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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science
6.034 Artificial Intelligence, Fall 2011
Recitation 6, October 20
K-NN and ID Tree Notes, Cliff Notes Version Prof. Bob Berwick, 32D-728

0. Basics

The general goal of machine learning = make accurate predictions about unknown data after being trained on
known data.

There are two kinds of training: supervised, where the desired output is provided along with the input; and
unsupervised, where the desired output is not provided. We will focus on supervised learning methods
here.

Data comes in the form of examples, in the format: (x,, ..., x,, ¥)

Here, x;, ..., x,, are also known as features, inputs,f or dimensions, while y i1s the desired (or observed)
output or class label. A feature is a descriptor or property used to characterize the input for learning. We call
the space where feature values define the coordinate axes a feature space. The input vector for each
example defines a point in feature space

Both the x’s and the y’s can be discrete (taking on values from, say, {0, 1} or some fixed set of label names
or classes) or continuous.

In machine learning training we are given some (finite) set of (x,, ..., x,, ) tuples. From this we output some
learned classification or prediction function.

Note that K-Nearest Neighbors (KNN) and ID Trees are both supervised, classification learning algorithms

In machine learning testing we are given just (x,, ..., x,) and the goal is to predict y with high accuracy.
Training error is the classification error measured using training data to test.

Testing error is classification error on data not seen in the training phase.

Checking for over-fitting - Cross-validation: split sample data into N subsets, use each subset as test set,
the rest as training set; use average and standard deviation of performance on test sets to characterize
prediction performance.

1. k-Nearest Neighbors
Training — Store all feature vectors in the training set, along with each class label.
Prediction — Given a query feature vector, find “nearest” stored feature vector and return the associated
class.

5 v 2
“Distance” = Jw] (val - Vbl )2 T wf! (vaZ - vbz)— t...F wn (vrm - vbn )'
v, 1s the value of feature 1 in vector a
vy; 1S the value of feature 1 in vector b

w, is the weight for feature » (see below for some common metrics used for distance and other points
about weighting)

1-NN: Given an unknown point, pick the closest 1 neighbor by some distance measure.
Class of the unknown is the 1-nearest neighbor's label.

k-NN: Given an unknown, pick the & closest neighbors by some distance function.
Class of unknown is the mode of the k-nearest neighbor's labels.
k is usually an odd number to facilitate tie breaking.

Normalization? To separate values clustered close together, divide by the standard deviation

Relevant features? All features are used; to find relevant ones, have to cross-validate, dropping features out.
What’s the k7 Can find best value using cross-validation

Voting for vectors? k-Nearest Neighbors votes on class for query feature vector; reduces sensitivity to noise



k-NN fixes a set of decision boundaries for whether a point is/is not in a given class. (We will see that other
learning methods also fix decision boundaries).

How to draw 1-NN decision boundaries

Decision boundaries are defined as lines on which it is equally likely for a data point to be in any of the classes
1. Examine the region where you think decision boundaries should occur.

Find oppositely labeled points (+/-) and connect them, forming a line.

Draw perpendicular bisectors of these lines. (Use a pencil)

Extend and join all bisectors. Erase extrancously extended lines.

Remember to draw boundaries to the edge of the graph and indicate it with arrows! (a very common

mistake).

6. Your I-NN boundaries generally should have sharp edges and corners (otherwise, you are doing something
wrong or drawing boundaries for a higher order k-NN).

B W

Let’s practice drawing k—~NN boundaries. Turn to the end of the handout where we show you how the ‘recipe’
works; then we have a practice problem for you to try.

Here are some standard distance metrics to use

Euclidean Distance (common) D(ﬁ) 71}) \/Zn( 2
- B (w;—v,)
? i H H]
Manhattan Distance (Block distance) N
- Sum of distances in each dimension D(’TJ),@) = Zi Iwi Ull

D(E,i)) = Z?I(U),',’Ui)

Hamming Distance

- Sum of differences in each dimension
I(x,y) = 0 if identical, 1 if different.

Cosine Similarity

- Used in Text classification; words are dimensions; D(m i;) - ﬂ — cos @
. b T e Bl

documents are vectors of words; vector component 1s Iw I v "

1 if word i exists.

Note that it is also sometimes helpful to transform the data from one space to another. For example, if data

are scattered in ring-like patterns of classes, then a transformation to polar coordinates typically helps.
(Why?)

This is true of the practice problem we just did, as we will show in more detail below when using another
learning method, ID trees.




Nearest neightbors, optional: How to weigh dimensions differently
In Euclidean distance all dimensions are treated the same. But in practice not all dimensions are equally
important or useful!

Example: Suppose we represent documents as vectors of words. Consider the task of classifying documents
related to Red Sox.  1f all words are equal, then the word the weighs the same as the word Sox. But almost
every English document contain the word the. But only sports related documents have the word Sox. So we
want the &-NN distance metrics to weight meaningful words like Sox more than functional words like the.

For text classification, a weight scheme used to make some dimensions (words) more important than others
is known as: TF-IDF

o #(TU,‘) ed
tf(w;,d)= "“—I&I—ID'
f(w;) = log#de D writhw;

Here:
tf: Words that occur frequently should be weighed more.
1df: Words that occur in all the documents (functional-words like the, of etc) should be weighed less.

Using this weighing scheme with a distance metric, knn would produce better (more relevant)
classifications.

Another way to vary the importance of different dimensions is to use: Mahalanobis Distance

D(%,3)=\/(Z-7)S "z - 7)

Here S is a covariance matrix. Dimensions that show more variance are weighted more heavily.




2. Identification Trees (ID trees or decision trees)

Algorithm: Build a decision tree by greedily picking the “lowest disorder” feature tests. The best split for a
set of data minimizes the average disorder (more precisely, we want the split that decreases the average
disorder the most). We define these terms immediately below.

Training — Divide the feature space into boxes that have uniform labels. Split the space recursively along
each axis to define a tree. (Note this forms a set of boundaries that ‘tile” the plane in terms of perpindiculars.)
NOTE: This algorithm is greedy (local hill chimbing) so it does not guarantee that the tree will have the
minimum total disorder!

The notion of “disorder” is defined using entropy, H.
We define the entropy (disorder), following Shannon’s definition, of a discrete random variable X that has
the probability mass function p, as follows:

_z i=1 ])(x,‘ ) 1032 p(x,' )
So for example, suppose a drawer contains 3 red socks and 7 green socks. Then the entropy of this collection

of socks in one drawer is (see the graph on the next page for a plot of this function where there are only two
classes and one ‘bin’):

—3/10 logy 3/10+ =7/10 log, 7/10 = —-0.3(-1.7369)-0.7(-0.5145)= +0.902570

Note that the disorder here is at a maximum when the two kinds of socks are equally distributed; and a
minimum when either color is absent (uniform color), so the probability of one possibility is 0, and —plog, p
of the other coloris 1 x 0=0, so H is 0.

For ID trees, we will need to find the weighted average of disorder across a set of classes or ‘bins’. The
average entropy or disorder for a split = Entropy for each region (bin) times the fraction of the total data
points that are in that region (bin) — a weighted average of the disorder, weighted by the # of data points in
cach class or bin,

Average disorder = Z(”—”]x Z_EIO&[”LJ

A

ny is the total number of samples in branch b
n, is the total number of samples in all branches
ny 18 the total of samples in branch b of class ¢

Let’s practice calculating this. A simple example with 3 bins (classes), and 2 possibilities, + or O:

+000++0 [++000+ [+0+++++ |

We calculate the entropy /{ in each of the three classes:

Class 1: 3 +, 4 O, 8 total, so + probability is 3/8 = 0.375, so from our 2™ graph: H;=0.95

Class 2: 3+, 2 O, 6 total, so + probability is 3/6 = 4, s0 H="%+ %= 1.0

Class 3: 7+, 1 O, 8 total, so + probability is 7/8 =

Now we compute the weighted average of these three H values. There are 8+6+8 objects in all, or 22, so:
8/22(H ) +6/22(H,)+8/22(H;3) = 0.36(0.95)+0.18(1)+ 0.36(0.54)= 0.34+0.18+0.19=0.71

This 1s the average disorder of this particular split into 3 classes. This is the number used to ‘drive’ the
algorithm, which attempts to find the split that achieves the lowesr average disorder.
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See also the table of binary entropy values a few bages later on.



Example formulas.

The disorder equation for a test with two branches, left and right, (/, r), with each branch having 2 (binary)
classes or bins.

Let a = count of class 1 on the left side; b = count of class 2 on the left side;

Let ¢ = count of class 1 on the right side; d = count of class 2 on the right side

a+b=l ct+d=r,r+i=T

) [ a a b b r c c d d
Disorder= —| | ——log, — |+| ——=log,— | |+ =| | ——log,— |+| ——log, —
T [ 1 [ “1 T ror r “r

For a test with 3 branches, and 2 binary class outputs (this is the formula for the example we explicitly did
carlier):

b .
Disorder:ﬁH L +2H il +ﬁH 1.1
T b, T b, T b,

a = count of class 1 on branch 1 b = count of class 2 on branch 1
¢ =count of class 1 on branch2  d = count of class 2 on branch 2
e=count of class 1 on branch3 /= count of class 2 in branch 3
a+b=b| C+d:b3 €+f:b3

Homogeneous Partitioning Trick

A time-saving heuristic shortcut to picking the lowest disorder test.

1. Pick tests that break the space into a homogeneous portion and a non-homogeneous portion

2. Pick the test that partitions out the largest homogeneous portion; that test will most likely have the lowest
disorder.

Caution! when the homogeneous portions are about the same size, you should compute the full disorder
value. This is where this shortcut might break down!

ID trees and Prediction — Test features of a query feature vector according to the identification tree
generated during training, return the class at the leaf of the tree.

Relevant features? Irrelevant features are ignored because have large disorders.

Whose Razor? Occam’s: The world is inherently simple. Choose the smallest consistent tree.

Why greedy? Finding the simplest tree is computationally intractable; so we use a greedy search using
minimum average disorder as a heuristic.



“_Lf (_'_) -_}Q (/'L)
Table of common Binary Entropy values \r? 3 62 E ¥ 37, Y

Note: because H(x) 1s a symmetric function, :L: H(1/3) = H(2/3), fractions > 1/2 are omitted.

/310/9 | /1010 /13
numerator  denominator fraction h’(fm}liOH) numerator denominator fraction  H(fraction)
3 0.33 0.92 1 10 0.10 0.47
2 3 0.67 0.92 2 10 0.20 0.72
1 4 0.25 0.81 3 10 0.30 0.88
2 4 0.50 1.00 4 10 0.40 0.97
1 5 0.20 0.72 1 11 0.09 0.44
2 5 0.40 0.97 . 11 0.18 0.68
3 5 0.60 0.97 3 11 0.27 0.85
1 6 0.17 0.65 4 11 0.36 0.95
2 6 0.33 0.92 5 11 0.45 0.99
3 6 0.50 1.00 1 12 0.08 0.41
1 7 0.14 0.59 2 12 0.17 0.65
2 7 0.29 0.86 3 12 0.25 0.81
3 7 0.43 0.99 5 12 0.42 0.98
1 8 0.13 0.54 1 13 0.08 0.39
2 8 0.25 0.81 2 13 0.15 0.62
3 8 0.38 0.95 3 13 0.23 0.78
4 8 0.50 1.00 4 13 0.31 0.89
1 9 0.11 0.50 5 13 0.38 0.96
2 9 0.22 0.76 6 13 0.46 1.00
3 9 0.33 0.92
4 9 0.44 0.99

Try some sample ‘cuts’ in these two figures....which is the best single cut(s) in each? Why? And the next

cut?

i Poé,g\(ble e




6.034 Recitation October 20: Nearest Neighbors, Drawing decision boundaries

Boundary lines are formed by the intersection of perpendicular bisectors of every pair of points.
Using pairs of closest points in different classes gives a good enough approximation. (To be
absolutely sure about the boundaries, one would draw perpendicular bisectors between each pair of
neighboring points to create a region for each point, then consolidate regions belonging to the same
class, i.e., remove the boundaries separating points in the same class. This technique is unnecessary
for our purposes.)
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infinity).



10/20/11 Nearest Neighbors Practice Problem 1

Lucy has been working hard for the credit card companies to detect fraud. They have asked her to
analyze a number of classification methods to determine which one is best suited to their problem.
The two quantities that they have provided her are the change in longitude from the purchase
location to the registered address and the amount that the purchase is over or under the average
purchase that the customer usually makes.

Part A: Nearest Neighbors (15 pts)

Lucy decides to use nearest neighbors to solve this problem and plots the fraudulent / non-
fraudulent data. Squares are fraudulent and circles are non-fraudulent. Sketch the resulting decision
boundary on the figure below.
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It is the end of the month and Lucy’s boss comes over with new data hot off the presses (the
triangle). He wants Lucy to analyze whether or not the new charge is fraudulent.
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2'(19,00 -1.75 -1.50 -1.25 -1.00 -0.75 -0.50 -0.25 0.00 025 050 0.75 1.00 1.25 1.50 1.75 2.00
change in longitude from purchase location (x)

What is the nearest neighbor classification of the new charge, fraudulent or non-fraudulent?

She’s not too sure about this classification and decides to rerun it using k-nearest neighbors for
k=3 and then for k=5. Is the charge fraudulent for these values of k?

11



6.034 Recitation Thursday, October 20, 2011

Practice Problem 2: k-Nearest Neighbors

The 6.034 staff has decided to launch a search for the newest Al superstar by hosting a television show
that will make one aspiring student an MIT Idol. The staff has judged two criteria important in choosing
successful candidates: work ethic (W) and raw talent (R). The staff will classify candidates into either
potential superstar (black dot) or normal student (open circle) using a nearest-neighbors classifier.

On the graph below, draw the decision boundaries that a 1-nearest-neighbor classifier would find
in the R-W plane.
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Identification trees Problem 1 (same credit card problem as k-NN above)

B1 The boundaries (18 pts)

Lucy now decides that she’ll try to use identification trees on the data. There are three likely
candidates for splitting the data: x=0.0, x=-1.01 and x=1.01. Note that the -1.01 and 1.01 values lie
half-way between a square and a circle with nearby x values. Compute the average disorder for the
decision boundary x=1.01. Your answer may contain logarithms.

Compute the average disorder for the decision boundary x=0.0.  Again, your answer may
contain logarithms.

Which of the two decision boundaries, x= 0.0 and x=1.01, is added first?

Sketch all of the decision boundaries on the figure below. Assume that x= 0.0 and x=1.01, in the
order you determined above, are the first two decision boundaries selected (this may or may not be
true, but assume it is).

-fradulent ||

amount over/under average purchase amount (y)
i s A i L o

[~

5]

L

L ]

|

R ; i i h ; ; ; i i i ] : : :
20966 175 1.50 1.5 .00 0.75 0.50 0.25 0.00 025 0.50 095 T00 125 T.50 195 200
change in longitude from purchase location (x)
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B2 The identification tree (7 pts)

Draw the identification tree corresponding to your decision boundaries.

