

- I think this will be a few steps

(11)

Is there a method for finding polynomial length?

how find max

- or start from bottom

Produced something

- is it right?

- guessed at max length

- check vs their script

- hope - not even close!

- Ok works for 1

- it worked when I took out the weird code

- yeah I think that's it

- try in tutor

I don't think it's anything like what they were thinking

- oh well

Tutor major fail

- they don't have Polynomial.coeff when ~~test~~ 6.01 lib does

prob not supposed to do it that way

- send email to 6.01-help

⑫

How else would I do it though

- no method to get polynomial out as a list
- they are prob thinking polynomial add, mul
- but how to do that w/ abstraction?

Looked up G.D.P documentation

- is coeffs variable
- but no coeff() method
- even better!

And I remembered need to work w/ input!

- list starts at front \rightarrow need to reverse
- nice works
- but need to take input!! signal!

- s. step at that value n ??

- or just s
- we want signal

- cool same ans as office theirs - try

woot!! I figured it out!

- now just need pre lab

Pre Lab

9/30

difference equation math

$$y[n] = c_0 y[n-1] + c_1 y[n-2] + \dots + c_{k-1} y[n-k] + d_0 x[n] + d_1 x[n-1] + \dots + d_j x[n-j]$$

- Specified coeffs and coeffs

x = input

y = output

Enter a sequence of #s

Output at time $n = \sum$ inputs including n

- So what to do??

input 1, 1, 1, 1

but how many?

none none?

$y_0 + y_0$?

is it in the reading?

like last lecture

k = previous output

j = previous input

linear combo of k previous outs + j previous ins + current $x[n]$

(2)

Seems stupid

there are no sum examples in lecture

nothing in course notes

Web search

- nothing is summing over

examples

- can't find a better

- output $\leq 3x[n]$ $d = 3$ $c = \text{none}$

$$y[n] = x[n-1]$$

 $d = 0$ 1 none

$$y[n] = 2x[n-2]$$

 0 0 2 none

$$y[n] = 2y[n-1]$$

 none 2

$$y[n] = y[n-1] + y[n-2]$$

 none 1 1

I kinda see

- but what is sum of past values

 none 1 1 1 1 \rightarrow how far?

(3)

Why do they provide no help??

Emailed in

- but no response to my email from before
- ? do tall morning in half hr break?
- = no other way forward
- or let it expire

And I don't want to miss nano quiz

ah found other course notes

- no help

One more in old lecture

$$y[n] = x[n-1] + y[n-2]$$

$$J = 0 \quad | \quad C = 0 \quad |$$

held to review whole thinking

-tomorrows lab!

Oh just for my problem

none |

| |
current past output
input
bingo!

(4)

Ok can I get rest

Output at n = sum of inputs up to $n-1$

0 | |
↑
previous
input
↓
output

① bingo

Output at n = scaled input up to $n-1$

0 | |
↓
input

① done!

So glad figured it out

Nand 9

Construct a signal

facto & k

Oh! use existing signals

- not define

PolyR [0, -1, 0, 2] ^{n = position} ~~1~~

✓ Done

- had lots of name space issues

Confused on Cosine one

- how to do?

- failed

- no idea how to do

- so got 1/2 done

Design Lab 4: Hitting a Wall

1 Introduction

This lab should be done with a partner. Each partnership should have a lab laptop or a personal laptop that reliably runs soar. Do a `thrun 6.01` update to get the files for this lab, which will be in `Desktop/6.01/lab4/designLab/`, or get the software distribution from the course web page.

The relevant files in the distribution are:

- `dl4Work.py`: A file with appropriate imports for making state machines and plotting their outputs.
- `wallFinderWorld.py`: A world with a wall for the robot to approach.
- `smBrainPlotDistSkeleton.py`: A simple brain with a place for you to write the state machine for the controller.

Be sure to mail all of your code and plots to your partner. You will both need to bring it with you to your first interview.

In Design Lab 3, you developed a “distance-keeping” brain to position a robot a fixed distance in front of a wall (even when the wall moved). This week, we will develop a model of that system, and we will use the model to understand the performance of the brain/robot system (Were the responses fast or slow? Did they overshoot or oscillate?).

The brain/robot system is an example of a simple control system with a single input (the desired distance to the wall) and a single output (the actual distance to the wall). We can think of the control system as having three subsystems: a controller (the brain), a plant (the robot’s locomotion system), and a sensor (the sonars).

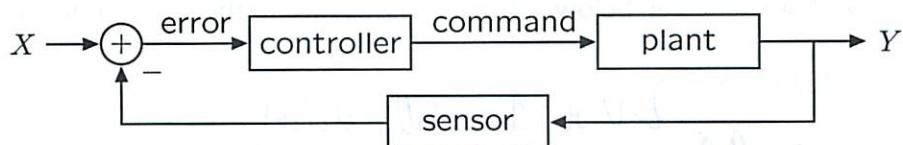


Figure 1 Structure of Control System

Think of the input as being set by a user (e.g. you) or by some planning system that the robot uses to navigate in the world (e.g. a state machine that moves the robot from one target point to the next in some sequence). Thus, the input might stay constant for some period of time, and then change to a new value for some period of time, and so on.

Generally, we design the controller to *command* the plant so that its (the plant’s) output *Y* tracks some desired value *X*. For example, in the case of asking a robot to stay a particular distance from

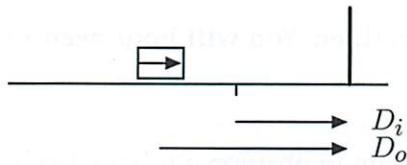
a wall, we want the output Y to be as close as possible to the input X . Since the plant is typically a physical system, the output of the plant (e.g., the position of the robot) is not easily compared directly with X . Rather, the physical output is measured by the sensor, whose output (which is typically electronic) can be subtracted from X to determine the error. Ideally, the output of the sensor is proportional to the output of the plant. More generally, however, the sensor introduces its own distortions, delays, and noise.

Wk.4.2.1

If you haven't already done it, do tutor problem Wk.4.2.1.

2 Difference equations for wall finder

Make a simple model of the brain/robot system, as follows. Let D_o (the 'o' stands for *output*) represent the current distance from the robot to the wall, and let D_i (the 'i' stands for *input*) represent the desired distance to the wall. Also let V represent the forward velocity of the robot. Let $T = 0.1$ seconds represent the time between steps.



Assume that the robot immediately achieves the commanded velocity when it receives the command and that it maintains that velocity until it receives the next command. In other words, the robot is able to instantly achieve a particular velocity, and it holds that velocity constant until asked to change it.

Check Yourself 1. Assuming these velocity commands and the initial actual distance to the wall are as given below, what is the distance to the wall on step 1?

$$V[0] = 1 \quad D_o[0] = 3$$

$$V[1] = 2$$

$$D_o[1] = \boxed{2.9}$$

2.9 since time is 1

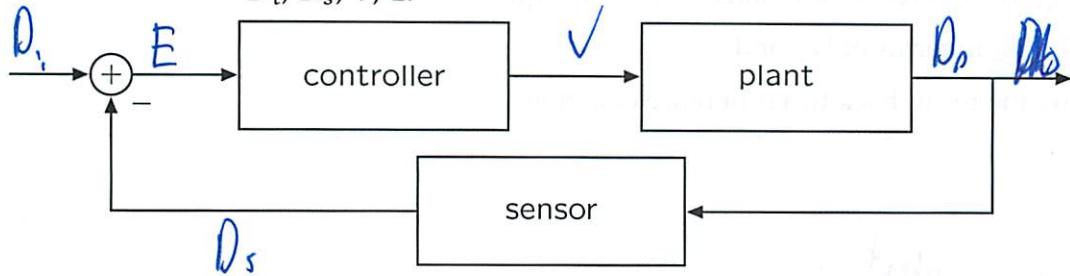
faster, 1 sec latter

Assume the system has the structure shown in Figure 1. Assume that the sensor measures the current distance D_o and generates the sensed distance D_s , which is equal to the current distance D_o delayed by one step time. Let E represent the error signal $D_i - D_s$. On each step, the controller should command a forward velocity V in proportion to the error so that $V = kE$. Choose k so that the velocity is 5 m/s when the desired location is 1 m in front of the robot (think about the previous figure showing the position of the robot in order to help frame this calculation for k).

$$5 = k \cdot 1$$

$$k = 5$$

Check Yourself 2. Fully label the following diagram for the brain/robot system. Include D_o , D_i , D_s , V , E .



Write down, using constants T and k as well as the signals you labeled on the figure, difference equations that relate the inputs and outputs of

- the controller

$$V = kE$$

- the model of the plant

$$D_o = V[T] \cdot T + D_o$$

- the model of the sensor

$$D_s = D_i - E$$

$$D_s = D_o + \text{err}$$

See sheet

Wk.4.3.1.1-3

Enter the coefficients of your difference equations into parts 1, 2, and 3 of tutor problem Wk.4.3.1.

$E = \text{delayed actual}$

See sheet \rightarrow lots of work

Combine these equations to derive a difference equation that relates D_o to D_i , by:

1. Converting the difference equations to operator equations in \mathcal{R} ,
2. Solving for D_o in terms of D_i , and
3. Converting the result back to a difference equation.

See sheet

Wk.4.3.1.4 Enter the coefficients of your difference equation into part 4 of tutor problem Wk.4.3.1.

3 State machines primitives and combinator

We can create all linear time-invariant systems by combining two primitive state machines in different ways: `sm.Gain` and `sm.R`.

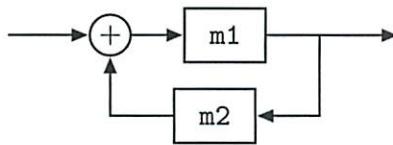
The `sm.Gain` state machine is really just a pure function: the output at step n is the input at step n , times a constant, k . The state is irrelevant. The reason we create this as a type of state machine is that we want to use the principles of PCAP to be able to combine it with other state machines to create new kinds of state machines.

```
class Gain(SM):
    def __init__(self, k):
        self.k = k
    def getNextValues(self, state, inp):
        return (state, self.k*inp)
```

The `sm.R` state machine is a renamed version of the `Delay` state machine. It takes a value at initialization time which specifies the initial output of the machine; thereafter, the output at step n is the input at step $n - 1$.

```
class R(SM):
    def __init__(self, v0 = 0):
        self.startState = v0
    def getNextValues(self, state, inp):
        return (inp, state)
```

For the purposes of building LTI systems, the *feedback addition* composition will be useful. It takes two machines and connects them like this (note that we are using generic boxes here, those boxes would be a triangle if the state machine were simply a gain, or would be labeled with an R if the state machine were a delay, or could be some more complicated feedback loop):



If m_1 and m_2 are state machines, then you can create their feedback addition composition with

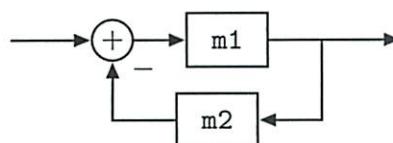
```
newM = sm.FeedbackAdd(m1, m2)
```

Now $newM$ is itself a state machine. So, for example, $newM = sm.FeedbackAdd(sm.R(0), sm.Gain(1))$ makes a machine whose output is the sum of the inputs from step 0 up to but not including the present step. You can test it by feeding it a sequence of inputs; in the example below, it is the numbers 0 through 9:

```
>>> newM.transduce(range(10))
[0, 0, 1, 3, 6, 10, 15, 21, 28, 36]
```

Feedback subtraction composition is the same, except the output of m_2 is *subtracted* from the input, to get the input to m_1 . (Note the minus sign next to the output of m_2 as it is fed into the adder.) You can use it like this:

$newM = sm.FeedbackSubtract(m1, m2)$ *(is -*



Note that if you want to apply one of the feedback operators in a situation where there is only one machine, you can use $sm.Gain(1.0)$ or $sm.Wire()$ as the other argument.

Check Yourself 3. Use gains, delays, and adders to draw a system diagram for the first system in tutor problem Wk.4.2.1. (That is, the tutor problem that you did before coming to lab).

See sheet

Check Yourself 4. Use gains, delays, and adders to draw a system diagram for the second system in tutor problem Wk.4.2.1.

Check Yourself 5. Use gains, delays, and adders to draw a system diagram for the third system in tutor problem Wk.4.2.1.

Wk.4.3.2

Do tutor problem Wk.4.3.2.

Check Yourself 6. Use gains, delays, and adders to draw a system diagram for the **controller** in the wall-finder system.

Check Yourself 7. Use gains, delays, and adders to draw a system diagram for the **plant** in the wall-finder system.

Check Yourself 8. Use gains, delays, and adders to draw a system diagram for the **sensor** in the wall-finder system.

Check Yourself 9. Connect the previous three component systems to make a diagram of the wall-finder system. Label all the wires. Draw boxes around the controller, plant, and sensor components.

Checkoff 1. Show your system diagrams to a staff member. Identify the instances of cascade and feedback composition for the wall-finder system.

Wk.4.3.4 Do tutor problem Wk.4.3.4. We encourage you to write your code in `d14Work.py` and test it within Idle before copying it into the Tutor

With a value of $T = 0.1$ and an initial distance to the wall of 1.5 meters, experiment with different values of the gain. You can do this using the `plotD` procedure, defined in `d14Work.py`. For a given gain value, k , it will make a plot of the sequence of distances to the wall. Be sure to use your code running within Idle.

Checkoff 2. Find three different values of k , one for which the distance converges monotonically, one for which it oscillates and converges, and one for which it oscillates and diverges. Show plots for each of these k values to a staff member. Save screen shots for each of these plots (you can find instructions under the Reference tab of our home page.)

Wk.4.3.6

Enter the gains you found into the tutor.

4 On the simulated robot

Implement a brain for the wall-finder problem using a state machine, as described in Section 2.

Recall that the robot itself is the plant and so we do not need to write any code for that. We have already implemented a `Sensor` state machine which outputs a delayed version of the values of sonar sensor 3 (the robot actually has relatively little delay in its sensing).

Your job is to implement the `Controller` state machine, which takes as input the output of the sensor state machine, and generates as output instances of `io.Action` with 0 rotational velocity and an appropriate forward velocity. It should depend on `dDesired`, which is the desired distance to the wall. Do this by editing the `getNextValues` method of the `Controller` class in `Desktop/6.01/lab4/designLab/smBrainPlotDistSkeleton.py`. Your controller should attempt to make the output of sonar sensor 3 be equal to 0.7, even though sensor 3 doesn't point straight forward.

For each of the three gains you found in Checkoff 2, run the simulated robot in the simulated world specified in `Desktop/6.01/lab4/designLab/worlds/wallFinderWorld.py`. Whenever you start or reset the world, the robot will be 1.5 meters from the wall it is facing. Save the plot from each of these runs. You can find instructions for saving plots as screen shots under the Reference tab of our home page.

Checkoff 3.

Show your plots of the robot simulations from each of runs to a staff member. Compare them to the plots you got by running the state machine models. Explain how they differ and speculate about why. Email your code and plots to your partner.

Design Lab 4

9/30

4.3.1

Controller

$$d = \frac{1}{5} E \quad \textcircled{X}$$

$$.2 \quad \textcircled{X}$$

$$0 \quad \textcircled{X}$$

$$5 \quad \textcircled{X} = \cancel{.1} \quad \frac{du}{dt} \quad S = k \cdot 1$$

$$V = kE = \cancel{k \cdot 0.1 \cdot E_n} \cdot \cancel{0.1 \cdot E_{n-1}}$$

$$C = \text{none} \quad \textcircled{V}$$

ϵ negative since getting closer to wall

$$-5 \quad \textcircled{V}$$

Plant

none

$$\textcircled{X}$$

-5

$$-5 \cdot 1 \quad \textcircled{X}$$

$$-1.5 \quad \textcircled{X}$$

$$\text{none} \quad \textcircled{X}$$

input is
just command
vel + rot

outputs new
robot actual position

$$-5$$

Do plays a role
 $Do[n-1]$

$$d[n] = \cancel{.1} \cdot V[n] \quad \text{controller with factor by } k$$

\textcircled{X}
 \textcircled{X}

②

$$D_o[n] \leftarrow V[n] + D_o[n-1]$$

Controller sends, all scattered

$$T = \cancel{D_o[n-1]}$$

$$V = \cancel{E} = kE$$

$$k \text{ is } -5$$

$$V = -5E$$

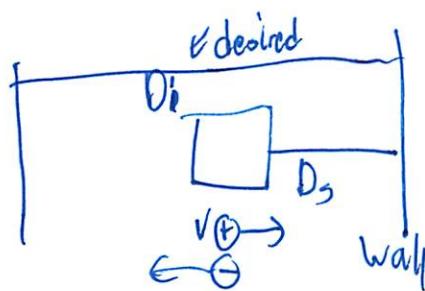
$$-5ET$$

1 (✓)

+

$$V[n] = X$$

1 (✗)



$$D_o[n] = \overbrace{D_o[n-1]}^{= D_s} + T \cdot V[n]$$

want to inc.
(distance from wall)

want -

(✗)

\leftarrow $D_o[n]$ (✗)

3

0

?

want to

Subtract a negative

0

0 - 1 ✓

Sensor

$$D_s[n] = D_o[n-1]$$

none 1

just a delay

1 none 0

based on problem #? not based on previous output

,9

0 1 ✓

Combined difference eq

$$D_o[n] = D_o[n-1] - T \cdot V[n-1]$$

actual pos

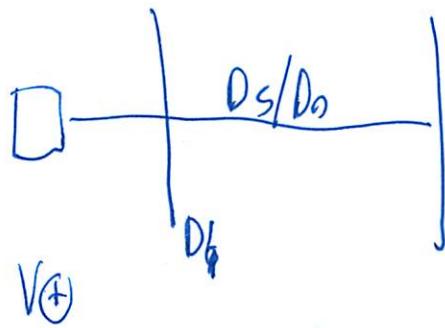
need a D_i ?

