6.01: Introduction to EECS 1

Week 13

November 30, 2010

6.01: Introduction to EECS 1

Optimal Search Algorithms

Week 13 November 30, 2010

Reading: 9.5 — 9.6

The story so far

e Search domain — characterized by successors function, legal
actions, start state, goal function.

e« Search tree — an explicit representation for the search space.

¢ Depth-first search — explore search tree by expanding deepest
node. 5{'U,L

¢ Breadth-first search — explore search tree by expanding shal-

lowest node. ﬂLbEU'Q
« Dynamic programming — do not revisit nodes.

Qeagm:'nj \N/ (/M‘?ffceaHy Ff::\é ~ bt 41

f’la,e PLWL qufa’e, @1%/}(3/
”‘fobo?t "‘/yg Ml ID qm

Alding
7

Cost

Cost

In many applications, actions have different costs, for example, dis-
tance between cities can vary.

Q.
o, o,
108

SO}

0]

Qur algorithms thus far ignore this.

& ©

mapldist = {’S* : [("A’, 2), (’B’, 1)],
A2 3 [(28Y; 2), (PC: 3); (*D%y: 20)4
’B? : [('s?, 1), (‘D’, 2), ('E*, 3)],
e? : [(°AY, 3), OB, 1)1,

3 'D? : [(’A’, 2), (°B’, 2), (°F’, 4),
2E? %3 [('BY, 3), OCH,; 23],
'Fro: [CC?, 1), (D7, 4), (6, DI,
‘B [(°D*, 6), CE?, 2), (PG*, 4)],
¢’ ¢ [CF, 1), CH, D]}

CH’, 6)],

Path cost is the sum of the action costs along a path.

Wt b (il dhemet ot (‘calet (osl)

Breadth-First Search

Uniform-Cost Search

Enumerates all 1-hop paths, then 2-hop paths, then 3-hop paths,
etc.

Enumerate paths in order of their total path cost.

Like breadth-first search, but:

e The agenda is a priority queue (returns least cost entry).

+ Instead of testing for a goal state when we put an element into
the agenda, we test for a goal state when we take an element
out of the agenda.

jiodestelins
Guaranteed to find a shortest path.

6.01: Introduction to EECS 1

Week 13

November 30, 2010

Priority Queue

Priority Queue

A priority queue is a data structure with the same basic operations
as stacks and queues, with two differences:

e Items are pushed into a priority queue with a numeric score,
called a cost.

e When it is time to pop an item, the item in the priority queue
with the least cost is returned and removed from the priority
queue.

(6}\ % doot bon bo vislf Qvery o /:]

(aq st T ’h?f'lj 67 Cost A Y0/
G (PR pg Lt

(CUL C[D o tine pf pop 4 wf”

>>> pgq = PQ()
pg.push(’a’,

pq.push(’b’,

>>> 3)
6)
pq.push(’c’, 1)

pq.pop()

>>>
5>

et

>>> pl.pop()

O sonttley £lee 1ot Complghod

Priority Queue

Search Node

Simple implementation using lists

class PQ:

def __init__(self):
self.data = []
push(self, item, cost):
self.data.append((cost, item))
pop(self):
(index, cost) = util.argmaxIndex(self.data, lambda (c, x): -c)
return self.data.pop(index)[1] # just return the data item @

isEmpty (self): \
return self.data is [] (?ﬂ {' m
94

fits o decms , . st
The pop operation in this implementation can take time proportiohal
to the number of nodes (in the worst case).

def

def

def

Better algorithms (using trees) reduce run time to be proportional
to the log of the number of nodes (in the worst case).

JL[WG (Mwl —m{‘ riw)fy lgff

Y4

st

class SearchNode:

def __init__(self, action, state, parent, actionCost):
self.state = state
self.action = action
self.parent = parent

if self.parent:

self.cost = self.parent.cost + actionCost

else:

e et
e (st

self.cost = actionCost

ucSearch

Example

def ucSearch(initialState, goalTest, actions, successor):
startNode = SearchNode(None, initialState, None, 0)
if goalTest(initialState):
return startNode. path(l\
agenda = PQQO) q J) w‘-f
agenda. push (startiod
while not agenda. :.sEmpty()
n = agenda.pop()
if goalTest(n.state): & | _/;f m*.
return n.path()
for a in actions:
(newS, cost) = successor(n.state, a)
if not n.inPath(newS):
newN = SearchNode(a, newS, n, cost)
agenda.push(newN, newN.cost)
return None

i
Ve, stalsr previag

([UEue

6.01: Introduction to EECS 1

Week 13 November 30, 2010

ucSearch: From S to D

““Oﬂ{\{ n%d 10 fpﬂ\gwlb@f Shoter- fain
ucSearch with DP ’\(f()ﬂ ‘5}”&/}1 4@‘{‘@)Ld Qq[;, af/&/

Numbers on links are distances not action indices
e

®

i (SA,ZMSQ&

Ly aggada

def ucSearch(initialState, goalTest, actions, successor):

startNode = SearchNode(None, initialState, None, 0)
if goalTest(initialState):

return startNode.path()
agenda = PQ()
agenda.push(startNode, 0)
expanded = { } é—-—- samo. qs
while not agenda.isEmpty():

n = agenda.pop()

if not expanded.has_key(n.state):
expanded [n.state] = True ka .t b‘c&l, hf/e L
if goalTest(n.state): i
return n.path()
for a in actions:
(newS, cost) = successor(n.state, a)
if not expanded.has_key(newS):
newl = SearchNode(a, newS, n, cost)
agenda.push(newN, newN.cost)

V{L#& d

return None

stef,

56,1
G aseate (44, 2)(640,") ot geul fest
5 : until Oxpad

m
! \,
‘ﬁéiﬂﬂgg_@m foweat e — C ook

ucSearch with DP: From S to G

¢ shafes -
: g"’ﬂ ~wia| Lot b @

Search in Big Spaces: Getting to X

2 1

4 1
Agenda: [(SBDH, 9), (SBEHG, 7), (SACFG, 7)] Expanded: [S, B,
A, D, E, C H, F]

Found goall ﬂf\ SQPQMH f)dpﬁf

Search with heuristics

A heuristic function takes a state as an argument and returns a
numeric estimate of the total cost that it will take to reach the goal
from there.

s Used to focus the search in relevant direction.

e Actual cost 4+ heuristic is a better estimate of total cost.

¢ For map-like problems, Euclidean distance from node to goal is
good heuristic.

Qe 2™ it By b

W{Ca# to net

fﬂ |
a5 hefore Pron,

M+ Gues Cl“/"f fo 30&!)

6.01: Introduction to EECS 1

Week 13

November 30, 2010

A* = ucSearch with heuristics

Good and Bad Heuristics

def ucSearch(initialState, goalTest, actions, successor, heuristic):
startNode = SearchNode(None, initialState, None, 0) /P
if goalTest(initialState):
return startNode.path()
agenda = PQ()
agenda.push(startNode, 0)
expanded = { }
while not agenda.isEmpty():
n = agenda.pop()
if not expanded.has_key(n.state):
expanded [n.state] = True
if goalTest(n.state):
return n.path()
for a in actions:
(newS, cost) = successor(n.state, a)
if not expanded.has_key(newS):
newN = SearchNode(a, newS, n, cost)
agenda.push(newN, newN.cost + heuristic(newS))

|

return None

We want heuristic close to actual distances but cheap to compute.

e The perfect heuristic: solve the problem and use the answer (too
expensive).

e Trivial heuristic: 0 for all nodes (cheap but useless).

¢ Admissible heuristic: always an underestimate of the actual
distance. B e

A": is guaranteed to find shortest path with admissible heuristic
; (ol
L‘k a{wj U1dar el (nale '

hguaref@i That cor'} he awﬁtf{ﬂ}

Cter ai b @b less

“tdbe olafp
~ (Ctuns Qofuale

N\

tute ﬂoc{l

Check Yourself

Check Yourself

Would the so-called '"Manhattan distance’, which is the sum
of the absolute differences of the = and y coordinates be an
admissible heuristic in the city navigation problem, in general?

NS], Tohe. E)m&w{

If we were trying to minimize travel time on a road network
(and so the estimated time to travel each road segment was
the cost), what would be an appropriate heuristic function?

Coow gines diotae - pal tine
b Yie by mox poseble spee
feﬂ'ﬂlﬂ;bw VW’Z{‘ Ch%£€3+, /\of ,;\/6?— a

Eight Puzzle

Formulation as a state machine

Think of it as moving the blank space.

(B[[1]]2]

&)

Represent starting state with both board layout and location of
empty space.

l—h] ©

~

startState = (((2, 8, 3), (1, 6, 4), (7, None, 5)), (2, 1))

362,880 states!
state.

Soacth lro blew

Only half are reachable from any givyen starting
\

'[ﬂcbhb’\

of 6paR

class EightPuzzleSM(sm.SM):

(aa, o, (-1, 0, (, 1, 0, -1)]
__init__(self, goal):

self.goal = goal

nextState(self, state, action):

(board, (x, y)) = state

(dx, dy) =
newSpaceLoc =

legallnputs =
def

def

action
(util.clip(x + dx, 0, 2), ok h‘Y "L{ cl
util.clip(y + dy, 0, 2))

newBoard = swap(board, (x, y), newSpaceLoc)
return (newBoard, newSpaceloc)

def getNextValues(self, state, action):

return (self.nextState(state, action), 1)

done(self, state):

return state == self.goal

def

?&E&Kd

Tk abod povig Th | laak

6.01: Introduction to EECS 1
R\/hnma 4‘

Week 13 November 30, 2010

Heuristic search examples

Different start state

Heuristics:

e hO: always O

e hi: number of tiles out of place

e h2: total Manhattan distance of tiles out of place

Heuristics:

e h0: always O

e hi: number of tiles out of place

e h2: total Manhattan distance of tiles out of place

e el s v il sechiid
Heuristic Visited Expanded PathCost Heuristic Visited Expanded PathCost
hO 66 37 5 ho 177,877 121,475 23
h1 14 7 5 hl 26,471 16,115 23
h2 12 6 5 h2 3,048 1,859 23

A numeric example This Week

e States: integers

e Start state: 1

e Legal actions (and successors) in state n:
{2n.n+1,n—1.n%, —n}

¢ Goal test: =10

What are possible heursitics? Are they admissible?

{“d,L\ lgg of d,zel‘aacg

~ W@y adaisgl ble
Sh o fo guae

~Som Qroblers naliedly fd i

Software lab: Path planning
Design lab: Map-making and planning

Nanoquiz Make-up: Wednesday, December 1: 4PM - 9PM in 34-
501

You should have filled in the tutor problem to select which NQs you

are going to make up:

e Everyone can make up NQ 1

¢ Everyone can chose any two additional two NQs to make up

e If you have excuses from S$3 for missed NQs, you can make those
up as well,

If you choose to make up a NQ, the new score will replace the
old score, even if it's lower.

rrLaP

%llofd, fo Sy Sf/bch;/(’, /J](Sf‘UQ

ol sy fo Caf |

n GL Cases

Tl by PR Beath Pl) DP

= =n

— Aol a({mlssll&/e 5@ not vaderedL(rm,;fe

5/ O 'Equ,deé/vt‘g;ff d

004, 2)(48,1) S
<8,

L&A268D,9) (58E,4) 98
(G4 2)

H _
o i
807

LGBE 9 (she,8) (540,) (967 (s, 9) song

6 E) ~Can it be Bé’,ﬁlef
b |

b 609 (3179 (410 5 (56041, 5)Gen) ome

le/@ai; 6u¢d
Sortist 1o) ~dood oxpund

CHC,5)
¢ L €BOF,) (184, 5) (38) (sacr) SBAIEC

CEED, (400F, (B9,) (ShCF,) (skere) SBADECH

™o) aledd, ulsited

@
GAcF, ¢)
l;¢ﬁ0$7/7(280r 9)(55[7w72%2 SBHDECHI-

alfeﬂd‘(@1[- /(V,‘HL/
,w/ Lowgr ¢ Mot Gossed ot

B EHG, 7
@3680%)9) (sgEtc,7) (SACRG, 7) SLADE CHF(
Y '

7
Pick ong o /d/zda,-,

0% This dng

gl

Software Lab 13 — Fall 10 i

Software Lab 13: Plan 13 From
Outer Space

You can do the lab on any computer. Do athrun 6.01 update to get the files for this lab, which
will be in Desktop/6.01/1ab13/swLab/, or get the software distribution from the course web
page.

The relevant files in the distribution are:

e plannerStandaloneSkeleton.py: file to write your code in

e worlds/mapTestWorld.py, worlds/bigPlanWorld.py: files describing world configura-
tions that you can read in as specifications of planning problems.

Read section 9.5 of the readings, if you haven't already.

In this week’s software and design labs, we will build up to a system that can run on the robot,
allowing it to make a map of the obstacles around it and plan a path to a desired destination. We'll
start by formulating the basic planning problem as a search in a two-dimensional grid of states,
build a machine that makes a map using sonar data, and make the robot dynamically replan new
paths through the world as its map changes.

In this software lab, we will get our basic planning infrastructure up and running. We will work
on making plans for a robot to move among states in a discretized map of the world. The states
in the plan will be locations in the world that the robot can move among,.