What is the classification of the new charge (triangle)?

14




Part C: Polar coordinates (10 pts)

Lucy gets smart and decides to try a different space for each of the points. That is, she converts all
of the points to polar coordinates. Sketch the data below. You may assume that r value of each
point is very close to a multiple of (.25 and that the theta value of each point is very close to a

multiple of pi/4.

1 | T T ST T T, P s (e o) P

.77 | S S

BT fisssnassasdosnosmsssiasinnssontyosossaselS osninsiossbusosconssiionitutios obosshbbbfismetans Bssis it bysoecs 550 o ek a5 A AT RS 450

theta
o

7] I

BT T U JREBIES SR RTNIUS | NNRRSTS SRYTRTNL TPIETRTS COPREINYT |PRRETTY] EETRNS PUVUUSL.  WAUTRN, OSSR, WTRUTN IRTRIONS .
s st s i b s S T T

2200 175 .1.50 -1.25 -1.00 -075 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50 175 2.00
r

How many decision boundaries do we need in this case?

Draw the resulting identification tree and sketch the decision boundary on the graph above.
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Identification Trees Practice Problem 2

Part B1 (2 Points)

Now, leaving nearest neighbors behind, you decide to try an identification-tree approach. In the space

below, you have two possible initial tests for the data. Calculate the average disorder for each test. Your

answer may contain logy expressions, but no variables. The graph is repeated below.

Test A: R > 35:

Test B: W > 6:

Part B2 (2 Points)

Now, indicate which of the two tests is chosen first by
the greedy algorithm for building identification trees.

We include a copy of the graph below for your scratch work.
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Part C: Identification Trees (4 Points)

Now, assume R > 5 is the first test selected by the identification-tree builder (which may or may not be
correct). Then, draw in all the rest of the decision boundaries that would be placed (correctly) by the
identification-tree builder:
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2. Identification Trees (ID trees or decision trees) - Recitation 7, part 1, 10/27/11

Algorithm: Build a decision tree by greedily picking the “lowest disorder” feature tests. The best split for a
set of data minimizes the average disorder (more precisely, we want the split that decreases the average
disorder the most). We define these terms immediately below.

Training — Divide the feature space into boxes that have uniform labels. Split the space recursively along
each axis to define a tree. (Note this forms a set of boundaries that ‘tile’ the plane in terms of perpindiculars.)
NOTE: This algorithm is greedy (local hill climbing) so it does not guarantee that the tree will have the
minimum total disorder!

The notion of “disorder” is defined using entropy, H.
We define the entropy (disorder), following Shannon’s definition, of a discrete random variable X that has
the probability mass function p, as follows:

_zi:l p(xi ) IOgZP(xi)
So for example, suppose a drawer contains 3 red socks and 7 green socks. Then the entropy of this collection

of socks in one drawer is (see the graph on the next page for a plot of this function where there are only two
classes and one ‘bin’):

~3/10 logz 3/10+ ~7/10 log, 7/10 = —0.3(-1.7369)-0.7(-0.5145)= +0.902570

Note that the disorder here is at a maximum when the two kinds of socks are equally distributed; and a
minimum when either color is absent (uniform color), so the probability of one possibility is 0, and —plog, p
of the other color is 1 x 0=0, so H is 0.

For ID trees, we will need to find the weighted average of disorder across a set of classes or ‘bins’. The
average entropy or disorder for a split = Entropy for each region (bin) times the fraction of the total data
points that are in that region (bin) — a weighted average of the disorder, weighted by the # of data points in
each class or bin.

Average disorder = 2 (n—‘“}( (z_ Moe. logz[f{&;D
n

5\ A, . " R,
ny is the total number of samples in branch b
n, is the total number of samples in all branches

nye 18 the total of samples in branch b of class ¢

Let’s practice calculating this. A simple example with 3 bins (classes), and 2 possibilities, + or O:

+000++0 [++000+ [+0+++++ |

We calculate the entropy H in each of the three classes:

Class 1: 3 +,4 O, 8 total, so + probability is 3/8 = 0.375, so from our 2" graph: H,=0.95

Class 2: 3 +, 2 O, 6 total, so + probability is 3/6 = Y2, s0 H;= 2+ /2= 1.0

Class 3: 7+, 1 O, 8 total, so + probability is 7/8 =

Now we compute the weighted average of these three H values. There are 8+6+8 objects in all, or 22, so:
8/22(H )+6/22(H;)+8/22(H;) = 0.36(0.95)+0.18(1)+ 0.36(0.54)= 0.34+0.18+0.19=0.71

This is the average disorder of this particular split into 3 classes. This is the number used to ‘drive’ the
algorithm, which attempts to find the split that achieves the /owest average disorder.
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See also the table of binary entropy values a few pages later on.



Example formulas.

The disorder equation for a test with two branches, left and right, (7, r), with each branch having 2 (binary)
classes or bins.

Let @ = count of class 1 on the left side; & = count of class 2 on the left side;

Let ¢ = count of class 1 on the right side; d = count of class 2 on the right side

atb=1 ctd=r;rtl=T

Diso:n'der=i [—EIO E}+[-—élo b F | =Zlop, = |4 -—El—lo 4
T l gzl [ gzl T r gzr r gzr

For a test with 3 branches, and 2 binary class outputs (this is the formula for the example we explicitly did
earlier):

b
Disorder =2 g & |1 Loyl S |1 oy £
T \5 ) T \b) T \b,

a = count of class 1 on branch 1 b = count of class 2 on branch 1
¢ =count of class 1 on branch2  d = count of class 2 on branch 2
e=count of class 1 onbranch3 /= count of class 2 in branch 3
a+b=b| C+d=b3 e+f=b3

Homogeneous Partitioning Trick

A time-saving heuristic shortcut to picking the lowest disorder test.

1. Pick tests that break the space into a homogeneous portion and a non-homogeneous portion

2. Pick the test that partitions out the largest homogeneous portion; that test will most likely have the lowest
disorder.

Caution! when the homogeneous portions are about the same size, you should compute the full disorder
value. This is where this shortcut might break down!

ID trees and Prediction — Test features of a query feature vector according to the identification tree
generated during training, return the class at the leaf of the tree.

Relevant features? Irrelevant features are ignored because have large disorders.

Whose Razor? Occam’s: The world is inherently simple. Choose the smallest consistent tree.

Why greedy? Finding the simplest tree is computationally intractable; so we use a greedy search using
minimum average disorder as a heuristic.



Table of common Binary Entropy values

Note: because H(x) is a symmetric function, i.e. H(1/3) = H(2/3), fractions > 1/2 are omitted.

/3to /9 /10 to /13
numerator  denominator fraction H(fraction) | numerator denominator fraction  H(fraction)
1 3 0.33 0.92 1 10 0.10 0.47
2 3 0.67 0.92 ) 10 0.20 0.72
1 4 0.25 0.81 3 10 0.30 0.88
2 4 0.50 1.00 4 10 0.40 0.97
5 0.20 0.72 1 11 0.09 0.44
2 5 0.40 0.97 2 11 0.18 0.68
3 5 0.60 0.97 3 11 0.27 0.85
1 6 0.17 0.65 4 11 0.36 0.95
2 6 0.33 0.92 5 11 0.45 0.99
3 6 0.50 1.00 1 12 0.08 0.41
1 7 0.14 0.59 2 12 0.17 0.65
2 7 0.29 0.86 3 12 0.25 0.81
3 7 0.43 0.99 5 12 0.42 0.98
1 8 0.13 0.54 1 13 0.08 0.39
2 8 0.25 0.81 2 13 0.15 0.62
3 8 0.38 0.95 3 13 0.23 0.78
4 8 0.50 1.00 4 13 0.31 0.89
1 9 0.11 0.50 5 13 0.38 0.96
2 9 0.22 0.76 6 13 0.46 1.00
3 9 0.33 0.92
4 9 0.44 0.99

Try some sample ‘cuts’ in these two figures....which is the best single cut(s) in each? Why? And the next
cut?
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Identification trees Problem 1 (same credit card problem as k-NN above)

B1 The boundaries (18 pts)

Lucy now decides that she’ll try to use identification trees on the data. There are three likely
candidates for splitting the data: x=0.0, x=-1.01 and x=1.01. Note that the -1.01 and 1.01 values lie
half-way between a square and a circle with nearby x values. Compute the average disorder for the
decision boundary x=1.01. Your answer may contain logarithms.

Compute the average disorder for the decision boundary x=0.0. Again, your answer may
contain logarithms.

Which of the two decision boundaries, x= 0.0 and x=1.01, is added first?

Sketch all of the decision boundaries on the figure below. Assume that x= 0.0 and x=1.01, in the
order you determined above, are the first two decision boundaries selected (this may or may not be
true, but assume it is).
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B2 The identification tree (7 pts)

Draw the identification tree corresponding to your decision boundaries.

What is the classification of the new charge (triangle)?




Part C: Polar coordinates (10 pts)

Lucy gets smart and decides to try a different space for each of the points. That is, she converts all
of the points to polar coordinates. Sketch the data below. You may assume that r value of each
point is very close to a multiple of 0.25 and that the theta value of each point is very close to a
multiple of pi/4.

0 ........ D ________ __________ aﬁf’@f

O ,,,,,,,,

theta
[=]

— 0
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-2.00 -1.75 -1.50 -1.25 -1.00 -0.75 -0.50 -0.25 D‘PQ 025 050 0.75 1.00 1. 2.00

Phsy lLo Seforalt

How many decision boundaries do we need in this case?

Draw the resulting identification tree and sketch the decision boundary on the graph above.




Identification Trees Practice Problem 2
Part B1 (2 Points)
Now, leaving nearest neighbors behind, you decide to try an identification-tree approach. In the space

below, you have two possible initial tests for the data. Calculate the average disorder for each test. Your
answer may contain log, expressions, but no variables. The graph is repeated below.

Test A: R > 5:

Test B: W=>6:

Part B2 (2 Points)

Now, indicate which of the two tests is chosen first by
the greedy algorithm for building identification trees.

We include a copy of the graph below for your scratch work.
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Part C: Identification Trees (4 Points)

Now, assume R > 5 is the first test selected by the identification-tree builder (which may or may not be
correct). Then, draw in all the rest of the decision boundaries that would be placed (correctly) by the
identification-tree builder:
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Neural networks

Prof. Bob Berwick, 32D-728

0. Introduction

Neural nets are networks of simulated neurons, each of which has weighted inputs, an adder that sums the
weighted inputs, a threshold function that checks the sum against a threshold and returns an output. By means of
forward propagation, inputs are run through the network to produce outputs: At each level of the network,
weighted inputs are summed, then run through either a step function or a sigmoid to produce an output. As with
other machine learning techniques, the goal in using a neural net is to classify unknown inputs, i.e., assign a
known class to an unknown input. (Output that is continuous rather than discrete implements regression rather
than classification.)

A simulated neuron that employs a step function returns 1 or 0, depending on whether the input is above or below
a specified threshold value, respectively. Neural nets using these simulated neurons, sometimes called
perceptrons, can be thought of as /inearly dividing a space of input vectors into regions, thereby creating decision
boundaries. The weights in multi-layer perceptron nets cannot be automatically computed, i.e., learned, because of
the discontinuity in the derivative of the threshold function.

The more usual kind of neuron in a neural net employs a sigmoid function for its threshold, y=1/(1+e™). As
Winston says, this solves several issues: it is continuous, and so differentiable everywhere, which we’ll need in
order to learn by using gradient ascent (or descent); the value y approaches 1 as x becomes highly positive; 0 as x
becomes large and negative; and exactly % when x=0. As Winston shows, the really great news is that the
derivative is: dy/dx=y(1-y).

However, such sigmoid neural nets are extremely difficult to design by hand. Weights are learned via a
backpropagation algorithm.

-1
VA

Wo X W
i
X W
W >
0 Z 0
> X
. =T

sigmoid neuron

(a) one decision boundary

(b) two decision boundaries (neurons) needed for an AND
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We can think of a step function net as defining a linear decision boundary, ax + by — ¢ = 0. The sum of the
weights of a step function neuron can represent the equation of the line: wx; + wyx; — wy = 0. In example (a)
above, to the left of the line can be represented by a 0 output; to the right a 1 output. Each decision line is
represented by one neuron in the lowest layer of the net. Each class is represented by a neuron in the final layer,
with two classes only requiring one neuron. Interior neurons implement Boolean combinations, which allow for
classifying data sets such as that shown in (b) above.

Backpropagation is a method for adjusting the weights in a network according to training data. The training data
comes in the form of sample (input, desired output) pairs (these of course could be multi-dimensional vectors). To
use backpropagation, we first compute for each input item what the network outputs with its current weights.
Remember this! This is called forward propagation, and is always the first step in working with neural nets. It
will yield a (perhaps vector) output value, o, one output value for each sample, €.g., Osampre. We then compare the
desired output for each sample, dsampre to the observed output oOsumpi. that the network computes. If the network is
already ‘on target’ then the computed outputs from sample points 0ampe Will already equal the desired output. But
typically this will not be the case, and there will be some difference. Based on a performance function P of this
difference of d—o, we will adjust the network’s current weights to come closer to the desired values, for each
sample.
But how to change the weights? The idea is to use partial derivatives to see how much the output will change if
we tweak the weights just a tiny bit, using the idea of gradient ascent with respect to the particular performance
function P=—1/2(d-0)* . (We have dropped the ‘sample’ subscript here.) Why do we use this function P instead
of just (d-0)? As Winston notes, this formula also has nice mathematical properties: (i) it yields a maximum when
o=d, (i1) it monotonically decreases as o deviates from d (so we can use it for “hill-climbing” or gradient ‘ascent’,
or ‘descent’); and (iii) the derivative of P with respect to o is very simple:
d—P=i[—l(d—o)2]=—3x(d—o)‘ Xx—l=d-o
do do| 2 2
Backpropagation works by trying to find the maximum of P (recall this is where d=0) by tweaking the weights
w, so you move in the direction of the gradient in a space that gives P as a function of the weights, w. The
following formula shows how much to change a weight, w, in terms of a partial derivative, i.e.:

oP oP . . .
Aw o« — s0 w’ = w+ @ X — where « is a rate constant (also r in the literature); Aw =§
w w

The rate constant is like the step-size in hill climbing: too small, and you don’t converge fast enough; too big, and
you might overstep a solution, and oscillate; so this value must be chosen empirically.

We start at the very last, output layer of the network, and work backwards, calculating the change layer by layer;
at each layer calculating the change & we should best make at that layer of the net to most rapidly climb the
performance function ‘hill’. Then we must decide how to distribute the total change at this layer over all the
inputs feeding this particular layer; we do this by dividing up the total § according to the weights of the previous
layer and their corresponding inputs (thus the previous layer’s weights that are largest, and whose inputs are
largest, get proportionately more change-the ‘squeaky wheel’ model). This method is called backpropagation
because we ‘propagate’ the error ¢—o backwards through the net.