(4)

$$V = kE$$

$$= k [D_i - D_o[n-1]]$$

$$D_o[n] = D_o[n-1] - T \cdot k \cdot (D_i[n] - D_o[n-1])$$



$$D_o = \underbrace{\text{fixed}}_{\text{dec}\downarrow} - \oplus$$

$$-1,15^\circ$$

-15

$$1,15^\circ$$

$$D_o[n] = D_o[n-1] - T \cdot k \cdot (D_i[n-1] - D_o[n-2])$$

$$0 - 5 \quad \otimes$$

$$1 + 5 \quad \otimes$$

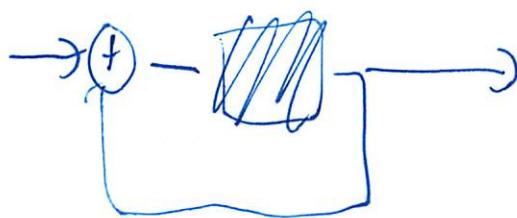
$$k = -5$$

$$0 + 5 \quad \otimes$$

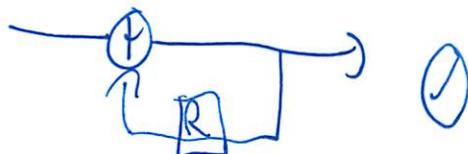
$$1 - 5 \quad \otimes$$

5

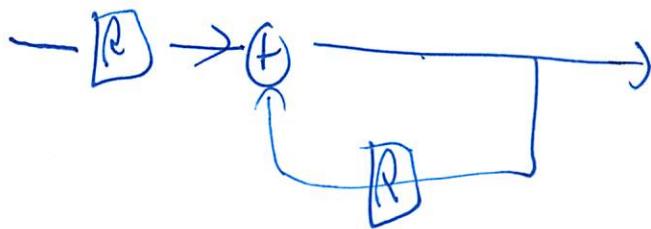
CY#3



(X) infinite loop

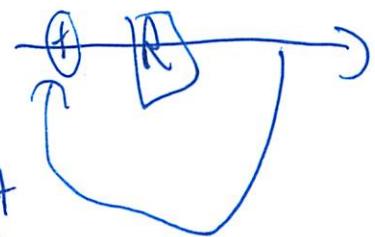


CY#4

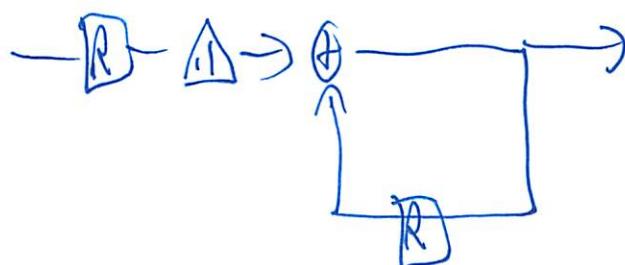


(J)

=
equivalent
(trick)

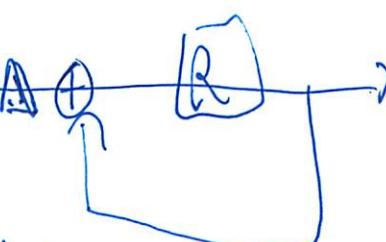


CY#5



(J)

=
equivalent
(trick)



⑥ 4.3.2 Tutor

State machine composition

proc accumulator(

 ↑
 output before list input

- like problem

Sum n upto + including n

- Combo of SMS

- kinda easy

- got 1st feedback add (wire, R(init))

2nd one ①

feedback add (R(init), wire(1)) or little trick

3rd

feedback add

I would use a cascade

cascade(cascade (R(init), Gain(.1)), 1

Feedback

cascade (↓

, feedback add ())

- close but wrong

- first is correct

- I think 2nd init needs to be 0

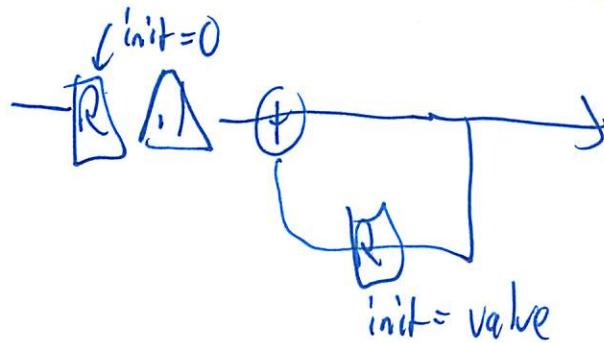
- nope

7

- also want s not hardcoded, 1
 - but they were testing w/ 1
 - for 2nd ~~Q~~ R (init • s)
P₁
 - no again

I am overshooting by 15

- want Q on bottom, 2nd argument
 - not out little flag
 - now everything is 1 too big!
 - so 1st delay init should be 0



Why? -way problem is defined I guess
first value is 0 - pass on that

prof: make table to check

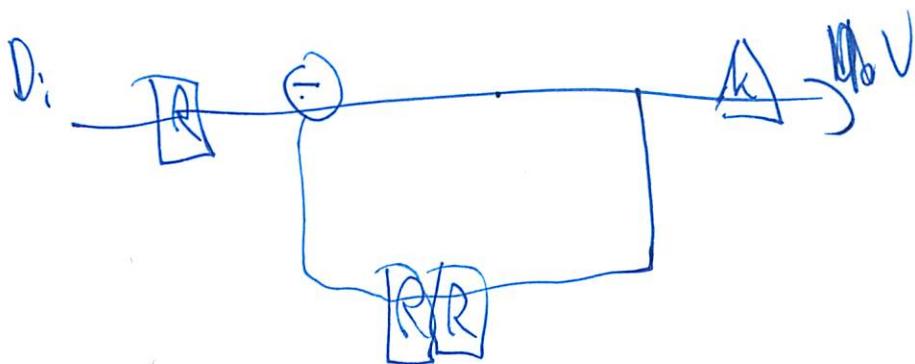
C46 Controller

8

$$D_0 =$$

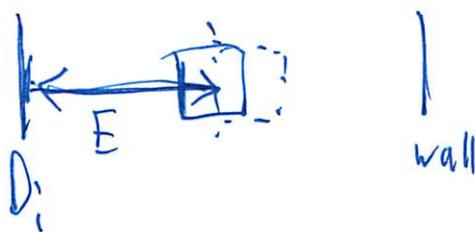
$$V = k [D_1[n-1] - D_0[n-2]]$$

at other port



$$\text{input} = E$$

$$V = k [$$



$$V = kE$$

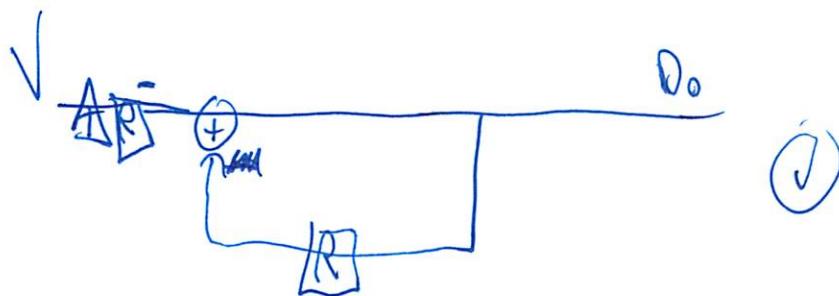
$$kE = E[n-1]$$

$E[n-1]$

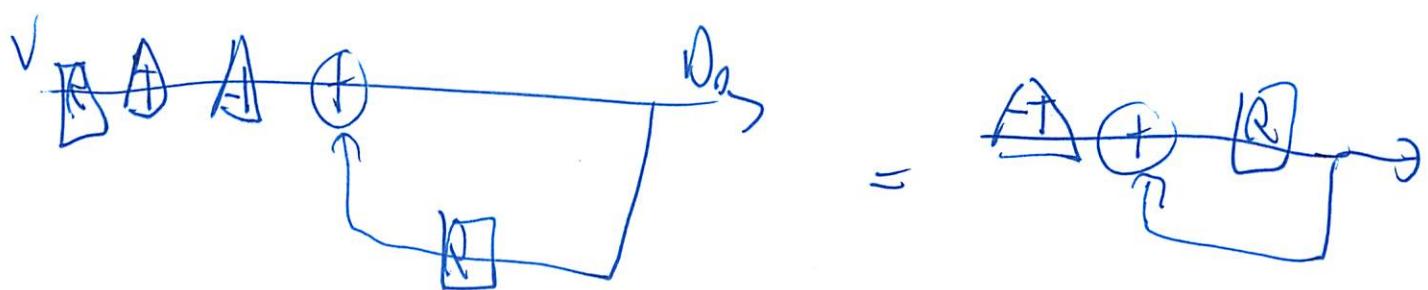
$E[n]$

Q₁₇ Plant $D_o[n] = D_o[n-1] + t \cdot v[n-1]$

\uparrow output \uparrow input



P_r



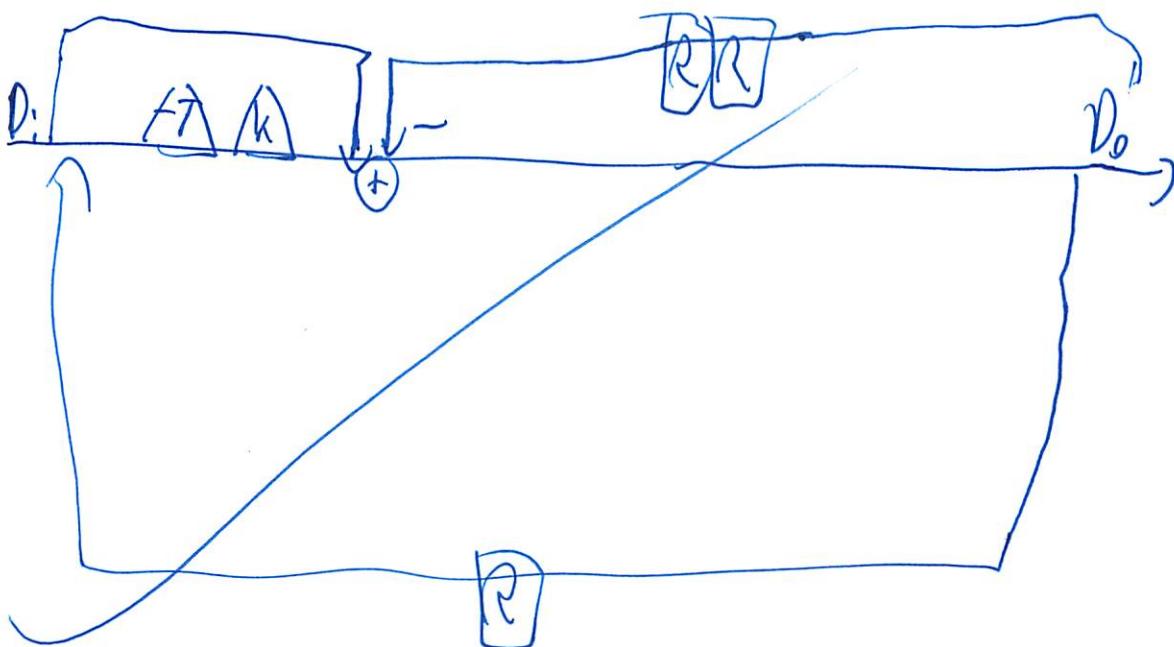
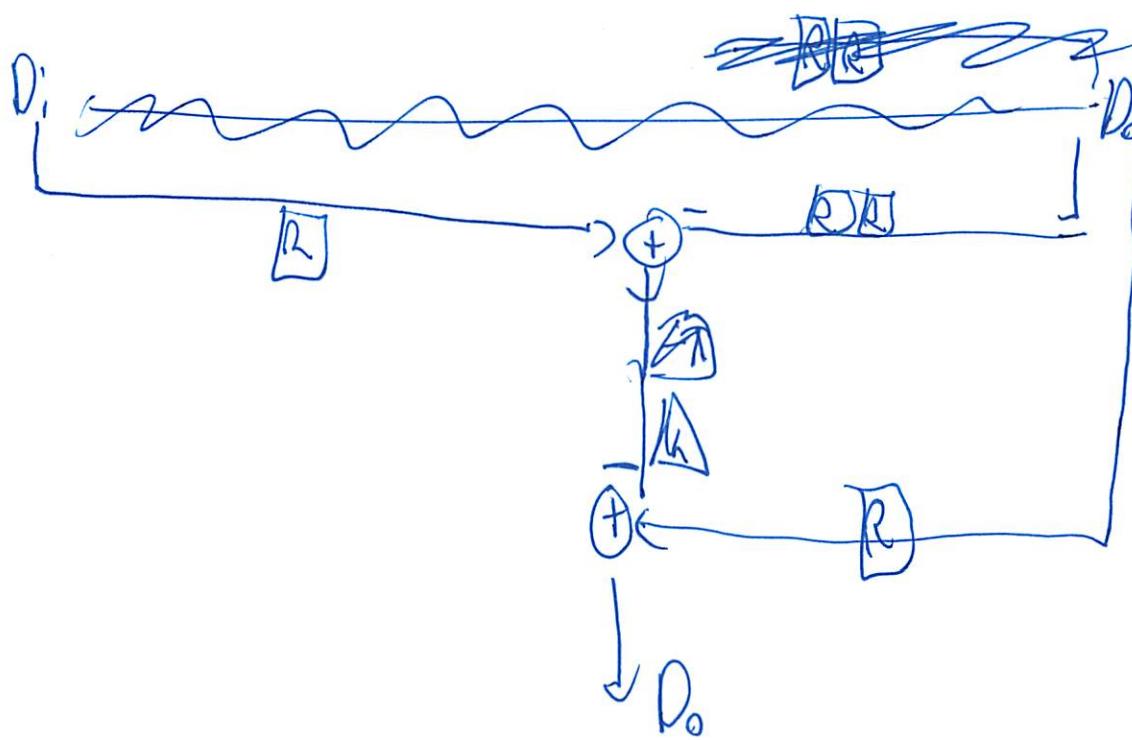
(Y8 Sensor)

$$D_s[n] = D_o[n-1]$$

\uparrow input

⑧ Cy4 Whole Thing

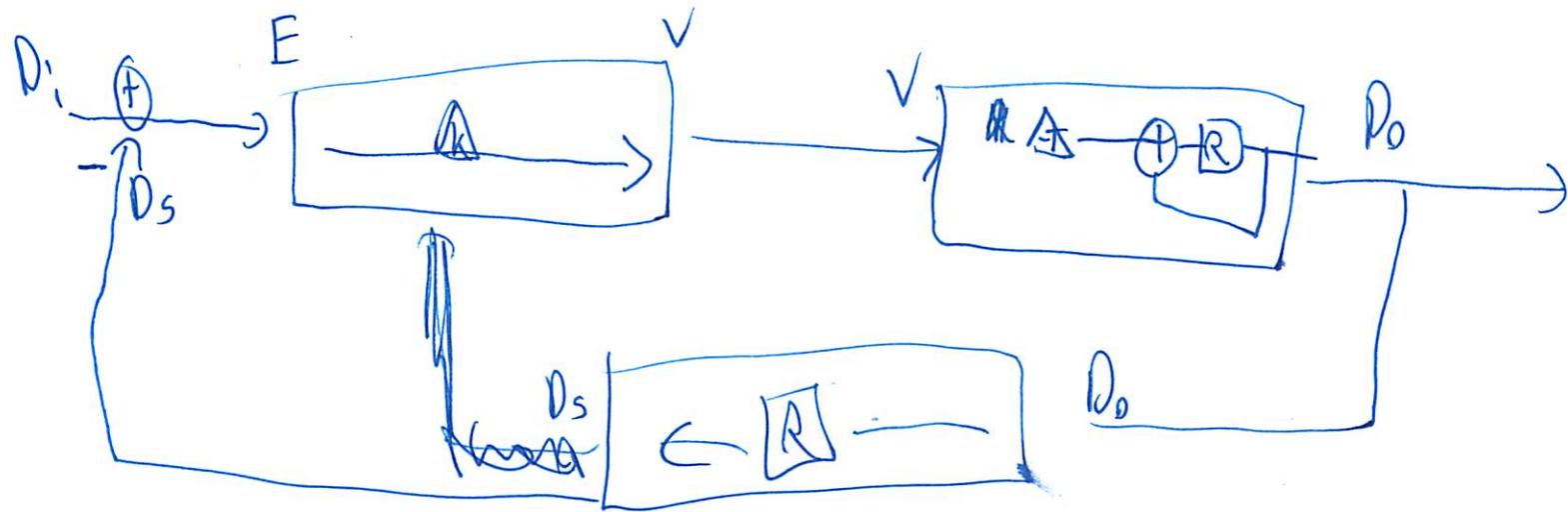
Thought through ea and try to draw



think boxes together

fill in each of boxes w/ sub steps

(11)



4, 3, 4 Now back-to-wall finder \rightarrow code it up

Controller procedure

- Oh just implement diagram

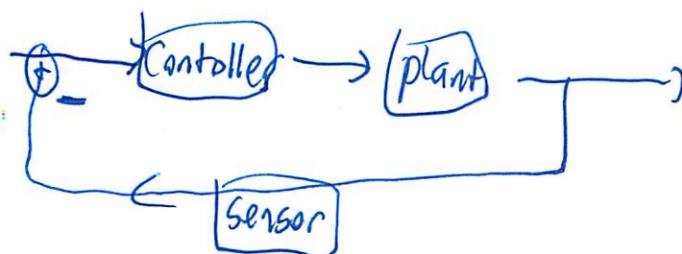
Sm. Gain(h)

plant

Sensor Cascade(Gain(-t)), Feedback add (R('initD'), wire())
 Sm. ~~add~~ R('initD')

System

Use component parts



Feedback/Subtract(Cascade(Controller, plant), Sensor)