Grid Map Representation

Consider a circular robot. We will be making plans for this robot moving around a simulated
world containing obstacles. The state of the robot can be described by its pose: x in meters, y in
meters, and 0 in radians: (x,y) is the location of the robot’s center and 6 is the angle that the front
of the robot makes relative to the x axis. We will use instances of the util.Pose class to represent
the robot’s poses in the real world. We can obtain the util.Point representing the x,y position
of a pose using pose.point ().

Planning paths as continuous curves in x,y, 8 is very hard, so we will instead model the robot’s
state space somewhat more coarsely. We will ignore orientation altogether and we will discretize
the x,y positions of the robot into a grid, with indices ranging from 0 to xN - 1 for x and from
OtoyN - 1fory.

So, a state for the robot, in the space that we will search for plans, is described by the coordinates
of a grid cell - a tuple of two indices, (ix, iy). It is important to be clear about when you are
working with:

Step 1.

Software Lab 13 — Fall 10 2

e areal world pose (an instance of util.Pose with coordinates in meters and radians), or

a real world point (an instance of util.Point with coordinates in meters), or

indices describing a grid cell (a tuple of two indices in a grid).

The figure below shows the robot in a world where the x and y coordinates vary from —1m to
+1m, which is discretized into 6 intervals in each dimension, resulting in 36 grid cells. The lower-
left cell always has indices (0, 0), with x increasing to the right and y increasing going up.

(1.0,1.0)
(5,5)

®

PN

=
e

01

(0,0) [(1,0)

(-1.0,-1.0)

We will use the BasicGridMap class (defined in 1ib601.basicGridMap.py) to represent the
grid and indicate which grid cells contain obstacles. We can create a grid with obstacles from a
world file of the kind that we use in soar. These world files specify the min and max values for x
and y as well as boundary lines for the walls and obstacles.

These are the most important methods and attributes of the class BasicGridMap (more detailed
documentation is available in the software documentation on the reference tab of the course home

page):

pointToIndices(self, point):takesautil.Point representing coordinates of the robot
in the real world map and returns a tuple of integer indices, representing the grid cell of the
robot.

indicesToPoint(self, indices): takes a tuple of integer indices, representing the grid
cell of the robot and returns a util.Point representing coordinates of the center of that cell
in the real world map.

xN, yN:number of cells in the x and y dimensions

robotCanOccupy(self, indices): returns True if the robot can be positioned with its cen-
ter in this cell and not cause a collision with an obstacle in the world, and False otherwise.

xStep: attribute representing the length, in meters, of a side of a grid cell; we assume the cells
are square (so yStep equals xStep).

1.1

Software Lab 13 — Fall 10 3

Wk.13.1.1 Solve this tutor problem to develop an understanding of the grid map
representation.

Grid Dynamics

Now we will think about how to design a state machine class that represents the dynamics of the
robot on a grid map. The GridDynamics class will be a state machine, whose inputs are actions
the robot can take to move on the grid, and whose states are pairs of grid indices indicating the
robot’s position. We will use uniform cost search(UCS) to find shortest paths through the world
defined by the grid dynamics: UCS requires each action to be annotated by its cost, so we will use
the output of the state machine to encode the cost of each action.

The class needs to provide a 1egalInputs attribute and a getNextValues method. It does not
need to supply a done method or a starting state: we will want to specify the starting state and
the goal when we call the search procedure.

The state should be a pair (ix, iy) of indices representing the robot’s position in the grid.

The state machine should allow 8 possible actions, moving to the four directly adjacent and the
four diagonally adjacent grid cells. The elements of legalInputs will be the names of each of
these actions. It doesn’t matter what names you give the actions; in fact, the names can be tuples
that describe the actions.

Remember that the input of the state machine will be one of the elements of the list of legal
inputs; and the output of the getNextValues method should be a pair (nextState, cost),
where nextState is an (ix, iy) pair, and cost is a positive number representing the cost of
taking that action. The cost of each move should be the distance the robot will travel, measured
in meters (the length of a grid-cell side, in meters, is stored in the xStep attribute of instances of
basicGridMap.BasicGridMap). Remember that a diagonal motion is longer than a horizontal
or vertical one.

The __init__ method of your GridDynamics class should take as input an instance of the
BasicGridMap class, as described in section 1.

When implementing getNextValues be sure to consider the following:
e If the robot attempts to move into a square that it cannot occupy, it should stay where it was,
but the cost should be the same as if the move had been legal.

e You do not need to worry about moving off the boundary of the map, because the boundary
squares will already be marked as not occupiable.

e You do, however, have to be extra careful about moving diagonally: when your current and
target squares are free, but one of the other two squares that are adjacent to both the current

Step 2.

Step 3.

Step 4.

Software Lab 13 — Fall 10 4

and target squares is occupied, it is possible that the robot will have a collision. Such a move
should be treated in the same way as attempting to move into a square that is occupied.

e When we connect up with the map maker it may occasionally happen that the grid cell the
robot is currently in is suddenly marked as not occupiable; your dynamics should allow the
robot to move out of a cell that is not occupiable, as long as the cell it is moving into is occupi-
able.

Implement the GridDynamics class in the file plannerStandaloneSkeleton. py.

Check Yourself 1. This procedure is defined in plannerStandaloneSkeleton.py:

def testGridDynamics():
gm = TestGridMap(0.15)
r = GridDynamics (gm)
print util.prettyString(r.legalInputs)
ansl = [r.getNextValues((1,1), a) for a in r.legallnputs]
print util.prettyString(ansi)
ans2 = [r.getNextValues((2,3), a) for a in r.legalInputs]
print util.prettyString(ans2)
ans3 = [r.getNextValues((3, 2), a) for a in r.legallnputs]
print util.prettyString(ans3)

gm2 = TestGridMap(0.4)

r2 = GridDynamics(gm2)

ans4 = [r2.getNextValues((2,3), a) for a in r2.legallnputs]
print util.prettyString(ans4)

It creates two different instances of GridDynamics, tests them, and prints
out the results. Be sure you understand what the results should be. Each
time we create an instance of TestGridMap, a window will pop up show-
ing the map (it’s basically the same in both cases, except for the world is
bigger in the second (the same number of cells, but they are larger)).

Test your code by running testGridDynamics () or other test cases you find helpful, and be sure
it is correct.

Note that three of the test cases in the tutor problem are the same as the first three test cases in
our testGridDynamics; but the answers may look different because we are iterating over your
legallInputs attribute in one case, and our legalInputs attribute in the other, and they may be
in a different order. The tutor takes that into account when checking.

Wk.13.1.2 Paste your GridDynamics class definition and any helper procedures it
needs into this tutor problem; check it and submit.

1.2

Step 5.

Step 6.

Software Lab 13 — Fall 10 5

Making a plan and sticking to it

Now that we have a state machine that represents the dynamics of our domain, we can run search
algorithms on that state machine to find good paths through the space.

We want to construct a procedure
planner(initialPose, goalPoint, worldPath, gridSquareSize)

that plans a path using ucSearch.smSearch on the grid dynamics of a grid map. It should draw
the resulting path in the map, and return it.

Implement the planner procedure in plannerStandaloneSkeleton.py. It should return the
plan found by the search.

You need to pass a grid map as an argument to your GridDynamics class initializer. You can
create a grid map corresponding to a soar world with

basicGridMap.BasicGridMap(worldPath, gridSquareSize)

where worldPath is a string representing the name of a file containing a soar world definition,
and gridSquareSize is the size, in meters, of a side of each grid cell. Don’t worry about what
worldPath needs to be; just take the argument you're given and pass it through to initialize the
BasicGridMap instance.

Then, you use ucSearch.smSearch to search that machine for a path from the initial pose to the
goal point. You will need to convert both the initial pose and the goal point into grid indices for
planning.

When a BasicGridMap is created, it will create a new window, displaying the obstacles in the
world. Your planner should draw the path it finds in that window. The BasicGridMap class
provides the method drawPath(self, listOfIndices), where listOfIndices is of the form
[(ix1, iy1), (ix2, iy2), ...], specifying a list of grid-index pairs. It draws the starting
cell in purple, the ending cell in green, and the rest in blue. Remember that the plan returned by
the search is a list of (action, state) tuples, so you cannot pass that in directly.

To get the algorithm to display the states it is visiting, define your goal test function (inside the
planner procedure) to have this form:

def g(s):
gm.drawSquare(s, ’gray’)
return yourGoalTestHere

where gm is the name of your instance of BasicGridMap, s is a pair of grid indices, and your-
GoalTestHere is the actual expression that you are testing to see whether s is a goal state.

At the top of plannerStandaloneSkeleton.py, there are definitions of two worlds you can test
in, each with a reasonable start and goal point and grid square size specified. Test your procedure

Software Lab 13 — Fall 10 6

in a world by running plannerStandaloneSkeleton.py in Idle (be sure to start Idle with -n, so
you can see the graphics), and then evaluating, for example,

testPlanner (mapTestWorld)

You should see a map window pop up, first showing the obstacles, the states as they are visited,
and then, when the planner has completed, the path you drew.

Check Yourself 2. InmapTestWorld.py with the discretization, start, and goal as defined in
plannerStandaloneSkeleton.py, you should find a solution with cost
about 6.7 (that is, a path about 6.7 m long.) The search should visit about
800 nodes and expand about 270 states. Be sure you understand why some
squares are being colored gray. Does this search seem efficient?

s

Step 7. Read section 9.6 of the readings, if you haven't already.

Think of a suitable admissible heuristic, implement it, and see how it affects the planning process.
Be sure that your heuristic is expressed in the same units as the cost function.

Check Yourself 3. Test your heuristic search, first, in mapTestWorld. You should find that it
doesn’t make any difference in the length of the solution, though it may
choose a slightly different path. You should find, however, that the num-
ber of nodes visited goes down to about 500 and the number of states ex-
panded down to about 150.

Step 8. Now, test in bigPlanWorld with and without the heuristic. You should see a very noticable
difference in the number of nodes expanded. Keep screenshots showing the paths and visited
grid cells with and without the heuristic.

Checkoff 1. Demonstrate your search running in bigPlanWorld . py with the heuristic
function. Compare its behavior to the search without a heuristic function.
Explain the difference in visited states.

sl 2 /3

f P\MW ﬁd“dzz[w, wleton 1{)\/
\Wuj/ maﬂ@ﬂ W@Jd,{a?) mn/d‘) /b;gmqu‘a’}d(,ﬂ\/

L P T TR lefs

\

e 0 p o tt s geed
i le\ A ﬁ%’{(\ WLO déoﬁn&bf}‘m
W gl of s

/

~ At Tobay 667L ot plaiy ok Jp T o
S

PWJF | Ged Tl Q€Pf@s€4hd 07)

— (e Cobot
- FOSLT(JM (X/\/m//@) W/ ut ’P%Q

T (lt\tgl% E(on —

“f‘aﬂnm«g pal s (une hid, & mdgl shate SfRE e o

s il ~ 7
Alfﬂe e /mLo 6(}& X3 6 > X/V"_/)_

/3 O 2 V/V’ ﬂ,
i (‘;)(/1‘\(} »5{’0}0_ ot foan

0

= \N) (eal por f P%Q,

. / ' o

W i dewby gl (ol
(don? catly qﬁ)

Vst g GedMlap clss o opand foed t ghstacles
~ ety |
- Pouto LJ(@S(16, poat) > Fums pout b god iy
- ndicles fo}«%(e, wdeo] 04,
= XN,)f/v ~# el ook i
~ (obo} (45 0 cupy (soff ndiees) A, ke € hotects
R
= Y59 dng e

s fo be Qe

00 “‘folﬂaf has wz‘d‘fh p{ (2

g
0’\) (/\]fm (5 SJM){('/&@ Po o 7l /,} welers

g ()

Cach gl (t) “alo med fo add | To |-ode

W} cotor of g(;'d

=
bt ae T g W () g e Gt (ool
~wih (obot (wbis 2
“dnd ko Mol s wethin ol
“be etk ~ s (oll), dnwhet
b
e
(383
19313
—”ga ﬂrejr m@hf s all Ce/ls, QKCBP)L Z(Mf 0

\f?ﬂ;% 11[hﬁ‘[Witr b o P Consewst'l e Trat
A /\Oﬂ”‘j th Fowms q })d,(f 5fact

W
I

/

—

WTA 60’\(& ~S (Ofr90'+/ N /I.C'L’(L TD en-"Q/ @&OYQ

g

L €d Dinautes

el alt oo T lestgn o S el Cep/tsents
bvc GF;leynmic;
hill ve Unefor Cogt Search
O i ol b pablad o o O
read l(‘igct, tnfwts
9ot Next Wfyles et

