DecentralizedDocs: A Peer-to-Peer Text Editor

Michael Plasmeier
theplaz@mit.edu
Nandi Bugg
nbugg@mit.edu
Rahul Rajagopalan
rahulraj@mit.edu

Rudolph
May 10, 2012

Introduction

Users would like to collaborate on a text document without using a central server or needing to be
online all the time. We propose the=gtesignrof DecentralizedDocs, a peer-to-peer text editor,which™ +2
fulfills this demand. DecentralizedDocs allows users to edit text offline and then reconcile the text with
their teammates. It supports both written text and code.

DecentralizedDocs manages a data structure that augments text with version vectors to support
merging of changes. It carries out reconciliation and commits using a networking architecture that does
not assume constant Internet connectivity, and a logging system that does not assume perfect uptime.
Users can work offline, automatically combine changes in different areas of the document, and
designate "commit points" to submit versions of the document that include the changes made by all
users.

DecentralizedDocs requires that each machine has a unique machine name, that group sizes be fixed,
and that each user know the IP address of his/her collaborators..

Requirements

Design decisions often require tradeoffs. We prioritize the following goals when making these decisions:

Usability
H / The most important goal of a software system is to allow users to complete tasks as efficiently as
\x\{ 3 possible. In this case, the task is collaborative text editing. DecentralizedDocs realizes that users will not
‘{w always be online or have a central server, so it allows offline ad-hoc editing. DecentralizedDocs also

provides automated merging algorithms so users can avoid error-prone manual merging when the
computer can do it for them, improving user interface safety. (Howéver] when merging would corrupt
the state of the document, DecentralizedDocs asks the user howto\proceed.

w l‘l‘ﬂw,ew/r‘ s h’lc “rt-,,,{? 4

Fault-Tolerance OesT ot o e sotee e P
Computers, networks, and other components of systems often fail without warning. Users shewle-mot

Z b
redo actions that they already comm|tted even if failures outside their control occur.
DecentralizedDocs realizes that the | mfrastructure necessary to carry out tasks may not always be
working, and implements algorithms to preserve the results of completed user actions.

Simplicity

Unnecessary complexity makes systems harder to reason about and change as requirements are
updated. DecentralizedDocs applies existing and well-understood algorithms instead of designing from
scratch when doing so simplifies the system. Usability is more important than simplicity, so making a
more complex implementation is acceptable if the interface remains simple.

\. Design

DecentralizedDocs involves four major design components: a data structure for documents that
incorporates versioning, the editor and its user interface, the algorithm used to resolve changes from
multiple users, and commit point handling.

Data Structure

The basic unit of the document is a Line. In code this is simply one line, butin a written text document,
one Line is equivalent to a paragraph when word wrap is enabled. Lines arep@p by \n characters.
Line structures contain a reference to the text in the Line, an index showing the Line's position in the
document, and a unique ID. This Line ID is a nonce, making it random and hopefully unique. Lines have
the code shown in Figure 1:

struct Line {

long id;
char#* text;
float position;

VersionVector text_version_vector;
VersionVector position_version_vector; - ?

¥

Figure 1. The data structure for a Line.

Io&a/tly
Ahese
A 910954\/ §7Larezf7

Each Line has two version vectors associated with it; one for text and the\pther for position. A
version vector contains & Line revision numbers for each user. Version numbers start at @ for a new
Line. When either text or position is changed, the corresponding version vegtor component is
incremented by 1. Version vectors have the code shown in Figure 2:

struct VersionVector {
int version_counters[N]; // N is the number of collaborators
// Position n corresponds with collaborator n

}

Figure 2. The data structure for a version vector.

|
DecentralizedDocs compares newness of a variable through version vectors. We say that a version

vector a is "strictly newer" than another version vector b if for all integers n between O and N,

a.version_counters[n] >= b.version_counters[n].If neither a nor b is strictly newer, then

we consider them to be "concurrent”. ¢, _ Feyt ¥ po sitizs a. text 7 b, teyt 9
a. posTi~ < b posd

DecentralizedDocs stores documents in memory as linked lists of Lines. To save documents on disk, it

serializes the linked lists. Figure 3 visualizes the data structure of a document.