⑫ tutor check ⑬ bingo
-all for today

Partner dropped

10/4

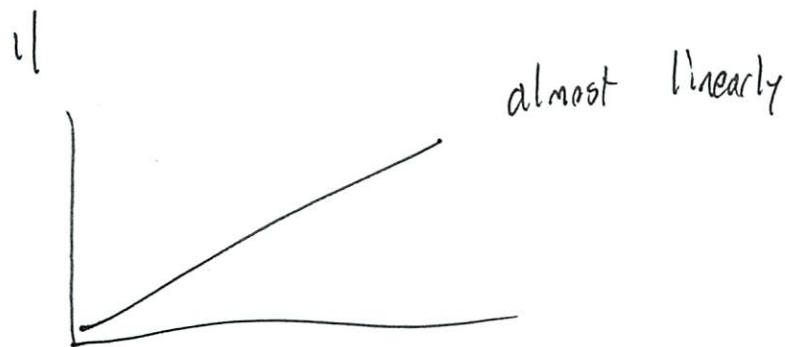
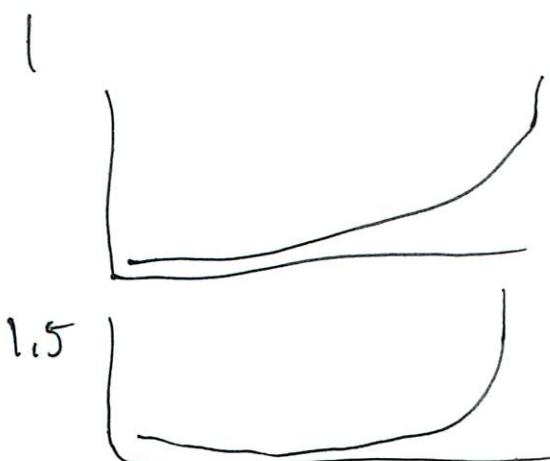
T = 1.1

initial distance = 1.5

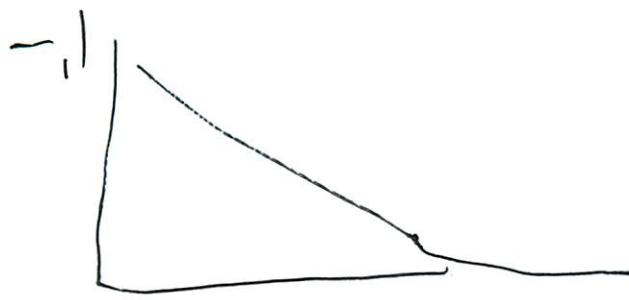
Experiment w/ plot

plot w/ different k (gain values)

-give the k

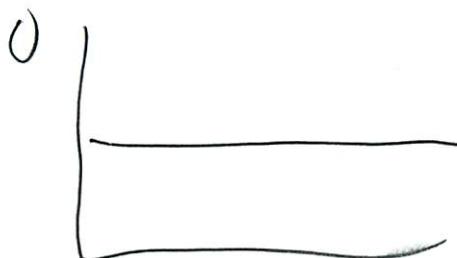


(13)

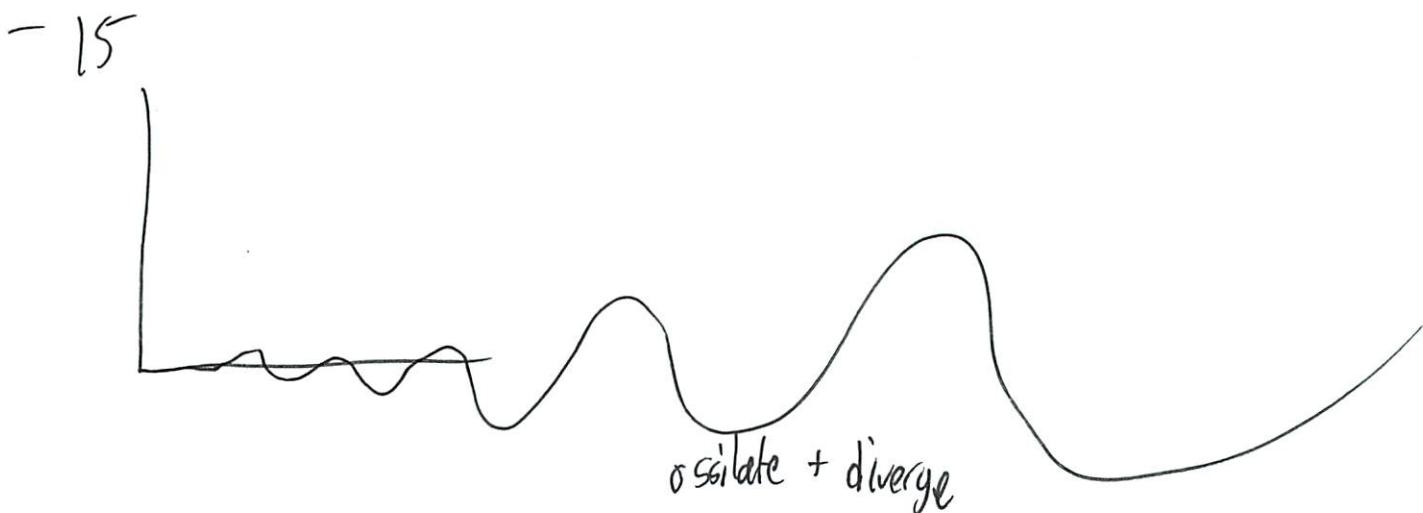


converging monotonically

-1 is better



$k = \text{gain}$
= how it responds to error
oscillate + converge



check off 2 ✓

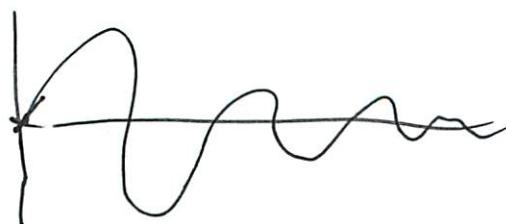
factor	-1
	-5
	-15

(19)

Last step!

- implement controller sm got next value
sensor[3] should = 7
- not in a thinking mood
 - can I get done in 40 min?
- copy in robot code
 - no we just want controller
 - that was representation
- inp is already sensor[3]
- build non isolation in?
 - where change gain?
- want it to calc error
 - a gain
 - that is ✓
- oh I see
 - now it stops at pt
 - ↳ converges
- So the sensor reading is like the graph

$$k = -5$$



⑮ on -15

- cases + max sensor reading
= 5

so in accurate

Hw due wed night

- total wrong position

6.01: Introduction to EECS I**Predicting System Performance**

Week 5

October 5, 2010

Outline

- System functions: primitives and compositions
- Modes of feedback systems
- Finding and interpreting poles

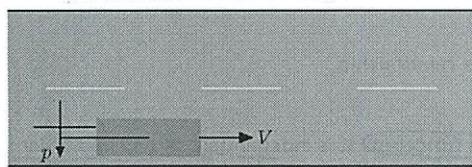
Reading: Chapter 6

Midterm exam:

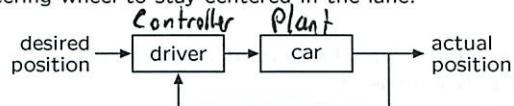
- Tuesday, October 12, 7:30–9:00 PM
- 32-141 or 32-155
- Any printed material okay
- No computers or phones
- Make-up: Wednesday, October 13, 8:00–9:30 AM;
email welg@mit.edu

Feedback and Control

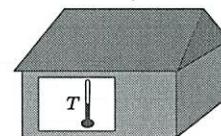
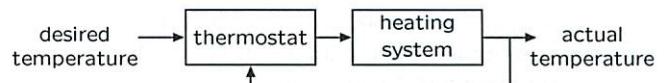
Feedback is pervasive in natural and artificial systems.



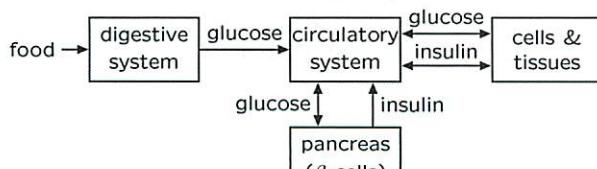
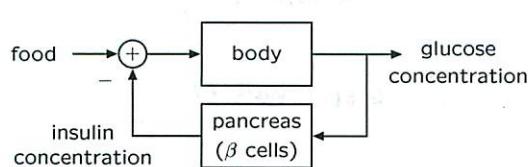
Turn steering wheel to stay centered in the lane.

**Feedback and Control**

Feedback is useful for regulating a system's behavior, as when a thermostat regulates the temperature of a house.

**Feedback and Control**

Concentration of glucose in blood is highly regulated and remains nearly constant despite episodic ingestion and use.

just
the
plant

↑
feed back
has something
done

- insulin pump
would be controller

Feedback and Control

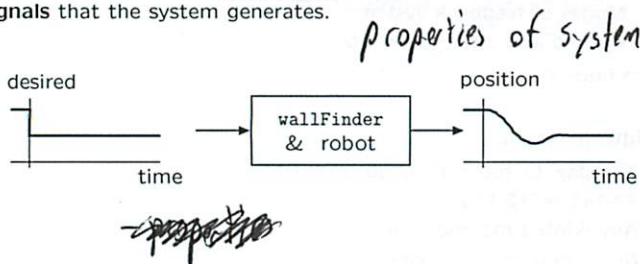
Motor control relies on feedback from pressure sensors in the skin as well as proprioceptors in muscles, tendons, and joints.

Try building a robotic hand to unscrew a lightbulb!

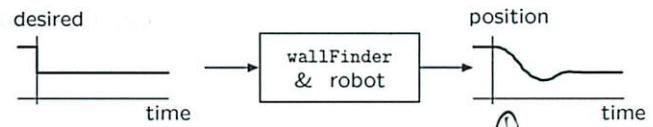
Shadow Dexterous Robot Hand (Wikipedia)

Performance analysis *quantity*

We can quantify the performance of a system by characterizing the signals that the system generates.



- could difference eq. input + output

Important features of behavior

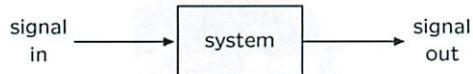
What are the important features of this output signal?

overshoot
delay
settling time

Overshoot and
then go back
- delay to pt
time
- convergence

Analyzing systems

Our goal is to develop representations for systems that facilitate analysis.



Examples:

- Does the output signal overshoot? If so, how much?
- How long does it take for the output signal to reach its final value?
- Does it ever reach a stable final value?

System functions

Any LTI system is completely characterized by the relationship between the input signal X and the output signal Y .

We call this relationship,

$$H = \frac{Y}{X}$$

the system function. It is independent of any particular input signal, just as a mathematical function or a Python procedure is an entity, independent of its arguments. - since linear

System functions for LTI systems are always ratios of polynomials in \mathcal{R} .

\mathcal{R} = delay, adders, etc

Output only depends on previous inputs, not on any outputs

Feed-forward SFs

Gain: $Y = kX$

$$H = \frac{Y}{X} = k$$

Delay: $Y = \mathcal{R}X$

$$H = \frac{Y}{X} = \mathcal{R}$$

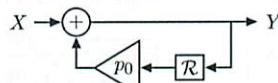
Combinations: $Y = 3\mathcal{R}^2X - \mathcal{R}X + 2X$

$$H = \frac{Y}{X} = 3\mathcal{R}^2 - \mathcal{R} + 2$$

System functions for feed-forward systems have 1 in the denominator.

Feedback SFs

Consider a simple system with feedback.



$$Y = X + p_0 \mathcal{R}Y$$

$$(1 - p_0 \mathcal{R})Y = X$$

$$Y = \frac{X}{1 - p_0 \mathcal{R}} \quad \text{Solve for } Y$$

System function

$$H = \frac{Y}{X} = \frac{1}{1 - p_0 \mathcal{R}}$$

← still have \mathcal{R}

- oh that is difference

- never thought of it that way

Feedback

The reciprocal of $1 - p_0\mathcal{R}$ can be evaluated using synthetic division.

$$\begin{array}{r} 1 + p_0\mathcal{R} + p_0^2\mathcal{R}^2 + p_0^3\mathcal{R}^3 + \dots \\ 1 - p_0\mathcal{R} \overline{)1} \\ \hline 1 - p_0\mathcal{R} \\ p_0\mathcal{R} \\ \hline p_0\mathcal{R} - p_0^2\mathcal{R}^2 \\ p_0^2\mathcal{R}^2 \\ \hline p_0^2\mathcal{R}^2 - p_0^3\mathcal{R}^3 \\ p_0^3\mathcal{R}^3 \\ \hline p_0^3\mathcal{R}^3 - p_0^4\mathcal{R}^4 \\ \dots \end{array}$$

Therefore

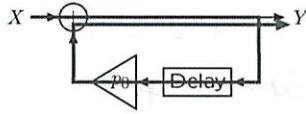
$$\frac{1}{1 - p_0\mathcal{R}} = 1 + p_0\mathcal{R} + p_0^2\mathcal{R}^2 + p_0^3\mathcal{R}^3 + p_0^4\mathcal{R}^4 + \dots$$

↳ show do you know how to evaluate?

Feedback: Cyclic signal flow paths

Feedback implies cyclic signal flow paths.

$$x[n] = \delta[n]$$

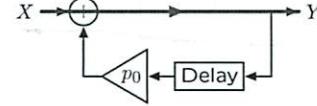


$$\frac{Y}{X} = \frac{1}{1 - p_0\mathcal{R}} = 1 + p_0\mathcal{R} + \dots$$

Feedback: Cyclic signal flow paths

Feedback implies cyclic signal flow paths.

$$x[n] = \delta[n]$$



$$\frac{Y}{X} = \frac{1}{1 - p_0\mathcal{R}} = 1 + \dots$$

Feedback: Cyclic signal flow paths

Feedback implies cyclic signal flow paths.

$$x[n] = \delta[n]$$

$$\frac{Y}{X} = \frac{1}{1 - p_0\mathcal{R}} = 1 + p_0\mathcal{R} + p_0^2\mathcal{R}^2 + p_0^3\mathcal{R}^3 + p_0^4\mathcal{R}^4 + \dots$$

↳ 2 each since multiplied each time it goes around

All cyclic paths must contain at least one delay.

Modeling from start, empty fine

Example: Accumulator

$$\frac{Y}{X} = \frac{1}{1 - \mathcal{R}} = 1 + \mathcal{R} + \mathcal{R}^2 + \mathcal{R}^3 + \mathcal{R}^4 + \dots$$

If input is non-zero starting at time zero, then can see output will be governed by

$$1, 1 + \mathcal{R}, 1 + \mathcal{R} + \mathcal{R}^2, 1 + \mathcal{R} + \mathcal{R}^2 + \mathcal{R}^3, \dots$$

Thus, if input is

$$x[n] = \delta[n]$$

$$1, 1, 1, 1, \dots$$

If input is

$$x[n] = \begin{cases} 0, & \text{if } n < 0; \\ 1, & \text{otherwise.} \end{cases}$$

$$1, 2, 3, 4, \dots$$

✓ diff. ways to think about it

System functions for LTI systems

Ratio of polynomials in \mathcal{R} :

$$\begin{aligned} y[n] + a_1y[n-1] + a_2y[n-2] + a_3y[n-3] + \dots \\ = b_0x[n] + b_1x[n-1] + b_2x[n-2] + b_3x[n-3] + \dots \end{aligned}$$

general form

$$(1 + a_1\mathcal{R} + a_2\mathcal{R}^2 + a_3\mathcal{R}^3 + \dots) Y = (b_0 + b_1\mathcal{R} + b_2\mathcal{R}^2 + b_3\mathcal{R}^3 + \dots) X$$

$$D(\mathcal{R}) Y = N(\mathcal{R}) X$$

$$\frac{Y}{X} = \frac{N(\mathcal{R})}{D(\mathcal{R})} = \frac{b_0 + b_1\mathcal{R} + b_2\mathcal{R}^2 + b_3\mathcal{R}^3 + \dots}{1 + a_1\mathcal{R} + a_2\mathcal{R}^2 + a_3\mathcal{R}^3 + \dots} \text{ feed forward part}$$

Persistent part of response of such a system is associated with denominator.

3
$$\frac{Y}{X} = \frac{1}{1+2\mathcal{R}} = 1 - 2\mathcal{R} + 4\mathcal{R}^2 - 8\mathcal{R}^3$$
 or convert to diff eq
 Example walk through division $Y = -2\mathcal{R}Y + X$

$$Y[n] = -2Y[n-1] + X[n]$$

System functions: Why do we care

PCAP system on system functions makes it easier to combine models than manipulating systems of operator equations.

System functions expose important analytic properties of the system.

PCAP: Primitive SFs

Gain: $Y = kX$

$$H = \frac{Y}{X} = k$$

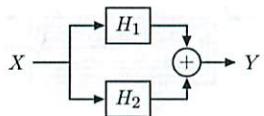
Delay: $Y = \mathcal{R}X$

$$H = \frac{Y}{X} = \mathcal{R}$$

Combining SFs: Sum

The system function of the sum of two systems is the sum of their system functions. This relies on properties of ratios of polynomials: their sum can be written as a ratio of polynomials.

$$Y_1 = H_1 X \quad Y_2 = H_2 X$$



$$Y = Y_1 + Y_2$$

$$= H_1 X + H_2 X$$

$$= (H_1 + H_2) X$$

$$= H X$$

where $H = H_1 + H_2$.

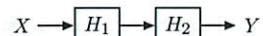
- already done abstraction
- don't know what's in the box

closure: adding system function outputs produces polynomials in R

Combining SFs: Cascade

The system function of the cascade of two systems is the product of their system functions. This relies on properties of ratios of polynomials: their product can be written as a ratio of polynomials.

$$W = H_1 X \quad Y = H_2 W$$



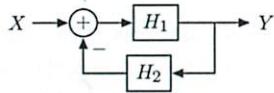
$$\begin{aligned} Y &= H_2 W \\ &= H_2 H_1 X \\ &= H X \end{aligned}$$

where $H = H_2 H_1$.