) f‘m
Sl posable actus
fd\(%wl OLHOWd

(ot = Jlddune bt s [/xypawfé " n@p‘p@)
“PAy affetia b déq@/wy{

a9 fae [Ypotc berd Pap (less

& cobot frugs 2”69@] e ’—5}0% e o+ L
bob- ot am

dwlvt Wl g hart Fove
deeady Merlaf |

be Cm’,(v} OV(%WI %L Mon T arle
“bA stil] (ot Conmbes

{ Mve le\got[j.
/\lj OI[IC /y@a ~ ZXMN!/[55{(/01(@

Y

ove ovi

lmple.«m i Plaw{ Cland dlore Soleton t/)j
s Teb ppsre v/ mp

dO /(’,940[MoV es “LC befoce
wd b
Now ot Vet Vgl meh hih before
bt v Map-robo} (g chﬂy()

\w\'\Q/Q Jogs o4 Q%L Coof/:
\2{ not (m é‘L@fG
—or 15 i)

Oc gud @l new (ot

WIL S0empq ‘pfg{/[vr Qa:.f

) o o€ b, a KL
\Wlb‘{c

PQ/IM(b5 'n(a ﬁwﬂ‘ ({\qunm[ﬁL;"j

17:1_% s
"\ (e

IF CBH CWQ/I-HT ‘m 66’(0%} MOLU/}WQMQ‘

gllow 17

S for (1)

o€ (40) o (0.1

bdd — A9 @D

BA O s comert Sate |

W@m} Pk Cosks chsohde
Al ogora| ool

—

Ve m 7.
Bol,i Ope%l& 60” ‘]:/ e ‘ (’97[
TOh g

@ wWolks pow

NQJF(),(n(“[lw({, a dm}@ f)foce({wﬁ éw

it SO e,

© 1 My o P o 504 1074

-—(m 0 SQO[OL\ (/L[%,G/Hm\ on gm ‘}o f{rni 80%{' Zagfé
Tﬁfwah The (7V6((€

P[azwr [‘m;fw) P”ﬁe/ gm\ pﬁén%[,/on ld P”“\, g/rlcl Qq/gf‘%e)
W 215 ucémh.gm g@m%

"Lt plaver pec i plagy Sarkab Skl gy
—(0lun ?\f&[n Found b 56
= P(ws\ Jﬂe\ Ored ma) o G/;MOY’WL('O
l‘m’tﬁ G“d%?‘ Baa‘(c Grli/”lc@ [W!dﬁ)@m/ 9“'6{ Squ'e 52?6)

(
Steiag ‘”/ gasr orl dof £l Uy

)L/éf’ fass hmbﬁh
H#MH C(@an Néw W[(n(kﬂw C\/l O[M-}ac[g) ;/L uﬂ//i

- dea d,oms el (2K, Teht Tos)

N)/f“ho

gf‘(\t dﬂbw gcai/ﬁfe (g/ KQW;/)
(e fum 90@' TWF

@T”\P QW‘Q’L‘I Md Teot M Am”?’)

G Thy A Ve Aomd ¢ 5@%7.5,4 ol =
“Need to o b B indices for sk gtute
~ dis WOl pugq ’j'hﬂt/@h T ¢t n /ﬂﬁﬁ/ Mf-ﬂ"’i”ﬁ
T Gvuss 1@)\0/33 L
~whigh doat (o0 ot /we
Hﬂeﬁi gm\ T(’b} {VLCHOA

[

“what s Qpal Poin
’QO‘mL
T 0y £ ettt
“0h 5 o a ol add Goal Fout 1)
“Can cee it ﬂ“?ﬂj i Q/GU[Sqlures
“Oh gt als

.
—

% 'Ffa(/]t‘w” ‘5(

@g@@m; fo woh pov
ST gyl sl @7

(4
(N M@+€(j (

fo

C\(?, ~Does gt seen offqert blc g

%(fp 7. Thal oAbt heureslic
/Wﬁ%ﬁ V“I(” J/ 5]12#6 (/(‘slﬂll?é

h+€64’\ ;/[bﬂ(gwﬂ”’%ﬂ 0 Wﬁﬁ
- henstl, Soll make 4 bg dFeace

—,————

W\‘mk & (Quw ﬂycs \wu}i b{‘ 3@94 /’wféla/&(
ey bl dldene (s Fimg

—Th ", Good
TNt be £ alal JL&W{

- C[Oéw]r po)n,gL oA T el
o [

500 {f/@*ﬁ[7tf\/ iqﬂoﬂ[ﬂg ﬁ?ﬁ

f
(’”.3 BW‘Z Va4

60{‘ CLM[‘{O{{ Vb/‘) Th})
/mldhlr ot spprstd o bt
\W

%)

SIS
goal 6
OLIPM\
Mo [%\(a‘ﬁl""tj
G; Ao 0{2

FL 4 54(@
[D\ ¢

5B F

—_—

o F
6616

@ali apt !

Step 1.

6.01 DL13: I Walk the Line — Fall 2010 1

Design Lab 13: I Walk the Line

You can do the lab on any computer with soar. Do athrun 6.01 update to get the files for this
lab, which will be in Desktop/6.01/1ab13/designLab/, or get the software distribution from
the course web page. |

The relevant files in the distribution are:

e lineLocalizeSkeleton.py: file to write your code in

e linelLocalizeBrain.py: brain file to run, to test robot localization

e worlds/oneDreal.py, worlds/oneDdiff.py, worlds/oneDslope.py: world files for
soar simulation

Overview

In this lab, we will implement and ultimately test in soar a robot localizer, as outlined in tutor
problems wk.12.3.2 and wk.12.3.3.

Here is the architecture of the system we will construct.

Preprocessor | o | Estimator Belief

Act
io.Sensorlnput \

Select(1)

io.Action

Driver io.Action

The Driver and Select state machine classes are already implemented. The Driver machine
will generate instances of 10 . Action that make the robot move forward; the Select (1) machine
takes tuples (or lists) of values as input and always returns the second element of the tuple as
output. The robot knows the ideal readings for each of the possible discrete locations it might be
in, but doesn’t know where it is initially; the goal of the state estimation process is to determine
the robot’s location. The effect of this behavior is that the robot always drives forward, but the
state estimation process is running in parallel, and as a side effect, the current belief state estimate
of where the robot is in the world will be displayed in a window.

Preprocessor

Tutor problem wk.12.3.3 describes the preprocessor module in detail. Develop a strategy for
implementing a state machine class that will behave as a preprocessor.

6.01 DL13: I Walk the Line — Fall 2010 2

(Check Yourself 1. Be sure your implementation plan is clear. What will the internal state of
the preprocessor machine be?

What will the starting state be?

| J

Talk to a staff member if this isn’t clear to you.

. J

Step 2. Implement the preprocessor by filling in the body of the state machine class PreProcess in
lineLocalizeSkeleton.py. It should have a method __init__(self, numObservations,
stateWidth), where numObservations is the discrete number of observations and stateWidth
is the width, in meters, of a discrete robot location. Here are some useful things to remember:

e Good sonar readings will be in the range 0 to sonarDist.sonarMax, which is set to 1.5, but
actual readings might go higher than this on the real robot (e.g. to 5). Your procedure that maps
actual sonar readings into discretized sonar readings should map any value that is greater than
sonarDist.sonarMax into the highest of your discrete sonar values.

e You can use your discreteSonar procedure from wk.12.3.2, or use our implementation by
calling idealReadings.discreteSonar (sonarReading, numObservations).

e Be sure you understand round in Python: it will round a real number to the nearest whole
number but, strangely, it keeps the value in floating point. So, to turn the result into an integer,
you need to do int (round(2.8)), which will give you 3. Note that int truncates instead of
rounding, so int (2. 8) is 2, which is probably not what you want.

Make sure that the preprocessor generates a single value of None as output on the first step
(problem wk.12.3.3 may have led you to think the output should be (None, None)).

Step 3. Test your preprocessor on the example from tutor problem wk.12.3.3 as follows:

6.01 DL13: I Walk the Line — Fall 2010 3

e Run your lineLocalizeSkeleton.py filein Idle.

e Make an instance of your preprocessor machine, called pp1, using parameters that match the
tutor problem: 10 discrete observation values, 10 discrete location values, xMin = 0.0 and
xMax = 10.0 (this means that the state width is 1.0 in this example).

e Do ppl.transduce(preProcessTestData).
e Make sure the outputs match the ones from the tutor problem.

e Now make another instance, called pp2, using 20 discrete observation values, 12 discrete loca-
tion values, xMin = 0.0 and xMax = 8.0.

e Do pp2.transduce(preProcessTestData).
e The outputs should be [None, (10, 2), (3, 7)]I.

It will be useful, for later debugging, to make the PreProcess machine print its output on each
step.

Checkoff 1. Show your PreProcess output for both cases to a staff member. Be sure
the output is a single None on the first step.

State Estimator

The estimator module in our architecture will be an instance of seGraphics.StateEstimator,
which we have already written; it’s just like the state estimator you wrote last week, butit displays
the current belief state and observation probabilities in a pair of windows. Whenever we make
an instance of a state estimator, we have to pass in an instance of ssm.StochasticSM, which
describes what we know about the system whose hidden state we are trying to estimate. Our job, -
in this section of the lab, is to create the appropriate ssm.StochasticSM, with an initial belief
distribution, an observation model, and a transition model, for the robot localization problem.
The state that we are trying to estimate is the discretized x coordinate of the robot’s location,
which can be in the range 0 to numStates - 1.

The file 1ineLocalizeSkeleton.py contains the following skeleton of a procedure that should
construct and return the appropriate ssm.StochasticSM model. The parameters are:

e ideal: a list of ideal sonar readings, of length numStates

e xMin, xMax: the minimum and maximum x coordinates the robot can travel between

e numStates: the number of discrete states into which the x range is divided

e numObservations: the number of discrete observations

def makeRobotNavModel(ideal, xMin, xMax, numStates, numObservations):
startDistribution = None
def observationModel (ix):
pass
def transitionModel(a):

3.1

Step 4.

3.2

6.01 DL13: I Walk the Line — Fall 2010 B

pass
return ssm.StochasticSM(startDistribution, transitionModel, observationModel)

Initial distribution

Define startDistribution, which should be uniform over all possible discrete robot locations.
You can create a uniform distribution with dist .UniformDist.

Observation model =

The observation model is a condit(i_émal probability distribution, represented as a procedure that
takes a state (discrete robot location) as input and returns a distribution over possible observa-
tions (discrete sonar readings). Our job is to create an observation model that characterizes the
distribution of sonar readings that are likely to occur when the robot is in a particular location.

This figure shows a histogram of 10,000 sonar readings generated in a situation in which there
were 100 possible discrete sonar values over the range 0 to 1.5 m and where the ideal sonar
reading was 0.5 m. The x axis is the discrete sonar reading and the y axis is the number of
readings (out of 10,000) that fell into that interval.

2500

2000

1500

1000 |-

500

0 20 40 60 80 100

It has the following features:

e There is always a non-trivial likelihood of getting an observation at the maximum range (due
to reflections, etc). The maximum value is sonarDist . sonarMax.

e It is most likely to get an observation at the ideal distance, but there might be small relative
errors in the observation (that is, we might see an object at (.88 meters when it’s really at 0.9
meters).

e There is some small chance of making any observation (due to someone walking by, etc.).

6.01 DL13: I Walk the Line — Fall 2010 5

Pay particular attention to the ‘width’ of the noise distribution. It is important to write your
mixture models so they are sensitive to the discretization granularity of the sonar readings: with
the same amount of noise in the real world, the width in terms of the number of bins will be
different for different granularities.

Youcanusedist.MixtureDist,dist.triangleDist,dist.UniformDist, and dist.DeltaDi st’
to construct a distribution that describes well the data shown in histogram.

Check Yourself 2. Sketch out your plan for the observation model. Be sure you understand
the type of the model and the mixture distributions you want to create.
Ask a staff member if you're unsure on any of these points.

Step 5. Implement the observation model and test it to be sure it’s reasonable. It doesn’t need to match
the histogram in the figure exactly.

For debugging, you can create a model, and then get the observation conditional probability
distribution like this:

model = makeRobotNavModel (testIdealReadings, 0.0, 10.0, 10, 10)
model.observationDistribution [/
(1) € sme #

Here, testIdealReadings is the same set of ideal readings from tutor problem wk.12.3.3. Recall
that these readings are already discretized.

Debug your distributions by plotting them, being sure that you have started Idle with -n. If d is
a distribution you've created, you can plot it with distPlot.plot(d).

If observationModel is your observation model, using the readings in testIdealReadings,
write down the 4 highest-probability entries in observationModel(7) (this is an instance of
DDist). What does the 7 stand for here?

at j?oszf}m ws |

Step 6. Now, make a model for the case with 100 observation bins, instead of 10.
modell100 = makeRobotNavModel(testIdealReadings100, 0.0, 10.0, 10, 100)

Plot the observation distribution for robot location 7 in model and mode1100. Be sure they are
consistent and correct.
3.3 Transition model

The transition model is a conditional probability distribution, represented as a procedure that
takes an action as input and returns a procedure; that procedure takes a starting state (discrete

Step 7.

3.4

Step 8.

6.01 DL13: I Walk the Line — Fall 2010 6

robot location) as input, and returns a distribution over resulting states (discrete robot locations).
You can compute the next location that would result if there were no error in odometry, and
then return a distribution that takes into account the fact that there might be errors in the robot’s
reported motion.