The document (as seen by the user) The document (as Lines in memory)

This is a paragraph in the document. 7. id: 34314

RS s text: “..."

position: 0

This is a second paragraph. Note that it is possible . text_version_vector: <2, 3, 1>

for lines to wrap around. | position_version_vectar; <1, 1, 2>

oot

id: 14255

text: ".."

position: 1

—J text_version_vector. <3, 5, 9>
position_version_vector: <1, 1, 3>

Figure 3. The data structure and its presentation. The user sees a continuous block of text, but Lines are stored in
their own structures internally.

Editor

DecentralizedDocs provides a text editor with a special user interface. Independent editing of the
document is similar to most other editors. Users can'modify text by typing, and click on a save button to
save the current version of the file to disk. However, there are some additional elements because of
DecentralizedDocs’ unique features. When two or more users are connected over a network, a user can
“sync” with a particular usequers can also choose to propose to commit a specific version of the

RGN does user Hnow whotbor many are cvr/c«fﬂ\j 0nv line]

When the user is editing the document, he/she is actually viewing and editing a shadow copy of the
document data structure that resides in memory. When the user saves, the shadow copy is serialized to
disk and the pointer to the original copy of the document is moved to point to the newly serialized copy.
DecentralizedDocs initializes a new shadow copy for additional edits and the next save. If
DecentralizedDocs closes because the user exited or a failure occurred, unsaved changes are lost

(keeping them might leave the document in a partially-modified state). T+ wodd be hice o
\’"Cl»‘ladlaql) SaLT ¢

Adding a new Line to the document (by typing a \n and then text) creates a new Line data structure. The

new Line has its position set to be between existing Lines; p%iﬁmmw Line

is between existing Lines (to avoid triggering changes on the existing Lines which will complicate kol,c Yoo
merging). Editing an existing Line changes its text field. Deleting a Line sets text to the empty string. It e f/) @h
does not remove the Line structure from the document, as this may cause the existence of the same Ty
Line in another user’s file to be misinterpreted as an addition; correctness requirements mandate

keeping the version vectors. Moving a Line updates position. After all updates, the corresponding
variable’s version vector is incremented at the index for the editing user.

To reduce memory demands, the shadow copies use copy-on-write semantics. The pointers in the
shadow copy's linked list initially point to the Lines in the original copy, and new Line structures are

created only when the user makes edits. The text and position fields from old Lines are kept on a

stack to support undo and redo operations, and freed when the editor closes or the stack exceeds a
user-defined capacity.

DecentralizedDocs' interface includes buttons that the user can click on to begin reconciliation or
commit operations. The igte"r?ace displays the names of the users who are online. A user can click on
their name to start a sync between them and that user. If there is more than one other user online,
thereisa specielljbutton to sync with all users.

There is also a button to start a commit operation. The Ul will prompt the user to give that revision a
name in a pop up window. The user will also be prompted for an expiry time for the commit.

Reconciliation
DecentralizedDocs supports pair-wise reconciliation. In larger networks, pairs will reconcile individually

until the entire network reaches equilibrium.

We define an operation called “pull” involving two users (call them Alice and Bob). Suppose Alice pulls
from Bob. The goal of the operation is for Alice's document to incorporate all changes newly discovered

in Bob's copy of the document. The implementation must address two concerns: it must automatically
merge Bob's changes into Alice's document where no conflict exists and ask Alice for manual resolution
when there are conflicts (ensuring that the merge produces correct results), and it must not leave Alice's
document in a partially-merged state if either host or the network fails. wlat abest Rulhs vt iy)
The pull operation contains the following high-level steps: first, Alice and Bob’s documents are
automatically saved, to eliminate discrepancies between the displayed shadow copy and the canonical
original copy of the document. Bob sends Alice his linked list of Line data structures, followed by an
end_transfer message to indicate that the transfer is complete. The transfer uses TCP for reliable ~_~
packet delivery. Next, Alice's DecentralizedDocs copy identifies all Lines newly created in Bob's version
(they will have values for id that she has not seen before) and includes those in her document.

Finally, Alice attempts to reconcile changes to variables that exist in both users' documents.