You should work through the details in Winston’s notes, but here we’ll do a bit of the same, reviewing as we go.
For any neural network, you should know (1) how to do forward propagation (this is a matter of taking the
assigned weights and inputs and running the system forward to its output value); (2) how to run a few steps of
backpropagation, for each of three cases: (i) the final output layer case; (ii) an interior neuron case, where the
neuron is fed by more than one previous neuron; and (iii) an output or interior node case where the neuron itself
feeds more than one following neuron (so including more than one output). This will usually involve thinking
about the chain rule and partial derivatives. This covers all the possible network topologies. Let’s try the first
two.
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Case 1. The final output layer case. Consider the following single neuron system. How should we adjust the
weights w;; ? in this example, assume the initial weights w, through ws are as given in the figure just below, and
the sample inputs on the 6 ‘input lines’ are as shown. Note the “~1” line associated with weight wy. This is called
a ‘bias weight” and is standardly used in the field. The inputs x; are multiplied by their corresponding weights w;
and the result is summed (as shown by the sum box). This output is then passed through the sigmoid threshold
function, resulting in the output from the neuron, 0. (Sometimes the output is labeled y or z in the literature — just
to alert you.) Finally, let us suppose that the desired_value for the network, 4, is 1.0, and that the learning rate
constant, denoted ¢ in Winston’s notes (and r in the traditional literature) is 100. (Why do we need this thing
anyway?)

']‘ii’lallll:;;

Step 0: Forward Propagation. Calculate the output o given the input values shown. Useful data point:
sigmoid(2)=0.9 \ @
Answer: -1 X wy+

d=1.0, =100

X W, ] X Wy + l X Wy + & X W, + O X ws=p,=

Sigmoid (p,) = 0, = \q

So, does the desired output d equal the observed output o in this case? How far apart are they?

Step 1: Backpropagation to find delta for output layer.

Calculate the final (and here, only) node’s effect on the performance function, P, which we will call 5,. You can
think of this as this neuron’s contribution to P. It is the derivative of P with respect to the node’s total input,
given what is feeding the sigmoid function p,, so may be found via the chain rule, with P= —1/2(d—0)*. Recall: the
derivative of P with respect to o is just (d-0). Also recall the derivative of the sigmoid function with input x with
respect to output y is y(1-y), so with input x= p, this is just o(1-0). So we therefore have this equation, where o
indicates that this is the 8 for the final output (in the last page of the notes, Winston also denotes this §,, for
‘output layer’:

doP OP do
I :a—pl’zga—MZ(fl—()f)x[of(l_of)]

Given that d=1.0 and we now know o,= , then §,=

Step 2: Distribute changes to the weights using the chain rule. We next determine how to distribute
contributions (or ‘blame’), of this ‘total’ &, in order to tweak the weights.
This is the full formula in the Winston notes for an output layer, where the factor i comes from the partial
derivative of p, with respect to each weight w,. Thus, if we have multiple weights, w;, as in this case, and are
adding them as usual, this partial derivative is simply i, the input for each weight.

dP _dP do dp,

w Do op, ow =(d-o;)x[o,(1=-0,)]Xi, =6, Xi,
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We adjust the weights w according to the formula given earlier, w; = w; + o X 8, x input to w,. With the
learning factor set to 100, you should be able to compute all the new w’s. Try to understand why some weights go
up and other weights go down and why others do not change at all. What happens if the input to a particular
weight is zero? Should that weight change? (Think of its potential contribution to the output.) After you have
figured out the new weights, calculate the new value of the network’s output, to see if we have gotten any closer
to the desired output.

New Weight ORIGINALWEIGHT + RATE x | §, x INPUT = | NEW WT VALUE

w w a (d-0)(0)(1-0) i

W, = 0 100 -1 09

w, = 2 100 1

w, = 2 100 1

w, = ~] 100 1

w, = 2 100 0.5

ws = 1 100 0

OK, before moving on, let’s see a picture of this simple output stage, containing three parts, with the chain of
three partial derivatives below to help you picture how the partial derivatives do their work: each partial
derivative “pushes backwards” through one part of the network at a time. Working through the formula,

oP P _ : .
— , from left to right: first g— pushes backwards from the output through the sigmoid function telling us how
W o

do . :
given some change in 0; — pushes back through the summed p,, telling us how o changes given some change in

r

r

the sum; and finally, pushes back through the weights, telling us how the sum changes given a change in a

particular weight.

OB N
ow dp, do
i o(1-o0) (d-o0)

Case 2. Two nodes connected together (Winston’s simple case).

This time, the network is two neurons deep: one output neuron, on the right, and one ‘hidden’ neuron on the /eft
(‘hidden’ because it does not directly connect to input or output nodes). Following the Winston notes, we will
call the final output an output on the right, o, and the input to the last neuron on the right will receive an input, i,
that feeds it, which we will also label o, since this is also the output from the left-hand neuron. We have one
inputs, i;, feeding the left neuron.
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Now let’s add weights. Assume all initial weights are 0 (it is actually a bad idea to set all initial weights the same
for neural nets; why?). Assume a sample input of i= 1, and that the desired output value d is 1.0. Assume a
learning rate of 8.0. (Useful data point: sigmoid(0) = 0.5) Let’s run one step of backpropagation on this and see
what’s different about this case. First, as before, we must carry out forward propagation: compute the inputs and
outputs for each node.

Step 1: Forward Propagation. OK, you should know the drill by now. First compute the outputs at each node:

Pr= Wi = 0 x = So o= sigmoid( )=

Dr= Wy, = 0 = So o,= sigmoid( )=
(Important: recall that instead of o, Winston uses the notation oy to denote the final output from the right neuron.)
Step 2: Calculate the & for the output, final layer, 8, (for use in changing w,)

Recall the formula for &;is: o, X (1-0,) X (d-0,) = % ( ) % ( ) =
Recall that = 1.0; and we have just computed o,

Step 3: Calculate the §, for the hidden neuron

Now we will march one more step backwards through the network, working our way through the sigmoid on the
left, and then weight on the left so that we can calculate the partial of the performance function with respect to the
weight on the left, w;; remember, this is what tells us how much to ‘tweak’ that weight. When we do that, we get
the following equation (following Winston):

o G0

ow, do, ow,
BP0, . dp;
do, dp, Ow,
" do, op, do, ow,
0P a0, n, oo

do, dp, Odo, dp, Oow,

This looks complicated, but it isn’t! Recall the way we work back through the network, right to left. The first
three terms after the equals sign correspond to derivatives of the performance function P with respect to the
following parts of the network: (1) the output; (2) the right-hand sigmoid; and (3) the right-hand weights. The
two new factors are derivatives of P with respect to the last two parts of this network, (4) the left-hand sigmoid;
and (5) the left-hand weight. So what this formula does, in effect, is figure how much P ‘jiggles’ when we
‘jiggle’ the left-hand weight. Note that we’ve already computed terms (1) and (2) when we did the calculation for
8. As Winston notes, we can see how the left and right parts fit together by comparing the two derivatives for the
left and right parts:



a—P=(a’—o,)xo,(l—or)xir

ow,
a—P=(d—or)><or(1—or)xw,Xo,(l—o,)xf,
ow,

Note again that the first two terms of the first equation above are the same as the first two terms of the second
equation — this is the same ‘jiggle” working its way back through the network, from output, through the right-hand
sigmoid. We can simplify these by defining § as follows, either for the left or right neuron.

0,=0,(1-0,)x(d-0,)

8,=06,xw,xo0(l-0)
So again, we get the delta on the left simply by taking the delta on the right and then adding new terms to

accommodate the partial derivatives working through the weights on the right and then the sigmoid on the left. As
Winston notes, we can now write the weight change equations this way:

Aw, =Aw, =axd, xi, where §, =0,(1-0,)x(d-0,)
Aw, = o x §; X i, =ax 8, xi, where §, = 0,(1-0,)xw, X6, =0,(1-0)Xw, Xo,(1-0,)X(d—0,)

Aw, =axo(l1=0)Xw, X, X1,

Step 4. Calculating the new weights.

Now we can calculate the weight changes for both weights, and add these to the starting weights to get the new,
updated weights. For the first weight change, the right neuron’s weight, we use the §;and i, values from our final
layer calculation from above. To calculate the second weight change, we need the values of &7, w, , the output
from the left neuron, o;, and finally the input to the left neuron, i

w=wrta x & Xip = + 80 x % =

wi=w; + a % of1-07) X w, Xy X i; = + 8.0 x i yise % x =

Have the new weights gotten us any closer to our target value of 1.0?

The next iteration!

To continue the process, using the new weights, we again do forward propagation and then backpropagation.
Step 1. Forward propagation.

P = Wi = X = So o;= sigmoid( ) =

Pr= Wiy = X = So o,= sigmoid( )y =

So, have we gotten any closer to the desired output of 1, as we wanted from gradient ascent?

Step 2. Backpropagation.
6f=0fx(1—0f)x(d—0f)= x ( ) x( } =

Compare this value of delta to the first iteration. Which one is larger? Now for the weight change on the left
neuron:

8;=o,~><(1—o;)xw,><6f = x| ) % % =

Now we can compute the weight changes for the left and right neurons:
Awp=a % iy x Sf = 8.0 X x -

Aw=a =< ij % 6{ = 8.0 X 5% =
So the new weights on this second iteration become:
wy=wr+ Awy= + = 3 w, =w,+ Aw,= + =




7
For completeness, and to cement our understanding, let’s see how the various terms in the partials are arrayed
over this two-neuron diagram, pushing back from the output o,, so you can see why it is called backpropagation.
Make sure you understand where each of the five terms comes from. Multiplied together, they give the partial
derivative of the performance function P with respect to w.

i { P ol | 5 Pr i o

—> —> =T ¥ ®i)—> —>
E.eft neuron ?%ig htneuron i

ap, do, Ip, do, 9P

ow, - 9p, ) do, T op, " do,

i) o,(l1-0) W, o(l-o,) (d-o,)

left left right right output

weight sigmoid weight sigmoid deriv

deriv deriv deriv deriv
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Lab 4

From 6.034 Fall 2011

Contents

= ] Constraint Satisfaction Problems
= |.1 Forward Checking
1.2 Forward Checking with Propagation through Singletons
1.3 API
1.4 Testing
1.5 EXTRA CREDIT
= 2 Learning
= 3 Classifying Congress
= 4 The Data
= 5 Nearest Neighbors
= 61D Trees
= 6.1 An ID tree for the entire Senate
= 6.2 Implementing a better disorder metric
= 6.3 Evaluating over the House of Representatives
= 7 Survey
= § Errata

This problem set is due Friday, November 4th. If you have questions about it, ask the list
6034tas@csail.mit.edu.

To work on this problem set, you will need to get the code:

= You can view it at: http://web.mit.edu/6.034/www/labs/lab4/
= Download it as a ZIP file: http://web.mit.edu/6.034/www/labs/lab4/lab4.zip
= Or, on Athena, attach 6.034 and copy it from /mit/6.034/www/labs/lab4/.

This lab has two parts, the first part is on CSPs and the second part is on learning algorithms, specifically
KNN and decision trees.

Constraint Satisfaction Problems
R/“

In this portion of Lab 4, you are to complete the implementation of a general constraint satisfaction problem
solver. You'll test it on problems we've worked out by hand in class.

We have provided you a basic CSP implementation in csp. py. The implementation has the Depth-first-
search already completed. It even has a basic built in constraint checker. So it will produce the search trees
P _—
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of the kind for DFS w/ back tracking with basic constraint checking.
However, it doesn't do forward checking or forward checking + singleton propagation!

So your job is to complete:

and We  aladdy hd T 1"64 01 mﬁﬁ vk

e e I I R R R it e il I
]

1
}forward_checking prop singleton(state): 1
- - 1

in the file 1ab4.py. Here state is an instance of cspstate an object that keep track of the current variable
assignments and domains. These functions are called by the Search algorithm at every node in the search

tree. These functions should return False at points at which the Domain ReductiomAdgorithm would
backtrack, and True otherwise (i.e. comtimie extending).
—

As a hint, here is the (unrefined) pseudocode for the two algorithms.

Forward Checking

. Let X be the variable currently being assigned.
. Let x be the value being assigned to X.
. Find all the binary constraints that are associated with X.
. For each constraint:
1. For each neighbor variable, Y, connected to X by a binary constraint.
S
1. For each variable value y in Y's domain
1. If constraint checking fails for X=x and Y=y
1. Remove y from Y's domaii—
2. If the domain of Y is reduced down to the empty set, then the entire check fails:
return False.

5. If all constraints passed declare success, return True

TS N

If you get a state with no current variable assignment (at the Root of the search tree) then you should just
True, since forward checking could only be applied when there is some variable assignment.

Forward Checking with Propagation through Singletons

. Run forward checking, fail if forward checking fails.
. Find variables with domains of size 1.
. Create a queue of singleton variables.
. While single queue is not empty

1. Pop off the first singleton variable X (add X to list of visited singletons)

2. Find all the binary constraints that singleton X is associated with.

3. For each constraint therein:

1. For each neighbor variable, Y, connected to X by a binary constraint:
1. For each value of y in Y's domain:
1. If constraint check fails for X = (X's singleton value) and Y = y:

B L N o=
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I. Remove y from Y's domain
2. If the domain of Y is reduced down to the empty set, then the entire check
fails, return False.

4. Check to see if domain reduction produced any new and unvisited singletons; if so, add them to
the queue.

5. return True.
API

These are some useful functions defined in csp.py that you should use in your code to implement the above
algorithms:

cspstate: representation of one of the many possible search states in the CSP problem.

® get current variable() - gets the Variable instance being currently assigned. Returns None if we
are in the root state, when there are no variable assignments yet.

® get constraints by name(variable name) - retrieves all the BinaryConstraint objects associated
with variable name.

® get variable by name(variable name) - retrieves the Variable object associated with
variable name.

" get all variables() - gets the list of all Variable objects in this CSP problem.

variable: representation of a variable in these problems.

® get name () - returns the name of this variable.

" get assigned value () - returns the assigned value of this variable. Returns None if
is_assigned() returns False, that is if the variable hasn't been assigned yet.

is assigned() - returns True if we've made an assignment for this variable.

get domain() - returns a copy of the list of the current domain of this variable. Use this to iterate
ver values of Y.

You might want to consider using this method to get the singular value of a variable with domain size
reduced to 1.

= reduce_domain(value) - remove value from this variable's domain.
= domain_size () - returns the size of this variable's domain

BinaryConstraint:a binary constraint on variable i, j: 1-> J.