*Same as if
reversed order
for LTI*

Combining SFs: Negative feedback

Concentrate on **negative feedback** and **Black's formula**:



$$Y = H_1(X - H_2 Y)$$

$$Y + H_1 H_2 Y = H_1 X$$

$$Y(1 + H_1 H_2) = H_1 X$$

$$Y = \frac{H_1}{1 + H_1 H_2} X$$

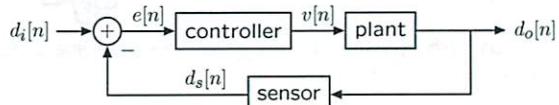
$$Y = H X$$

where

$$H = \frac{H_1}{1 + H_1 H_2}$$

Wall finder

Control the robot to move to desired distance from a wall.



Controller (brain): sets velocity proportional to error

$$V = KE$$

proportional!

Plant (robot locomotion): integrates velocity to get position:

$$D_o = \mathcal{R} D_o - TRV$$

w/ accumulator

Sensor: introduces a delay

$$D_s = \mathcal{R} D_o$$

$$\left| \begin{array}{c} \text{current pos} \\ \text{is } d_n - d_{n-1} = -TRV \\ \text{how far it moved that step} \end{array} \right|$$

Use composition to find SF

Controller

$$H_c = \frac{V}{E} = K$$

Plant

$$H_p = \frac{D_o}{V} = \frac{-TR}{1-R}$$

Sensor

$$H_s = \frac{D_s}{D_o} = R$$

Cascade: Controller and Plant

$$H_{cp} = \frac{D_o}{E} = \frac{-KTR}{1-R}$$

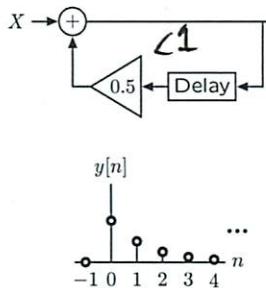
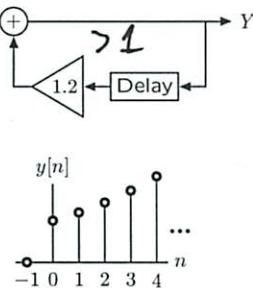
Negative feedback: Controller Plant and Sensor

$$H = \frac{D_o}{D_i} = \frac{\frac{-KTR}{1-R}}{1+R(\frac{-KTR}{1-R})} = \frac{-KTR}{1-R-KTR^2}$$

characterizes what robot will do
- convert to diff eq + try samples ↗

Geometric growth

If traversing the cycle decreases or increases the magnitude of the signal, then the output will decay or grow, respectively.

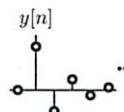


Unit sample response:

→ geometric sequences: $y[n] = (0.5)^n$ and $(1.2)^n$ for $n \geq 0$.

Check Yourself

What value of p_0 represents the signal below?



1. $p_0 = 0.5$

(2) $p_0 = -0.5$ & only will alternate if negative since

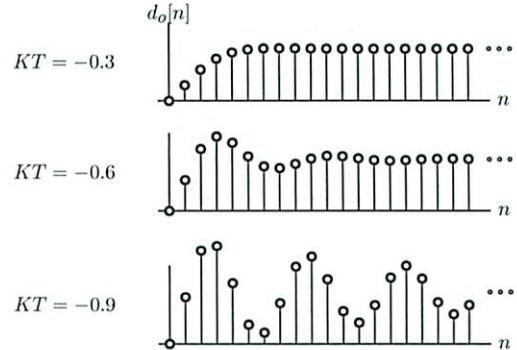
3. $p_0 = 0.25$ interspersed with $p_0 = -0.25$ ~~if $n \text{ is odd}$~~

if $n \text{ is odd}$

$$n \rightarrow n^1 n^2 n^3 n^4$$

Wall finder

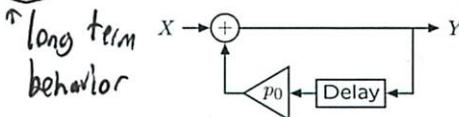
The behavior of the system depends critically on KT .



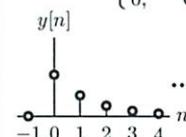
Geometric growth

These system responses can be characterized by a single number (the pole), which is the base of the geometric sequence.

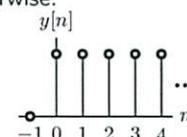
↑ long term behavior



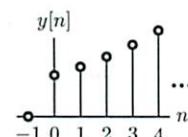
$$y[n] = \begin{cases} p_0^n, & \text{if } n \geq 0; \\ 0, & \text{otherwise.} \end{cases}$$



$p_0 = 0.5$



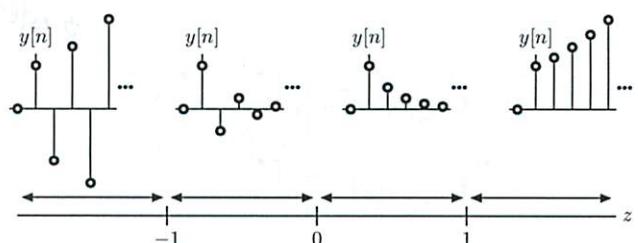
$p_0 = 1$



$p_0 = 1.2$

Geometric growth

The value of p_0 determines the rate of growth.



$p_0 < -1$: magnitude diverges, alternating sign

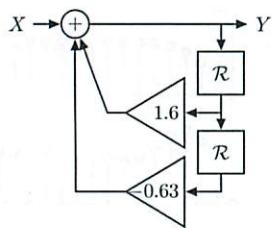
$-1 < p_0 < 0$: magnitude converges, alternating sign

$0 < p_0 < 1$: magnitude converges monotonically

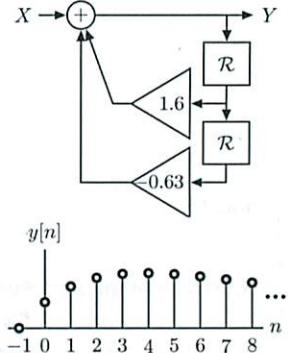
$p_0 > 1$: magnitude diverges monotonically

Second-order systems

The unit-sample response of more complicated cyclic systems is more complicated.

**Second-order systems**

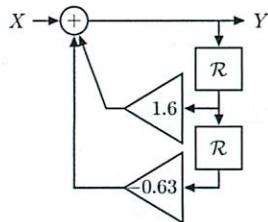
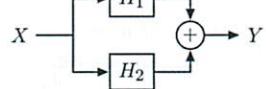
The unit-sample response of more complicated cyclic systems is more complicated.



Not geometric. This response grows then decays.

Second-order systems: Additive decomposition

This system function can be written as a sum of simpler parts.



$$Y = X + 1.6RY - 0.63R^2Y$$

$$(1 - 1.6R + 0.63R^2)Y = X$$

$$\frac{Y}{X} = \frac{1}{1 - 1.6R + 0.63R^2} = \frac{1}{(1 - 0.9R)(1 - 0.7R)}$$

factor + solve

Additive decomposition: partial fraction expansion

$$\frac{1}{(1 - 0.9R)(1 - 0.7R)} = \frac{A}{1 - 0.9R} + \frac{B}{1 - 0.7R}$$

Cross multiply

$$1 = A(1 - 0.7R) + B(1 - 0.9R)$$

Collect like terms

$$1 = (A + B) - (0.7A + 0.9B)R$$

So, we have

$$1 = A + B$$

$$0 = 0.7A + 0.9B$$

So, $A = 4.5$ and $B = -3.5$, and

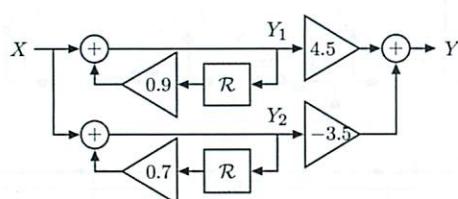
$$\frac{Y}{X} = \frac{4.5}{1 - 0.9R} - \frac{3.5}{1 - 0.7R} \quad \text{feedback}$$

lots ~~of~~ of math!

Second-order systems: Additive decomposition

$$\frac{Y}{X} = \frac{4.5}{1 - 0.9R} - \frac{3.5}{1 - 0.7R}$$

Same system

**Second-order systems: Additive decomposition****Operation of sum of systems on a signal S**

$$(H_1 + H_2)S = H_1S + H_2S$$

Our system

$$H = \frac{Y}{X} = \frac{4.5}{1 - 0.9R} - \frac{3.5}{1 - 0.7R} = H_1 + H_2$$

Unit sample response:

- to H_1 is a geometric sequence.
- to H_2 is a geometric sequence.
- to $H = H_1 + H_2$ is the sum of geometric sequences.

Actual values

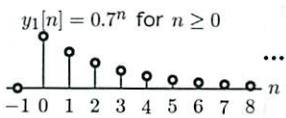
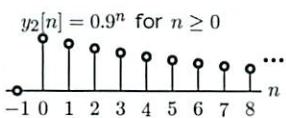
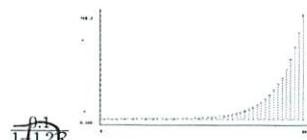
If $x[n] = \delta[n]$ then $y_1[n] = 0.9^n$ and $y_2[n] = 0.7^n$ for $n \geq 0$.

Thus, $y[n] = 4.5(0.9)^n - 3.5(0.7)^n$ for $n \geq 0$.

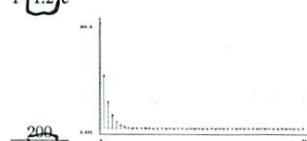
Mode with biggest base eventually governs behavior

Sum of geometric sequences

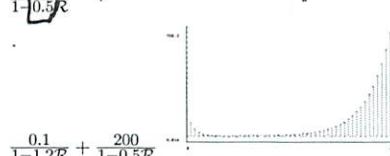
Mode with biggest base eventually governs behavior

**More dramatically**

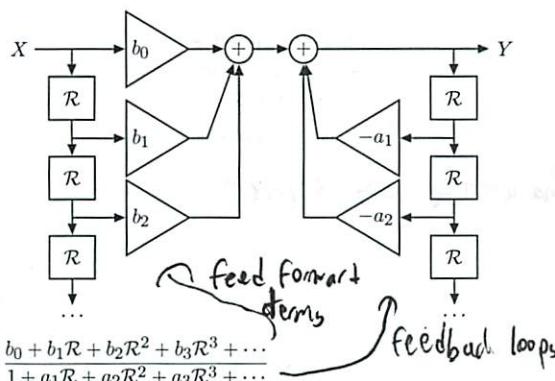
← ultimately big base wins



← large coefficient dominates 1st

**Analysis of more complicated systems**

Rational polynomials can be realized with block diagrams of the following form:

**Analysis of more complicated systems**

Modes can be identified by expanding system functional in partial fractions.

$$\frac{Y}{X} = \frac{b_0 + b_1R + b_2R^2 + b_3R^3 + \dots}{1 + a_1R + a_2R^2 + a_3R^3 + \dots}$$

Factor denominator:

$$\frac{Y}{X} = \frac{b_0 + b_1R + b_2R^2 + b_3R^3 + \dots}{(1 - p_0R)(1 - p_1R)(1 - p_2R)(1 - p_3R) \dots}$$

(an always factor)

Partial fractions:

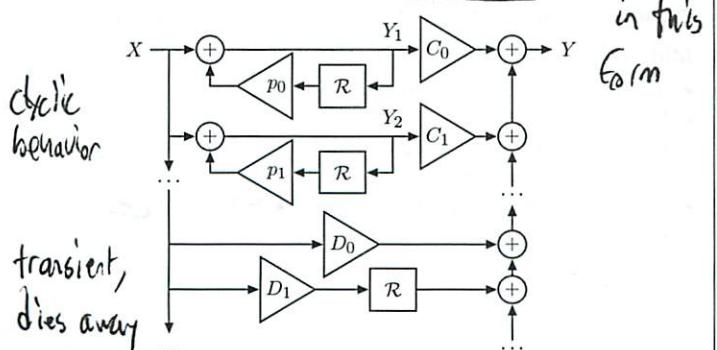
$$\frac{Y}{X} = \frac{C_0}{1 - p_0R} + \frac{C_1}{1 - p_1R} + \frac{C_2}{1 - p_2R} + \dots + D_0 + D_1R + D_2R^2 + \dots$$

One mode of the form p_i^n arises from each factor of the denominator.

might need Matlab to solve

Analysis of more complicated systems

Modal decomposition provides an alternative block diagram.

**Easy way to find poles**The poles are also the roots of the denominator of the system functional when $R \rightarrow \frac{1}{z}$.

Start with system functional:

$$\frac{Y}{X} = \frac{1}{1 - 1.6R + 0.63R^2} = \frac{1}{(1 - p_0R)(1 - p_1R)} = \frac{1}{\underbrace{(1 - 0.7R)}_{p_0=0.7} \underbrace{(1 - 0.9R)}_{p_1=0.9}}$$

Substitute $R \rightarrow \frac{1}{z}$ and find roots of denominator:

$$\frac{Y}{X} = \frac{1}{1 - \frac{1.6}{z} + \frac{0.63}{z^2}} = \frac{z^2}{z^2 - 1.6z + 0.63} = \frac{z^2}{\underbrace{(z - 0.7)(z - 0.9)}_{z_0=0.7 \quad z_1=0.9}}$$

poles are at 0.7 and 0.9 by z^2

quadratic eq

The upper part is cyclic; the lower part is acyclic.

Check Yourself

Consider the system described by

$$y[n] = -\frac{1}{4}y[n-1] + \frac{1}{8}y[n-2] + x[n-1] - \frac{1}{2}x[n-2]$$

How many of the following are true?

1. The unit sample response converges to zero. ✓
2. There are poles at $z = \frac{1}{2}$ and $z = \frac{1}{4}$.
3. There is a pole at $z = \frac{1}{2}$.
4. There are two poles. ✓

$$Y = \frac{1}{4}RY + \frac{1}{8}R^2Y + R \times -\frac{1}{2}R^2X \rightarrow Y = \frac{1}{4}RY + \frac{1}{8}R^2X$$

$$Y(1 + \frac{1}{4}R + \frac{1}{8}R^2) = (R - \frac{1}{2}R^2)X$$

Poles: Summary

- The **poles** of a system are the roots of the denominator polynomial of the system function in $1/R$.
- The **dominant pole** is the pole with the largest magnitude.

Sign does not matter

Properties of signals

input/output

A signal is **transient** if it has finitely many non-zero samples. Otherwise, it is **persistent**.

A signal is **bounded** if there is exist upper and lower bound values such that the samples of the signal never exceed those bounds; otherwise it is **unbounded**.

- A transient input to an acyclic (feed-forward) system results in a transient output.
- A transient input to a cyclic (feed-back) system results in a persistent output.

$$Y = \frac{R(1 - \frac{1}{2}R)}{1 + \frac{1}{4}R - \frac{1}{8}R^2} \rightarrow \frac{\frac{1}{2}(1 - \frac{1}{2}R)}{1 + \frac{1}{4}R - \frac{1}{8}R^2} = \frac{\frac{2 - \frac{1}{2}R}{2^2 + \frac{1}{4}R^2}}{R - \frac{1}{8}}$$

Dependence on pole magnitude

Response to a bounded input signal, if the dominant pole has magnitude

- > 1 : output signal will be unbounded
- < 1 : output signal will be bounded ↪ if the input is transient, output signal will converge to 0.
- 1 : output signal will be bounded

A system is *stable* if the output signal is bounded.

characterize any system

Dependence on pole type

Response to a transient input signal, if the dominant pole is

- **real and positive**: output signal will, after finitely many steps, begin to increase or decrease monotonically. *no oscillate*
- **real and negative**: output signal will, after finitely many steps, begin to alternate signs. *oscillate*
- **complex**: output signal will, after finitely many steps, begin to be periodic, with a period of $2\pi/\Omega$, where Ω is the 'angle' of the pole in the complex plane. *oscillate*

\angle periodic \rightarrow converge to 0

> 1 periodic \rightarrow unbounded

This Week

Software lab: Class for manipulating system functions

Design lab: Analyzing robot control system for stability

Midterm exam:

- Tuesday, October 12, 7:30–9:00 PM
- 32-141 or 32-155
- Any printed material okay
- No computers or phones
- Make-up: Wednesday, October 13, 8:00–9:30 AM; ↪ email weig@mit.edu

Software Lab 5: System Functions

1 Setup

- **Using a lab laptop or desktop machine:** Log in using your Athena user name and password; in the terminal window, type `athrun 6.01 update`. Work in the directory `Desktop/6.01/lab5/swLab`.
- **Using your own laptop:** Download the zip file for software lab 5 from the *Calendar* tab of the course web page, unzip it, and work in the resulting directory.

2 System Function Class

The software lab for this week is to implement a Python class that represents LTI systems and to implement useful operations on systems described this way. Section 4 of this handout contains examples of the operation of this class.

We will represent a system in terms of its system function, as a ratio of polynomials in \mathcal{R} . We can use a `SystemFunction` class with the following methods:

- `__init__(self, numeratorPoly, denominatorPoly)`: takes two instances of the `Polynomial` class as input and stores them in this `SystemFunction` instance as the attributes `numerator` and `denominator`.
- `poles(self)`: returns a list of the poles of the system. Remember that the poles are the roots of the polynomial in z , where $z = 1/\mathcal{R}$.
- `poleMagnitudes(self)`: returns a list of the magnitudes of the poles of the system. The magnitude of a real pole is simply its absolute value. The magnitude of a complex pole is the square root of the sum of the squares of its real and imaginary parts. The `abs` function in Python does the appropriate computation for both types.
- `dominantPole(self)`: returns a “dominant” pole, that is, one of the poles with the greatest magnitude (there may be more than one with the same, largest, magnitude; in this case, return any one of them).