Alice is/bloang her document while the pull is in progress. If she edited the document,
then she would have to simultaneously keep track of both unsaved changes (produced by herself) and
saved changes (incoming from Bob); this situation could easily lead to user confusion and
misunderstanding of system state. The merging algorithm is fairly simple, so the time in which Alice is
blocked should not be more than a few seconds. Bob is not blocked from editing while Alice is pulling
from him. DecentralizedDocs copies his Line structures before transmitting them to Alice, so his changes
during this timeframe will not be visible to Alice until the next time she pulls from him.

Merging
DecentralizedDocs will try to resolve the changes automatically. Automatic merging is handled by
comparing version vectors. Alice automatically accepts new Lines from Bob. DecentralizedDocs

1 Eﬂ-c"” tinat, e

= eTq
o sonT b ol At B3

compares all of Alice's version vectofs with Bob's for each text or position variable; if one version
vector is strictly newer than the otlier, then the newer vector's corresponding value will be used for the
variable in the merged document/If the vectors are concurrent, DecentralizedDocs compares the two
changed variables. If the value of the variable is the same in both documents (both users made the same
change), DecentralizedDocs accepts that change; otherwise, it asks Alice (the puller) to resolve the
conflict. At the end of each variable resolution, Alice's version vector is updated to contain the
maximum version number between her vector and Bob'’s for that variable.

If Alice edits sentence x of a Line while Bob edits sentence y of the same paragraph (two changes to the
same text variable), DecentralizedDocs considers this to be a conflict requiring manual resolution.
DecentralizedDocs will show Alice a conflict-resolution dialog with both versions of the variable, and ask
her to provide a merged version. While it is possible to create a merged Line containing Alice's
sentence x and Bob's sentence y, doing so may create a paragraph that is semantically invalid. Merging
in this case could be especially harmful in languages other than English. WMntly writing such a
paragraph to the document is not user-friendly, and choose to alert users instead. Alice’s copy of
DecentralizedDocs will increment Alice's version vector component by one if she manually resolved a
conflict for that variable, because by doing so, she made a change to the document.

Figure 4 shows an example of version vectors syncing:

Before pull:
Alice’s W = <5,7> & B, 0

= B)
Bob’s VV <5,9 ;7 ‘
<442

Bob’s text is chosen and pull completes:
Alice’s W = <5,9>
Bob’s W = <5,9>
Figure 4. The state of a variable's version vectors before and after Alice pulls from Bob.

Logging during pulls

Fault-tolerance during pulls is managed using write-ahead redo logging, making pulls all-or-nothing
atomic. All log records contain sufficient information to make idempotent redo actions possible. Alice
does not actually write to her document data structure until the pull is successfully completed. At the
beginning of Alice's pull, DecentralizedDocs writes a start_transaction record to her log with a
transaction ID. When new Lines are added to the document, DecentralizedDocs appends an add_1line
record, including a serialized Line structure for that new Line. After every difference is resolved, either
automatically or manually, DecentralizedDocs logs an update_variable entry, containing the id of
the Line being updated, whether the variable is text or position, and the new values for the variable
and its version vector.

When all variables have been accounted for, DecentralizedDocs write a commit_transaction entry
to the log with the transaction ID from the start. It plays out the whole transaction, making every
specified change to the document, then writes an end_transaction entry (with ID). If Alice's machine
crashes, then on recovery, DecentralizedDocs writes out and ends all unended committed transactions.

If Alice stops receiving Lines from Bob before the end_transfer message, this implies that either Bob's
machine or the network has failed. DecentralizedDocs writes an abort_transaction entry to the log
(with ID) and the changes are never made to the document. If Bob's machine or the network fails after
the end_transfer message, the pull proceeds as normal. If Alice's machine fails before committing the
transaction, then on recovery, DecentralizedDocs notes that the transaction that has not been
committed and does not perform it on the document.

The non-destructive nature of logging allows a performance optimization - Alice can begin inspecting
and reconciling Lines as soon as she receives them from Bob, while the remaining Lines are in transit. If
failure occurs, the recovery system avoids partially updating the document - only the log has changed.

Pulls only add changes, so they never regress a document. Therefore, users have a reasonable course of
action to take after any failures to verify their states; they can simply pull and see if any changes

occurred. A & L
5 3D
Synchronization 8 0

A “sync” is a two-step pattern that users will often follow. If Alice initiates a sync with Bob, then Alice
pulls from Bob (possibly with manual resolution), then Bob pulls from Alice (this is completely
automatic; after the first pull, all of Alice's version vectors are strictly newer than Bob's). It is possible for
failure to occur after the first pull, preventing the second pull, but this is not harmful; both users have a
valid document and can complete the sync later.