For now, the only error in the transitions is due to discretization of the reported actions. Think
about what discrete locations the robot could possibly have moved to, given a reported action of
having moved k discrete locations. Use a triangle distribution to model the discretization error.

Check Yourself 3. Sketch out your plan for the transition model. Be sure you understand the
type of the models and the distributions you want to create. Ask a staff
member if you're unsure on any of these points.

Implement the transition model and test it to be sure it’s reasonable. Create a ssm.StochasticSh,
and then get the transition model (which is a procedure that returns a conditional probability
distribution) like this:

model = makeRobotNavModel (testIdealReadings, 0.0, 10.0, 10, 10)
model.transitionDistribution

If transitionModel is your transition model, write down transitionModel (2) (5) (this is an
instance of DDist). What do the 2 and 5 stand for here? Be sure the result makes sense to you.

| |

Combined preprocessing and estimation

Now we’ll put the two modules we just made together and be sure they work correctly. Use
sm.Cascade to combine

e an instance of your PreProcess class, and

e an instance of the seGraphics.StateEstimator class.

The seGraphics.StateEstimator instance is given your ssm.StochasticSM model, using 10

discrete observation values, 10 discrete location values, xMin = 0.0, and xMax = 10.0. Call this
machine ppEst.

Check Yourself 4. Do ppEst .transduce (preProcessTestData). Compare the result to
the belief states in wk.12.3.3. Remember that you are now assuming
noisy observations and noisy actions. Are your results consistent with the
ones you found in the tutor?

6.01 DL13: I Walk the Line — Fall 2010 7

Checkoff 2. Show your answers to the questions above and your plots of the observa-
tion distributions to a staff member. Explain what they mean.

4 Putting it All Together

Now, we'll put all the machines together to make a behavior that can control the robot. The file
linelocalizeBrain.py contains all the scaffolding necessary. It makes one call that you need
to think about:

robot.behavior = \
lineLocalize.makeLineLocalizer (numObservations, numStates, ideal, xMin, xMax, y)

Step 9. In your lineLocalizeSkeleton.py file, implement the procedure makeLineLocalizer with
the arguments shown above; it should construct a complete robot behavior, as outlined in the
architecture diagram, whose inputs are io.SensorInput instances and whose outputs are
io.Action instances. Read about the sm.Select state machine in the software documentation.

You will need instances of the preprocessor and estimator machines like those you made in the
previous section, together with the driver state machine. The driver is a state machine whose
input is an instance of io.SensorInput and whose output is an instance of io.Action. You can
create it with

move.MoveToFixedPose (util.Pose (xMax, robotY, 0.0), maxVel = 0.5)

assuming that the robot starts at some location with y coordinate robotY, and will move to the
right until its x coordinate is xMax.

Step 10. Startsoar and run your behavior using 1ineLocalizeBrain.py in the world worlds/oneDdiff. py.
It will pop up windows like these (to see the colors, look at it online):

ae 0 PO S) !
llllii;;illllllllllllll;llllllllllIllllllllliiliiiiiiillllllllll!lllllllllllllllIlllllllllllllllIllllllllllllllllllllllj/
Gis % Balief

BULERELEREEREE Gl b L Gl D LGl BB b el el felatafa el el fe el alefabibsteRadelefeleleRelelfalsfsfebedal efalaled el telofelelafelehefe ke A LB efe e LB e D LoD D A

The first window shows, for each state (possible discrete location of the robot), how likely the
current observation is in that state. In this example, the robot’s current observation is one that
is likely to be observed when it is in any of the locations that is colored blue, and unlikely to
be observed in the locations colored red. The second window shows the current belief state,
using colors to indicate probabilities. Black is the uniform probability, brighter blue is more likely,
brighter red is less likely. The actual location of the robot is shown with a small gold square in the
belief state window.

You can use the step button in soar to move the robot step by step and look at and understand
the displays. It is necessary to move the robot two steps before the displays become interesting.

Step 11.

Step 12.

5.1

5.2

6.01 DL13: I Walk the Line — Fall 2010 8

Now run your behavior in the world oneDreal . py (you will need to edit the line in 1ineLocal-
izeBrain.py that selects the world file, as well as select a new simulated world in soar). What is
the essential difference between this world and oneDdiff.py?

Now run your behavior in the world oneDslope. py, without changing the world file selected
in the brain. This will mean that the robot thinks it is in the world oneDreal . py, and has obser-
vation models that are appropriate for that world, but it is, instead, in an entirely different world.
What happens when you run it? What do the displays mean?

Checkoff 3. Demonstrate your running localization system to a staff member. Explain
the meanings of the colors in the display windows and argue that what
your system is doing is reasonable. Explain why the behavior differs be-
tween oneDreal and oneDdiff. Explain what happens when there is a
mismatch between the world and the model.

If you're interested in doing more...

Here are some possible extensions to this lab.

Handle Teleportation
Add this code to your brain file:

teleportProb = 0.0
import random
class RandomPose:
def draw(self):
x = random.random()*(xMax - xMin) + xMin
return (x, y, 0.0)
io.enableTeleportation(teleportProb, RandomPose())

If you set teleportProb to a value greater than 0, it will, with that probability, on each motion
step, "teleport’ the robot to an x coordinate chosen uniformly at random from the robot’s x range.
(maintaining the same heading and y coordinate). This is a good way to test your localization.

If necessary, modify your transition distribution so that it can cope with a world in which the
robot might teleport. Think about what parameter in your model should match teleportProb.

Turn up the teleportation probability and see if your robot can cope.

Real robot

Try your localizer on the real robot. You'll need to:

5.3

6.01 DL13: I Walk the Line — Fall 2010 9

e SetmaxVel to 0.1

e Take out the discreteStepLength call from the brain.

e Change cheatPose to False

e Change the y value of the target pose for the driver to 0.0

e Use boxes covered with bubble wrap to set up a world that corresponds to oneDreal . py.

o (Possibly) adjust the amount of noise in your model of the sonar and the motion error.

Metric and simulation experiments

By looking at the belief-state windows during simulation, we can get a reasonably good idea
of whether our estimator is working, but it is hard to tell how well. This is especially a problem,
because there is no noise in the sonar readings generated by the simulator. In this upload problem,
we will add noise to the simulated sonar and odometry readings, and we will devise a "metric’
for, or way of measuring, the effectiveness of the estimator.

To do this, we will need to add two new modules to our system, resulting in the architecture
shown here:

[

| Metric

Obs }4;

Estimator

A

| Corrupter Preprocessor

v ¥

>
Noisy
Obs

Act

io.Action Select(1)

-
io.Action

A\

> Driver

10.Sensorinpui

These are the new modules:

e Corrupter: This machine takes in the true sonar and odometry readings and corrupts them
with noise.
— Input: Instance of io.SensorInput.
— Output: Instance of corruptInput.CorruptedSensorInput.

You can treat instances of the corruptInput.CorruptedSensorInput class as if they were
instances of i0.SensorInput: they have exactly the same attributes. The values in the output
class are just slightly corrupted versions of the sensor and odometry values in the input. We
have implemented this class for you. To make a new instance of this machine, do:

corruptInput. SensorCorrupter (sonarStDev, odoStDev)

where sonarStDev is the standard deviation of the noise added to the sonar measurements
and odoStDev is the standard deviation of the noise added to the x component only of the

6.01 DL13: I Walk the Line — Fall 2010 10

odometry. Start with very little corruption (e.g., standard deviations of 0.01). A triangle dis-
tribution with a half-width of 30 is a reasonable discrete approximation to a Gaussian with
standard deviation o.

e Metric: The Metric state machine has these types:

— Input: Pair (inp, belief) where inp is an instance of i0.SensorInput, containing the true
robot odometry, and belief is a distribution over the possible discrete x locations of the
robot.

— Output: Real number representing average estimation quality over the life of the machine.

The metric state machine outputs a measure of how ‘correct’ the belief state is: that is, how
much probability it assigns to some range of locations near the robot’s true location. It also
prints the metric value on each time step.

Knowing the true x location of the robot and the estimator’s belief state, what is a good measure
of how well the estimator is performing? Be sure that your measure is as insensitive as possible
to the size of the discretization. Think, for example, whether the metric you have come up with
will be as appropriate when the x range is divided into 30 bins as when it is divided into 300.

1. Implement a metric state machine. It doesn’t really matter what it outputs, but it should print,
on every step, the measure of how good the current belief state is, as well as the average of the
per-time-step measures since the machine has been running.

2. Change your controller so that it incorporates the corrupter and your metric.

3. Formulate and run and report on data for three experiments. Here are some experiments you
might try:
— Hold the noise level fixed (possibly at 0), and experiment with different values of the dis-
cretization of the robot state and /or the sonar observations. How does the performance of
the estimator vary?

— Hold the discretization levels fixed, and vary the amount of noise in the world. You could
hold your model constant (thus experimenting with the degree of match/mismatch between -
your model and the world). Or, you could make your model as accurate a reflection of the
noise in the world as possible (thus experimenting with the limits of estimation as the sensor
data becomes noisier).

— Hold noise and discretization levels fixed, and experiment with different worlds. You can
also try these worlds: oneDreal . py and oneDslope.py.

dolap 3 i

1\/4& b@llgg 52;9&?{‘0/\ ‘W
(/]NL LOC&!/[E%BMIA tF? *— lcof Sonr
Word file

‘_—-___-—_'//—‘

ol oo {0

n W29 12,47

\ - 0[’) . ;
D ~ ek —
st Eﬂﬁml;m

D(;/e/ 1”6@(6& mlw tlﬂLfo[gde

L) ;DL /:}(/'Hdr\) J\/@,}— /p[(///lb Z”J
Thatmvg, bt Ly le ia ble

Fotma
~ gy i@ /eo{bt@ (gf cagh {ocgteon

W dots B gy ke bl
6 (s rrJ (Uns (‘JM/& /’J/ [@ﬁ%" /fs M:pf o

(

Wae (s

&

=7t opy o To e prot
—whak o ntemd L osiplily shAiC g
(ol N LD@%/H‘(%@ T W"‘?

B} how doos PCOPRER pa i
EEANER L | p\lOﬂWT

—(giun pord

ot s Mot
~affr s 1= ?5%4&

rﬂtf)l@/%l w Rebeess (lass i el ocah g o MM'/?

— b (56 [{/ Ny, Ohs/ Stake él/:(/%)
— (Pﬂd(nﬁj ng(? F@'ﬂ O fo WD(I&IL. Sonay Z/{QK
“lan ke f desaitte
- U%’ it (Kou/lJ[))
~ Tir JQ&UEH&@ Clyms 7 i

~—

— j)\/ﬂ& Kgbo} ll‘\ﬁ(fet; #
— 1eps _J(o feporwl 2 llceeqf cZeficr(‘Hzr'y

;\Aj '(mm(((0/;

&
L S (Y S G i it

BV} %\60 gL wfﬂ gﬂ @/U(/ Wﬂo&j
"’\tks & Sh

/j@ﬁt Mpﬂl; Mon ‘n (F stife
\/\/L\d{ B (}‘a lmp‘/l'
_—m 1(0 (an'

“oh T e — P)m(éés Tt Datq
%wﬂpai([15)/% Ol fose (\/ 50))

1 7
— it vadt oo

(Ter s

~Jurlize gorw apt

=i ﬂk? e o decrtline JGWW#/’
5 Xp = A

~ A0 —(ap ¢ (ﬂdQ][/Grn ZQ&YL fing
- Ljﬂng 171({/:[\ we Qbr J,\(J/ f}gefﬂsﬂ/l

! gy
— e
SHate i Ohap (07

Cahags 10 diale pasifians 0
Ny /lmf%“’”'%

18, Sl ormle fnjr((o ((x? -XH)}\/)

I 78 golf‘ﬂ 1“0 Jf) 5@/1@]5;/’,%2 Mol Cam‘ﬂ/g)g c/v/ 6@/)
‘D)}a\ S % o
I A CRNY YR
Qotuns M‘)W
B b oA oy am b il

—dpt Mot State —pdl 9 0t nxf albe 7

(as APEpan 96! Mot Viabes aehea t
@ (! Vnn‘tﬂg Nw
10ade £, 14 g

@ DO@& nat vnatdy MFW
OV""‘Q/ (1,0), (IIO)7

g
Wé\ﬁfut S doms M;/mgl

Qongaber s Sl be tom
-] s dorg 7
50 need o CW/!@E St (0/(//0%2}/ ol /095)

([wn@@d

Lol af Sl @C_{‘Qf Lt (U

@@Obj cght now
desplaomt cgni
e il foonlt mad be vt
65;‘% mglowded it koA
L dn sy gy Sl e
ok 1f bk A | =k g

Qmjfﬂ Eéﬂ mq]ldf

a 1)@ an fﬂéh/\(({ 0% 9L 6@)0)4(7 ¢]Lcm[@ E@ ””ﬂ%?/“
we Ob { €ad7 W/OJ(Q
ﬂ(/h has qut](Q (omtp ((m(@ d

- bf 7 I'Q ngw,\ @5\ Y\?D i ijd biee € (G m/erﬁa) TV(‘ Cw
T) l%)) call o fo ossdfto, o
~di

e Wl b

ﬂoiw o gm 4 oches]i O
B M‘IN' ﬁll'(a {WC&H? —hﬂﬁ

= bl bl et

~ Ghs malg|

T modo]

‘-"w/ 1J2-.,aeﬂ%i R@ds () 3 nuges ~]
= [1/0 [J)(dll (e Q@‘e iLﬁn

dﬁdl %or Cach
X MI/L/ ?&Vlax 9{%

A 5)19(} 4
wf\t/m, Oﬂb

(thide we ooded of Bb bofoe
'(Mﬂ mheed e

Pob g

Y

def /M[@ Roby! i\fw/”lodal (f’d&o\, XM;@ ?(/%Oa/ N b ’ n(/mO@) !

ot e
J&L Obs [lodel (:j X) r‘

def s M) [)

(o o ﬁmﬁ& N [51%/% 0/5;71/ r}/m Wﬁcfg// (s /yaolgy
Iq:'}qj Dejr

~ Uhifol |
o e Lhdom Dest

~({0, Gy H clutes)
- Mg e plewfs

~ fang L (sticd, shy, wfd%)
Wil s Py N

——

[/
@ N\M wmtﬁs WF

Y
(bs Mads!