Step 1. Edit `sfSkeleton.py` to contain your implementation of these methods. You can test it using `s15Work.py`, which will load your `sfSkeleton.py`. We have set up `s15Work.py` to import your definitions from `sfSkeleton.py` as `sf`, so that the examples match those in Section 4.

Hints and cautions

- To create a `Polynomial`, use `poly.Polynomial([...])`
- None of the operations that you implement should change any of their arguments. Be very careful of list operations that modify the input lists; e.g., `x.append`, `x.insert` and `x.reverse`.
- If you have a list bound to the variable `x`, then `x.reverse()` reverses the order of the elements of the list `x`. If you want to avoid affecting the original `x` you need to copy the list first, for example, by doing `y = x[:]`. Note that `y = x` does not copy the list, it simply creates a new name for the same list.
- You might want to use the procedure `util.argmax(l, f)`, which takes as input a list `l` and a procedure `f` that can take an element of `l` as input and return a numerical score as output. The result is the element of `l` for which `f` outputs the highest score.

Wk.5.1.1

Once you have debugged your code in Idle, paste it into this tutor problem, check it, and submit it.

3 Combining System Functions

We can also implement two basic operations for combining system functions, analogous to operations we saw for state machines. They are described in detail in Chapter 6 of the course readings.

Step 2.

Wk.5.1.2 Get practice with cascade combination of system functions.

Step 3. In `sfSkeleton.py`, implement the procedure `Cascade(sf1, sf2)`, which takes two instances of the `SystemFunction` class and returns a new instance of that class that represents the cascade composition of the input systems. *Although this is a procedure and not a class, we capitalize the name by analogy with the `sm.Cascade` class.*

Wk.5.1.3 Once you have debugged your code in Idle, paste it into this tutor problem, check it, and submit it.

Step 4.

Wk.5.1.4 Get practice with feedback-subtract combination of system functions.

Step 5. In `sfSkeleton.py`, implement the procedure `FeedbackSubtract(sf1, sf2)`, which takes two instances of the `SystemFunction` class and returns a new instance of that class that represents the feedback subtract composition of the input systems. *Although this is a procedure and not a class, we capitalize the name by analogy with the `sm.FeedbackSubtract` class.*

Wk.5.1.5 Once you have debugged your code in Idle, paste it into this tutor problem, check it, and submit it.

4 Examples

These examples, drawn from the notes, are included in `s15Work.py`.

Real poles:

```
>>> s1 = sf.SystemFunction(poly.Polynomial([1]),
                           poly.Polynomial([0.63, -1.6, 1]))
>>> print s1
SF(1.000/0.630 R**2 + -1.600R + 1.000)
>>> s1.poles()
[0.90000000000000069, 0.6999999999999951]
>>> s1.poleMagnitudes()
[0.90000000000000069, 0.6999999999999951]
>>> s1.dominantPole()
0.90000000000000069
```

Complex poles:

```
>>> s2 = sf.SystemFunction(poly.Polynomial([1]),
                           poly.Polynomial([1.1, -1.9, 1]))
>>> print s2
SF(1.000/1.100 R**2 + -1.900R + 1.000)
>>> s2.poles()
[(0.9499999999999996+0.44440972086577957j), (0.9499999999999996-0.44440972086577957j)]
>>> s2.poleMagnitudes()
[1.0488088481701516, 1.0488088481701516]
>>> s2.dominantPole()
(0.9499999999999996+0.44440972086577957j)
```

Driving to a wall example from the notes:

```
>>> T = 0.1
>>> k = -2.0
>>> controller = sf.SystemFunction(poly.Polynomial([k]),
                           poly.Polynomial([1]))
>>> print controller
SF(-2.000/1.000)
>>> plant = sf.SystemFunction(poly.Polynomial([-T, 0]),
                           poly.Polynomial([-1, 1]))
>>> print plant
SF(-0.100R/-1.000R + 1.000)
>>> controllerAndPlant = sf.Cascade(controller, plant)
>>> print controllerAndPlant
SF(0.200R/-1.000R + 1.000)
>>> wall = sf.FeedbackSubtract(controllerAndPlant)
>>> print wall
SF(0.200R/-0.800R + 1.000)
>>> wall.poles()
[0.8000000000000004]
```

SW Lab 5

10/5

- implement a LTI system
 - last weeks + this week's lecture
- w/ SystemFunction class
- create polynomial w/ `poly.Polynomial([])`
- stuff should have modify list

X₀ (reverse) may be needed

Copy list w/ $y = x[:]$ & so much easier!

- `arg max`
- returns highest score as output
 - the element which outputs highest value

So input

$$\frac{Y}{X} = \frac{1}{1.63R^2 + -1.6R + 1} = \frac{N(R)}{D(R)}$$

- oh same example as in lecture
- makes it easier!

flip:

$$\rightarrow \frac{1}{1.6R^2 - 1.6R + 1}$$

Sub $R \rightarrow \frac{1}{2}$ ^{BBB}
- no don't need to flip

$$\frac{1}{1.63\left(\frac{1}{2}\right)^2 - 1.6/2 + 1} \quad \text{& root to find denom}$$

(2)

We already implemented rooten

- try it w/ denom as is now
- question is how to deal w/ $\frac{1}{z}$
- in the representation that is in class
- not what lecture got

- now its

$$1.63 z^2 - 1.6 z + 1$$

we want

$$\frac{1.6}{z^2} - \frac{1.6}{z} + 1$$

• ~~num~~

$$\bullet \frac{1}{n}$$

- work w/

$$z^2 + \frac{1}{2}z - \frac{1}{8} \rightarrow \left(z + \frac{1}{2}\right)\left(z - \frac{1}{4}\right)$$

$$(z+1)(z-2)$$

$$z^2 - 1z - 2$$

So it works in isolation

~~= do that~~

- but still not what prof got in one

(3)

Or is it reversed

$[-.125, .25, 1]$ entered as

should be roots of

$[1, .25, -.125], \text{roots}()$

- I think that, what $\frac{1}{z}$ converts
- oh it copies lists
 - not polynomials
- just do it in init
- no - can't
- I solved this before
 - oh ~~it~~ will give coeffs depending on lib version
 - polynomial
- came out right, but wrong sign
- multiply ans $\cdot -1$
 - no - remember root as int is that

$$(2 + 5)(2 - 25)$$

$$z = -5 \quad z = 25 \quad \text{so correct}$$

Now pole magnitudes

- Simply absolute value if real
- imaginary $\sqrt{\text{real} + 1}$ parts
- but abs does for both

④

- but abs does not do lists, grr
ok done

dominate pole

- return value of pole
- or position or what?

$[-.5, .25)$

$.5 > .25$

↑
return $-.5$

- or do I want to do argmax

$\text{tf1.argmax}(\text{poles, abs}())$

~~tf1~~ $\mapsto (\text{self.poles, abs})$ ①

Should be done

tutor

worked on Let try!

- all that's due today
- available now, go work up more min

(5)

cascade practice

$$H_1 = \underset{\text{output}}{w[n]} - \underset{\text{input}}{w[n-1]} = x[n] - 2x[n-1]$$

$$H_2 = \underset{\text{output}}{y[n]} - \underset{\text{input}}{y[n-1]} = w[n] + w[n-2]$$

* oh do this 1st

$$H_1/ \quad w[n] = x[n] - 2x[n-1] + w[n-1]$$

$$H_2/ \quad y[n] = w[n] + w[n-2] + y[n-1]$$

$$H_1/ \quad y = x - 2Rx + yR$$

) or is that right?

$$H_2/ \quad y = x + xR^2 + yR^2$$

$$H_1 = \frac{Y}{X} \rightarrow y - yR = x - 2Rx$$

$$y(1-R) = x - 2Rx$$

$$y = \frac{x - 2Rx}{1 - R}$$

$$\frac{Y}{X} = \frac{1 - 2R}{1 - R}$$

(6)

 H_2

$$Y - YR = X + X R^2$$

$$Y(1-R) = X + X R^2$$

$$Y = \frac{X + X R^2}{1-R}$$

$$\approx \boxed{\frac{W + WR^2}{1-R}}$$

$$\frac{Y}{X} = \frac{1 + R^2}{1-R}$$

 H_1

$$\begin{matrix} -2 & 1 \\ -1 & 1 \end{matrix} \quad \textcircled{1}$$

 H_2

$$\begin{matrix} 1 & 0 & 1 \\ -1 & 1 \end{matrix} \quad \textcircled{0}$$

Now Cascade

-order does not matter,

do $H_{H_1} \rightarrow H_{H_2}$ ← order confusing

$$Y = \frac{X - 2RX}{1-R} \quad \underbrace{\left(\frac{X - 2RX}{1-R} \right) + \left(\frac{X - 2RX}{1-R} \right) R^2}_{1-R}$$

? think that is it the output of 1 into other

(7)

$$\frac{Y}{X} = \frac{\left(\frac{1-2R}{1-R}\right) + \left(\frac{1-2R}{1-R}\right) R^2}{1-R}$$

num

$$\frac{1-2R}{1-R} + \frac{R^2 - 2R^3}{R^2 - R^3}$$

i can you reduce it further

denom stays same $1-A$

-uh - simple math screws me every time!

- or could you use the #

- find common denom

~~$(R^2 - R^3)$~~

so

$$\frac{(1-2R)(R^2)}{1-R(R^2)} \rightarrow \frac{R^2 - 2R^3}{R^2 - R^3} + \frac{R^2 - 2R^3}{R^2 - R^3}$$

$$\frac{2R^2 - 4R^3}{R^2 - R^3} \quad (R^2 - R^3)(2-4)$$

$$\frac{1-2R + R^2 - 2R^3}{1-R}$$

~~does $\frac{2-4}{X-Y} = 2-4$ factor!~~

$$\frac{R^2(2-4R)}{R^2(1-R)} = \frac{2-4R}{1-R}$$

(8)

together

$$\cancel{\frac{2-4R}{1-R}}$$

$$\cancel{\frac{1-R}{1}}$$

$$\cancel{\frac{2-4R}{1-R}} \cdot \cancel{\frac{1-R}{1}} =$$

$$\frac{1-2R+R^2-2R^3}{\cancel{2-4R}} \cdot \frac{1}{1-R} = \frac{\cancel{2-4R}}{R^2-2R+1} \frac{1-2R+R^2-2R^3}{1-R}$$

Clearer way

$$= H_2 H_1 X$$

$$Y = \left(\frac{1+R^2}{1-R} \right) \cdot \left(\frac{1-2R}{1-R} \right) X$$

$$\frac{1+R^2-2R-2R^3}{1-2R+R^2} = \text{same thing much simpler}$$

$$\begin{array}{cccccc} -2 & 2 & -2 & 1 & -2 & 1 \\ & 1 & -2 & 1 & & \end{array} \quad \checkmark$$

Stop for today

⑨

5.1.3

implement cascade

- procedure \star (SF1, SF2)
 ↴ ↴
 2 sys functions

10/5

right

$$Y = M_1 M_2 X$$

$$\text{num} = \frac{M_1 \text{, numerator} + M_2 \text{ num}}{M_2 \text{ denom} + M_1 \text{ denom}}$$

oh right not self. =

return a new SF

done ⑩

5.1.4 Feed back sub fract practice

$$M_1 = \frac{N_1}{D_1} \leftarrow \text{polynomials in } Q \text{ (like } \frac{Y}{X})$$

$$M_2 = \frac{N_2}{D_2}$$

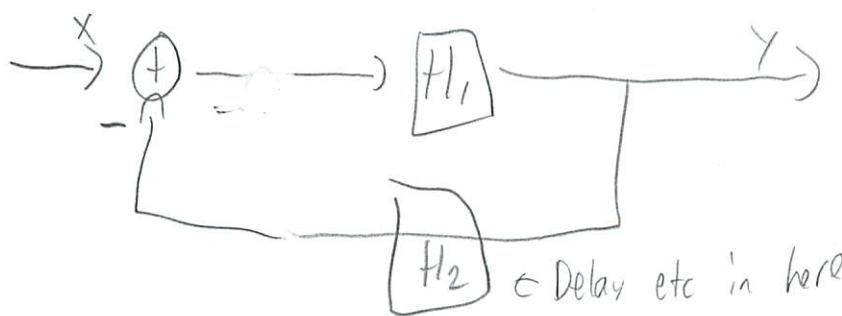
- must enter both together

- + x only

$$2 \cdot N_1 = \text{legal}$$

()

10



~~Defn~~ $Y = H_2[n-1] + H_1,$

- but that is w/ r

- hmm, ~~2 docs~~

- forming is hard part

- in docs

feeding output of H_1 back w/ H_2 optional

- no help

- so here $\rightarrow (N1 \circ D1) + N2$ e.g. example

- numerator is Y (output) = N

X = input = D

num? ~~W~~ $N1 + D1 \neq N2$

? denom what would that be?

- input

- look at lecture example

11

there it is

$$Y = H_1(X - H_2 Y)$$

$$Y + H_1 H_2 Y = H_1 X$$

$$Y(1 + H_1 H_2) = H_1 X$$

$$Y = \frac{H_1}{1 + H_1 H_2} X$$

$$\frac{Y}{X} = \frac{H_1}{1 + H_1 H_2} \quad \begin{matrix} \text{c Num} \\ \text{c Denon} \end{matrix}$$

but as $\frac{N_1}{D_1}$ ⊗ big no
 $\frac{1 + \frac{N_1}{D_1} \frac{N_2}{D_2}}{1 + \frac{N_1}{D_1} \frac{N_2}{D_2}}$?

- think how I did cascade

- but that was different format

- oh no division allowed

- but could implement like that

- and then see their ans

- they say make sure fully simplified

- did in des lab 3 w/ Sm

- but this is w/ Q functions

- get next value

(12)

- before I had 2 examples

$$\frac{N_2 N_1}{D_2 D_1} \quad \epsilon \text{ would have been my answer}$$

that is multiplication

- what is Black's formula

- oh just $\frac{Y}{X} = \frac{H_1}{1 + H_1 H_2}$ part of

- but what was my multiple nom/denom

- should reduce

$$\frac{N_1}{D_1}$$

$$1 + \frac{N_1}{D_1} \frac{N_2}{D_2}$$

$$\frac{N_1}{D_1} \cdot \left(1 + \frac{N_1 D_1}{N_1} \frac{D_2}{N_2} \right)$$

$$\text{so } \frac{N_1 (D_1 \cdot D_2)}{D_1 (N_1 N_2)} \quad \textcircled{D}$$

+ calc \rightarrow enter and push enter

$$\frac{D_2 N_1}{D_2 D_1 + N_1 N_2} \quad \textcircled{D} \text{ bingo} \quad \text{- how did they do it}$$

- and I needed to see that lecture notes slide

- all the diff formats confuse me

(B)

Wolfram alpha

$$\frac{N_1}{D_1 \left(\frac{N_1}{D_2} + 1 \right)} \quad \frac{D_2 N_1}{D_1 (D_2 + N_1)}$$

and the one
I had

- oh well will ask about

- oh wait take what I had

$$\frac{N_1}{D_1} \left(1 + \frac{D_1}{N_1} \frac{D_2}{N_2} \right)$$

I can't just get rid of
why did I do that
I know that

$$\frac{N_1}{D_1} + \frac{N_1 D_1 D_2}{D_1 N_1 N_2}$$

$$\frac{N_1}{D_1} + \frac{D_2}{N_2} \quad \text{c get common denom}$$

$$\frac{N_1 D_2}{D_1 D_2} + \frac{N_1 D_2}{N_1 N_2} \quad \text{- hope}$$

- hmm wait on it

~~Not good~~ ~~$N_1 D_2$~~

19

Now implement

Now pre-lab for tomorrow

- Construct wall finder system function
 - Controller SF
 - takes gain - fun of error
 - returns velocity
 - plant SF
 - + timestep duration
 - input velocity
 - output = actual distance to wall
 - Sensor SF
 - no in
 - out is R (sensor reading)
 - wall finder system puts it all together
 - ? did we not do this before?
 - oh that was SM
 - need to do w/ SF
 - ? so just change it?
 - yeah worked for controller!
 - no init D
 - since doing R math
 - blank for wire
 - is ans kinda in SLS work!