" get variable i name() - name of the i variable

" get variable j name () - name of the j variable

m check(state, value i=value, value j=value) - checks the binary constraint for a given CSP
state, with variable i set by value i, and variable j set by value j. Returns False if the constraint fails.
Raises an exception if value ior value j are not set or cannot be inferred from state.

NOTE: in our implementation of CSPs, constraints are symmetrical; a constraint object exists for each
"direction" of a constraint, so you can check for the presence of a constraint by substituting for i and/or j in
the most convenient fashion for you.

Here is how you might use the API to get the value of a variable currently being assigned.
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war = state.get_current_variable()

walue = None

iif var is not None: # we are not in the root state

. value = var.get_assigned_value()

! % Here value is the value of the variable current being assigned.

if singleton_var.domain_size() ==
: value = singletonﬁvar.get_domain()[O]

Testing

For unit testing, we have provided moose_csp.py, an implementation of the seating problem involving a
Moose, Palin, McCain, Obama, Biden and You -- in terms of the framework as defined in csp.py.

Running:

will return the search tree for DFS with constraint checking. When you have finished your implementation,
running python moose csp.py fc Of python moose_csp.py fcps should return the correct search trees
under forward checking and forward checking with singleton propagation.

Similarly

Running: L\

Should return the expected search trees for the B,Y,R, state coloring problem from the 2nd Quiz in 2006.

There are also other fun solved CSP problems in the directory that you can test and play around with. You
can submit your own unique solution to an interesting CSP problem to get extra credit!

EXTRA CREDIT

As extra credit, try to follow the code in moose csp.py Ormap coloring csp.py, and implement a
problem() function that returns a CSP instance for a problem of your own choosing.

You may do one of the problems from past dﬁmwuling problem or the 2010
Jigsaw puzzle question. Alternately, you may implement something that you find useful or interesting, ideas
include: scheduling classes, seating guests for a wedding or dinner party (to maximize harmony), solving
crypt-arithmetic puzzles, the 8-queens problem, or crossword puzzles.

You may also try to extend csp. py. For instance, you can add ability to find an optimal solution rather than
just a constraint-satisfying solution (i.e. replace DFS with one of the optimal searches we've learned). Or
you can add support for multi-variable constraints, and make the code solve the Max-flow problem from the
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2006 final.

When you've succeeded in implementing such a problem or extension, send your working code to
6034tas@csail. Your reward: either a 1-to-3-day extension (depending on difficulty) on one of the previous
or future labs, possibly erasing any late penalties. Or if your lab grade is already perfect, praise and
recognition from the 6.034 staff.

\

Learning =

Now for something completely different. Learning!

Classifying Congress

During Obama's visit to MIT, you got a chance to impress him with your analytical thinking. Now, he has
hired you to do some political modeling for him. He seems to surround himself with smart people that way.

He takes a moment out of his busy day to explain what you need to do. "I need a better way to tell which of
my plans are going to be supported by Congress," he explains. "Do you think we can get a model of
Democrats and Republicans in Congress, and which votes separate them the most?"

| oo
"Yes, we can!" You answer,

The Data

You acquire the data on how everyone in the previous Senate and House of Representatives voted on every
issue. (These data are available in machine-readable form via voteview.com. We've included it in the lab
directory, in the files beginning with 1110 and s110.) -_—

data reader.py contains functions for reading data in this format.

read_congress_data ("FILENAME.ord") reads a specially-formatted file that gives information about each

Congressperson and the votes they cast. It returns a list of dictionaries, one for each member of Congress,
including the following items: T

= 'name": The name of the Congressperson.

= 'state: The state they represent.

= 'party”: The party that they were elected under.

= 'votes": The votes that they cast, as a list of numbers. 1 represents a "yea" vote, -1 represents "nay",
and 0 represents either that they abstained. were absent, or were not a member of Congress at the
time.

To make sense of the votes, you will also need information about what they were voting on. This is provided
by read vote data("FILENAME.csv"), which returns a list of votes in the same order that they appear in
the Congresspeople's entries. Fach vote is represented a dictionary of information, which you can convert
into a readable string by running vote info (vote).

The lab file reads in the provided data, storing them in the variables senate people, senate votes,

50f9 10/24/2011 1:24 AM



Lab 4 - 6.034 Fall 2011 http://ai6034.mit.edw/fall11/index.php?title=Lab_4

house_people, and house_votes.

Nearest Neighbors

m—

You decide to start by making a nearest-neighbors classifier that can tell Democrats apart from Republicans
in the Senate.

We've provided a nearest neighbors function that classifies data based on training data and a distance
function. In particular, this is a third-order function:

= First, call nearest neighbors (distance, k), with distance being the distance function you wish
to use and k being the number of neighbors to check. This returns a classifier factory.

= A classifier factory is a function that makes classifiers. You call it with some-training data as an
argument, and it returns a ¢lassifier.

= Finally, you call the classifier with a data point (here, a Congressperson) and it returns the

classification as a string.
\-.___.--/

Much of this is handled by the evaluate (factory, groupl, group2) function, which you can use to test
the effectiveness of a classification strategy. You give it a classifier factory (as defined above) and two sets

of data. It will train a classzﬁ against the other, and then it will switch
them and test again.

Given a list of data such as senate people, you can divide it arbitrarily into two groups using the
crosscheck _groups (data) function.

One way to measure the "distance" between Congresspeople is with the Hamming distance: the number of
entries that differ. This function is provided as namming distance.

An example of putting this all together is pfovided in the lab code:

1

:senateigroupl, senate_group2 = crosscheck_groups(senate_people) 1
:evaluate(nearest_neighbors(edit_distance, 1), senate_groupl, senate_group2, verbose=1l) i
1

Examine the results of this evaluation. In addition to the problems caused by independents, it's classifying
Senator Johnson from South Dakota as a Republican instead of a Democrat, mainly because he missed a lot
of votes while he was being treated for cancer. This is a problem with the distance function -- when one
Senator votes yes and another is absent, that is less of a "disagreement" than when one votes yes and the
other votes no.

You should address this. Euclidean distance is a reasonable measure for the distance between lists of

discrete numeric features, and is the alternative to Hamming distance that you decide to try. Recall that the
formula for Euclidean distance is:

{ielo2 @Y y2)7D ¥ Piaens yn) 2 A {l/2)

= Make a distance function called euclidean distance that treats the votes as high-dimensional
vectors, and returns the Euclidean distance between them.

When you evaluate using euclidean distance, you should get better results, except that some people are
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being classified as Independents. Given that there are only 2 Independents in the Senate, you want to avoid
classifying someone as an Independent just because they vote similarly to one of them.

» Make a simple change to the parameters of nearest neighbors that accomplishes this, and call the
classifier factory it outputs my classifier.

ID Trees

So far you've classified Democrats and Republicans, but you haven't created a model of which votes
distinguish them. You want to make a classifier that explains the distinctions it makes, so you decide to use
an ID-tree classifier.

idtree_maker(votes, disorder_metric) Isa third-order function similar to nearest neighbors. You
ini‘szTﬁz/efg;;ving it a list of vote information (such as senate votes or house votes) and a function
for calculating the disorder of two classes. It returns a classifier factory that will produce instances of the
CongressIDTree class, defined in classify.py. to distinguish legislators based on their votes.

The possible decision boundaries used by congressibrree are, for each vote:

= Did this legislator vote YES on this vote, or not?
= Did this legislator vote NO on this vote, or not?

(These are different because it is possible for a legislator to abstain or be absent.)
You can also use CongressipTree directly to make an ID tree over the entire data set.

If youprint a CongressIDTree, then you get a text representation of the tree. Each level of the ID tree
shows the minimum disorder it found, the criterion that gives this minimum disorder, and (marked with a +)
the decision it makes for legislators who match the criterion, and (marked with a -) the decision for
legislators who don't. The decisions are either a party name or another ID tree. An example is shown in the
section below.

An ID tree for the entire Senate

You start by making an ID tree for the entire Senate. This doesn't leave you anything to test it on, but it will
show you the votes that distinguish Republicans from Democrats the most quickly overall. You run this
(which you can uncomment in your lab file):

:Disorder: -49

ﬁes on S.Con.Res. 21: Kyl Amdt. No. 583; To reform the death tax by setting the
iexemption at $5 million per estate, indexed for inflation, and the top death
jtax rate at no more than 35% beginning in 2010; to avoid subjecting an
lestimated 119,200 families, family businesses, and family farms to the death
kax each and every year; to promote continued economic growth and job creation:
land to make the enhanced teacher deduction permanent.:

+ Republican
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T

Disorder: -44 :
Yes on H.R. 1585: Feingold Amdt. No. 2924; To safely redeploy United States !
troops from Iraq.: 1
+ Democrat ;
- Disorder: -3 1
No on H.R. 1495: Coburn Amdt. No. 1089; To prioritize Federal spending to :
ensure the needs of Louisiana residents who lost their homes as a result of '
Hurricane Katrina and Rita are met before spending money to design or !
construct a nonessential visitors center.: :

+ Democrat '

- Disorder: -2 !
Yes on S.Res. 19: S. Res. 19; A resolution honoring President Gerald 1
Rudolph Ford.: :

+ Disorder: -4 1

Yes on H.R. 6: Motion to Waive C.B.A. re: Inhofe Amdt. No. 1666; To :
ensure agricultural equity with respect to the renewable fuels standard.: !

+ Democrat 1

- Independent :

- Republican \

1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
|
|
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1

1

1

1
1
1
1
1
1
1
1
1

1

1

1

1

1

1

1

Some things that you can observe from these results are:

Senators like to write bills with very long-winded titles that make political points.

The key issue that most clearly divided Democrats and Republicans was the issue that Democrats call
the "estate tax" and Republicans call the "death tax", with 49 Republicans voting to reform it.

= The next key issue involved 44 Democrafs voting to redeploy troops from Iraq.

The issues below that serve only to peel off homogenous groups of 2 to 4 people.

Implementing a better disorder metric

You should be able to reduce the depth and complexity of the tree, by changing the disorder metric from the
one that looks for the largest homogeneous group to the information-theoretical metric described n lecture.

You can find this formula on page 429 of the reading (http://courses.csail.mit.edu/6.034{/ai3/ch21.pdf) .
» Write the information disorder(groupl, group2) function to replace homogeneous_disorder.

This functiomrtakes in the lists of classifications that fall on each side of the decision boundary, and
returns the information-theoretical disorder.

Example

T T T SN il ST TS 5 P e R I S L s I

y 5 A 1

hnformatlon“dlsorder(["Democrat", "Democrat", "Democrat"], ["Republican", "Republican"])

1 => 0.0 :

1 ]

I i 0 G o R a

SRS EmSSsR R S e e s sl s s SR e RS SRS s D s s S Ss e S m e TR R e T |
1

:information_disorder(["Democrat", "Republican"], ["Republican", "Democrat"])

1 => 1.0 x
1
1

Once this is written, you can try making a new CongressIDTree with it. (if you're having trouble, keep in
mind you should return a float or similar)

Evaluating over the House of Representatives

Now, you decide to evaluate how well ID trees do in the wild, weird world of the House of Representatives.

You can try running an ID tree on the entire House and all of its votes. It's disappointing. The 110th House
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began with a vote on the rules of order, where everyone present voted along straight party lines. It's not a

very informative result to observe that Democrats think Democrats should make the rules and Republicans
think Republicans should make the rules.  ~——

Anyway, since your task was to make a tool for classifying the newly-elected Congress, you'd like it to work
after a relatively small number of votes. We've provided a function, 1inited house classifier, which
evaluates an ID tree classifier that uses only the most recent N votes in the House of Representatives. You
just need to find a good value of .

» Using limited_house_classifier, find a good number N 7 of votes to take into account, so that
the resulting ID trees classify at least 430 Congresspeople correctly. How many training examples
(previous votes) does it take to predict at least 90 senators correctly? What about 95? To pass the
online tests, you will need to find close to the minimum such values for N 1, N 2, and N_3. Keep
guessing to find close to the minimum that will pass the offline tests. Do the values surprise you? Is
the house more unpredictable than the senate, or is it just bigger?

= Which is better at predicting the senate, 200 training samples, or 2000? Why?
o

The total number of Congresspeople in the evaluation may change, as people who didn't vote in the last N
votes (perhaps because they're not in office anymore) aren't included.

Survey

Please answer these questions at the bottom of your ps4. py file:
= How many hours did this problem set take?
= Which parts of this problem set, if any, did you find interesting?

= Which parts of this problem set, if any. did you find boring or tedious?

(We'd ask which parts you find confusing, but if you're confused you should really ask a TA.)

Errata

If you find what you think is an error in the problem set, tell 6034tas@csail.mit.edu about it.

Retrieved from "http://ai6034.mit.edu/falll 1/index.php?title=Lab 4"

= This page was last modified on 23 October 2011, at 00:04.
» Forsan et haec olim meminisse iuvabit.
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Massachusetts Institute of Technology thﬂ pf {~
Department of Electrical Engineering and Computer Science

{
6.034 Artificial Intelligence, Fall 2011 L/Wén 6@ /€ Lﬁf ng

Recitation 8, November 3
Neural networks II Prof. Bob Berwick, 32D-728 [aﬂ/

0. Introduction: the summary so far (and solutions from last time)

Summary of neural network update rules:

To update the weights in a ncural network, we use gradient ascent of a performance function P by comparing
what a network outputs given a sample data point and given the network’s current weights, via forward
propagation. We compare the network’s output value against the desired value in terms of the partial derivative
of P = ~1/2(d-0)* with respect to particular weights w;. This is called backpropagation. Recall that the first step
1s to find the derivative of P with respect to the output, which turns out to be: (d-o).