There is a use case for disjoint syncs that justifies allowing this possibility. Suppose Alice is in the
progress of adding a new section to a report. She may want to stay up-to-date with Bob's incremental
changes, but not to release her changes until the new section is complete. With this architecture, she
can periodically pull from Bob; this would not be possible if DecentralizedDocs required all-or-nothing
syncs.

Committing
The commit system is implemented as a two-phase commit system. The commit initiator serves as a

coordinator by contacting all of the peers in the system individually. The coordinator also maintains a
write-ahead transaction log for error recovery. Can oo Stat ot sene Fie

[}
Tw 2 Lo rikinih s
The commit system requires that all peers be online in order to complete a commit. They do not have to

be online at the point when the coordinator initializes a commit, but the commit cannot finish until all /
D1 TS UnEn 8l

peers come online. DecentralizedDocs’s commit system will periodically attempt to resend each
—\-_’—./"-—_\

message until the message can be delivered. As with reconciliation, DecentralizedDocs uses a reliable

transport protocol (TCP) to deliver messages and recognize if the message has been received. b)
s 11 passbl 9T Tho ney ey ToPRen -

The commit process will first check to make sure that all peers are up to date (i.e)all version vectors
match among all peers). If this condition is not met, the commit will be aborted.” Next the coordinator
will send a prepare message to all of the peers. Next, the users of the peers are asked if they want to
commit through a user interface. All users must explicitly approve the commit before the commit
occurs, even if they all have the most recent version of the document. It is possible that the users can all
be synced up, but someone may not want to commit because he/she was planning on making changes.
We want to support this use case. If any user disagrees, the process is aborted. After a user agrees to
commit, their local copy is locked. The tentative commit is recorded in the peer’s log, and then the
locked response is sent back to the coordinator.

If all peers respond affirmatively, the coordinator decides to commit. A checkpoint is recorded in the
coordinator’s log. This is the commit point. The coordinator then tells all of the peers to actually
commit, using a commit message. The local peer marks this in their local log, marks that version as
committed, and unlocks the local copy. The peer then sends back an OK message to the coordinator.

If something goes wrong before the coordinator decides to commit, the coordinator can tell the local

peer to abort and release their locks. if something goes wrong after the coordinator decides to commit, /
the commit will be processed once the nodes come back online. Failed commits will be revived using

that peer’s log.

The coordinator has the option to cancel the commit at any time before the commit point. If he/she
does so, then this is treated similar to a commit-preventing failure. The coordinator tells all peers to
abort and release their locks. If the coordinator has not heard back from all of the peers by time expiry
time, the coordinator will issue an abort. Peers that have agreed to a tentative commit before the
expiry time, but are offline at the expiry time, will remain locked. They do not know if the server has
ordered a commit without their knowledge. When these peers reconnect, they will find out if the
coordinator proceeded with the commit or aborted it. This change was made to maintain the simplicity
of the design; otherwise the coordinator would have to perform additional checks.

For the sake of simplicity, only one commit at a time can be initiated. Should multiple users try to % &r <
commit at the exact same time, one random user’s commit process will begin. The other users will be fw’r? lie o)
informed via message that a commit has already been initiated and that they should wait until the Tom fly
process is complete before trying to initiate a new commit. Subsedy of

Yers alcad, bes oh
Once a document is committed under a particular name, that name cannot be used in future commits.
Should a user attempt to commit a document with a name used in the past, a message will appear with
the version number of the document that was committed. The message will also direct the user to select
another name. The version number of the already committed document and name will be obtained
from the user’s log. If the name is not in that particular users’ log, the other systems will check their logs

to see if the name is a duplicate. Those other systems will refuse to accept the commit if the name
happens to be duplicated.

Analysis

Reconciliation System
DecentralizedDocs supports several complex conflict resolution scenarios.

Changes to text in different areas
If Alice and Bob add text to many different paragraphs throughout the document and make a single

diverging change to the introduction, DecentralizedDocs limits manual reconciliation to the
introduction.