(15)

- well not exactly
- w/ math, not using PCAP functions
- worked
 - that would have made last Design lab much easier

Week 4 HW

10/6

- a bit late, but due tomorrow
- well still on time
- but after design lab

4.4. Finding Systems

- Oh more diff eq
- w/ d + c coeffs
- real life situations this time

$x[n]$ = digitized sound

$y[n] = \text{avg of previous 2 inputs}$
forget first few samples

$$y[n] = (x[n-1] + x[n-2])/2$$

$$\frac{1 + 1^2}{2}$$

- want # coefficient
- Oh I remember

c	d
.5 .5 0 \otimes	none \otimes
0 .5 .5 \otimes	

-? hmm

let me do others - only have 8 checks

②

What is it input output

n	n-1	n-2		n-1	n-2
---	-----	-----	--	-----	-----

↑ starts different

0h	0	,5	,5	·	①
----	---	----	----	---	---

- duh forgot format

Bank \rightarrow 5% annual interest rate

inputs = deposits that year

output = balance at end of year

n = 1 year

- ~~each~~ ~~deposits~~ don't earn ^{deposits} interest till year rolls over

$$y(n) = x(n) + 1.05y(n-1)$$

	①	1,05	①
--	---	------	---

- you deposit 100 in n=0

- what is balance in years

↳ - hint write a program

- ? w/ our thing SF?

$$\begin{array}{l} \cancel{y} \cancel{y(n)} \\ y(n) = x(n) + 1.05y(n-1) \\ y = x + 1.05 \Delta y \end{array}$$

(3)

~~$$y - 1.05 R_y = x$$~~

$$y(1 - 1.05 R) = x$$

$$\frac{y}{x} * (-1.05 R) = 1$$

$$\frac{y}{x} = \frac{1}{-1.05 R}$$

$$SF(Polynomial[1], Polynomial[-1.05, 0])$$

-? so how eval that?
- no step

- a for loop would have been so much simpler

- can you plot it?
- wrong thing

- so in 2 min I made a non P-Cap loop

- guess I could have done a SM
- but too complex to think it all through

4.1.2 Representations

- so same dcoeff ccoeff

- but reading a picture

- operator equation

$$a_0 y + a_1 R y + a_2 R^2 y$$

constant (Q0) e-yeah, so:

(4)

- this could have helped w/ other one

$$y[n] = \underset{d}{0} x[n] + \underset{c}{-1} x[n-1]$$

$$\left. \begin{matrix} 0 & 1 & -1 \end{matrix} \right| \text{none } \textcircled{1}$$

Oh operator eq is something different

$$\begin{array}{c|c} R_x & R_y \text{ - what is difference} \\ \textcircled{0} & \textcircled{1} \otimes \\ \textcircled{0} & \textcircled{0} - \textcircled{1} \otimes \end{array}$$

- so it is just other form

- according to past G.O.I notes

$$Y = XQ - XQ^2$$

$$\begin{matrix} 0 & 1 & -1 & \textcircled{0} \end{matrix} \quad \begin{matrix} \text{none } \textcircled{X} \\ \text{? something?} \\ \text{guess not } \textcircled{0} \end{matrix}$$

because
it is = to 1

(5)

$$xR - xR^2 = \begin{matrix} Y \\ 1 \\ 1 \end{matrix} \quad \textcircled{0}$$

Now much more complex pic

- first part is same similar

$$Y[n] = x[n] + -1x[n-1] + 2x[\text{all that!}]$$

- hmm how do we do it

- look in lecture notes

- assign variables halfway

$$W = X - 1xR$$

$$Y[n] = -1RQW + 2QW$$

Now plug in

$$Y = -R^2(x - xR) + 2R(x - xR)$$

to guess this form exist here

$$Y = -R^2x + xR^3 + 2Rx - 2R^2x$$

$$xR^3 - 3R^2x + 2Rx$$

$$1 \quad -3 \quad 2 \quad 0 \quad \textcircled{0} \quad \text{none} \quad \textcircled{0}$$

$$1 \quad -3 \quad 2 \quad 0 \quad \textcircled{0} \quad 1 \quad \textcircled{0}$$

Seems right

(6)

10/6

Oh did I do coefficients wrong

- diff order than polynomial class

- made same mistake as before

$$\begin{array}{ccccc} 0 & 2 & -3 & 1 & \textcircled{1} \\ 0 & 2 & -3 & (& \textcircled{0} \end{array}$$

4.4.3 LTI SM

10/6

- built complex SM out of primitives

- guy told me this is how can do that bank thing

- write `LTIsm(dCoeff, cCoeff, previousIn, previousOut)` function

- why need both

they seemed to be same format!

- oh don't need ~~those~~ all the time
past parts

- why not 'c'

- seems like you never need it

$$y[n] = 3x[n]$$

$$\text{LTIsm}([3], [])$$

7

Delay Machine

$$y[n] = x[n-1]$$

LTI $(\{0, 1\}, \{1\}, \{0\}, \{1\})$

Oh specified $x[1] = 0$
so like init

Oh!!! this is different
than previous questions

- Ok now I get it
- try designing some
- $n-1$

$$y[n] = \cancel{x[n-1]} + y[n-1]$$

oh skip most recent input

none	1	0	10
1	0	0	0

can't be

- would never increment
I was ~~right~~

0 1

⑧

- now scaled by .1

0	11	1	1	8	1	1
---	----	---	---	---	---	---

4.4.4 Implement LTISM

- first simulate

LTISM([1,2],[1,2,3],[4])

$$y[n] = x[n] + 2x[n-1] + y[n-1]$$

$$x[-1] = 3$$

transduce [1, 2, 3, 4, 5]

$$y[-1] = 4$$

$$0=n \rightarrow 1 + 2 \cdot 3 + 4 = 11 \quad \textcircled{0}$$

$$1=n \rightarrow 2 + 2 \cdot 1 + 11 = 15 \quad \textcircled{0}$$

- but how does R help?

$$2=n \rightarrow 3 + 2 \cdot 2 + 15 = 22 \quad \textcircled{0}$$

$$3=n \rightarrow 4 + 2 \cdot 3 + 22 = 32 \quad \textcircled{0}$$

$$4=n \rightarrow 5 + 2 \cdot 4 + 32 = 45 \quad \textcircled{0}$$

adds the previous 2 to accumulator

now code it up

- back to SMs

- implement get next value

- but how to process coefficients?

(9)

- remember dot product function
- think through cases w/ d/c coeff empty
- so remember sm thinking
 - we did something like this already;
 - w/ polynomial?
 - poly Q?
 - but that is signal
- so # what to do
 - see I forget a lot of the sm stuff
- d coeff
 - T well polynomial does that
- so lets use example to think through
 - go through d coeff adding
 - for x in d coeff
 - ~~ans~~ $x \cdot \text{input} + \text{ans} = \text{ans}$
 - don't change anything!
 - For x in coeff
 - $x \cdot \text{getNextValue}(\) + \text{ans} = \text{ans}$
 - ~~ans = ans~~
 - or will this be in state
 - may need to test in id/p
 - but w/ initial ~~ans~~ #
 - if need $n-1$
 - or what if I did something crazy
 - $\text{output}(n)$ & regens everytime (stateless though)
 - $\text{input}(n)$

(10)

So their ^{start} state would be
 $(3, 4)$

- what do they intend state to be?
 - should use it, since that is point of class
 - so $(x_1, x_2, (x[n-1], y[n-1]))$ - but that is not flexible
 - or $(x[n-1], \cancel{x_1}, \cancel{x_2})$
 ? but inflexible?

what if $((x[n-1], x[n-2], y[n-1], y[n-2]))$
 which is what it would be

- so state always carries ~~the first~~ terms
- if no $n-1$ terms won't be used
- if not enough init terms, Run program would error

So do as state
 and forgot $output(n)$
 $input(n)$

- so get next value ~~but~~ can only be done incrementally
 - so can't \downarrow in the loop

⑩

ans = 0
i = 0

for x in dcoeff

~~x * input[i]~~ + ans = ans

i += 1

↑ or this will be ~~switch case~~

if i = 0 → ~~use~~ input

if i > 1 → state[0][i-1]

(will have to reform)
- put outside loop

i = 0

for x in dcoeff

~~x * state[0][i]~~ + ans = ans

i += 1

~~if i > 0~~

return (ans, state)

or is it other way around?

- also need to change state

- Year ~~on~~ state, ans

- New State

(input, ans)

But what if more than one are specified

then the whole thing will be blanked

on first run

- need to append these at start of list

- and ~~the~~ remove old values

really? - no! - no need (buffer overflow?)

- ~~so~~ I get it,
I just need to
long time to think
it out, I
need to look
back at the
documentation

(12)

- well use $\text{insert}(0, x)$
- ok give it a try
- ① worked 1st try!!!
- never tested once
- thought through every theoretical possibility

try the bank problem (my own personal try)

LTI SM $\left([1], \left[\begin{smallmatrix} 1 \\ 1 \end{smallmatrix} \right], [0], [0] \right)$. transduce $\left([100, 0, 0, 0, \dots] \right)$

.05

need or will error

h₀ gets ∞ smaller
do again

~~y[n] = x[n]~~

Oh duh 1.05

Woot! got it fairly easily!

4.4, 5 Transduced Signal

- given a SM + sig we can construct new signal

- but only works for $n \geq 0$

- So ~~after~~ this is what I wanted to do before ~~???~~

- but we were only doing gains from unit signals or something like that

(13)

TransducedSignal(Signal)^{✓ subclass}

- `__init__(self, s, m)`
 ↗ ↗
 input SM will use
 signal

Ans Sample(n)

- returns value at n
- Start state machine from scratch to that value
 - so this is like my input/output() function idea
 - well a total rejection of it
 - uses SM
 - - not breaking model
- inefficient
 - can cache for "bonus points"
 - ↗ no actual bonus points
- ok so need to do sample for $n > 0$

SM. transduce(signal)

↑ but only to n
 and return that value

- need write own test cases
 - darn!
 - find a signal and a SM

(14)

- Can't transduce a signal?

~~Signal~~ stream

- well can but for valve it must be #?
- not a Signal instance
- Signal.sample(n)

but need a up to it ??

So

need ~~for~~ while $i \geq n$

stream.append(s.sample(i))

and then m.transduce(stream)

loop on

- oh did not $i = i + 1$
- and \leq not \geq
- and self, s
- ok now I need to ~~only~~ only return last valve, not whole transcript up to that pt
- actually strike that!
- just run last one!

- I spend a lot
of time to do well
in this class
- will see how tests
are

(15)

So no m. transduce (stream)

m. step (stream)

T_i

try it out

- they are using Ifism as a SM

- hmm why is it erring w/ no numpy?

- grr

- fixed, took like 15 min!

- nope not stop

- kinda doing G+V - not concatenating

- hmm just return last value of the transduce?

- "hacky"

- pop!

✓ works

Now one more bank qv

- need an input signal

- anything?

- LTI SM of bank

- construct signal by transducing signal through sm

(16)

- could just do ~~LFSM~~

$$y[n] = 0.99y[n-1] + x[n]$$

Or can use signal

100 gain 0
20
50

- Use poly R
- must be better way!
- use SM I did last time ~~- a (TFSM)~~
- hmm their It'sm will error if you give it too many inputs!
- ok get it
- how can I ans
- oh before it was since it was doing samples in range
 - still should have just reported out pt

① all done

hand 5

10/7

- machine

$$\frac{Y}{X} = R = n-1$$

- roots of denom

$\sqrt{\quad}$

- but

$$Y[n] = (1+a)Y[n-1] + (1+b)x[n] + bX[n-1]$$

$$Y - (1+a)Y = (1+b)x + bX$$

$$Y(1 - (1+a)R)$$

$$\frac{Y}{X} = \frac{bR + (1+b)}{1 - (1+a)R}$$

$(X-1)$ ~~✓~~

(roots

$a+1$, none

got 12/13

Design Lab 5: Staggering Proportions

1 Introduction

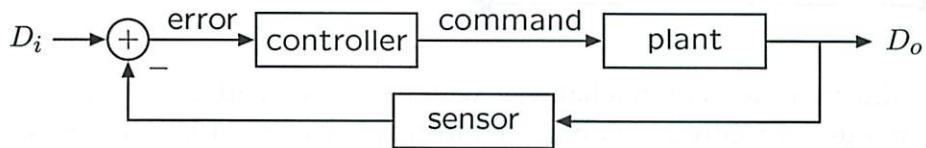
This lab should be done with a partner. Each partnership should have a lab laptop or a personal laptop that reliably runs soar. Do a `thrun 6.01` update to get the files for this lab, which will be in `Desktop/6.01/lab5/designLab/`, or get the software distribution from the course web page.

The relevant files in the distribution are:

- `propWallFollowBrainSkeleton.py`: A brain with a place for you to write the proportional controller.
- `wallTestWorld.py`: A world with a wall for the robot to follow. (This file appears in the `worlds` subdirectory)
- `dl5Work.py`: A file with appropriate imports for making system functions and finding their properties.

Be sure to mail all of your code and plots to your partner. Each of you will need to bring copies with you to your first interview.

In this lab, we will program the robot to move along a wall to its side, maintaining a constant, desired distance from the wall. We will use a simple *proportional controller*, and model it as a system with the same structure that we used for last week's *wall finder* system.



The steps in this lab are:

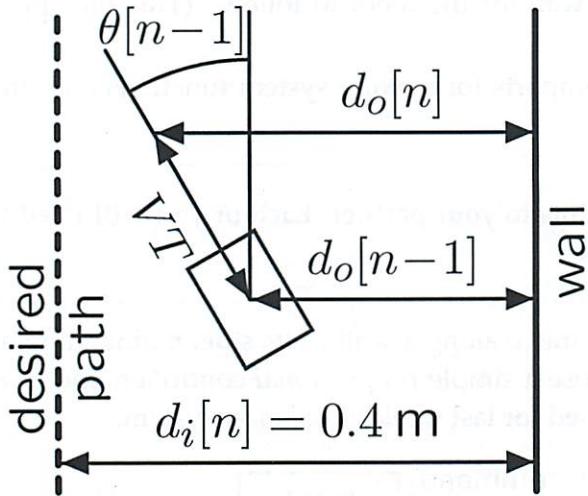
- Build a proportional controller for a robot and test it in simulation with different gains.
- Build an analytical model of the controller-plant-sensor system, both by hand and using the `SystemFunction` class.
- Use the model to gain understanding about the best gain to use for the controller and what kind of behavior to expect from the system.

Definitions of symbols

Here are the definitions of various symbols we will use in this lab. The descriptions might not yet make sense to you, but we put them here so you can refer back to them as you work.

- k : gain of the controller, a constant number
- V : forward velocity of the robot, a constant number
- T : the amount of time between discrete samples of the signals, a constant number
- D_i : desired distance of the robot to the wall, a signal whose samples are $d_i[n]$
- D_o : actual distance of the robot to the wall, a signal whose samples are $d_o[n]$
- E : error, equal to $D_i - D_o$, a signal whose samples are $e[n]$
- Θ : robot's angle with respect to the wall, a signal whose samples are $\theta[n]$
- Ω : robot's angular velocity, a signal whose samples are $\omega[n]$

2 Proportional wall-follower



The figure above illustrates a robot in a hallway, with its desired path a fixed distance from the right wall. We can build a controller with a fixed forward velocity of $V = 0.1 \text{ m/s}$, and adjust the rotational velocity $\omega[n]$ (not shown) to be proportional to the error, which is the difference between the desired distance $d_i[n] = 0.4 \text{ m}$ to the right wall and the actual distance $d_o[n]$. The constant of proportionality between the error and the rotational velocity is called the *gain*, and we will write it as k . Notice that when the rotational velocity $\omega[n]$ of the robot is positive the robot turns towards the left, thus increasing its angle $\theta[n]$.

Look in the file `propWallFollowBrainSkeleton.py`. The brain has two state machines connected in cascade. The first component is an instance of the `Sensor` class, which implements a state machine whose input is of type `io.SensorInput` and whose output is the perpendicular distance to the wall on the right. The perpendicular distance is calculated by `getDistanceRight`

in the `sonarDist` module by using triangulation (assuming the wall is locally straight). All of the code for the `Sensor` class is provided.

The second component of the brain is an instance of the `WallFollower` class. Your job is to provide code so that the `WallFollower` class implements a proportional controller.

Check Yourself 1. What should be the types of the input to and the output from a state machine of the `WallFollower` class?

- Step 1.** Implement the proportional controller by editing the brain. Then use `soar` to run your brain in the world `wallTestWorld.py`. The brain is set up to issue a command during the setup to rotate the robot, so it starts at a small angle with respect to the wall.
- Step 2.** Experiment with a few different values of the gain k of the controller (within the range 0 to 20). Generate slime trails to illustrate how the system's performance depends on the value of k ; how does it affect the convergence of the output to the desired value? **Be sure to take and save screen shots of at least three slime trails.**

Checkoff 1.

- Show your slime trails to a staff member, and explain the implications of the slime trails for choosing a good value of k .
- Compare the kinds of behaviors exhibited by the wall-follower system to the range of behaviors of the wall-finder system from last week.

3 Mathematical model

Picking gains and trying them on the robot can become tedious, so we will build a model of the wall-follower system, and use it to understand, analytically, how the performance of the system depends on the gain. (Section 6.5 of the readings illustrates a similar modeling effort for the wall-finder system).

- Step 3. Controller model:** Assume that the controller can instantly set the rotational velocity $\omega[n]$ to be proportional to the error $e[n]$. Express this relation as a difference equation.

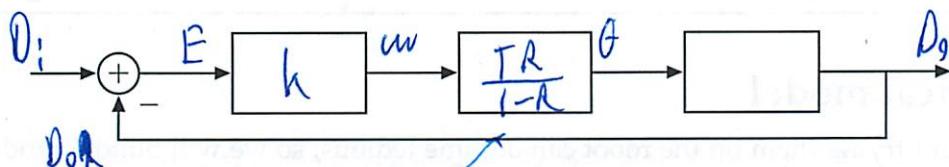
Step 4. Plant model: Write difference equations describing the “plant,” that is, an expression for $d_o[n]$, that depends on ω . It is useful to break this problem into two parts:

- **Plant1:** Write an expression for $\theta[n]$, the robot’s angular orientation with respect to the wall, that depends on ω . (Remember that the robot (or state machine) can only set new values for variables based on values that were computed at previous times, or in other words, each of the state machines in a brain update their variables in synchrony.)

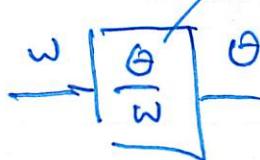
- **Plant2:** Write an expression for $d_o[n]$, that depends on θ , by linearizing the relation between d_o and θ using the small angle approximation (i.e., if θ is small, then $\sin \theta \approx \theta$). This approximation makes our model linear, allowing us to analyze it easily. It is useful to think about what its consequences are, for large angles, however.

Sensor model: To keep things simple, we will model the sensor as a wire: that is, assume it introduces no delay.

The subsystems represented by the three difference equations above connect together to form a system of the following form. Label each wire in the block diagram with the name of the corresponding signal. You may also find it useful to label each of the boxes in this diagram with the element of the model (controller, plant1, plant2) corresponding to each of the three difference equations you derived.