The general formula for the change in weights is:

aP oP . . . y
Aw e« — s0 w’ = w+ X — where « is a rate constant (also r in the literature & quizzes)
W W

The value of alpha (aka r) i1s also the “step size” in the hill-climbing done by gradient ascent, using the

performance fn.
For the final layer in a neural network, whose output from forward propagation is oy and where the desired output
value is d, the required change in weight value for a (single) final weight is:

1. Aw, =Aw, = axd,xi, where 6, =o,(1-0,)x(d-0/)

For the previous layer in a neural network (just the rightmost layer if a single neuron), the required update
equation is:

2. Aw, =axo,(1-0))X6, x|,

Example 1. Last time we computed the weight updates for a single-layer neural network with 6 inputs and 6
weights. Each partial derivative in the figure below corresponds to a different part of the network, with their
product yielding the derivative of P with respect to the weights w, where the desired output was 1, and the
learning rate alpha was (arbitrarily) set to 100:

op, do i opi
ow ap, do
Step 1: Forward Propagation. Calculate the output o given the input values shown. Useful data point:

sigmoid(2)=0.9
Answer: —1 Xwp+___ 1 Xw, | Xwo+ _ 1  Xxwy+_05 Xwy+__ 0 Xws=p=2

Sigmoid (p,) = o;= 0.9



Step 2: Backpropagation to find delta for final, output layer.

dP dP do
f:a—pr=$?)r:(d—of)xlof(l—of)|
oP _ dP do dp,

w  do dp, ow

=(d-o0;)X[o,(1-0,)|xi, :(Sf Xi,

Aw, =axi, X 5}, (for each input line to the neuron, 1)

w; =w,+Aw, (for each input line to the neuron, )

NEW WEIGHT | ORIGINALWEIGHT + | RATE x | & x INPUT = NEW WT
w w a (d-0)(0)(1-0) i

W, = 0 100 0.009 = 0.9
w, = 2 100 0.009 1 29
w, = 2 100 0.009 1 2.9
w, = -1 100 0.009 I 0.1
w, = =2 100 0.009 0.5 ~1.55
W, = I 100 0.009 0 1

Note how weights that have an input of 0 to them can’t affect the performance, so they remain unchanged.
So, do these new weights get us closer to the desired output? If we run forward propagation again we can find

out: -1 x09+1x29+1%x29+1x-01+05x%x-155+0x1=6.65;sigmoid(6.65)=0.99870765

Example 2. Last time, we also computed the value for the weight change for the final, output neuron of the
simple two-neuron net below. We initially have i=1; both weights w; and w, = 0; and the desired output is 1. We
will finish up this problem now.

For completeness, and to cement our understanding, let’s see how the various terms in the partials are arrayed
over this two-neuron diagram, pushing back from the output o,, so you can see why it is called backpropagation.
Make sure you understand where cach of the five terms comes from. Multiplied together, they give the partial
derivative of the performance function P with respect to wy.

P

: Pl :

Left neuron

<

A 4
A 4
ls
| o
Y

lo]] ir

Ri;;ht neuron

CETE CETT

op, do, ap, do, toP
o, o, 30, v,

i o,(1-0,) w, o(l-o0,) (d—-o0,)
left left right right output
weight sigmoid weight sigmoid deriv
deriv deriv deriv deriv

This is to find the partial of the performance function P with respect to the left right, w;.

Remember that to find the corresponding partial for the final output layer we computed something a bit different:
the partial of p, with respect to o, is replaced with the partial of p, with respect to w, (so finding the partial of P
with respect to w,.) But this partial is just the derivative of i, x w, with respect to w,, which is simply i,.
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Assume all initial weights are 0 (it is actually a bad idea to set all initial weights the same for neural nets; why?).
Assume a sample input of i= 1, and that the desired output value d is 1.0. Assume a learning rate of 8.0. (Useful
data point: sigmoid(0) = 0.5) Let’s run one step of backpropagation on this and see what’s different about this
case. First, as before, we must carry out forward propagation: compute the inputs and outputs for each node.

Step 1: Forward Propagation. OK, you should know the drill by now. First compute the outputs z at each
node:

P1=wi; = 0 x 1 =0 Soo; (=i,) =sigmoid( 0 )= 0.5
Pr=wii, = 0 x 05= 0 So o, = sigmoid( 0 )= 0.5

Step 2: Calculate the § for the output, final layer, 3, (i.e., the neuron on the right, for use in changing w,)

Recall the formula for &is: o, x (1-0,) x (d- 0,)= 0.5 x(1-05)x(1-0.5)= 0.125
Recall that d = 1.0; we have just computed o,.
So, the change in the right-most weight wyis: oy > i, * 6, =8.0 x 0.5 % 0.125 =0.5

Step 3: Calculate §, for the hidden neuron on the left, recursively using the delta from the previous layer:
6,=0,(1-0)xw, x5, =0.5(1-0.5) x 0.125 = 0.03125

Now use this value to compute the weight change for the left neuron:

Aw, =axi, x8, =8.0x1x0.03125 =0.25

Thus the two new weights are:
wr=0+05= 05
w =0+0.25=0.25

Let’s see how much closer this has gotten us to the desired output value of 1.0. We do this by another round of
forward propagation (and then typically, we would do back-propagation again to get us even closer, many
thousands of times.) Your turn now.... (See the tear-off page on the back to estimate the sigmoid to 2 decimal
places, or better, user a calculator or python on your laptop...)

Next iteration, forward propagation:
Pr=wi; = 0.25x = So o, (=i, ) = sigmoid( )=

Pr= Wi, = 0.5 x = So 0,= oy = sigmoid( )=
So, we have definitely gotten a bit closer to our output goal of 1.0.

Next iteration, back-propagation:
Now you try it:

&= oy x (1-0r) * (d - 05) = x(1- ) *(1- )=
8;=Gfx(]—0,r)><w,>‘8f: x(1- ) % 0.5 % =
Awp=a x i x § = 80 x % =

Awr=a x i x 6,1 = 8.0 x 1.0 x =




wy =wrt Awy= 0.5+ =

W,r' =w+ A\V;z 0.25 + =

Do the new weights get us closer to the goal? Calculate this by forward propagation again:

pEwi; = 1x sor (=i,) = sigmoid( ) =

Pr= Wi, = 7 0= sigmoid( ) =

Example 3. What multilayer neural networks can learn that single layer networks cannot learn.

Why did people invent multi-layer neural networks? Consider a classification problem such as the one depicted

below, which represents the predicate or the ‘concept’ of excusive-OR (XOR), i.e., the value of this function is 1
if either of the two inputs is 1; and the value of this function is 0 if both inputs are 0 or both inputs are 1:

1 E{-_::l =

g 1
X

Suppose we tried to find the weights to a single layer neural network to ‘solve’ this classification problem. Then
the general formula for this network would be, output = w;x + wyy + ¢. But what weights would work? Do you
see that this kind of equation can only define a single line? Thus, it says that we must classify the + and — regions
in the graph above into regions that are all + (positive) and all — (negative), by making a single cut through the
plane. Can this be done? Try it — why can’t it be done?

Question: Can a perceptron encode function [x—y| < epsilon, for some positive epsilon? Why or why not?
However, if we are allowed fwo network layers, then we can formulate a set of weights that does the job. Let’s

see how, by considering the network below, and then finding the weights that do the job. (This was a sample quiz
problem previously.)



Step 1. First, think of input-level neurons (neurons A and B) as defining regions (that divide positive data points
from negative data points) in the X, Y graph. These regions should be depicted as linear boundary lines with
arrows pointing towards the positive data points. Next, think of hidden level neural units (neuron C) as some
logical operator (a linecarly separable operator) that combines those regions defined by the input level units.

(We will see later on a few more examples of this sort to show you how multi-layer networks can ‘carve up’
regions of the plane in this way.)

So in this case: units A, and B represent the diagonal boundaries (with arrows) on the graph (definition two
distinct ways of separating the space). Unit C represents a logical AND that intersects the two regions to create
the bounded region in the middle.
Step 2. Write the line equations for the regions you defined in the graph.
A) The boundary line equation for the region defined by line A:

y<-1xx+3/2
B) The boundary line equation for the region defined by line B:

y>-1xx+1/2
Step 3. Rewrite the line equations into the form: ax + by > ¢, where a, b, and ¢ are integers:
A) y<-1xx+3/2

x+x <3/2
2x+ -2y >3

By y>-1x+1/2

xt+ty >1/2
2x+2y >1



Now note that the sum of the weights times the inputs for each unit can also be written in a similar form. (We
will call this summed product of weights times the inputs for a neuron its “z” value).

For Unit A: z=
Wxaxt Wyay+ Wua(=1)>0
Wxax+Wyay >Wy

ForUnitB: z=
Wxpx+ Wygy + Wp(-1)>0
Wxpx+Wypy >Wp

Why do we set Wxa x + Wy y + Wi(=1) > 0 and not <0? Look at the graph on the tear-off sheet!
When z=Wxp x + Wyp Y+ Wu(-1) >0, then sigmoid(z >0), and z grows and approaches 1, which
corresponds to the positive points

When z = Wxa x + Wya Y+ Wa(=1) <0, then sigmoid(z <0), z decreases and approaches 0, which
corresponds to the negative points.

Thus, when expressed as > 0 the region is defined as pointing towards the positive points.

But when expressed as < 0, the region is defined as pointing towards negative points.

We want the defined region to point to the positive points. That is why we pick the inequality as >.

Step 5. Easy! Just read off the weights by correspondence.
-2x +-2y>3 line A’s inequality
Wixax+ Wyay> W,y z equation for unit A. Therefore, Wxpa=-2 Wya=-2 Wx=3

2x + 2y>1 line B’s inequality
Wxpx+Wypgy>Wp z equation for unit B. Therefore, Wxg =2 Wyp=2 Wp=1

Step 6. Solve the logic in the second neuron layer
We now want to compute (A AND B), for the next layer. So we build a Truth table and solve for the
constraints!

A desired output  |Equations Simplified

0 0 0 —Wc<0 We>0

0 1 0 Wge—We <0 Wge < Wc

1 0 0 Wac—We<0 Wac < Wc

1 1 1 Wac+ Wpe—We>0 |Wac+ Wpe>Wc

We notice the symmetry in Wpc and W, so we can make a guess that they have the same value:
WEC: 2 and WAC =2

Then the inequalities in the table above condense down to the following:
WC >0 WC >2 (tWiCE) WC <24+2=4

Therefore, 2 < W< 4, Let’s make life easy and pick W¢ = 3. This gives us one acceptable solution:
WBC=2 WAC:Z W(_‘: 3

Of course, there are many solutions. The following solution also works, because it still obeys the inequalities and
the constraints in the table:

Wpe=109 Warc=109 We=110

Quizzes will always ask for the smallest integer solutions.
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This particular problem also illustrates how to combine networks using a logic gate. Thus, to compute more
complex regions, we need more neurons either at one level or at the output level. But first, to cement our
understanding of this problem, let’s look at a related quiz problem, from quiz 3, 2009.

Given this three-node neural network, and the training data on the right

o.' <& o
I O o <& <><>
®se o
O .. ."
i %
R v PR = f
O loe
OO o <>‘ ° &
<o ' ® e ¢
® L}
O ® e O
B [ ]
o *°

Question: which of the following sets of weights will correctly separate the dots from the diamonds? (Think
about what cuts the various weights make at the left neuron....)

Weight set A:

Wi Wiz Wit W2 Wi War Wi W War
-2 -2 -1 3 3 -15 128 128 173
Weight set B:
Wi Wiz Wit Wi W2 Wit Wi Wz Wit
2 -1 1 2 -2 1 100 100 50

Why does weight set A work but not weight set B?

Example 4. Some other examples of carving up the x-y plane & the associated multi-layer networks
Now let’s consider some other patterns in the x-y (or x;, x;) plane and what sort of qualitative network might be
required to encode them. (This was an exam question in 2008.)

First, let’s give the schematic pictures for (i) a perceptron; and then (ii) the simplest 2-layer neural net we have
just seen — note that we have removed all the clutter of the w’s, etc.:

(A) Perceptron: (B) Simplest 2-layer neural net:
X X,
Y ¥
X?. X5

Here 1s a basic picture of the kind of classification regions a perceptron (A) can describe: any single cut, at any
angle:



X

X

4.1 Question: Can a 2-layer network (B) also describe such a classification region? Why or why not?

4.2 Now consider these two sorts of classification regions.
Question: Can a perceptron (net A) describe these kinds of regions? Can the 2-layer network (B) also
describe these kinds of regions? Why or why not?

X, X,

X X,

4.3 Now let’s hone our intuitions by making the region more complex, and by considering different neural
networks.
Question: The 2-layer network (B) cannot describe this kind of region. Why not?

X, Q)(,JG

-

X
1
So, we must complicate our neural netvork to capture this kind of more complex region.
Question: Please explain why the following neural network can successfully describe the region just above.
(Think about how we classified the region in our worked-out example earlier.)

Xi E (on e 3\{“\&
y (s

Question: This network cannot successfully describe the region below. Why not? (Think about this, and
for the next recitation, try to come up with the reason, and a modification, that is, a more complex neural

network, that can describe this region.

i et
X5 ~

X
4.4 Finally, lct us consider a simpler two layer neural network, where the inpufs to the top, leftmost hidden neuron

receives input only from x; , and the bottom, leftmost hidden neuron receives jnputs only from x;. So the network
looks like the following. Can you intuit how this will restrict what regions thg¢ network can describe?

/A (‘ﬂZL uﬂ’/)
= Combie Odpufs



Question: Can this (restricted) neural network classify the region below? Why or why not?

XZ 4
XI

Can network (D) describe this region that we already saw above? Why or why not?

X

Finally, for next time, you might want to think about why network (D) cannot describe this region that we saw
before (while we have already discussed what the usual 2-layer network (B) can do in this case):

Xy
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Sigmoid function y = 1/(1-¢*
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6.034f Neural Net Notes
October 28, 2010

These notes are a supplement to material presented in lecture. I lay out the mathematics more prettily
and extend the analysis to handle multiple-neurons per layer. Also, I develop the back propagation
rule, which is often needed on quizzes.

I use a notation that I think improves on previous explanations. The reason is that the notation
here plainly associates each input, output, and weight with a readily identified neuron, a left-side
one and a right-side one. When you arrive at the update formulas, you will have less trouble relating
the variables in the formulas to the variables in a diagram.

One the other hand, seeing yet another notation may confuse you, so if you already feel com-
fortable with a set of update formulas, you will not gain by reading these notes.

The sigmoid function

The sigmoid function, yi[(/l__tg_j), is used instead of a step function in artificial neural nets
because the sigmoid is continuous, whereas a step function is not, and you need continuity whenever
you want to use gradient ascent. Also, the sigmoid function has several desirable qualities. For
example, the sigmoid function’s value, y, approaches I as x becomes highly positive; 0 as x becomes

highly negative; and equals 1/2 when x = 0.

Better yet, the sigmoid function features a remarkably simple derivative of the output, y, with
respect to the input, x:

dy Gl |
dx dx 1+e*
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:i(l +e 7!
dx

==Twllee™ % xe ™ x -1
| e "

= X
L +&~F ] +8™%

1 l+e™ " — 1

d (11

( )
“Tee*  lter 6[/1@”5 J(%t/ (5
I Lber 1 Simald

= X
l+e* ( l+e~ l+e
=y(1 - ¥)

- Thus, remarkably, the derivative of the output with respect to the input is expressed as a simple
‘—-———'____—‘—________—‘_

function of the output,
ot =

The performance function

The standard performance function for gauging how well a neural net is doing is given by the
following:

1

P _§(dsamp1e ~ Osample)”

Tdﬁb\ m %PJL



where P is the performance function, dsamplc is the desired output for some specific sample and

Osample is the owt for that sample. From this point forward, assume that d and o are

the desired and observed outputs for a specific sample so that we need not drag a subscript around
as we work through the algebra.