When Alice and Bob sync, the person who initialized the sync is the first one to pull (suppose it is Alice).
All of the variables Bob has modified in the paragraphs throughout the document will have strictly
newer version vectors than Alice's versions of the variables, as the vector components at Bob's position
will be greater. The components at Alice's position should be the same in both users' vectors, because
Alice has not modified the same paragraphs as Bob. Therefore, Alice accepts all of Bob's changes:
without conflict. The only exception is the change to the introduction; this has concurrent version
vectors and is a genuine conflict. Alice resolves this change manually, and in the process her version
vector for the introduction is updated to become strictly newer than Bob's. Finally, Bob pulls from Alice;
his version vectors will be strictly older for the paragraphs Alice modified and the resolved introduction,
and his document includes all changes without conflict. The versioning algorithm has allowed both users
to sync with no unnecessary conflicts.

Avoiding double-resolution

There are use cases where incorrectly-designed versioning methods inconvenience users by forcing
them to manually resolve changes that have already been accounted for. One such use case occurs
when the following actions happen: Alice and Bob (connected together) synchronize and include a
change that Bob has made to a sentence. At the same time, Charlie, who is offline, changes the same
sentence in a different way. Later, Alice synchronizes with Charlie, and she resolves the conflict in that
sentence. Later, when Charlie synchronizes with Bob, Bob should not see a conflict in the sentence Alice
resolved.

DecentralizedDocs solves this problem in a user-friendly manner. When the two changes to the
sentence are made, Alice and Bob's version vectors for the corresponding text variable are
incremented in Bob's component, and Charlie's version vector is incremented in his component. When
Alice and Charlie sync, the vectors are concurrent, and Alice's change resolution causes her version
vector to update and increment in her component, becoming strictly newer than Charlie's. Charlie's
version vector becomes equal to Alice's after he pulls from her to complete the sync. When Charlie and
Bob sync, Charlie's version vector is strictly newer than Bob's, so Bob receives the resolved sentence
without conflict. Figure 5 shows an example of this scenario with concrete values.

Initially, everyone is synced:
Alice's W =<5, 6, 4>
Bob's VWV <5, 6, 4>
Charlie's W = <5, 6, 4>

1l

Then Bob and Charlie make changes simultaneously:

Alice's W = <5, 6, 4>
Bob's WV =<5, 7, 4>
Charlie's W = <5, 6, 5>

Bob syncs with Alice (His version vector is strictly newer, so she accepts):
Alice's W =<5, 7, 4>
Bob's VWV €5y Ty A
Charlie's W <5, b; 5

Now, Alice and Charlie's Vs are concurrent.-Alice pulls from Charlie, sees a
conflict, and resolves it. Her version vector component is incremented
because she changed the variable to resolve it:

Alice's:W = <6, 7, 5>

Bob's WV = 28y 2, 4

Charlie's W = <5, 6, 5>

Charlie pulls from Alice (without conflict) to complete the sync:
Alice's W = <6, 7, 5>
Bob's WV =<5, 7, 4>
Charlie's W = <6, 7, 5>

Charlie and Bob sync. Charlie's VV is strictly newer than Bob's, so Bob
accepts Charlie's version without conflict.

A's W =<6, 7, 5>

B's W =<6, 7, 5>

C's W =<6, 7, 5>
Figure 5. Version vectors carry enough information to prevent double-reconciliation.

Changes to text and position

If Alice moves several paragraphs, and Bob edits a sentence in one of those paragraphs, then a conflict
should not occur when they sync. DecentralizedDocs addresses this case by maintaining separate
version vectors for position and text. Alice's position_version_vectors for the paragraphs she
moved will be strictly newer than Bob's, and Bob's text_version_vector for the sentence will be
strictly newer than Alice's. When pulling, DecentralizedDocs sees this as two separate changes; and both
updates will be written to the log and played out without conflict.

Convergent Changes

If Alice and Bob both change the text of a Line to the same value, then when they sync,
DecentralizedDocs does not require manual conflict resolution even though their version vectors are
concurrent. This is treated as a special case checked in code; after encountering a concurrent version
vector, DecentralizedDocs inspécts the two values for the variable, and only presents a conflict
resolution dialog if the two values are different.

Commit System

DecentralizedDocs’ commit system is resilient against the failure of either the coordinator or one of the
individual peers.