“(ad Pfotﬁ&&b\(}{\){/
~ Plocedue
— Gafe a5 wph

— WW VAP

-—O[‘ C \‘GH, Sonar f(’o{,d;fxﬁ nob - alweys /(‘ﬁM
"% mak a bmol/(
'l demJe fon Tior

)

-~ Sonae) 6F . Sonae Nl

T ges fy o
—(an syl be an oo

"] be tatg ly wiong
— P atlerdon o gy

i ﬂlﬁht ﬂi e f
Oy J'h to Condshcth Jists {7at Q[g@m
(MQ !L‘«JW,\ ;,\ h(dz’(ydﬂ’)
\Tﬁ é/" fﬁf‘{fm;ﬂ ng ”L (i 60{@ w/ Q JWV\Q A;jr

= hat JJ@WL 1 ‘{:(7 CM/TW
‘“‘W whal v dd hefore

b
Prot T(:dﬂ@)e 1>/C Joot Lat b 5?@@&
Bl o mey w4l % P@fé\“b“m@

b J[/\(Wg]@
— law untam Onyule
—dul AT e May LyZ

L) B\L A@\Q {)o’tﬂ\‘
Impler%}’
X (wrerdt Pw‘ﬂm
e tanle ool b (endoed aon d
T Gyl o el 4
- f}“/\ﬂ(ﬂ W;H '}L@LL (4@ of

™ Mt go hatt W[’W(

~ VA Steep %{ _ ek as well

“we (it b Thed W “met be 9 of [T
o sTates

\ NG of T # A

" inploret o, hoh s well

- defta

— et g e 0%
X POJ;HW

U
pr)! e s (C%d;/\gslr
— M, ot o b ()

S = 9y Ma ¢
L chtes a5 wll
\v“){or Obﬁ

/

Wooi v ~boF T el for PRt ix
=gt do e e Rt g
‘/fc{fdlzflg

Xt Wowy (uredt |yt v

T Ygh {@(@ﬂm A :”ﬂV‘}
——*f@ﬂ\@mb@(wEH 1[@9% Cb/[01[ﬁﬁw (s Jp{(/ﬁ quej f(//ﬁ

“fb, T mocire
~ O
(o W b Pa{f{ufﬂ(Jeks o o
— Ve v p
oD r(lI-p) Ds (»
— Nw W\uﬂE Qéﬁﬂmjf(?_ p _—
~ baglie. ve Lionde > 08

= C”OM S J{,Hﬁ(~ L(gg’

~

@
Voo ot o/ sl < Mo Qb Al Pl

e

B Nk & clas
/‘O?W ot of selfi w8 (P

@ 5)’@{9 s O
—oh (ange Ca/zf’L do 70a At
~need /dﬂgew

“{/'/:d 0/}“/\&

) Yoo D5 e case -l 12 olls
~ceally 11

i 6&/[& be Qfgl,gﬁ Mj e/ ﬁc d(fs(reﬂ’i:ﬁc/ Seps

“hok adyl it
SChak abe on Tl

~yeah het Xm/l/fxﬂay/ W(‘H? Z/p%[
bt o V‘Lc/ﬂké’?ﬂ‘["a/ }
- 6““ ok M/btr(/{g
() Opps s ofec padlon —C @l e &t
o /O(”% Jisks Aga " el e

@O‘f\“éoea vt ook geod

@-

Deal 1 dows
bele ©
Trlegle ¥ —all Os

- ((fm [o/ s

TOh s aw (bs = A [0
At —he—ct—{esst—|—
— i conds ()
‘b/’tf/ﬂlé& ar- /%f\ [

o /\{W‘ 25 /105}' gc]/w /ZCL)C

(b num Oy - |
T WMMd » shold J@Hq
”Mﬁ N
—deb el b e dugidl kel T

—_—

(9 i+ Vq/[‘/ﬂ :/\ 4

%ﬂw ae Juaple c{,lfmif
‘ Tt ol Reings (00 3ot
@ MNoeh betfor F\@fufﬁ
Z Y

(ea) . 76y
dll, 20

©

T/\f y l6¢ (}f Mmofe ot |
Vot F b chow

C Wiy ﬁzb /”(ﬁmu

A

" i,
b/c at 1o g ﬂ@ L/C Whn,)O

_/W({ }Lo %lMp (od v fo af [6’0/%

@ pooh thignr
_.n\(w gﬂltf}’ﬂ/)

Yy 0

Ok gut Night oty o
IL/V {C}

@ Mh ot —shold e a [He les Ton lolf
try 97

/;[1469 l‘l’le pef‘lfw?/b J(oo faw

TH“ (ML} QOOQ
Tﬂr \/\/ whie 6%0\/1& be &

A

»
0 hs Mo @)

@nﬁqns 01;1L Wg 7

4 onge Shal{ be 2

e

Wmlﬁ }04 WJQ (

—Cond it tong)| poh (st
FMP > CDO?L(\J/)

‘“—O(flr“‘) (= ln =
f 9D Sl slaf 3y |

W(ﬁf/(m
O 5 I (s fi
S it e posshle. stete

I
—No Lrer Odﬂﬂé’*‘ff 1@/ row = etk il

ﬂKf} \/(?/7 QW

[2/2
0 Ch Ow/]
""Whted Move

Wil What ;\‘/I

\(Ov Mop le N
H’ S5 Z

'c”fj Qi D5
VN B

|«
S

ng g
YRS v peed o 4 it

Jf Yoo meg |- |49 b oy
2 248
190& L{ Onlx(10 l\(/‘%/ (o{f‘l7l /*?p/&eq}'

ot Fieiton | (0,
/T J s crpte adl
(Thee =) 8 :

bl for
! Wf G Twe
D s B i el €19

rch acflon

0
ﬂef\ [’5) Ls]H{ So0ond 9/‘5{/57:/6 }ﬂf)ml
~ (ohoks location ing

Qb Vb o M

—7 4 Thishing bak —oh et 0 DDl by W”L
2R SN
L T
Lor &5 T a il i fncl -
Bk et e 4, bl oighles),
“hew oy | pacngto)
0 A ghold Wy b ot
h}@bmy dm«/)}/g T dJdi
W b e o) oy) i
Meauhl chek png b

0 v %

lfﬁ J/ﬁc(lif;@:/\j
£ K

//%r‘ Fad same o we Wi

‘ t‘» (()OQH—EN\\
bﬂw (}JJJ(HJ'& Yo Q%pla‘m /

Taka worse

Ols no — cl__ othal

b Tt nd Iom(awf@/ | e
E Al dd gab (5) sl w

@@ Pf(éo gut |

i
Ts Mt clght

_ Yes

@ Wl b atke] ldg —Yek

‘ ot 5 () ofates
Or b ths oxpadel dehay 7

74 Combiad @mp/ﬂ&’a%@ Fodingfén

EK)%JF sm . (qscale

B \N}Wi ‘(5 ’WQ STLth E ﬁ 1\45716(/‘(¢
S - {é 1 Gme Gocwsle Gy Maclo |
L Whch 1 malyg &obml/l/a(/ M«MC)

’(NCYLOr

s ingfances |
u rlnlny b G gt s chel)
T%L Ly

}@ Was wiond 12/2
Sol d o shld szcm Procedure oM
of !

b actyy
Znd

Oy 5 whee gluteg

()
o s ol (a) .

Jef @mfhr'/y C%We) :
(et Gish DDt (€ ke ot F, <o,

@(J/@} (]g o\ ‘}/},{A@[Q,
(Win '}/Zaxlﬂ(e D\Qf (5[%#6’, f’OK/) /()/ /Ibmfjfaof@y-f)

(- QJT(///I : () :
500 Bt Akl

|) |
@5Ml)7’13 ety N\l dord ofifl, yim) @Hw}
. \ \ My e Ermber |
T b for i gl D

Yoz,

Ed = \
B = g, (g cad pl, W{@W@

=) 6@# Thdy
roud ’ha it by (2
Siafe Ctiraty

\.A/fcpr(
— s 'hv(mcjj
TR cat of fon
U 5%1’“"‘5 d

(

@6L\ %a;ch or fruck

g g Aol \\0\“7 f/mé(‘m‘s
- Bit othe iy Cloge

V)
bt Y }Ouﬁ% - Al Tosetlc

[Ir\];mlml;%@ fiain Po
~ lots Seattol &fﬁj
(mWTLMJF Céd/ /0))0} beﬁaw(‘()n =

Lt Localige maly | b

Loca i hiver (% 0195/ 1 shafes,
el

/ ?(Mlﬂ/ X Mﬂ)& »J

))af,k ‘/f\ @ d(/\@ IOCCL (Te. 6Lg 675:9,1 / /mpfp,,,e,”t M&L[{U/Qwﬁ??/
é}wtd Construut Complgty robef behaatior‘

= ‘\"M 0. § tnsor f/\puf
Output 0 i Helion
@@o{d Aot sm, Solect
\'W’th whoéL V\M’ «$ <ﬂ~

ond whasp
Ovt ot

t ("Jm t(fBQrWWL o 11 [(%

9

\
/\/(5601 ndlanes of P2 P03y + estinglor v deiver

thw@r S Maevl Movefkwﬁd % [(/1(, }%sg ()\ Na\x

o (om‘ Y, 0.8)) mextpl s 5) e ol
fo T edd
of fe |,

6+er S \N | wr | J&/Q/QDO[HT[Py t

Need 45 4ot fake Ll Loalite
“Bb kit sl T be dolng

T/ﬁn _Pé’. sm o on fpt of prgYE.
O (b o Cascadpy t poallely
©

Wd {b CM”(JG lLZL Aﬁ/({@({ﬂi 1(7? f‘/)
WW /{Pbra?r Ny ﬂ‘l@c}@{ 1’3 Ve ‘cdﬂh

Wonow aniey ~tug
@Now Goshing overg e
m’ et Step

* fehally \/O/Wj ~bd ey bl |
Thi b | hop

VP W\Y P{/ = Crashed

Q)

4 Runs better on lab (gt
Y [ﬁ)r al Wrpry

ot gn T dotg isong ©

Bk t ches o] Seom. /0 acwrdte

p(ﬂ% /\/Geqﬁ df ca@f' fffa/gﬁ M‘d‘fh Z >r? s
e B ’O . wat o bain s rhm‘th

M pick
@Mﬂu /\Pl'h;ny ' (/{0({@{(@

@I\/OW au/[« {7) SAL ppfmwom

COWV‘\?/%‘ A My fed e

¢
TAI Anojﬂc(M& (ad@&

W‘[(E \WW«\?!
44(L /e |oads cofredl e [c

Ha\/‘['”\ﬁ Vf@ﬂ9 bg[:@{ 1(’/6 ﬂ[(arse
) (et 903

be.d

6.0 Intreduction to EECS 1

Week 14 December 7, 2010

6.01: Introduction to EECS 1

PCAP Recap

Week 14 December 7, 2010

Putting the pieces together

e Software design and implementation

e Circuits for sensing and motor control

e Linear systems controllers for trajectory following
e Probabilistic state estimation

e Trajectory planning

)

PCAP systems in 6.01, large and small

To design and analyze complex systems, we have to find organizing
structures that are compositional:

e primitives

¢ means of composition

¢ means of abstraction

e abstract entities can do anything a primitive can

Infinite use of finite means. — von Humboldt

A Sets F%;&(ﬁ

e Procedures: function composition and definition

e Data: lists, dictionaries, objects

e Polynomials: add, mul

e State machines: cascade, parallel

e Terminating SMs: sequence, repeat

¢ Signals: add, scale, delay, transduce

e Systems: cascade, feedback

e Circuits: resistor, voltage/current source, wiring
abstraction via equivalents, isolation via op-amps "16’&/@ m

e Plans: individual actions, sequencing J

¢ Probability distributions: joint, condition, marginalize

 Probability distributions: square, triangle, mixture

(lasses + tasdanges

(@ (a/':[d < cleep d@{a streatne

=y

KT RGN

Follow-On Courses

SB in Computer Science and Molecular Biology

¢ 6.041 — Probabilistic Systems Analysis
Prereq: 18.02 :

¢ 6.042 — Mathematics for Computer Science - Utsagﬂ!(, m(dﬁ
Prereq: 18.01 .