The reason for choosing the given formula for P is that the formula has convenient properties.
The formula yields a maximum at o = d and monotonically decreases as o deviates fromd. Moreover,

the derivative of P with respect to o is simple:

dP d 1
;!; = %[_:(d = 0) ]
_——x((1-0) x —1
; J@((‘/ (J Gf(,%/
=d—o0

Gradient ascent

Backpropagation is a specialization of the idea of gradient ascent. You are trying to find the maximum
of a performance function P, by changing the weights assoeiated with neurons, so you move in the

. . <'_.‘—'—v—¥ ' . . . .
direction of the gradientin a space that gives P as a function of the weights, w. That is, you move in
the direction of most rapid ascent if we take a step in the direction with components governed by the
following formula, which shows how much to change a weight, w, in terms of a partial derivative:

Aw oc%—'m-—\f)f@r‘[ffzw'}ﬂﬁo drwrl'f PWO/%M 'ﬁg %_D_ﬁ

The actual change is influenced by a rate constant, ov; accordingly, the new weight, w', is given by W

the following: f\ (3 [ll/gfl

oP

Wmwrax g W,ﬁ 5\/‘

Gradient descent _ w! = R & &/‘,L

If the performance function were %(dsample - osalnple)2 instead of — %(a‘ 2 then

sample ~ Osample)
you would be searching for the minimum rather than the maximum of P, and the change in w would
be subtracted from w instead of added, so w’ would be w — & x o P instead of w + v x <= ‘)P . The two

sign changes, one in the performance function and the other in the update formula cancel so in the
gnd, you get the same result whether you use gradient ascent, as I prefer, or gradient descent.

The simplest neural net

Consider the simplest possible neural net: one input, one output, and two neurons, the left neuron
and the right neuron. A net with two neurons is the smallest that illustrates how the derivatives can
be computed layer by layer.



Wi Wy
| Pl o ir Pr Or P ﬁ’ P
— —> >—> —> —| e
Left neuron Right neuron

Note that the subscripts indicate layer. Thus, i), wy, p;, and o, are the input, weight, product, and
output associated with the neuron on the left while i,, w,, p,, and o, are the input, weight, product,

and output associated with the neuron on the right. Of course, o; = i,.

Suppose that the output of the right neuron, o,, is the value that determines performance P. To

compute the partial derivative of P with respect to the weight in the right neuron, w,, you need the
chain rule, which allows you to compute partial derivatives of one variable with respect to another
in terms of an intermediate variable. In particular, for w,, you have the following, taking o, to be

the intermediate variable:
Pem (qhhvrﬂfl

ar  aP ()o,

dw, (')0r ()wr

Unr do, ()p, X

r)p r)n A

I
55“ bl

ow, dor dp, c)w,

Now, you can repeat, using the chain-rule lo tum into

Conveniently, you have seen two of the derivatives already, and the third, gL = W is easy to
compute:
Sigroid  mHEY
ar _ .

= [(d — 0,)] % [o.(1 —0,)] X [i]

dw,
Repeating the analysis for w; yields the following. Each line is the same as the previously, except
that one more partial derivative is expanded using the chain rule:
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Thus, the derivative consists of products of terms that have already been computed and terms in the
vicinity of w;. This is clearer if you write the two derivatives next to one another:

P
8— :(d e 01') X (),~(1 1 0"') x i"
aw,
9P @ =0) % 0l =0) x w, x ol = 0)) X iy
Ow,

You can simplify the equations by defining Js as follows, where each delta is associated with either
the left or right neuron:

d,
d

=o(1-0)x(d-0) ) (Crarg

=0/(1 — o) x w, X &,

Then, you can write the partial derivatives with the ds:

P
=i, X (Sr
dw, :
opr
— =i x4
UWI " .
If you add more layers to the front of the network, each weight has a partial derivatives that

is computed like the partial derivative of the weight of the left neuron. That is, each has a partial
derivative determined by its input and its delta, where its delta in turn is determined by its output,
the weight to its right, and the delta to its right. Thus, for the werghts in the final'Tayer, you compute

the change as follows, where I use f as the subscript instead of r to emphasize that the computation
is for the neuron in t @ layer:

where

Awp =a X if X 0f {'\

WJ{ la. 10/

O = op(1 —or) x (d — 0f)

For all other layers, you compute the change as follows:

Aw=a x i x§

where O m( Laxréfﬁ

S =01 —op) X w, X §,

\ b \ \
More neurons per layers Dws w{h %u&},op euliy

Of course, you really want back propagation formulas for not only any number of layers but also for
any number of neurons per layer, each of which can have multiple inputs, each with its owm weight.
Accordingly, yomzc in another direction, allowing multiple neurons in each layer
and multiple weights attached to each neuron.

The generalization is an adventure in_summatjons, with lots of subscripts to keep straight, but
in the end, the result matches intuition. For the final layer, there may be many neurons, so the
formula’s need an index, k, indicating which final node neuron is in play. For any weight contained

oh Roe nol Lol Th  yot



¢ Shu Cxungle’

in the final-layer neuron, f;, you compute the change as follows from the input corresponding to the
weight and from the ¢ associated with the neuron:

AH? =a X I X (j:,ti,

o, =05, (1 — 05) x (dy — op)

Note that the output of each final-layer neuron output is subtracted from the output desired for that
neuron.

For other layers, there may also be many neurons, and the output of each may influence all the
neurons in the next layer to the right. The change in weight has to account for what happens to all
of those neurons to the right, so a summation appears, but otherwise you compute the change, as
before, from the input corresponding to the weight and from the ¢ associated with the neuron:

Aw =a x i x §,

(Sf,' =U.',‘(1 - Lf).r,') X E “)fifﬂ'j X O!‘J
i

I

Note that wy, ;. is the weight that connects the j[ 1 right-side neuron to the output of the f[h left-side

neuron.

Summary

Once you understood how to derive the formulas, you can combine and simplify them in preparation
for solving problems. For each weight, you compute the weight’s change from the input correspond-
ing to the weight and from the ¢ associated with the neuron. Assuming that J is the delta associated

with that neuron, you have the following, where w_,, is the weight connecting the output of the

neuron you are working on, the ith left-side neuron, to the jlh

associated with that right-side neuron.

right-side neuron, and d,, is the &

/0o
=o(l —0) x (d —0) J« for the final layer

{
c=0,(1 —o,) X Zw,n,_,r}. X 0y, otherwise 6/ WH' Uﬂ

i

le

That is, you computed change in a neuron’s w, in every layer, by multiplying a times the
neuron’s input times its 8. The § is determined for all but the final layer in terms of the neuron’s
output and all the weights that connect that output to neurons in the layer to the right and the ds
associated with those right-side neurons. The ¢ for each neuron in the final layer is determined only
by the output of that neuron and by the difference between the desired output and the actual output
of that neuron.



Neuron with weight to be adjusted

Weights and deltas in layer to the right

W — Weight to be adjusted
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6.034 Quiz 3 Or e
November 9, 2009

Name |

EMail ] ’

Circle your TA and recitation time, if any, so that we can more easily enter your score in our records
and return your quiz to you promptly.

TAs Thu l— 7 i ]
‘

|

|

Erica Cooper Time \Enstructor

[11- : e — |
_!‘Matthew Badips \}1 12 Gregory Marton| kl 2 ||Randall Davis ]

f 12-1 |[Gregory Marton‘ 2-3 ||Randall Davis

Time ||Instructor

Charles Watts | [1-2 | Bob BerWick | 3-4 i Randall Davis
] [ =r ‘ S — =

Mark Seifter | 23 BobBerwick

Yuan Shen 3-4 !Bob Berwick ‘

Jeremy Smith

iiOIga Wichrowska T

Problem number Maximum “Score ‘%LGrader

J
1 | sof | ]
2 sof |
Total o, |
There are ?? pages in this quiz, including this one. In

addition, tear-off sheets are provided at the end with
duplicate drawings and data.

M \ T

As always, open book, open notes, open just about
everything.



Problem 1:KNN & ID Trees (50 points)

Part A: K Nearest Neighbors, backwards (15 pts)

Shaun has been hired by the Joint Intelligence Committee to investigate the recent zombie infection in his
hometown. The first thing Shaun needs to do is to-make sense of the incomplete data the JIC has provided him.
In the graph below, the circles correspond to observed people, but their labels, "zombie" or "healthy", were lost
during the initial investigation. The square points represent people who still neeﬂ?ﬁ'ﬁﬂass?wd(they are not

themselves used to classify any other points).

Foribee - - .5 A C )
__ ©®; | '/ f or ] Zombil

° f L Do

)

@
h@}\ “L\

® ®
Zombt

Shaun is also given the table below, showing how the square points would have been classified using 1-
and 3-nearest neighbors before the labels were lost. Given the map and the table below, Shaun needs to
recover the original labels.

Square point Using 1-nearest-neighbors Using@-nearest—neighbors C l\ﬁu Y \

1 zombie zombie e | I{"‘!r Moy ifi_‘
Yo '."/

2 healthy zombie e ([ 0 %{ !\f"ﬂ" gl |
ve<t ) Zomh¥

3 healthy healthy

4 LY, [ |

1 T w “ o 20mbee ,( £ -
(ga Y gt [ Crdl oo /"'?';: | *{ Zonlee

| \ 11'{“ /



Al: Write do\\j'n whether the following specimens are zombies (Z), healthy (H), or if it's unknown (U).
Circle A:

CircleB:L/
ciec:__\J) /
CircleD:_\ ) J
CiroleE:_H v/
cicleF: J 7
Circle G: i_ Vv
Circle H: __° vV
o) e 4
Circle: =
Circle J: L 7

A2: How would point 4 be classified? (Again, choose Z, H, or U)

| - & S
Using 1-nearest neighbor:

Using 3-nearest neighbors:

A3: Shaun is wondering whether this k-nearest-neighbor algorithm is really reliable. He decides to
check it on some labeled zombie data from a neighboring town. In the graph below, zombies are
labeled Z, and healthy people are labeled H.



C)C%HD

o9 ®

® ©® @

®

Describe, in a sentence or two, what happens to the accuracy of k-nearest nei hbon aski m?r

A
h{/ag, 'h'l‘M[.@
eases fr%
1 to 26 (the total number of samples). | e ' .l \(1

r b
AT ES T v

T)‘{L ‘J( !‘#‘,6[ ‘O@ (ores ((O & [E’ ,(f dﬂ h’ J/‘q (--, 0{;" /6 ‘. ],’J, 0/:‘0’
logs (ﬁjmﬂﬁ dg

Ty Hoght
Part B: ID Trees (35 pts) ‘mr\ ;(\ IVWM

Shaun quickly realizes that he will not be able to recover all the zombie infection information from the

data he is given. Fortunately, Shaun's best friend Ed, who was in the middle of a reconnaissance

mission in the town, managed to send in a bit more data before he was bitten. Shaun overlays the

locations of the known zombies (marked with ag-ﬁnd known healthy people (marked with@-) on a /.
grid representing the town. (The zombies are currently not biting anyone, so you can trust the points On § J/f
not to change over time.) The JIC has tasked Shaun with figuring out where to build a series of walls

separating the healthy people from the zombies. The walls will be bullt alono the decision boundaries

created by the identification tree algorithm. D

L L],
) (hlghd

\u
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BL. (13 pts)

Shaun's girlfriend Liz suggests building a wall at y=1.5. Compute the disorder at this decision
boundary. Leave your answer only in terms of integers, fractions, arithmetic operations, and logarithms.

5 —, U { l‘ ) {1 “‘} 7 ‘,___ N 2 ) - "'/: '} -"‘i
Z(~H 109 4 1 (4)r T 5l B) 5 1 [5)) V

ff-f ) :({ =) (1)

Shaun's flatmate Pete loudly insists that, instead, a wall should be built at x=-4. Compute the disorder
at this boundary.

O_ l‘;’T‘

LI ( b ) g o) X
1L (4 4 :}’ /',,1 ({) (2 M9t ‘12 ”j. )< ﬂ/dOr\J JO /‘f’rl}l(
| ;/v', t

Whose idea-is better, according to the heuristic described in class? (circle one)

f/ Liz's. ‘/ Pete's i
.. T4 b it o row Clibate

Sy



B2. (12 pts)

On the diagram above, draw the decision boundaries Shaun would produce using the identification tree
algorithm. In case two decision boundaries are equally good, use the horizontal one. If there is still a

tie, use the one with the lower-valued threshold. You will not need a calculator to solve this problem. :

v o \ ’ ‘ ~gh i f

B3. (10 pts) — bl '{,,, j-a{f Conlie 095 Aoy 0} o0 T redd
Shaun realizes that building all these walls is going to take a long time. In order to find out whether he % P
can build a smaller number of walls instead, he decides to convert his data into polar coordinates. a/ /{\”

| i

Sketch the 12 points from the previous graph on the polar graph below (making sure they still show the

+and - labels). Show the decision boundaries produced by the identification tree algorithm on the same W, Ty, |
raph. v
S will ek hotle f':f

Ca/t(vv&
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g ppmx )05

Describe in one sentence (or function) how the decision boundaries translate to walls on the original, x-
-plane graph.
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Question 2: Neural Networks and Genetic b= blgs (ond “Q

Algorithms (50 points) bdally s g

Part A (20 points) { !
—hq E ’ [ 14 b

0 Jo J
Perceptrons are the basic units of neural networks as we have seen them. They take a list of inputs x,
multiply them by a list of corresponding weights w, compute the sum of those products, and pass the
result through a decision function. We use a "fake" input T, usually -1, times an associated weight wr,
as part of the sum. When using a single perceptron for classification, one usually uses a threshold
decision function: if the sum z > 0, the output is 1, otherwise 0.

1 \,/\, [‘EI{ _I i
x] \\‘}‘V‘k ) -,,><VT C:_/Fl v

w, < | .
e Y S \ )
=), > [ }—>

T W
.o / /
% w, -\\\\ ///

To explore what perceptrons can and cannot do, we will ask you to make up weights, rather than
training them. Consider the boolean function A—B, and note that it is the same as ~AVB.

1. Can a single perceptron with inputs A and B output | iff A—B? 4 A or 6
g e Mol ¢

If yes give weights: wa=__ Wp= W= | ,

If not, W.hy not? Tean be - [ Ciow To do O G 3 , - /M/O 13 Lm Fﬂ’/'-!

‘

2. Can a perceptron capture inequalities: given two real-valued inputs A and B, can the perceptron ]
output 1 if A<B and 0 otherwise? ¥ ‘Z 24 4
p | O ‘ J 90 ( g4 5 0
b i) a b
If yes give weights: w,= W= W= T Genge 1 g
If not, why not? ) (i ¢ _ C emlocu

¢ No \ pue

3. You wonder about the real-valued function A=B within epsilon E, that is, with three inputs, A, B, and
and E, can a perceptron capture whether |A-B| <E?

If yes give weights: w,= Wp= Wg= W=
If not, why not?

b = & pectpoy Con oo | i fund
Th‘v’ Lag 2 r

. ‘ e BT
¢ S0 stiates, 71(\{ b ot 7 ¢ .