Users offline

If any peer does not happen to be connected during the commit process, their message will be queued
until they return online. For example, imagine a scenario where A is the committer and A and B are
connected, but Cis not. A will ask B if he wishes to commit. Assume B indicates affirmatively. A and B’s
copy will be locked for commit. The tentative commit message to C will stayed queued at A until C goes
back online. A will periodically attempt to send the message to C. A and B’s copy will remain locked.

Coordinator crashes before commit point

If the coordinator crashes before the commit point, the coordinator will recover from its log. It will see
that it has an open commit pending. The other peers will be periodically be resending their tentative
commit messages. Once the coordinator receives tentative commits from everyone, the commit will
proceed until planned. The other clients will remain locked until the coordinator tells those peers to
either commit or abort.

Coordinator crashes after the commit point

If the coordinator crashes after the commit point, the coordinator will recover from its log. It will see
that it has issued a commit. It will resend the commit message to all nodes until it has received a
confirmation (ie. OK) message back from all of the other users

Peer crashes before tentative commit

If a peer (i.e. an instance other than the coordinator) crashes before the tentative commit point, the
peer will process the prepare message as normal.

Peer crashes after tentative commit, but before actual commit

If a peer crashes after the tentative commit, the peer will notice this state in its local log. It will keep the
document locked and keep sending out the locked response to the coordinator. It will then proceed as
usual when it receives the commit message from the coordinator.

Conclusions

DecentralizedDocs tracks versions of documents' contents at a fine-grained level and supports peer-to-
peer interaction, allowing users to collaboratively edit without a central server. The design emphasizes

usability and correctness; it does not place unnecessary barriers in front of users or drop saved changes
just to make the implementation simpler.

DecentralizedDocs does not support groups whose sizes vary throughout the project. It also does not
implement major performance optimizations such as parallelism where those would complicate the
design. Besides these issues, DecentralizedDocs fulfills the desired requirements and use cases.

Acknowledgments

Thanks to Travis Grusecki for clearly explaining the difference between version vectors and vector
timestamps, and how they apply to this design.

Word Count: 4,342

DP 2 Notes -- Larry Rudolph (section R01, R02)

Here are some of the things | was expecting to be addressed in your projects. It did not
count if they were addressed in long, complicated hand-waving descriptions. This is a

quickly written list. Please also look at http:/people.csail. mit.edu/psz/6.033/dp2.pdf for a
more complete explanation of the subtle issues that you may have overlooked.

1. Group Membership: Comments about membership, static or dynamic, who knows,
how are members identified.

2. User Interface: Explicit save and sync or implicit (edit and sync buffers). Edit
disabled while sync? Failed sync get retried or require user intervention. Moving list
of adjacent paragraphs and how conflict resolution works in such cases. User
required to be online whole time or what happens during

3. Version Vectors. How many and what they cover and what they contain. When are
they updated. The case that many projects missed is when there are two pairs
concurrently synchronizing, e.g. Alice with Bob and Charlie with Debbie. Each pair
resolves their conflicts independently, even if the conflicts are on the same sentence.
Then Alice syncs with Debbie and Bob with Charlie. If version vectors are not
updated correctly (like in most of your projects) then can end up with inconsistent
results.

4. Conflict Resolution: Definition of conflict and what needs user intervention (and what
if user is not on-line or not editing). Semantic resolution (words in sentence). Is whole
file send every time, or just vectors and data is then requested. Alice swaps
paragraphs 1 and 2, Bob deletes paragraph 2: conflict? Is this addressed at all? If
GIT is used, what modifications. Correct propagation of modifications to reduce need
of manual resolution.

5. Commit: If two phase commit used, how is it modified. Does it require everyone to
be online at same time? Will commit succeeded if everyone eventually comes
online? Can there be livelock? If leader chosen, is it chosen correctly in all cases?
Use logs correctly, including write-ahead-logs. Can inconsistent version be
committed?

6. Analysis: How does the design address the requirements especially the edge cases.
Were all the cases considered and is there an argument that this is all the cases?

Good luck with this and other courses, good luck at MIT, in work and especially in life.
Feel free to stay in touch. My MIT email should always work (rudolph@csail.mit.edu)
and | use Linkedin (same mit email contact) but hardly ever use my facebook account.