+ 6.02 - Introduction to EECS 11 ~ (' gapujcaftn
Prereq: 18.03 or 18.06; 6.01

e 6.002 — Circuits and Electronics
Prereq: 18.03; 6.01

¢ 6.005 — Elements of Software Construction- (aﬂpe{{ (7(1{{{ ﬂYL
Coreq: 6.042; 6.01 (

+ 6.006 — Introduction to Algorithms WOrk
Prereq: 6.042; 6.01

s 6.007 — Electromagnetic Energy: From Motors to Lasers
Prereq: 18.03; 6.01

e 6.034 — Artificial Intelligence
Prereq: 6.01

e Proposed new degree jointly administered by EECS and Biology

e Prepares students for graduate study in biology, in CS, and in
emerging programs at the interface

e Prepares students for careers that leverage computational biol-
ogy, e.d,, pharmaceuticals, bioinformatics, medicine, ...

s

6.01: Introduction to EECS 1

Week 14 December 7, 2010

SB in Computer Science and Molecular Biology

(IAP activities

Requirements:

¢ Mathematics and introductory subjects (3) — (18.03 or 18.06),
6.01, Math for CS

« Chemistry (2) — Organic Chemistry and Thermodynamics

« Introductory Lab (1,5) — Intro to Experimental Biology

¢ Foundational CS (3) — Software Engineering, Introductory and
Advanced Algorithms

¢ Foundational Biological Science (3) — Genetrics, Biochemistry,
Cell Biology

» Restricted Elective in Computational Biology (1)

¢ Restricted Elective in Molecular/Cellular Biology (1)

e Advanced Undergraduate Project

¢ Maslab
— IAP Robotics competition, listed as 6.186
e 6.270 — Autonomous Robot Design Competition
¢ 6.370 — BattleCode AI programming competition
¢ 6.470 (officially listed as 6.188)
— Learn how to build a website, engage in an exciting compe-
tition "for glory, honor and money”
— Lectures include HTML5, CSS, JavaScript, AJAX, PHP,
MySQL, Ruby on Rails, Silverlight, and Flash
— See web.mit.edu/6.470

Little Brother — Cory Doctorow

Putting PCAP ideas to work

If you've never programmed a computer, you should. There's nothing like it in the
whole world. When you program a computer, it does exactly what you tell it to do.
It’s like designing a machine—any machine, like a car, like a faucet, like a gas-hinge for
a door—using math and instructions. It’s awesome in the truest sense: it can fill you
with awe.

A computer is the most complicated machine you'll ever use. It’s made of billions
of micro-miniaturized transistors that can be configured to run any program you can
imagine. DBut when you sit down at the keyboard and write a line of code, those
transistors do what you tell them to.

Most of us will never build a car. Pretty much none of us will ever create an aviation
system. Design a building. Lay out a city.

Those are complicated machines, those things, and they’re off-limits to the likes of you
and me. But a computer is like, ten times more complicated, and it will dance to any
tune you play. You can learn to write simple code in an afternoon.

Start with a language like Python, which was written to give non-programmers an easier
way to make the machine dance to their tune. Even if you only write code for one day,
one afternoon, you have to do it. Computers can control you or they can lighten your
work - if you want to be in charge of your machines, you have to learn to write code.

¢ PR2 Humanoid robot
e Little Dog

Design Lab 14 — Fall 10 1

DL14: I'm the Map!

-

e Checkoffs: The checkoffs are due during software and design labs this week. You are W
expected to work during both labs, but are not expected to do any work outside of lab
time.

e Windows: The graphics software that we are using seems to crash fairly reliably under
Windows Vista and Windows 7. Please use a lab laptop instead.

e Steps: This lab is written with many small steps to help debugging. If you have done
checkoff 1 and feel confident in your debugging skills, you can skip straight to imple-
menting a system that passes checkoff 4, building a map that works reliably in medium
noise conditions, using state estimation to aggregate multiple sonar readings over time.

N ok

You can do the lab on any computer that can run soar (modulo the comment above about crashes
on Windows 7 and Windows Vista). Do athrun 6.01 update to get the files for this lab, which
will be in Desktop/6.01/1ab14/designLab/, or get the software distribution from the course
web page.

The relevant files in the distribution are:

e mapMakerSkeleton.py: file in which to write your map maker code

e mapAndReplanBrain.py: brain file to run the map maker

e bayesMapSkeleton.py: file in which to write your Bayesian map representation

e robotRaceBrain.py: brain file for running on the real robot

e mapAndRaceBrain.py: brain file for running in simulation; prints out timing information

Introduction

In this lab, we will connect the planner from Software Lab 13 with a state machine that dynami-
cally builds a map as the robot moves through the world. The robot will, optimistically, start out
by assuming that all of the locations it does not know about are free of obstacles, it will make a
plan on that basis, and then begin executing the plan. But, as it moves, it will see obstacles with its
sonars, and add them to its map. If it comes to believe that its current plan is no longer achievable,
it will plan again. Thus, starting with no knowledge of the environment, the robot will be able to
build a map. We'll start by building a simple map maker, then see what happens as the sensor
data becomes less reliable, then adapt the map maker to handle unreliable sensor data.

Here is a diagram of the architecture of the system we will build.

Design Lab 14 — Fall 10 : 2

GridMap

»| MapMaker

Replanner | Subgoal Point

Sensorlnput MoveTo

» DynamicPoint |— 5

—— ACtiON

Our architecture has three modules. We will give you our implementations of the replanner and
the module that moves to a given point; you will concentrate on the mapmaker.

Themove .MoveToDynamicPoint class of state machines takes instances of util.Point as input,
and generates instances of io.Action as output. That means that the point at which the robot is
‘aiming’ can be changed dynamically over time. (Remember that you wrote a machine like this
in lab 3!).

The replanner.ReplannerWithDynamicMap state machine takes a goalPoint as a parameter
at initialization time. The goalPoint is a util.Point, specifying a goal for the robot’s location
in the world, which will remain fixed. The robot’s sensor input (which contains information
about the robot’s current location) as well as the DynamicGridMap instance that is output by the
MapMaker will be the inputs to this machine. The replanner makes a new plan on the first step,
draws it into the map, and outputs the first ‘subgoal’ (that is, the center of the grid square to which
the robot is supposed to move next), which is input to the driving state machine. On subsequent
steps the replanner does two things:

1. It checks to see if the first or second subgoal locations on the current plan are blocked in the
world map. If so, it calls the planner to make a new plan.

2. It checks to see if it has reached its current subgoal; if so, it removes that subgoal from the front
of its stored plan and starts generating the next subgoal in the list as output.

Mapmaker, mapmaker, make me a map

Your job is to write a state-machine class, MapMaker, in the file mapMakerSkeleton.py. It will
take as input an instance of io.SensorInput. Its state will be the map we are creating, which
can be represented using an instance of dynamicGridMap.DynamicGridMap, which is like ba-
sicGridMap.BasicGridMap, but instead of creating the map from a file, it allows the map to
be constructed dynamically. The grid map will be both the state and the output of this machine.
The starting state of the mapmaker can just be the initial dynamicGridMap.DynamicGridMap
instance.

For efficiency reasons, we are going to violate our state machine protocol and say that your get-
NextValues method should return the same instance of dynamicGridMap.DynamicGridMap
that was passed in as the old state, returning this instance as the next state and the output. It
should make changes to that map using the setCell and clearCell methods. If we were to
copy it every time, the program would be painfully slow.

Step 1.

Design Lab 14 — Fall 10

/\ﬂy‘l’eé bj
Ll GilMay — sch as foidt i indicle

3

The dynamicGridMap .DynamicGridMap class provides these methods:

__init__(self, xMin, xMax, yMin, yMax, gridSquareSize): initializes a grid with
minimum and maximum real-world coordinate ranges as specified by the parameters, and
with grid square size as specified. The grid is stored in the attribute grid. Initially, all values
are set to False, indicating that they are not occupied.

setCell(self, (ix, iy)): sets the grid cell with indices (ix, iy) to be occupied (that is,
sets the value stored in the cell to be True).

clearCell(self, (ix, iy)): sets the grid cell with indices (ix, iy) to be not occupied
(that is, sets the value stored in the cell to be False).

occupied(self, (ix, iy)): returns True if the cell with indices (ix, iy) is occupied by
an obstacle.

robotCanOccupy(self, (ix, iy)): returns True if it is safe for the robot to have its center
point anywhere in this cell.

squareColor (self, (ix, iy)): returns the color that the grid cell at (ix, iy) should be
drawn in; in this case, it draws a square in black if it is marked occupied by an obstacle. It draws
squares in gray that are not occupied by obstacles but are not occupiable by the robot because
they are too close to an obstacle square; the gray cells are computed by robotCanOccupy.

What should the mapmaker do? The most fundamental thing it knows about the world is that the
grid cell at the very end of a sonar ray is occupied by an obstacle. So, on each step, for each sonar
sensor, if its value is less than sonarDist . sonarMax, you should mark the grid cell containing the
point at the end of the sonar ray in the map as containing an obstacle. The sonarHit procedure
you wrote in tutor problem Wk.12.2.1 is available as

sonarDist.sonarHit (dist, sonarPose, robotPose)

A list of the poses of all the sonar sensors is available in sonarDist . sonarPoses.

Ty

Check Yourself 1. Consider these two possible sensor input instances (each has a list of 8
real-valued sonar readings and a pose).

testData = [SemsorInput([0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2],
util.Pose(1.0, 2.0, 0.0)),
SensorInput([0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4],
util.Pose(4.0, 2.0, -math.pi))]

Be sure you understand why they give rise to the map shown below. Re-
member that the black squares are the only ones that are marked as occu-
pied as a result of the sonar readings; the gray squares are the places that

the robot cannot occupy (because it would collide with one of the black
locations).

Step 2.

Step 3.

Step 4.

Design Lab 14 — Fall 10 4

. GridMap

Implement the MapMaker class. It will be called as follows:
MapMaker (xMin, xMax, yMin, yMax, gridSquareSize)

Remember to initialize the startState attribute and to define a getNextValues method that
marks the cells at the end of the sonars rays in the input.

Test your map maker inside idle (be sure to start with the -n flag). by doing this:

testMapMaker (testData)

It will make an instance of your MapMaker class, and call transduce on it with the testData
from the Check Yourself question. Verify that your results match those in the figure.

Now, test your code in soar. The file mapAndReplanBrain.py contains the necessary state ma-
chine combinations to connect all the parts of the system together into a brain that can run in soar.
You can work in any of the worlds described in the top of the brain file; select the appropriate
simulated world in soar, and then be sure that you have a line like useWorld(d114World) that
selects the appropriate dimensions for the world you're working in. Be sure to use the simulated
world corresponding to the world file you have selected when you test your code.

A window will pop up that shows the current state of the map and plan. Black squares are those
the map maker has marked as occupied. Sometimes squares will be drawn in gray: that means
that, although they are not occupied by obstacles, they are not occupiable by the robot. Not all
such non-occupiable squares will be drawn in gray (we don’t want to redraw the whole screen
too often), however.

Step 5.

Step 6.

Step 7.

Design Lab 14 — Fall 10 5

Checkoff 1. Show the map that your mapmaker builds to a staff member. If it does
anything surprising, explain why. How does the dynamically updated
map interact with the planning and replanning process? Is the total path
that the robot takes optimal with respect to the true map?

A noisy noise annoys an oyster

By default, the sonar readings in soar are perfect. But the sonar readings in a real robot are nothing
like perfect. Find the line in mapAndReplanBrain.py that says:

soar.outputs.simulator.SONAR_VARIANCE = lambda mean: noNoise
and change it to one of

soar.outputs.simulator.SONAR_VARIANCE
soar.outputs.simulator.SONAR_VARIANCE

lambda mean: smallNoise
lambda mean: mediumNoise

This increases the default variance (width of gaussian distribution) for the sonar noise model to a
non-zero value.

Check Yourself 2. Run the brain again in these noisier worlds. Why doesn’t it work? How
does the noise in the sensor readings affect its performance?

In fact, we get more information from the sonar sensors than just the fact that end of the ray is
occupied. We also know that the grid cells along the sonar ray, between the sensor and the very
last cell, are clear. Even when the sonar reading is greater than the maximum good value, you
might consider marking the cells along the first part of the ray as being clear.

Improve your MapMaker class to take advantage of this information. You will probably find the
procedure util.lineIndices(start, end) useful: start and end should each be a pair of
(x, y) integer grid cell indices; the return value is a list of (x, y) integer grid cell index pairs that
constitute the line segment between start and end. You can think of these cells as the set of
grid locations that could reasonably be marked as being clear, based on a sonar measurement. Be
sure not to clear the very last point, which is the one that you are already marking as occupied;
although it might work now, if you clear and then mark that cell each time, it will cause problems
in Section 4, when we use a state estimator to aggregate the evidence we get about each grid cell
over time.

Test your new MapMaker in Idle by doing

testMapMakerClear(testClearData)

Step 8.