Step 5. Convert your difference equations into operator (\mathcal{R}) equations, and find the system function. If you’re not sure about your difference equations, you might want to check with a staff member before solving.



$$\theta = \theta R + w R T.$$

$$\theta - \theta R = w R T$$

$$\theta = \frac{w R T}{(1-R)}.$$

$$H = \frac{D_o}{D_i} =$$

Wk.5.3.2 Enter the system function into the tutor by entering the numerator and denominator polynomials.

4 Software model

Manipulating equations, as you did above, is useful because you can keep constants like k and T as symbols, and see how they factor into the model. However, manual manipulation of equations can be quite error prone. In this section, we will explore the use of our Python `SystemFunction` class to model and analyze the wall-follower. The only drawback is that we will only be able to ask it to do so for particular numeric values of k and T .

The `SystemFunction` class provides two primitive kinds of system functions: `gain` (`sf.Gain`) and `delay` (`sf.R`). They are implemented as Python procedures, but named with uppercase variables by analogy with the `sm.Gain` and `sm.R` state machines.

```
def Gain(k):
    return sf.SystemFunction(poly.Polynomial([k]), poly.Polynomial([1]))
def R():
    return sf.SystemFunction(poly.Polynomial([1, 0]), poly.Polynomial([1]))
```

These can be combined, using `sf.Cascade`, `sf.FeedbackSubtract`, and `sf.FeedbackAdd` to make any possible system function; and the structure of the combination will be the same as it would have been to build up the analogous state machine.

Note that while the internal definitions of `Gain` and `R` use polynomials to construct them, by abstraction you can use these system functions, together with our means of combination without ever having to utilize these internal details.

Check Yourself 2. Use gains, delays, and adders to draw system diagrams representing the controller and each of the parts of the plant you derived in the previous section.

- Step 6.** Edit the `dl5work.py` file to implement Python procedures called `controller`, `plant1`, and `plant2` that use `sf.Gain`, `sf.R`, `sf.Cascade`, `sf.FeedbackSubtract`, and `sf.FeedbackAdd` to construct and return instances of the `SystemFunction` class that represent the three blocks in the mathematical model. Pass the important parameters for each block (e.g., k) as inputs to the corresponding procedure.
- Step 7.** Write a Python procedure `wallFollowerModel(k, T, V)` that calls the previous Python procedures to make system functions for the components and composes them into a single `SystemFunction` that describes the system with `desiredRight` as input and `distanceRight` as output.

Wk.5.3.3

Enter the definition for `wallFollowerModel` and any procedures it calls into the tutor. Do not enter any `import` statements.

Checkoff 2.

Demonstrate to a staff member that, for $k = 1$, $T = 0.1$, and $V = 0.1$, the system function returned by your model is the same as the one you derived mathematically.

5 Model predictions

Now, we will use our models to understand what the system can and cannot do. Let us assume throughout this section that $T = 0.1$ and $V = 0.1$. These are reasonable values for our robots.

We know how to make predictions about how a system, starting at rest, will respond to a unit sample signal as input. Our situation here is different, in that the system does not start at rest and that the input is a persistent step signal (asking the robot to achieve a fixed distance from the wall). We will see next week that the unit-sample response of the system at rest is nonetheless an important predictor of behavior in the more general case.

Step 8. Use the `dominantPole` method of the `SystemFunction` class, to determine what your model predicts, for each of the gains 0.5, 1.0, 2.0, 4.0, and 10.0. In response to the unit sample signal as input,

- Will the output signal oscillate?
- Will the output signal converge to 0?
- If it does converge to 0, how many time steps would it take for its magnitude to go below 0.01? (In Python, `math.log(v, b)` computes $\log_b v$.)

Step 9. Find an algebraic expression for the poles of the system. Be sure it agrees with the software for gains 0.5, 1.0, and 10.0.

Step 10. Find the range of gains, if any, that will make the system stable (have bounded output in response to bounded input).

Checkoff 3.

- Explain how you found the range of stable gains in the last step. Discuss how they relate to the behavior observed in the robot simulations from section 2.
- Explain what you can do with a state machine representation of a system that you can't do with a system function representation of that same system? What can you do with a system function representation that you can't do with a state machine representation?

Des Lab 5

10/7

- Wall follower, get next values

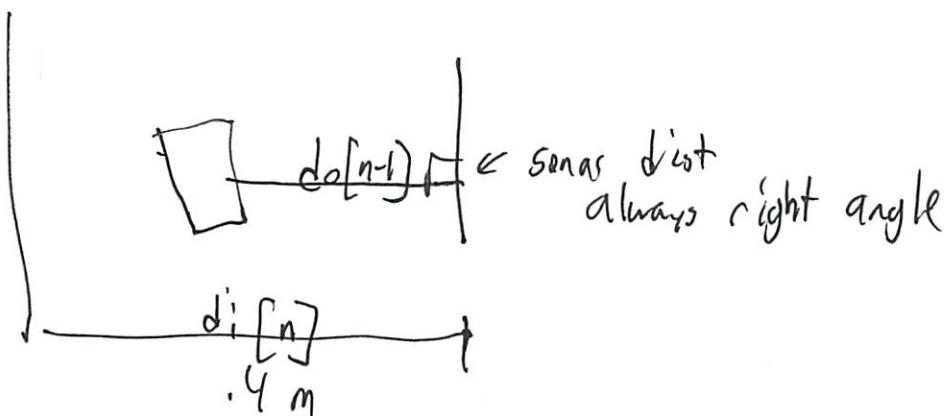
inp = distance

out = ~~if~~ commands

- yeah is, Action

$$V = , 1 \quad \theta = ?$$

need to calculate θ



$$do[n-1] = \text{sensor} = 2.4 \quad \theta \in \text{?} - \text{?}$$

$$> 2.4 \quad \theta \in \text{?} - \text{?}$$

proportional

↳ the greater the distance from 2.4, the greater the
~~dist~~ error
- try constants

$$\text{error} = \text{actual} - D_i$$

$$\theta = k \cdot \text{error}$$

experiment

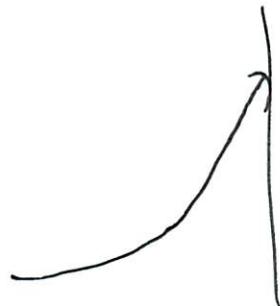
②

Will it oscillate

- depends on gain

Desired angle relative to ~~robot~~^{robot},
or compass like

Will it oscillate



Wrong gain

- but very different in wall test world

$k = 1, .5, 1$ hits

$k = 10$ swings wildly, does a loop

$k = 5$ swings are still kinda far

Did 10 swing smaller

$k = 20$ kinda nice

$k = 200$ just does circles

* key we are not changing vel - could get it to work
better by specifying that

③

Less overshooting

(beckhoff 1(IV))

controller

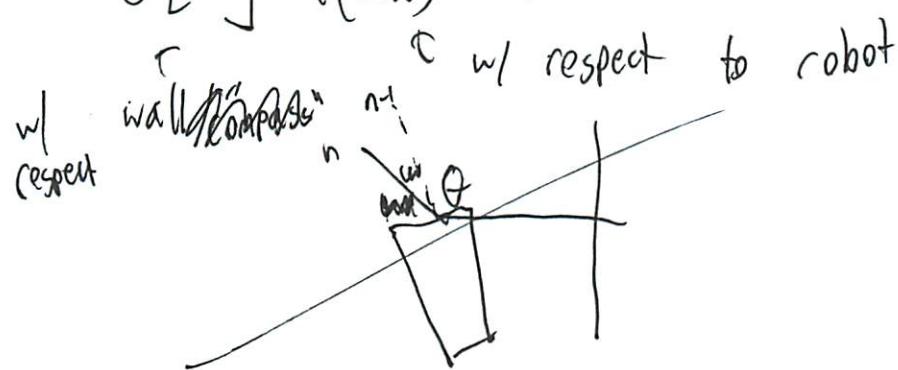
$$w[n] = k(D_i[t_h] - D_o[n-1])$$

Plant

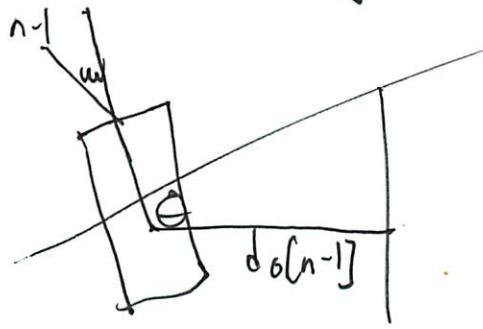
$$d_o[n] = f(w)$$

Plant 1

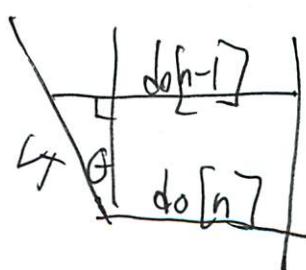
$$\theta[n] = f(w)$$



$$\theta[n] = w[n-1] - w[n]$$



look at pic



$$d_o[n-1] - d_o[n]$$

$$\sin \theta = \frac{d_o[n-1] - d_o[n]}{\sqrt{d_o[n]^2 + t^2}}$$

$$\theta = \sin^{-1} \left(\frac{d_o[n-1] - d_o[n]}{\sqrt{d_o[n]^2 + t^2}} \right)$$

(4)

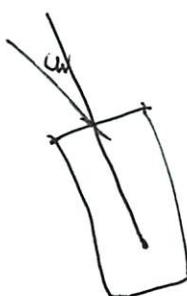
Opps we did plant 2

TA. Use approx $\sin \theta \approx \theta$

$$\text{so } d_o[n-1] \approx d_o[n]$$

$$\theta[n] = \frac{V[n]}{V[n-1]T}$$

Plant 1



$$\theta_{\text{tank}}[n] = \theta[n-1]T + w[n]T$$

Plant 2 classification

$$d_o[n] = f(\theta) \quad \text{reverse what we did before}$$

$$d_o[n] =$$

$$\sin \theta \approx \frac{d_o[n] - d_o[n-1]}{V[n-1]T}$$

$$\sin \theta \approx \frac{V[n-1]T + d_o[n-1]}{V[n-1]T + d_o[n-1]}$$

$$d_o[n] = \sin \theta V[n-1]T + d_o[n-1]$$

fill in for θ

$$d_o[n] = \underbrace{(\theta[n-1] + w[n]T)}_{\theta[n-1]} \underbrace{V[n-1]T}_{\text{Constant}} + d_o[n-1]$$

(4a)

$$d_0[n] = \Theta[n-1] \vee T + d_0[n-1]$$

5

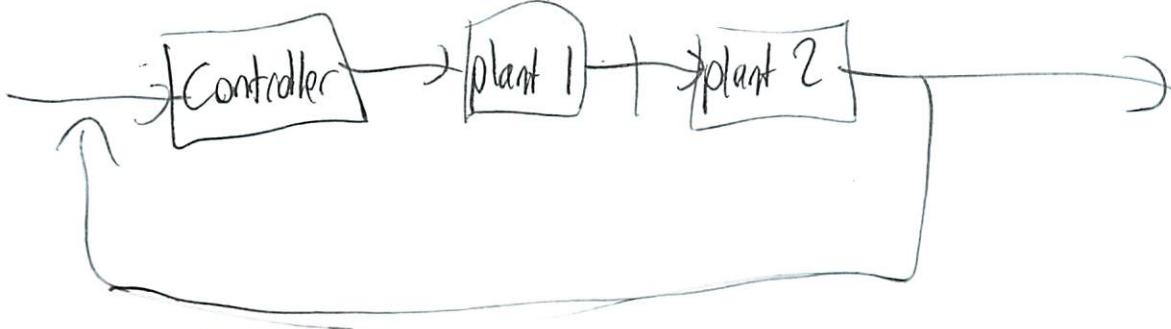
Sensor

But how can you do wire, won't lead to a loop?

~~→ do not feed back back in this~~

No that is plant 1, 2

Sensor

Convert to R

Rewrite

$$u[n] = k(D_i[n] - D_o[n-1])$$

$$\theta[n] = \theta[n-1] + u[n]T +$$

$$d_o[n] = \theta[n-1]VT + d_o[n-1]$$

$$d_o[n] = \theta[n-2] + u[n-1]T^2V + d_o[n-1]$$

$$= \theta[n-2] + k(D_i[n-1] - D_o[n-2])T^2V + d_o[n-1]$$

$$> (\theta R^2 + k(D_i R - D_o R^2))T^2V + d_o R$$

$$= VT^2\theta R^2 + kT^2V(D_i R - VT^2k D_o R^2 + d_o R)$$

Should do multiply ~~if~~ (cascade) + feed back subtract pattern

$\frac{Y}{X}$ thing

↑ more confusing

let me try my way

(6)

~~each part as~~

$$d_0 - d_0 R = VT^2 \theta R^2 + kT^2 V D_i R - VT^2 k D_0 R^2$$

$$d_0 - d_0 R + VT^2 k D_0 R^2 = VT^2 \theta R^2 + kT^2 V D_i R$$

$$d_0 (1 - R + VT^2 k R^2) = "$$

~~$$\frac{d_0}{d_i} \frac{y}{x} = \frac{VT^2 \theta R^2 + kT^2 V R}{1 - R + VT^2 k R^2}$$~~

- can not answer in terms of θ

- but our def of θ refers to θ

$$\theta = \sin^{-1} \left(\frac{d_0[n-1] - d_0[n]}{V T} \right)$$

$$= \frac{d_0 R - d_0}{V T}$$

$$d_0 - d_0 R + VT^2 k D_0 R^2 = VT^2 \left(\frac{d_0 R - d_0}{V T} \right) + kT^2 V D_i R$$

$$d_0 R T - d_0 T$$

$$d_0 + d_0 T - d_0 R - d_0 R T + VT^2 k D_0 R^2 = k T^2 V D_i R$$

$$\text{do} (1 + T - R - RT + VT^2 k Q^2) = k T^2 V_{\text{pil}} \Lambda$$

$$\frac{\text{do}}{di} = \frac{k T^2 V Q}{VT^2 k Q^2 - R - RT + 1 + T} \quad \textcircled{X} \quad \textcircled{X}$$

⑦

TA: Got everything in Q

$$W = h(D_i - D_o R)$$

$$\begin{aligned} f &= \theta R + \mu T R = \frac{D_o R - D_o}{V T} \quad \text{what does it =} \\ D_o &= \theta R V T + D_o R \quad \text{- need to get } \theta \text{ out} \end{aligned}$$

$$D_o = \left(\frac{D_o R - D_o}{V T} \right) R V T + D_o R$$

$$D_o R^2 - D_o R \pm D_o R$$

↪ where D_o $\neq D_i$ - not enough

$$D_o = (\theta R + \mu T) R V T + D_o R$$

$$(\theta R + (h(D_i - D_o R) +)) R V T + D_o R$$

$$\left(\frac{(D_o R - D_o)}{V T} R + h D_i - h + D_o R \right) Q V T + D_o R$$

$$\frac{\cancel{V T} D_o R^3 - D_o R^2 \cancel{V T}}{\cancel{V T}} + k T^2 V D_i R - k T^2 D_o R^2 + D_o R$$

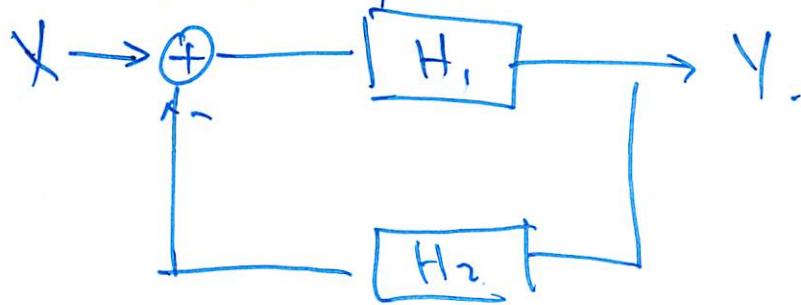
$$-D_o R^3 + D_o R^2 + k T^2 D_o R^2 - D_o R = k T^2 V D_i R$$

$$D_o (-R^3 + R^2 + k T^2 \cancel{D_o^2} - R) = k T^2 V D_i R$$

$$\frac{D_o}{D_i} \approx \frac{k T^2 V R}{-R^3 + R^2 + k T^2 R^2 - R} \quad \begin{matrix} \leftarrow \text{ same} \\ \leftarrow \text{ different} \end{matrix}$$

⑧

Prof: Try again w/ System Functions for each



$$\frac{Y}{X} = \frac{H_1}{1 + H_1 H_2}$$

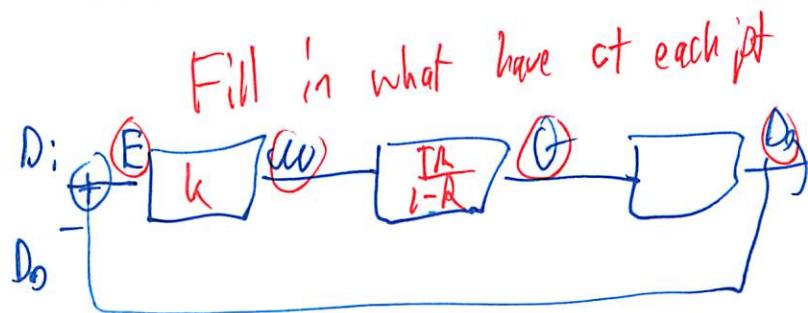
w/ $H_2 = 1$

H_1 = cascade \rightarrow multiply

$$\omega = kE$$

1st

$$\frac{\omega}{E} = k$$



2nd

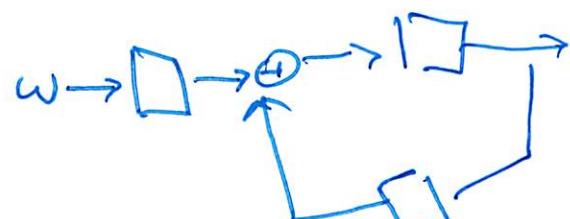
$$\frac{\theta}{\omega} =$$

$$G = \theta R + \mu T R$$

$$G - \theta R = \mu T R$$

$$G(1 - R) = \mu T R$$

$$\frac{\theta}{\omega} = \frac{TR}{1-R}$$



Core concepts

Review of Formats→ Diff eq

$$y[n] = x[n] + x[n-1] + y[n-1]$$

SM

→ R

$$y = x + xR + yR$$

$$\begin{bmatrix} \text{d coeff} \\ R \end{bmatrix} \begin{bmatrix} 1, 1 \end{bmatrix}$$

$$\begin{bmatrix} \text{c coeff} \\ R \end{bmatrix} \begin{bmatrix} 1, 1 \end{bmatrix}$$

→ System functions

$$\frac{Y}{X} \#$$

$$Y - yR = x + xR$$

$$Y(1-R) = x + xR$$

$$\frac{Y}{X} = \frac{1+R}{1-R}$$

LTI SM

Block SM

6.