4. The questions in part A have asked for solutions using a thresh Id cxs n function. Do the first
round of training for A—B with a sigmoid decision function. Le he lea g rate=1.

ABIT W, [Ws s > Y.
00-1 o 9 1 <] i 1 - /3 )?
e 2 S 1 2
(1 A o1 0 [ (93 \753 108 "‘35‘_ 0 J,JE_ 's.
\iiﬂﬁﬁ 1] 1]-1 ’:(f\-” “|L[*'! r?l’ i 52 lg{ 1 l—-Iaj_“ 1'@}’]
(' hO\w Ag‘” 7\0 J La'j,wd ‘rO%] (.{ 72{!/@ d(ﬁ {/fé} M L")l— I&
The sigmoid decmon function: y l/(l+e o 2 : | hql ON)

/6( +l

O Vﬁ

‘lm p‘\

5. Which of the following is true about a perceptron when we use a sigmoid instead of a threshold?
A. The perceptron can learn XOR
B. The perceptron can no longer learn all linear classification boundaries
C. The perceptron will learn A—B in fewer training steps
D. The perceptron will learn A—B in more training steps
E. None of these is true
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Part B (20 points)

Given this three-node neural network, and the training data on the right

A,

....00 o

! i
o0 o

1. Indicate which of the following sets of weights will separate the dots from the diamonds by circling
their letters. NOTE; th 8 k!
eir letters more wwn (fn&y wor

& wil wi2 " wiT w21 w22 w2T w31 w32 wa3T
how (¢ i B 3 2 1 4 5 -2 -100 -100 -150
' A0\ 7 L—a—B -2 -2 -1 3 3 -1.5 128 128 173
wo SR Cc 1 1 05 1 1 -05 97 97 128
NN oot D 4 4 2 6 6 -3 96 -95 -52
5 il E 2 -2 1 2 -2 1 100 100 50
Y F | 4 4 2 6 6 -3) -101 102 148 1w
; ) ) . <1 v
2. For (at least) one of the sets of weights you chose above, write the simplest mathematical ., ' 3 55
60 representation for it using + - * /, inequalities, and/or boolean operations. Xe ¢ \/ £
- s O
~Y 7 9 Which line? | mathematical expression: G
1
& 2\/ (I
% o 0
'y
¥ <y )¢
plot y )Y 4

P
190" fo o

7‘ 3. When training the three-node neural network at the top of the page using back-propagation, if the _q’} + 4y J
___—— current weights are the ones given in choice A, then, for the training example x=0 y=0, if y*=1, what is s
Xf)( L -';L 8,? See the tear-off sheet for notes on back-propagation. You can leave your solution expressed as a M/{*,g! '}Q

roduct, and it may help us assign partial credit. L) [,
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Your friend is building a device to unlock a door when it hears a secret knock pattern, and realizes that

a neural network could do it, if only it had a sense of timing. You suggest feeding the output of one
neuron into the input of one of its ancestors, and thereby get a dependence on timing.

1. You think about training the network by standard back-propagation, but decide that you can't. Why?

h h[ i W/f‘ {ers

\ \

I )1 A

The solution is clear: M&s}l( Y{lu‘ll set up a population of identical neural networks with
random weights, you discretize your input every 100 milliseconds into a sequence k...k, of 0 if silence
and 1 if a knock was heard, ensuring that k, is always 1, and timing out eventually. You'll choose the
fittest few neural networks at each step. Your friend jots down a few ideas for fitness functions:

A. Whether the full knock pattern was correctly classified
B. The length of the subsequence k; ... k; that is correctly classified
C. The length of the longest subsequence k; ... k; that is correctly classified
D.The number of k; correctly classified
A Th[e number of knock subsequences k; ... k; that are correctly classified
v 00
2. Select all « of {hﬂese fitness functions that one @gt_ evaluate using the neural net as a black box:

it ;

3. Select all of the fitness functions that will immediately trap the genetic algorithm in a fitness plateau:

————

L C

: T
4. Select all of the fitness functions that do not correlate with the actual fitness: (074 *¥

5. Having selected a fitness function, you decide to mutate weights randomly, and choose about half of
the weights from each parent for crossover. Your friend uses the ‘GA to train an NN on the example
knock sequence, and it consistently says true for that knock sequence. Excited, he installs it, goes

outside, waits for it to lock, someone runs by, and the door opens. What was missing from his training
data?

| | | | j' .
AAAY nel i o 0 .f,"‘)f
L

6. Having added that, he retrains the system on all the training data, and it's classifying things perfectly,
and he goes outside and waits for it to lock, knocks the secret pattern, trying again and again, but you

A4 /f’/

1)
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eventually have to let him back in. What happened?

Tear-off sheet

ABTM, MW W 5y oy

Perceptron update:
if [y*-y| > 0:
for each wi:
whi=w; + r(y*-y)x

e =11=)
~lolalo
L




1 5
Ea; E {o,—a‘,,)'
TR

Wiy =Wingj — DWWy
Awi,; =R x 0 % 5,

where R is a rate constant and the ds are compured with the following formulas:

8 =04(1 — 04) % (04 — di)
5;. -Ofl‘l —o0p) % Z Wi X 5,‘
/)

where x ~

oy is output & of the output layer

dy s the desired output k of the outpur layer
8§y is a delta associated with the output layer Y - '
oy, is ourput i of left layer in a lefr-right pair
&, is a delra associated with the layer /

4, is a delea associated with the adjacent layer to the right, layer » S 1 v 2T

For your entertainment after the quiz: http://www.youtube.com/watch?v=zE5PGeh2K 9k




6.034 Quiz 3

November 9, 2009
i EN!BJ[,, o ——— e ——————— e B e | |

Circle your TA and recitation time, if any, so that we can more easily enter your score in our records
and retumn your quiz to you promptly.

e | e |

i

{Time |l Instructor . (Time | Instructor

1121 |Gregory Marton | |1-2 |Randall Davis

i —
{

:! Matthew Peairs

s e '1-2  |Berwick/Marton | ‘2-3 !?Randall Davis
{Ronnie Wood | 123 |Berwick/Marton | '3-4 | Randall Davis
Mark Selfter 3-4 | Berwick/Marton

;[Yuan Shen ,

Jeremy Smith

';Olga Wichrowska

S—

| Problem number || Maximum |: Score ;éG—mder |
1 ‘ 504, t i

e ! 50:

There are 12 pages in this quiz, including this one. In addition,
tear-off sheets are provided at the end with duplicate drawings
and data,

As always, open book, open notes, open just about everything.

Problem 1:KNN & ID Trees (50 points)

. Part A: K Nearest Neighbors, backwards (15 pts)

Shaun has been hired to investigate the recent zombic infection in his hometown. The first thing Shaun needs to
do is to make sense of the incomplete data provided to him. In the graph below, the circles correspond to
observed people, but their labels, "zombie" or "healthy”, were lost during the initial investigation. The square
points represent people who still need to be classified (they are not themselves used to classify any other points).

I1'I©®
®
® @
@ |m -
®

Shaun is also given the table below, showing how the square points would have been classified using 1-
and 3-nearest ncighbors before the labels were lost. Given the map and the table below, Shaun needs to
recover the original labels.

Square point "Usmg 1-nearest-neighbors "Usi.ng 3-nearest-neighbors
1 |[zombie zombie

2 Hhealthy zombie

5 Jcatthy [Ihealtny

4 |G I




A3: Shaun is wondering whether this k-nearest-neighbor algorithm is really reliable. He decides to

check it on some labeled zombie data from a neighboring town. In the graph below, zombies are
Al: Write down whether the following specimens are certain to be zombies (Z) or healthy (H) If you labeled Z, and healthy people are labeled H.

cannot be sure, write down unknown (U).

CircleA: W &)
CircleB: 2
CircleC: W
CircleD: __ WL @
CircleE:__H
Circle Fi__\A

CirdeG:_ ¥ i
Circle H: & @ ® ®
Circlel: __ % @ ® ® ®
CircleJ: __ WL ®

@
®
®

O 0/ [P

®

A2: How would point 4 be classified? (Again, choose Z, H, or U)
Using 1-nearest neighbor: ___ H
Using 3-nearest neighbors: (A,

Describe, in a sentence or two, what happens to the accuracy of k-nearest neighbors as k increases from
1 to 26 (the total number of samples).

The accoracy increases iniNally (eq. fom M=l 4o U=¢)

but decveates as W geks \arge  (e.q. atr W= 26, evmgone i
classifitd ot a0 zombic)

Part B: ID Trees (35 pts)

Shaun's best friend Ed, who was in the middle of a reconnaissance mission in another town, managed
to send in a bit more data before he was bitten. Shaun overlays the locations of the known zombies
(marked with a +) and known healthy people (marked with a -) on a grid representing the town. The
zombies are currently not biting anyone, so You can trust the points not to change over time,
Shaun' boss has tasked him with figuring out where to build a series of walls separating the healthy
people from the zombies, The walls will be built along the decision boundaries created by the

3 4



identification tree algorithm.
y
=)
+ 4
1
-}
" 1
- T
-5 -4 -3 -2 -1 1 2[ 3| 4 5§ x
BL. (13 pts)

Shaun's girlfriend Liz suggests building a wall at y=1.5, Compute the disorder at this decision
boundary. Leave your answer only in terms of integers, fractions, arithmetic operations, and logarithms.

WS (Lo L -8y W
(-3 E(3 i 5. 9)
i T P
* 2lav -t -tieh-Fed

Shaun's flatmate Pete strangely insists that, instead, a wall should be built at x=-4. Compute the
disorder at this boundary.

1

Whose idea is better, according to the heuristic described in class? (circle one)
' Pete's

B2. (12 pts) ) - ‘
On the diagram below, ignoring the suggestions of Pete and Liz, draw ﬂ§c decision §omdnnﬁ Shaun
would produce using the identification tree algorithm. In case two decision boundaries are equally )
good, use the horizontal one. If there is still a tie, use the one with the lower-valued threshold. You will

not need a calculator to solve this problem,

18

-5 —4f -3 -2} -1 1 2 3 4 5 x




B3. (10 pts ’ .
Shalfn rsali;m that building all these walls is going to take a long time. In order to find out whether he Questlon 2 Neural Networks and Genetic
can build a smaller number of walls instead, he decides to convert his data into polar coordinates,

- .
Sketch the 12 points from the previous graph on the polar graph below (making sure they still show the Algorlthms (50 polnts)
+and - labels). Show the decision boundaries produced by the identification tree algorithm on the same
graph. Part A (10 points)

Perceptrons are the basic units of neural networks as we have seen them. They take a list of inputs x,
multiply them by a list of corresponding weights w, compute the sum of those products, and pass the
result through a decision function. We use a "fake" input T, usually -1, times an associated weight wr,

6 as part of the sum. When using a single perceptron for classification, one usually uses a threshold
decision function: if the sum z > 0, the output is 1, otherwise 0.
Rridk iy p =
+ ¥+ X %
X
|
>3 %
i 4 4 To explore what perceptrons can and cannot do, we will ask you to make up weights, rather than
?Zr 4 training them. You must use integer weights if integer weights are possible.
i = 1. Consider the boolean function A—B (same as "B or not A"). For inputs and output, true is
represented as 1 and false as 0. Can a single perceptron with inputs A and B output 1 iff A—B?
If yes give weights: wy=__ = Wp= wWr=__" examp le
r If not, why not?

Describe in one sentence (or function) how the decision boundaries translate to walls on the original, x-

<nlane 2. Can a perceptron capture inequalities: given two real-valued inputs A and B, can the perceptron

) output 1 if A<B and 0 otherwise?
T If yes give weights: wa=_=_| we=__ | wi=_ 0O & Lo

W= \ % \ v ewmmp
i If not, why not?

3. You wonder about the real-valued function A=B within epsilon E, that is, with three inputs, A, B, and
and E, can a perceptron capture whether |A-B| < E?

If yes give weights: wa= Wp= WE= W=

If not, why not?

o Perce(a‘i'rm can enceds one Laear *QWNQ'J.%J and thic las 2:

e tre




Part B (16 polnts)

In this part of the question, we ask you to train a perceptron to leasn A—B. We provide initial values
for the weights. You are to use a learning rate, r= 1.

For the first sample, find z and y using the perceptron update algorithm (given on tear off sheet) with a
sigmoid decision function. Use y to determine the next set of weights (which you are to write on the
line for sample 2). Then, repeat using the second sample,

For the third and fourth samples, repeat, but use the threshold decision function.

The sigmoid decision fun

Note:

W swme. for I

ction: y = 1/(1+e%):

B @

wy Wi

vecauvse HE B an
zece there.

ﬂ [{erant €, 0 “weorpal atine

3

T

%C\'\a)

ZXW =2

use decision function:

Sample |A B T IXW=Z |yse decision function: |y [y | 4"
1 of o -1 0 0 1 -{ ly=1/(1+e7) ] 1] 73
2 0O -1 [e] © 23 -.2% ly=1/(1+07) A 14 57
3 1] O -1 ol .5 -.3 .3 y=1if 2>0; else y=0 1] O -4
4 1 -1 =1 57 T -1y ly=1ifz>0; elsey=0 | o] 1 ¢
o] 1,52 -,

d_“ Sa.u.t( L ,\'051’ be
& ord !

o 'Hui Lirst o o \CQ‘UI"C’-C :

|

y=1/(1+e™)

,_y=1/(1+e™)

alalo ol)' i

_\o..aoim

10

Part C (4 points)
Which of the following is true about any perceptron when we use a sigmoid instead of 2 threshold?

A. The perceptron can learn XOR - -
B. The perceptron can no longer leamn all lincar classification boundaries

C. The perceptron will leam A—B in fewer training steps (within, say, epsilon = 0.01 of O or 1)
D. The perceptron will leam A—B in more training steps (within, say, epsilon = 0.01 of 0 or 1)

E. None of these is true

’ﬂ/\Q &ec'-slcm Cu,sc'f"f'dw J}Oei‘f’-']*f' cﬁ.am&e @nﬂammw

chorackeristics fﬂp sz\.q,“{' !(.'.wfs =y A}uc'hms‘ o

pecceptron cam leara. However, a dhrehald decision
(-‘(Me-}’.'mq Pa_ske,s w&‘ngfnfs oot o te rails oﬂa "’égc“‘”“”i

while o sigmoid  approdckes fle weights a LiHle
ot a time, &s wev sam n part B, TH Heorelore
dokes wmore erahfions of Frodaing o aet fo o

more “cectam® clossiPieation, in Ao cases okere

lmrn?m}‘ I Poss'.b\& Tth 4-£1resLo(:ﬂ9, A=E converss
i G coods of Fraipian. TA 1 coundls tha ) From
f+m~r| o wotthia .01 of Oevrdi , . >I5C

a s‘\%moico Feree
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Part D (12 points)

Given this three-node neural network, and the training data on the right

D1 Which of!.hc fol]owing sds ofweighr.q will correctly separate the dots from the diamonds?