4

Design Lab 14 — Fall 10 6

Note that this is testMapMakerClear, which is a different procedure from testMapMaker. It
will create an instance of your map maker and set all of the grid squares to be occupied, initially.
Then it will call transduce with this input:

testClearData = [SemsorInput([1.0, 5.0, 5.0, 1.0, 1.0, 5.0, 5.0, 1.0],
util.Pose(1.0, 2.0, 0.0)),
SensorInput([1.0, 5.0, 5.0, 1.0, 1.0, 5.0, 5.0, 1.0],
util.Pose(4.0, 2.0, -math.pi))]

Check Yourself 3. Predict what the resulting map should look like, and make sure your code
produces the right thing.

Run mapAndReplanBrain in soar again and make sure you understand what happens with both
no noise and medium noise.

Checkoff 2. Show your new map maker running, first with no noise and then with
medium noise. We don’t necessarily expect it to work reliably: but you
should explain what it's doing and why.

Bayes Map

One way to make the mapping more reliable in the presence of noise is to treat the problem as
one of state estimation: we have unreliable observations of the underlying state of the grid squares,
and we can aggregate that information over time.

Our space of possible hypotheses for state estimation should be the space of all possible maps.
But if our map is a 20 by 20 grid, then the number of possible map-grids is 2*°° (each cell can
either be occupied or not, and so this is like the number of 400-digit binary numbers), which is
much too large a space in which to do estimation. In order to make the problem computationally
tractable, we will make a very strong independence assumption: the state of each square of the
map is independent of the states of the other squares. If we do this, then, instead of having one
state estimation problem with 2490 states, we have 400 state estimation problems, each of which
has 2 states (the grid cell can either be occupied or not).

Luckily, we have already built a nice state-machine class for state estimation, and we can use it to
build a new subclass of dynamicGridMap . DynamicGridMap, where each cell in the grid contains
an instance of seFast . StateEstimator (which you implemented in Wk.11.2.3).

Your job is to write the definition for the BayesGridMap class, in the file bayesMapSkeleton. py.
Before doing this, you’ll need to think through how to use state estimators as elements of the grid.

Step 9.

Step 10.

Design Lab 14 — Fall 10 7

Recall that the argument to the __init__ method of seFast.StateEstimator is an instance of
ssm.StochasticSM, which specifies the dynamics of the environment. Here are some points to
think about when specifying the world dynamics of a single map grid cell:

e There are two possible states of the cell: occupied or not.

e There are two possible observations we may make of this cell: it is free, or it was the location of
a sonar hit.

e You can assume that the environment is completely static: that is, that the actual state of a grid
cell never changes, even though your belief about it changes as you gather observations. But,
if you want to, you can also consider the situation where the environment changes, perhaps
because furniture is moved.

Check Yourself 4. Remember that the sonar beams can sometimes bounce off of obstacles and
not return to the sensor, and that when we say a square is clear, we say that
it has nothing anywhere in it. What do you think the likelihood is that we
observe a cell to be free when it is really occupied? That we observe it as a
hit when it is really not occupied? What should the prior (starting) proba-
bilities be that any particular cell is occupied?

Decide on possible values for the state of the cell. Assume that the obser-
vation can be either *hit’, if there is a sonar hit in the cell or ? free?’ if the
sonar passes through the cell. To forestall confusion, pick names for the
internal states that are neither ’hit’ nor *free’.

If you are having trouble formulating the starting distribution, observation
and transition models for the state estimator, talk to a staff member.

. A

Write code in bayesMapSkeleton.py to create an instance of ssm.StochasticSM that models
the behavior of a single grid cell.

Test your grid cell model by doing
testCellDynamics(cellSSM, yourTestInput)

where cel1SSM is an instance of ssm.StochasticSM and yourTestInput is one of the lists be-
low. It will create an instance of a state estimator for a single grid cell and feed it a stream of
observations. Then it will call transduce with the data input.

What is its final degree of belief that the cell is occupied if you give it this input data? (Why are
the Nones here?)

mostlyHits = [(’hit’, None), (’hit’, Nome), (*hit’, None), (’free’, None)]

How about if you give it this input data?

Design Lab 14 — Fall 10 8

mostlyFree = [(’free’, None), (’free’, None), (’free’, Nome), (’hit’, None)]

Now it is time to think through a strategy for implementing the BayesGridMap class. You will
have to manage the initialization and state update of the state estimator machines in each cell
yourself. You should be sure to call the start method on each of the state-estimator state ma-
chines just after you create this grid. You will also, whenever you get evidence about the state of
a cell, have to call the step method of the estimator, with the input (o, a), where o is an obser-
vation and a is an action; we will be, effectively, ignoring the action parameter in this model, so
you can simply pass in None for a.

You can remind yourself of the appropriate methods for creating a state estimator and for start-
ing and stepping a state machine by looking at the online software documentation.

Your BayesGridMap will be a subclass of DynamicGridMap and can be modeled directly on the
following aspects of DynamicGridMap . py:

class DynamicGridMap(gridMap.GridMap):

def makeStartingGrid(self):
return util.make2DArray(self.xN, self.yN, False)

def squareColor(self, (xIndex, yIndex)):
if self.occupied((xIndex, yIndex)): return ’black’
else: return ’white’

def setCell(self, (xIndex, yIndex)):
self.grid[xIndex] [yIndex] = True
self .drawSquare((xIndex, yIndex))

def clearCell(self, (xIndex, yIndex)):
self.grid[xIndex] [yIndex] = False
self .drawSquare((xIndex, yIndex))

def occupied(self, (xIndex, yIndex)):
return self.grid[xIndex] [yIndex]

Here is some further description of the methods you’ll need to write. Remember that the grid of
values in a DynamicGridMap is stored in the attribute grid. We don’t need to write the __init__
method, because it will be inherited from DynamicGridMap.

e makeStartingGrid(self): Construct and return two-dimensional array (list of lists) of in-
stances of seFast.StateEstimator. You can use the attributes xN and yN of self to know
how big to make the array. You should use util.make2DArrayFill for this (be sure you
understand why make2DArray is not appropriate).

e setCell(self, (xIndex, yIndex)): This method should do a state-machine update on
the state machine in this cell, for the observation that there is a sonar hit in this cell. And it
should redraw the square in the map in case its color has changed.

e clearCell(self, (xIndex, yIndex)): This method should do a state-machine update on
the state machine in this cell, for the observation that this cell is free. And it should redraw the
square in the map in case its color has changed.

Design Lab 14 — Fall 10 9

e occProb(self, (xIndex, yIndex)): This method returns a floating point number be-
tween 0 and 1, representing the probability with which we believe that the specified cell is
occupied. This is used for display purposes by the squareColor method, which has already
been written.

o occupied(self, (xIndex, yIndex)): This method returns True if the cell should be con-
sidered to be occupied for the purposes of planning and False if not. You may have to ex-
periment with this a bit in order to find a good threshold on the probability that the square is
occupied. Use the occProb method specified above.

Step 11.

[Wk.14.2.3 Solve this tutor problem on making collections of object instances. }

Step 12. Now, implement the BayesGridMap class in bayesMapSkeleton.py. It already has the square-
Color method defined.

Step 13. Test your code in Idle by:

e Changing your MapMaker to use bayesMap .BayesGridMap instead of dynamicGridMap .DynamicGridMap.
No further change to that class should be necessary.

¢ Running mapMakerSkeleton.py in Idle, and then typing in the shell:

testMapMakerN(1, testData)

It will do an update with the same data as we used in with the dynamic grid map. Now, the win-
dow that pops up uses a different color scheme: white means likely to be clear and bright green
means likely to be blocked, with continuous variation between the colors. If a cell is considered
to be blocked, it is colored black; if a cell is not blocked, but is also not occupiable by the robot, it
is colored red.

If you type
testMapMakerN(2, testData)

then it will update the map 2 times with the given data.

Check Yourself 5. Try it with two updates. Try it with testClearData. Be sure it all makes
sense.

Step 14. Now, test your mapper in soar, by running mapAndReplanBrain as before. You might find it
particularly useful to use the step button.

Design Lab 14 — Fall 10 10

Checkoff 3. Demonstrate your mapper in mapAndReplanBrain using your BayesMap
module with medium and high noise. If it doesn’t work with high noise,
explain what the issues are.

5 Real robot

Now, let’s see how well this works in the real world! Take your laptop to one of the real-world
playpens, connect it to a robot, and run robotRaceBrain.py. You may have to adjust the para-
meters in your state estimator (typically, the false-positive rate, or the threshold for considering a
square to be blocked) in order for it to work reliably.

Checkoff 4. Demonstrate your mapper on a real robot. You can move the obstacles
around in the playpen for added fun, but be sure that you don’t make it
impossible to go from the start to the goal.

6 Go, speed racer, go!

Thus far, we worked on speeding up planning time by using a heuristic. And our robots can
avoid obstacles by building a map and planning paths to avoid them. Now, we’re going to work
on making our robots move more quickly through the world. Your job during this lab is to speed
up your robot as much as possible; at the end, we'll have a race.

In this section we will concentrate on the Replanner and MoveToDynamicPoint modules.

The mapAndRaceBrain.py is currently set up to work in raceWorld.py: select that as the sim-
ulated world, and run the brain. To change the world you're working in, change the useWorld
line in the brain (and remember to change the simulated world, as well).

When you run using mapAndRaceBrain.py, you'll notice that, when the robot reaches its goal, it

stops and prints out something like

Total steps: 320
Elapsed time in seconds: 209.554840088

That’s the number of soar primitive steps it took to execute your plan, and the amount of elapsed
time it took. These numbers will be your “score’. Note that we are aiming for low scores!

You can debug on your own laptop or an athena machine, but scores will only be considered
official if they are run on a lab laptop.

Step 15.

Design Lab 14 — Fall 10 i §

Check Yourself 6. Run your robot through raceWorld and see what score you get. Write this
down, because it’s your baseline for improvement.

You will notice that there are several things that slow your robot down as it executes its plans:

e Each individual step, from grid cell to grid cell, is controlled by a proportional controller in
move .MoveToFixedPoint. The controller has to slow down to carefully hit each subgoal.

e Rotations take a long time.

Below are some possible strategies for addressing these problems. You don’t need to do any or all
of these. If you pick one of your own (which we encourage!), talk to a staff member.

You can speed up the robot by producing a plan that requires less stopping and/or less turning.
Implement these by editing your GridDynamics class or the ReplannerWithDynamicMap class
in replannerRace. py (read that code carefully).

1. Plan with the original set of actions, but then post-process the plan to make it more efficient.
If the plan asks the robot to make several moves along a straight line, you can safely remove
the intermediate subgoals, until the location where the robot finally has to turn.

2. Augment the space in which you are planning to include the robot’s heading. Add an ad-
ditional penalty for actions that cause the robot to rotate. Experiment with the penalty to
improve your score. (This is pretty hard to get right; only do it if you have lots of spare time).

3. Increase the set of actions, to include moves that are more than one square away. You can use
the procedure util.lineIndicesConservative((ix1, iy1), (ix2, iy2)) to geta list
of the grid cells that the robot would have to traverse if it starts at (ix1, iy1) and ends at
(ix2, 1iy2). This list of grid cells is conservative because it doesn’t cut any corners.

You can also speed up the execution of the paths by changing the gains and tolerances in the
move.MoveToDynamicPoint behavior (in move.py). Read the code in the file to understand
what these parameters mean, and then consider adjusting them to improve the robot’s behavior.
But be sure you do not cause crashes into obstacles! You can edit these lines of code in mapAn-
dRaceBrain.py.

move.MoveToFixedPoint.forwardGain = 1.0
move .MoveToFixedPoint.rotationGain = 1.0
move.MoveToFixedPoint.angleEps = 0.05

You are not allowed to change the maxVel parameter.

Design Lab 14 — Fall 10 12

Step 16. Implement some improvements to make the robot go faster.

Check Yourself 7. TPost your best scores in simulation on raceWorld and lizWorld on the
board.

Step 17. Run on a real robot, using robotRaceBrain.py. It has a good pair of start-goal values and
boundaries for the size of the big world in the front of the room. It will only work on the robot. If
you want to test in simulation, you can switch back to using mapAndRaceBrain. py.