- or a Tranduced signal"operator equation"

$$\begin{bmatrix} \text{Rc coeff} \\ 1, 1 \end{bmatrix} \begin{bmatrix} \text{Ry coeff} \\ 1, 1 \end{bmatrix}$$

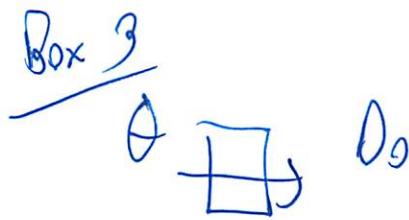
→
 no
 memoize
 will show
 tutor/code rep

~~$$\begin{bmatrix} \text{Rc coeff} \\ 1, 1 \end{bmatrix} \begin{bmatrix} \text{Ry coeff} \\ 1, 1 \end{bmatrix}$$~~

polynomials in R

$$\begin{bmatrix} 1, 1 \\ 1, 1 \end{bmatrix}$$

9



~~VTR~~
~~VTR~~

$$D_0 = D_0 R + VTR \theta$$

$$D_0 - D_0 R = VTR \theta$$

$$\frac{D_0}{\theta} = \frac{VTR}{1-R}$$

Ratio

T_{include}

Together

Multiply \rightarrow cascade

$$k \cdot \frac{TR}{1-R} \cdot \frac{VTR}{1-R}$$

$$\frac{D_0}{D_i} = \frac{k \cdot T^2 R^2 V}{(1-R)^2}$$

Now \rightarrow block's formula for feedback

$$H_1 = \frac{1}{1-R}$$

$$H_2 = 1 \text{ (wire)}$$

(10)

$$\frac{kT^2R^2V}{(1-R)^2}$$

$$1 + \frac{kT^2R^2V}{(1-R)^2} \cdot \frac{1}{1}$$

simplyMultiply all terms by $(1-R)^2$

$$\frac{kT^2R^2V}{(1-R)^2 + kT^2R^2V}$$

~~skip~~try entering
- don't need to simply for

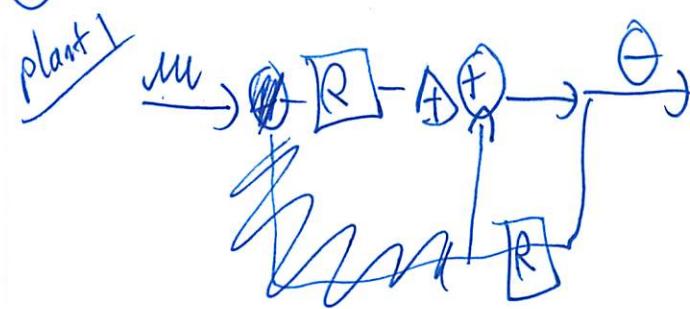
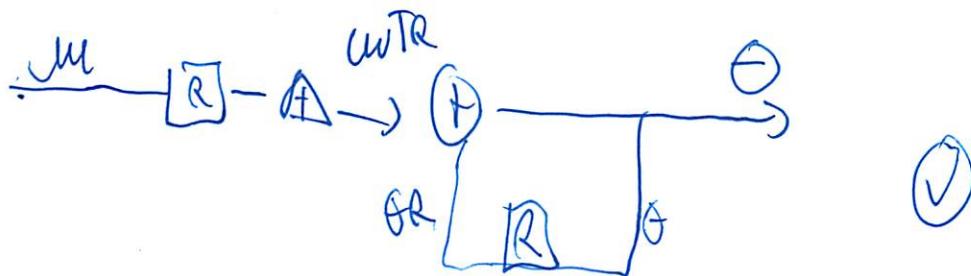
Now write code

- what does it return
- System Function (Numerator, Denom)

$$T_{no_sf, \text{Cascade}}(\text{sf, Gain}(T), \text{sf, R})$$

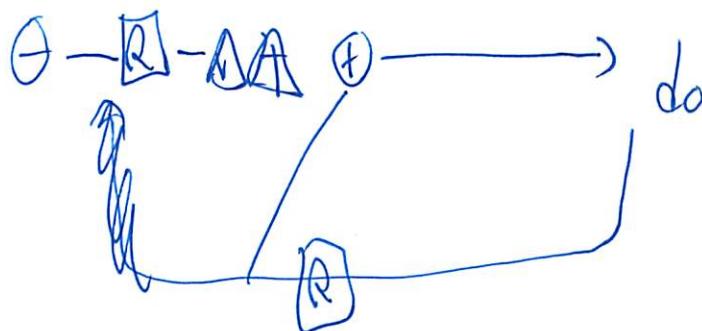
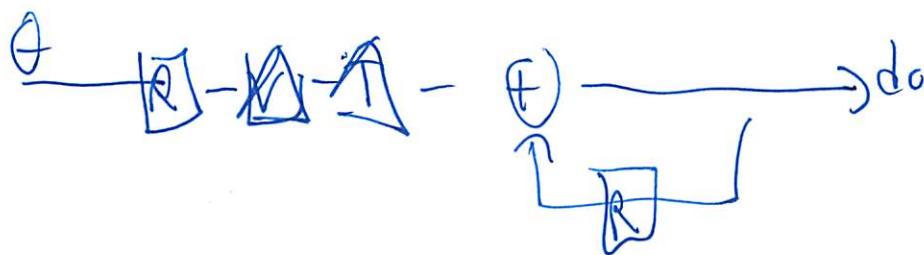
- draw out blocks for each part
- go back to System Function

(11)



Plant 2

? how to do a Feedback add w/ wire? 1?
Sf. gain(1)



together
 feedback (Cascade Controller, plant 1, plant 2)
 feedback add (, gain(1))
 wire (can leave blank)

(12)

So I get

$$SF \left(.001 R^2 / 1.001 R^2 - 2R + 1 \right)$$

$$SF \rightarrow \left[\frac{.001 R^2}{1.001 R^2 - 2R + 1} \right]$$

$$\begin{aligned} k &= 1 \\ T &= .1 \\ V &= .1 \end{aligned}$$

we had

$$\frac{k T^2 R^2 V}{(1-R)^2 + k T^2 R^2 V} \quad \text{plug + chug}$$

$$\frac{(1)(.1)^2(R^2)(.1)}{(1-R)^2 + (1)(.1)^2 R^2 (.1)} = \frac{.001 R^2}{(1-R)^2 + .001 R^2}$$

$$R^2 - 2R + 1$$

$$\frac{.001 R^2}{1.001 R^2 - 2R + 1}$$

① same

check off 2 ①

\$ done for today

(13) Model Predictions

10/7
home

Understand what system will do + not

$T = 1$ $V = 1$ constants

How will it respond to a sample signal?

? Confused something about how we can't predict system state but we will do anyway!

Use dominate pole method w/ different gains

.5	$1 + .0223j$
1	$1 + .0316j$
5	$1 + .0707j$
10	$1 + .1j$
20	$1 + .1414j$

- will oscillate, converge to 0?
- if converges to 0 \rightarrow how many time steps for magnitude to ~~be~~ $< .01$
 - $\log_b V = \text{math.log}(V, b)$
- I think I am doing this wrong
- like deslab 4
 - but that was a transduced signal
- where were poles introduced SL 5?
 - but did we ever test

(14)

- explained in lecture 5 slides

$7 > 1$ unbounded

≤ 1 bounded / stable

~~all~~ transient \rightarrow will converge to 0

- description of input

- but what about $j \in \mathbb{C}$

non-transient = persistent

- or how about trying $-\infty$ values
- last time

real $> 0/0$ increase / decrease monotonically

real $< 0/0$ ~~increase~~ alternate signs

Complex - periodic

So when gain = 0 \rightarrow pole = 1 \rightarrow bounded

gain < 0 \rightarrow pole > 1 real \rightarrow monotonically

gain > 0 \rightarrow ~~Complex~~ unbounded

pole $\neq 1$ Complex \rightarrow periodic

ask in office hrs when go for check off

(15)

All Linear time
invariant

Checkoff 3

LO/II
Office
Hrs

	SF	SM	LIPSM
values	X <small>short term/ transient</small>	✓	✓
convergence	✓ <small>long term/ persistent</small>	X ↑ Can do it, no automatic way Won't be asked to do it ↓ don't know when it becomes persistent	✓ had 4 arguments
info	numerator (poly) denom (poly)	String of python	num denom init x init y

(16)

Solve for poles

$$\frac{kT^2 R^2 V}{(1-R)^2 + kT^2 R^2 V}$$

~~$$\frac{k(0.01) R^2 (1)}{1}$$

~~keep k~~~~

did on pg 12

~~$$\frac{k \cdot 001 R^2}{1.001 R^2 - 2R + 1}$$

enter this $[1.001, -2, 1]$~~

$$Q = \frac{1}{z}$$

~~$$\frac{0.001 \left(\frac{1}{z}\right)^2}{1.001 \left(\frac{1}{z}\right)^2 - 2\left(\frac{1}{z}\right) + 1}$$~~

keep k

~~$$\frac{0.001 \frac{1}{z^2}}{1.001 \left(\frac{1}{z^2}\right) - 2\frac{1}{z} + 1}$$~~

want poly-nomial in z

$$\text{so } z^2$$

$$\left(\frac{1}{z^2}, z^2 = 1 \right)$$

(17)

$$\cancel{1.001 \cdot 1} \\ 1.001 \cdot 1 - 2z + 1z^2$$

$$\cancel{1.001 \cdot} \\ \cancel{1z^2 - 2z + 1.001} \\ \begin{matrix} a & b & c \end{matrix}$$

$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

correct

$$\begin{bmatrix} 1, -2, 1.001 \end{bmatrix}$$

polynomial in z

Never enter!

$$\frac{2 \pm \sqrt{4 - 4 \cdot 1 \cdot 1.001}}{2a}$$

did not keep k

$$\underline{2 \pm \sqrt{-0.004}}$$

Start over w/ k

$$\frac{k(1)^2(R^2)(1)}{(1-R)^2 + k(1)^2R^2(1)}$$

$$\frac{1001kR^2}{(1-R)^2 + .001kR^2}$$

(18)

$$\frac{,001 k R^2}{(R^2 - 2R + 1) + ,001 k R^2}$$

~~$$\frac{,001 k R^2}{(1 + ,001 k) R^2 - 2R + 1}$$~~

$$R = \frac{1}{2}$$

$$\frac{,001 k \left(\frac{1}{2}\right)^2}{(1 + ,001 k) \left(\frac{1}{2}\right)^2 - 2 \left(\frac{1}{2}\right) + 1} \cdot z^2$$

$$\frac{,001 k}{(1 + ,001 k) \cdot 1 - 2 \cdot \frac{1}{2} + 1} z^2$$

$\uparrow a$ $\uparrow b$ $\uparrow c$

copps flipped these

~~$$\frac{z \pm \sqrt{4 - 4 \cdot (1 + ,001 k) \cdot 1}}{2(1 + ,001 k)}$$~~

~~$$\frac{z \pm \sqrt{\cancel{-} - ,001 k}}{2 + ,002 k}$$~~

(19)

$$\frac{2 \pm \sqrt{4 - 4 \cdot 1 \cdot (1 + 0.001k)}}{2 \cdot 1}$$

$$\frac{2 \pm \sqrt{0 - 0.004k}}{2}$$

$$1 \pm \cancel{\sqrt{0.004k}} \uparrow \text{Depends if } k \text{ is } (+/-)$$

Cases
 $k (+) \rightarrow \text{Complex}$
~~case~~ ~~$k(+) \neq 0$~~

positive pole

keep oscillating

 ~~$k(+) \neq 0 \neq \omega_k$~~ complex

unbounded

 $\begin{array}{c} \cancel{k} \\ \cancel{\omega} \\ \cancel{\omega_k} \end{array}$

Magnitude
at the pole

$$= \sqrt{\text{real}^2 + (\text{i part})^2} = \text{always } (+) \rightarrow$$

always

 $k = 0 \rightarrow$ bounded, monotonical \rightarrow converges to some value

 $k (-) \rightarrow$ $(> 1, +)$ Unbounded monotonic

real life: turned away from wall
faster

Special case
- will never
turn
(think in real life)

(20)

~~What value~~

~~there is~~ a nice k value? - where converges ~~to~~ monotonically

- there is no nice value $\text{of } k$ where it converges
- no stable system
 - no matter your k
(at this V, t)

- doing this early - so lots of problems

- 1 question: System Behavior

Part 1 Stable?

- stable if bounded, transient output converges to 0 as $n \rightarrow \infty$
- Enter magnitude of dominate pole, if stable, if oscillatory
- ~~note:~~ alternating have oscillation period of 2
- hint: Use System Function class w/ floats
- (goal, I wanted to practice this)

$$y[n] = \frac{5}{6}y[n-1] + y[n-2] + x[n]$$

$$Y = \frac{5}{6}YR + YR^2 + X$$

$$Y - \frac{5}{6}YR - YR^2 = X$$

$$Y \left(1 - \frac{5}{6}R - R^2\right) = X$$

$$\frac{Y}{X} = \frac{1}{1 - \frac{5}{6}R - R^2}$$

sf. System Function(poly, polynomial [1], ... [1, -5.0/6, -1])

-1.5

(2)

Now -1.5 isreal + negative \rightarrow alternate signs
~~real + negative~~ \rightarrow ~~bounded / stable~~
~~unbounded~~
 $\angle 1 \rightarrow$ don't care $|\angle 2| \rightarrow$ unbounded / unstable \textcircled{X} $|\text{abs}| \rightarrow 1.5 \text{ } \textcircled{V}$

Oscillatory?

- what is this as defined above?

- say yes? \textcircled{X} no \textcircled{V}

? only if non real.

$$\frac{1}{1 + \frac{5}{4}R + \frac{3}{8}R^2}$$

 $\angle 2$ $\text{abs} \rightarrow 2$ ~~real + neg \rightarrow alter~~

Same as above

 2 \textcircled{X}
 no \textcircled{X}
 no \textcircled{X}

? even 2 was wrong?

③

Opps \rightarrow wrong order

$$[3.8/8, 5.0/4, 1]$$

and I got 1st one wrong

- was 1.5

so real + positive \rightarrow increase/decrease monotonically
- so is this oscillate no

back to A2

-1.75

1.75

must \rightarrow yesve \rightarrow yes

why:

|abs| < 1 \rightarrow bounded/stablenegative \rightarrow alternate signs
oscillate yes?

$$y[n] = -\frac{3}{2}y[n-1] - \frac{9}{8}y[n-2] + x[n]$$

$$Y = -\frac{3}{2}YR - \frac{9}{8}R^2Y + X$$

$$Y\left(1 + \frac{3}{2}R + \frac{9}{8}R^2\right) = X$$

$$\frac{Y}{X} = \frac{1}{1 + \frac{9}{8}R^2 + \frac{3}{2}R + 1}$$

4

$$(-.75, +.75)$$

{abs} → .75

$\angle 1 \rightarrow$ bounded / stable

Complex \rightarrow periodic

75
yes
no

, 75 + , 75 } (X)
no (J) ← does
yes (J)

wolfram alpha

1.06 (V)

Oxidation overide

- no 2 is stable oscillation
and it is negative

and it is negative

I get it now 1.06 is > 1
Unbounded

$$\frac{1}{\frac{1}{2}R^2 + R + 1}$$

$$(-, 5 +, 5 \mathfrak{j})$$

15 (X)

15 +, 55 (S) 1707 (J)

Yes (J)

no (x)

yes e. negative

- so complex is separate

- so complex is separate

or such periodic is oscillatory

or such periodic is oscillating

-stupid

Part 2 Diff Eq behavior

- choose which you think matches pic
- do I need to test you all!

(5)

Oh 4 dns \rightarrow 4 graphs

A

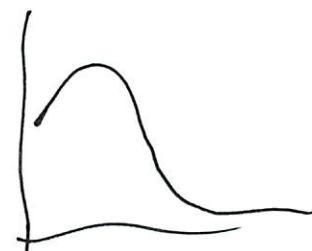
$$y = \frac{13}{8} R - \frac{42}{64} \times R^2 + x$$

$$\frac{y}{x} = \frac{1}{\frac{42}{64}R + 1} = \frac{1}{\frac{13}{8}R}$$

$$= .875$$

- bounded
monotonic
↓↓↓↓↓

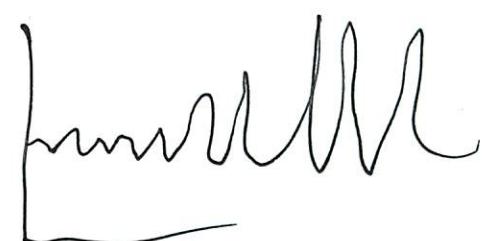
4 (v)



"crappy drawing"

B - .875
 set up by
 following bottom - bounded
 oscillate

2 (v)



C - 1.125
 unbounded
 oscillate

1 (v)

D 1.125
 unbounded
 monotonic

3 (v)