Checkoff 5. Post your best score on the robot on the blackboard. Special prizes to the
winners!

oL 7

= Wtk on |} lapTe ¢
— kwml ﬁ@kﬁm + lab Ei{Gj

- Ve Pla’lf@f Loom Sv Lab (3 "”/ 5//7
“bu:(({ Mgp as obat proves Thaah o ld

—at Cust 5 Thale [rere W ’
~ (whea 500 -

0@ o Ohstieales
[a,d({ﬁ h" M A ’/:)
— { [)
nias use el s Sensor datfa

R e %

L > Nae 1o
¥ ' Oyhﬂ("“'C P ‘Eﬁ
(N

“wil g
ove 7 QP(@W/ Fomae pad,l

b @ouﬂ ap %)
= mfo\/@tmO/@TO Dyna.m}c Pow

Y in (/{':) (it
L) A ‘[0(/-{C{fof\

Wlwr, Re) e Wi Oyr\anﬂ ¢ Map
[1ok 5”“’! Poirt 5 Al foin)
b;a Strgor nfy
Dynamic ¢, P

LJ(/U% (b QMI Lo mut b

~ (s L (o g Stond /b guk dee W‘W({

(emOVfS t?L fon ?oém
2 ap ma e Ml

7 /lep

~ iy e %V‘W las s
B o e T

SMP S idie f domicfy 4 Aap
L Sonda L el &Ii Na‘;a
~ A actally Chage w/ t(ell) ¢ lox Golf ()

- V(olaﬂtﬁ’j SH {Of'(/w}plcﬁ ’(Qr jpe@é

P(w;des o pwch 0t /vx@ﬂ/wds

’[j:“ fm W/ Songr

Implﬁml map Maper

’Thts l‘q -fu, 5"1,/’

=Y lah

‘—'f/ame*LQ ((C(/\LQ v/

Glate. = o

Toy iapd B Steer s

T Mmnase
— 54t (plls

=t (gl y
Oh f"l 5'40“’5 PLC T%r }fﬂ(/

LOO& 1
BJ} % 0{6’(“,!11@ [3 “/‘uﬂL fle Stact
ol s

e
O() (0{&9 f%&/\ﬂ& (
Cfgj(_” (Z(Aj d LCFOKE’/ZJ’&’

OL\ ot wse S Dot . S0 it tom w2

Qf#t///m /00(/51“ }\r I~ 6{ (// {K/W
Ah (Owomber (/\ 210 L[f
ng

-

Only o
= Lt g
) 5112, py] o[aﬂ% .
~fV Ak snar ygloo aal
(el pres for sorgers
Sonor ok « somar Pyt

O 50%0/”} b /(ﬂ/m{/f
i 4
O /\1(/5}[be Gy pout—
(/Ld(é(e VW’L A (/%’,/cpﬁf’,h[lr

L b Moot
@ (ool \vorhs! “ Pl fo Tadicke

Now ¢
(7 !/\ 500\/

O b i o)

Re [(7 vy coll R

€ How
;5 of
— 6/ %fh’ SBHM@]‘MIL ("V;/’tg%/f
Plog 3y pdi@ e e (dil [
v 60/@“7 24 5’ Tf W
W |

Mg T G0

7
Y doo U bow Tl pmgp }’

Evplaiag Sl sk
i ﬂ : HL/’”ﬂ/vz/

Chler [()
2 /V@ 1(57 /Vpb@ '
Sonar Qesdugs b pulad bn e

T!’(///l o Gopd
e

(
VW(;C

(I'L qz Vol I(ﬂ n(e

la Letlle o 6. Prett medy some

EXEY b sk b,
V)oﬂmh

Rz 500l WCM 61469 Q/?/y'ﬁanﬂ > é(ﬂcfedm
HQP\PQU ol ”‘ ﬂ?&l(wv_ 40ls €

bo mak a Colls
(legr

T Use b e T dwf%(ﬁ/?f‘/ 9&/7
i dicles |
ﬂéo” clmr 4151[‘000’))[' ‘

\z/auo‘ Dty /r/’éﬁ o (ol of

v ?Ld Iensar @1& /Baf//&}[As

©

(Phns o I T

b of denaging !

O G 6 lob of gy ess
AR AN B R

‘OO &hﬂ(’FC@)!/ r~/ Cloa

~ getm b b sy st

be
T Qs Fhgf

? \/VIICML hﬁy M’?}L
@ /\/OW se0 f WOKWy

/,\g);; ot an fipd s Gy oul by 6/@‘/@
L spt> g, (eckeding

~ 1
e e & Seand g gty '
s o gt ¢ fan leaing hat

'L ges tuat b Dd ophion
V) ot 2

ek 4 Bog M

OM will v To Make MQIO,O(W maoye /e/“qW@ t!f 7o bl
ﬁ{‘o{/e @éﬁfhdﬁo"l - Qg@/(agcﬁtr@ ({/UKG/MHO/\ Ovec {lm(,
E&ffh 46{(/61/6 £5 :&({6 PW/L\L — '/’/86(/{ (',1 C{Plom(,{t”/l’ﬂf

@
W(‘gh Qa QM@G/L‘MCIIO é!&&b ({@ﬁ/b;f{rd/\ (['\ &z@) M‘GDSMML”’%
“befare Th‘mk dﬁaw+ 51%@ €5fflmwf’/r0f)

__,,ML__ (5 \//\éh{ACQ @{ * San

M C {t(/é{/ @&Oq%ﬂfﬁc{j

O(C‘/)O:@‘U �{% /‘ra S5ona, mf}/ﬂ/‘q ({ass

&

0= i e}
C gadd he sorebey olse (@mbmte) fngly)

\/\/czﬂ C@ia fa maolgl @ S\MQLC Celf
(il ettt on wdtyle oy —0n0 o e cof)

(m"(/[r\ Mgre mqn%a,ﬁfe o WW 5Lmubi /LWd

ﬁ\otgH of ﬁwb9
et bl deaColl Dy rames (collgh vor Tosk Toap)

@J}M modol
[556 | SW&)
L og= ghslacle
el Dt {eew | Jf 9

0l
(e f\//'ﬂq /JDL% (f@@ 9 h:’f it

7\@ (/egcc{/\y Npw'

‘HGMS mgdg[
‘WJ\GL‘} {oﬂn s]Lh;g ;"
g
—(ull a bu/)

- (0fu/n ()H T,u@ 0(071 (leg r Q ? 0 P glules "y

Q LJ %{mg}f(fm 1%0/4 Ohsl acle 1% %’VW
< J

e Oﬂﬂf by 6[/?‘/’/4
- PF W adfully M1 atfedtiwn

‘ rownal valve G

pm{ ((Qﬂ ' f{'.fdﬂbl"]ltOQ »{fpm OM 5710“[@ fd Q/‘Ofkr’

s J\/gjf ff(,m I/V\ﬂt!{[5(‘/

Bk redd bt i finy

)

oty tsfs),
QL(])L Somg fhi

(s) .
p@h//ﬂ 52;+¢ 00()57[(({Sc' z Z)
(el congtiln
P&oﬁ We JO ﬁés we Mress Yo W/éoh/ C@t(ﬁflﬂw/
yf)/oh&b}}}#ﬁeé (1 (ockta (ases

Now ned & fofin mod ¢/

st dil
—0bs i)}
“”% Mhrs (\L\LJ/

b Mol O s, ShochaoticSh st Dish, i GhonAS 0 Gone)
fi 7

A}
P&j) "}(ﬁ{a\g Obﬁ

P(O) té&bﬂlcu/(e W (’mp)} *@

T%a% &S oin
geeey

) oM ot ey
| 0065 nat™ ool /:@H' ‘{(’\c@(f ® ale
@ M@[@; Y G [

®

ow {ML H\ﬂ)ﬂlf) strategy for ’m,/ﬂ/émffnﬁ B &y e Orcd Hayp

Class
“mwag ndalielion T st e for ouy el
FShort Cstey)
7 (0,4)
Tl\/om S/LL(@

ke ace (’9’10/('/7

- Bmé’é G/d flas W«e A Dyflﬂ/’l/(\é G”MW
N L I e
Make Gt ating Getd (ﬁ@fg ; lonskad B, 2D aq Ay

\/V/ o Hil male 20/4[/0(7 F

M (58116) [XIndQX /YI,@&A) l1 do stae (//’JW‘L@ ﬁ’” 0 ://lc’f
_t, 4 ({(ﬂ/w ma[]

Clea (! [sel, (\Tadex. yL({&\)) i =fee
M(Se[é(hzﬁ&ﬁ yrndﬁny L efuns }Dfﬁb f[(la/ﬁftj /0(-

O((,Uﬁ'uzd[ﬁe%(xf/dex/ ‘/Ihdﬂx)) (‘ (eﬁ//@]}ae i{ 0@}%;
Apoe o Corouin %ﬂ/&hhglé

I
O&@L fid Tl 1923 B Allssny T,
Class M. Clags

Jef _,,(MH_‘,C%%/ d)(
5“{(/ =4

P |

\-___/

Jeb Lok el (lass ().

Ohp = my Clags [(/)
(et = [
{7/‘ 2 ;q Zd”‘(d@ Cﬂ/

(et append [Oﬂoj
(etun oy)l

Che) - ob of Clesses 16,)

Cless ZO[O]‘V = ot

Tl o de of e (lass
VT ol o e (0)

ijf) !Tfy /

106'(({/@ wofler vorgon of Eéf a“” ﬁzﬁ 11;

ookt ingtae of oh,eofs in each lacel?,
ot I

t'ajf - Lﬂ' ﬁqb YL(VN, us j ()J(mw[\eVe’c@fﬁz/f
[ﬁtv/q VH hd[lt {/@Oﬁir]:c (H//WYC[Q%[VJ)

O rlel s o (ol sl
Ol Lo fateg vrt o
[{J(Um [“{751\ FOF . M [m@t’,[‘i(‘”}}]

e ehed] e @ Goction (am bl ki MYC[“’:’[V) @

(13)
-~ Now back 4, pcoblom
~whit MI@M, o

T Shald g o bt |,
~well called g Moo Mlaber

EOP@ Pagec oy @l YN/
fondin el ah Hlee - Y, ipe

Mot an as 2o £y

)QWL - 671"48 @tﬁﬁm%ﬂ)/‘ g@@}»
RO el £l som

F(//V-'Ed o :mﬂt@w/h[691[/‘6%?’“ (/‘{/L’(-
L/JWQ Dm M s 'h\\(b EQ{C’/@["

(al) Nese p}eces denll £ Fotfor in my L\Wt)
W dolab (3 st calby il
KZBG]L ('-(l, OLC X % /dﬂi;a(q: egf}mwl[of‘
@‘6%((UL/}ea fo g(z,ft
P

—Nno

2)Da(dms

[MJ& X, ¢ ! EsTimator

@
‘ L
Neﬂd %O 6[/@ €l/€¢ Fﬁ\nt/@h (‘20/]_7[CU‘/Q C&b/),/?t
Fon = fonclor yok * Fy
@Naw IUL} " MML/U DY f/{a/
Md fo do Jfﬂm‘ﬂ Gl isns — NOW

/VW reed f’a ptafc{ (ﬁﬂfol (lm
hat s 5fw1(e(/
T4 4 albeng]
:1L ﬂ\au)((, b(’ dd&(‘p}’
®/V0W hﬂv@ Co(ws rror
(all) - gtnd ke
“nd dnt wdide JYLO&/’K
Tk W fackes

__C_c—m_é_L stof /5914#
N@M + 5m¢)l€m@/t+ scc P Lot

Db 4 pores!

“’(6”% e wihife Os tF sees [y gre bree
Ts bight geen LMy ko be blotet sight*

__é@(’ﬂ(k On Sfa/l lbmb/ﬂ’
Y%Ll 4 mde o fss Gre™

@W)\Y e o Bk whdfe @l f 0d
Oh el 2@"”/3 Cor paw/

@VO/}LS @W/ feot Clese Dty
[/]OV }//7 “r\ 500\/

hw% o hed fs @/@A ”JM(4 [@&,L (';S W.[’//(‘Aﬁ%g} 7(7
Forn

Th pa s sl o gy otuighf

T+ mwr ok Things a5 hit

(Ve fums (Ed

H“d Gding /(/I s /\/\ufp% @[W“&S e C@///\flﬂ
Ot ke Ve g _ ol

@Nm/ (oﬁ% P M{Lb‘(@ ”@W/
[onfostd puf reenen

@QL{L (6 b “WU
U

)’\ (;[‘/ faff v

m Sp 61/ r?tJé@f{ a h@(/‘;‘/ec %0 §f’€€a/ (/‘/0

Now eadt F speed g Mok
W/ &@W’Wf Mo U (e Point

v/ /Ya,:o ﬂé&&@m;(ﬂy t fa(eM//cl

@Nﬁed by (0Pt e J-D\,Mm’m gg(gm‘// o 13,1 7
@ Now i+ wols af st |
29 qlgq gl

Core Tags fo), e
“Slows dun Lo it poinf. ety
~(Otdbinns dlgy

(otr\ SP%C{ P)

my z///@

(e/d

v pfﬁd/o:{ﬂj)0/0{/1 w/ [@5; -Q%GP,D/IA ffm;z
(I WA 'h\:nlz;aj F\@’i/ }wuvéf\ﬁ 1{‘ J Uj

@/2 pZﬁf\ e : ((n (
[J\Q / @/(3; C{,! 5@# @'{Z aof (0/\9/ éw[[)Ojf ?/ﬂ@'}
| W Ko ave atorng diafe 9(/530«55

LA gty e iy (1

st o0 €xadl /7

gof- cigit)

((
Ccf ons Tlo m[ud@ Mmoo
N A o mext o

3. iﬁtc«me Sl of /
moe Way

(

(@l\ @Lsﬁ CL\(M&L @dﬁns t Mermcé’/j z[z\
Move. Mave lo DL/M{/W"C IDQIWIL

It | (b cash!
(0ot Changg B, mox [Vel ﬁ'vvyyl!

(00/1‘7[Aﬂ/ﬂ l‘() Uiff(/féﬂf ({0 SszrCQ 6/5655 (ng Q/O//