W
Ca D)k _ K m aND

rrmg‘. slope

Circle one: neither B only both |

&o‘fs are is, Aiamandls ace. Os
D2. The following weights will separate the dots from the diamonds:

Wiz Wit Wit
G Bepn @8 Bk @S D v

Write an expression for how this works using inequalities and boolean operations:
(x-&-.af?z.) — (x+\é Sy '/z,)
Ms are @5, &:WLQS are d¢

(—}-aww ?R?f' g

Part E (8 points)

While training the three-node neural network at the top of this page (same as in part D), you may start
an iteration with the weights:

Wi Wiz Wit Wi Wn War Wn Wiz Wit

3 2 1 4 3 -2 =100 -100 -150

For the training example x=0 y=0, if y*=1, what is 8,(the delta for the top-left node)? See the tear-off
sheet for notes on back-propagation. You can leave your solution expressed as a product, and it may
help us assign partial credit.

)

27
1)

G ”
ey

%ﬁ_bso 85: -z

g = wdi-g) -l‘é“ii & T 2#+(1-23) (o)) @)= @

12



Tear-off sheet

T

Perceptron update:
If [y*-y| > 0:
for each w;:

wh=w + r(y*-y)x

Neural net update:
s-%);h—m‘
i) =g = DIy
AwpyynR x 0p X &,

where R Is a rate constant and the §3 are computed with the following formulas:

& moy(1 = 04) X (04 = da)
Seoy(l-o) x T wry x4,
7

is output k of the output layer

is the desiced outpuz k of the output layer

i1 8 delra associased with the ootput Layer

s output J of keft bayer [n o lefr-right palr

s a delra associased with the layer /

Is a delrs zasociared with the adfscent layer 1o the righe, layer v

rrE2abe

13 14
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Michael E Plasmeier

From: Erek Speed <espeed@MIT.EDU>
Sent: Tuesday, November 15, 2011 10:20 PM
To: Michael E Plasmeier

Subject: Re: Question on Example in Class

| don't think there are any hard and fast rules for chogs_ng_’gﬂe_ﬁequahtles As in there are possibly more than one

possible ways to choose them. ‘)l/bf— tlﬂt ol B ]
My heuristic is to choose inequalities so that whichever side of the boundary is positive is 'on' (outputsa 1 ifit's a
threshold function). It has always worked for me so far, though | have no analysis for it. T I

This leads to the equations that you listed in your email from tutorial. | looked at your notes and you have 2<0 and 1>0
g e i ; )

for your inequalities. These should bgx2 <2 and X2 >1fpr C and B respectively. Ua-‘»@({ ?P WMf‘ W

It looks like you have the C and B line switched around which might be some cause of the confusion. The B line should

be X2 =1. | think | wrote it wrong at one point and someone corrected me later.

( [f
Given that, you have what that means written in words. 5‘"( 5!7/
L
For A: "below line true" A‘
For B: "Below line true" (actually C) C
For C: "above line true" (actually B)

"Tells us which nodes are on in each region."

This is correct. So for the bottom region because it is below the A line and below C but below B (when it should be

above) the active nodes are just A and C. (
e 00 r m Ike/i Vfo
Does this make sense?
z+
Erek

2011/11/15 Michael E Plasmeier <theplaz@mit.edu>:

> Did you make a mistake on the first 2 sections? (Page 10 of PDF are my
> notes from that day)

>

>

>

>So | see how we get the lines (to get where 1 or 0)
>

A—(1/2)+1<0
>
>B2>0
>
>C1>0
>
>
>

> But then shouldn’t the first diagonal region be all rules on. (You had
>A, C)
1



>
> The next region (P) should be B and C (You had just C)
>

> Then my thinking gets the same answers for section 3 (B and C)
>

> And the last section (just B)

>

>

p-J

> What am | doing wrong? How do we select which rules are active for
> each section? Is this like an OR gate?

>

>

>

> If it is faster, my phone # is 610 513 0390

>

>

>

> Thanks!!!

>

>



Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science
6.034 Artificial Intelligence, Fall 2011
Recitation 8, November 3 Corrected Version & (most) solutions

Neural networks I1 Prof. Bob Berwick, 32D-728
0. Introduction: the summary so far (and solutions from last time)
Summary of neural network update rules:
To update the weights in a neural network, we use gradient ascent of a performance function P by comparing
what a network outputs given a sample data point and given the network’s current weights, via forward
propagation. We compare the network’s output value against the desired value in terms of the partial derivative
of P = —1/2(d-0)" with respect to particular weights w;. This is called backpropagation. Recall that the first step
is to find the derivative of P with respect to the output, which turns out to be: (d-o).
The general formula for the change in weights is:

P oP . ; ) ;
Aw es — so W’ =w+a X — where « is a rate constant (also r in the literature & quizzes)
w w

The value of alpha (aka r) is also the “step size” in the hill-climbing done by gradient ascent, using the
performance fn.

For the final layer in a neural network, whose output from forward propagation is oy and where the desired output
value is d, the required change in weight value for a (single) final weight is:

1. Aw, = Aw, =a><5), Xi, where §, =0,(1-0,)%(d~0,)
For the previous layer in a neural network (just the rightmost layer if a single neuron), the required update
equation is:

2. Aw,=axo(l-0)xw, X6, Xi,

Example 1. Last time we computed the weight updates for a single-layer neural network with 6 inputs and 6
weights. Each partial derivative in the figure below corresponds to a different part of the network, with their
product yielding the derivative of P with respect to the weights w, where the desired output was 1, and the
learning rate alpha was (arbitrarily) set to 100:

dp, i do i OP

ow ap, do
Step 1: Forward Propagation. Calculate the output o given the input values shown. Useful data point:
sigmoid(2)=0.9
Answer: =1 X w,+ L xXw, | Xw,+ | Xwy+ _ 05 xw,+__ 0 Xws=p=2

Sigmoid (p,) = 0, = 0.9 T@ {// 1/6{/

AN \l'\ é\t{fﬂo\ﬁ “€o+ mi’Vb
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Step 2: Backpropagation to find delta for final, output layer.

dP dP ao
6j"a_!]r ao ap (d OJ)X[Of(I—OJ)]
dP _ dP do dp,

aW aO ap au;_(d—of)xlof(l_of)lxif:6fXI‘}_

Aw, =i, X 61 (for each input line to the neuron, i)

l],m Gure ({m q/“ Si*we ‘fee(L {*o

wi=w,+Aw, (for each input line to the neuron, i)

NEW WEIGHT ORIGINALWEIGHT + RATE x |8 x v INPUT = NEW WT 5‘“‘{ 4/'}' '
W W o (d-0)(0)(1-0) i

W, = 0 100 0.009 -1 -0.9

w, = 2 100 0.009 1 29

W, = 2 100 0.009 1 29

W, = -1 100 0.009 1 0.1

w, = 2 100 0.009 0.5 =155

Wy = 1 100 0.009 0 1

Note how weights that have an input of 0 to them can’t affect the performance, so they remain unchanged.

So, do these new weights get us closer to the desired output? If we run forward propagation again we can find

out: -1x09+1x29+1x29+1x-0.1+05%x-155+0x1=6.65;sigmoid(6.65) =0.99870765 ‘L
5 Pen repeg

—_—

Example 2. Last time, we also computed the value for the weight change for the final, output neuron of the | ‘? .‘
simple two-neuron net below. We initially have i=1; both weights w; and w, = 0; and the desired output is 1. We M/f“"‘v
will finish up this problem now.

For completeness, and to cement our understanding, let’s see how the various terms in the partials are arrayed

over this two-neuron diagram, pushing back from the output o,, so you can see why it is called backpropagation.

Make sure you understand where each of the five terms comes from. Multiplied together, they give the partial

derivative of the performance function P with respect to w;.

P p) fol| | ir 1 pr E oo
. e e s RS s —p>
Left neuron Rifght neuron
b i § 2 fw i
w, ap, ? do, ap, " do,
w i, o,(1-0)) W, 0.(1-0,) (d-o,)
(\N\ left left right right output
E weight sigmoid weight sigmoid deriv
deriv deriv deriv deriv

This is to find the partial of the performance function P with respect to the left right, w;.. Remember that to find
the corresponding partial for the final output layer we computed something a bit different: the partial of p, with
respect to oy is replaced with the partial of p, with respect to w, (so finding the partial of P with respect to w;.)
But this partial is just the derivative of i, > w, with respect to w,, which is simply i,. Note how if we decided to use
a different threshold function other than a sigmoid, the only two things we would have to change are the two



3
partial derivatives, the right and the left sigmoid derivatives w1lh respect to p, and p,, respectively. For example,
if we changed the sigmoid threshold from 1/(1+¢™) to, say, x°, then the derivatives would change from, e.g.,
o/1-0,) (the derivative of the sigmoid function w1th respect to 1ts input), to just 20, (and the same for the left
threshold derivagivg). »

hoider % imm '
For this example, assume all initial weights are 0 (it is actually a bad idea to set all initial weights the same for
neural nets; why?). Assume a sample input of /= 1, and that the desired output value dis 1.0. Assume a learning
rate of 8.0. (Useful data point: sigmoid(0) = 0.5) Let’s run one step of backpropagation on this and see what’s
different about this case. First, as before, we must carry out forward propagation: compute the inputs and outputs
for each node.

Step 1: Forward Propagation. OK, you should know the drill by now. First compute the outputs z at each
node:

P1= Wiy = 0 x 1 =0 Soo; (=1i) =sigmoid( 0 )= 0.5
Pr=err = 0 x 0.5 = 0 So Oy = Sigmaid( 0 ): Q__é

Step 2: Calculate the § for the output, final layer, &, (i.e., the neuron on the right, for use in changing w,)

Recall the formula for 6;is: o, X (1-0,) X (d- 0,)= 0.5 %x(1-05)x(1-05) = 0.125
Recall that d = 1.0; we have just computed o,.
So, the change in the right-most weight wyis: ay = i, = 6, =8.0 = 0.5 < 0,125 =0.5

Step 3: Calculate §; for the hidden neuron on the left, recursively using the dMQ_]EMﬂUS layer:
8, =0,(1-0,)xw, x8, =0.5(1-0.5) X0 x 0.125 = 0 s _{‘

v
So the weight change for the left neuron at the first iteration of back propagation is 0 lw

Thus the two new weights are: '6“!\ /N("‘d
wy=0+05= 05
w; = 0 -+ 0 = 0

Let’s see how much closer this has gotten us to the desired output value of 1.0. We do this by another round of
forward propagation (and then typically, we would do back-propagation again to get us even closer, many
thousands of times.) Your turn now.... (See the tear-off page on the back to estimate the sigmoid to 2 decimal
places, or better, user a calculator or python on your laptop...)

Next iteration, forward propagation:
p1=wi; = Qx 1 =0 So o (=) =sigmoid( 0 )= 0.5 .

Pr= Wiy = 05 x 0.5 = 0.25 So o,= oy =gsigmoid( 025 )= 0.56218
So, we have definitely gotten a bit closer to our output goal of 1.0.
P =

Next iteration, back-propagation:
Now you try it:
x (1-o7) x (d—o7)= _0.56218 x(1-0.56218) x(1-0.56218 )= 0.10776

&1=o0; % (1-0;) * w, x &= 0.5 x(1=0.5) x 0.5 x 0.10776 = 0.01347
Awp=axip x & = 8.0 x 0.5 = 0.10776 = 0.43104
Awj=axi x § = 8.0 x 1.0 x 0.0134 = 0.1072




wy = wpt Awy= 0.5+ 0.43104 = 0.943104

W =w + Aw= 0 + 0.1072 = 0.1072

Do the new weights get us closer to the goal? Calculate this by forward propagation again:

pewip = 1x 0.1072 ;0; (i) = sigmoid(0.1072) = 0.52677

p=wi, = 0943104 x 0.52677= 04968 ; o, = sigmoid(0.4968) = 0.62171

Example 3. What multilayer neural networks can learn that single layer networks cannot learn.

Why did people invent multi-layer neural networks? Consider a classification problem such as the one depicted
below, which represents the predicate or the ‘concept’ of excusive-OR{ §L1;§P, i.e., the value of this function is 1
if either of the two inputs is 1; and the value of this function is 0 if both inputs are 0 or both inputs are 1. The line

A goes through the points (0, 3/2) and (3/2, 0); while the line B goes through the points (0, 1/2), (1/2, 0). The
‘plus’ signs are at (0,1) and (1, 0); the minus signs at (0,0) and (1,1).
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Suppose we tried to find the weights to a single layer neural network to ‘solve’ this classification problem. Then
the general formula for this network would be, output = w;x + w,y + ¢. But what weights would work? Do you
see that this kind of equation can only define a single line? Thus, it says that we must classify the + and — regions
in the graph above into regions that are all + (positive) and all — (negative), by making a single cut through the
plane. Can this be done? Try it — why can’t it be done? Answer: you cannot do it, because a perceptron can
only define a single line ‘cut’ through the plane, and this region of + is defined by two lines.

.,
Question: Can a perceptron encode function |x—y| < epsilon, for sqme positive epsilon? Why or why not?
Answer: No, again because the absolute value function requirc@\ts through the plane.

However, if we are allowed rwo network layers, then we can formulate a set of weights that does the job. Let’s
see how, by considering the network below, and then finding the weights that do the job. (This was a sample quiz
problem previously.)



Step 1. First, think of input-level neurons (neurons A and B) as defining regions (that divide positive data points
from negative data points) in the X, Y graph. These regions should be depicted as linear boundary lines with
arrows pointing towards the positive data points. Next, think of hidden level neural units (neuron C) as some
logical operator (a linearly separable operator) that combines those regions defined by the input level units.

(We will see later on a few more examples of this sort to show you how multi-layer networks can ‘carve up’
regions of the plane in this way.)

So in this case: units A, and B represent the diagonal boundaries (with arrows) on the graph (definition two
distinct ways of separating the space). Unit C represents a logical AND that intersects the two regions to create
the bounded region in the middle.
Step 2. Write the line equations for the regions you defined in the graph.
A) The boundary line equation for the region defined by line A:
1
\
—
p<-1xx+3/2 (Wrtfe %5 ‘69[ [t.{/
B) The boundary line equation-for the region defined by line B:

y>-1xx+1/2

Step 3. Rewrite the line equations into the form: ax + by > ¢, where a, b, and ¢ are integers:

A) y<-lxx+3/2 ' I‘I”’ej
x+y <3/2 In (
2+ <3 U

&
B) y>-1x+172 '\’W %b\
xty >1/2 lw)

x+2y >1 &



Now note that the sum of the weights times the inputs for each unit can also be written in a similar form. (We

[T 1)

will call this summed product of weights times the inputs for a neuron its “z” value).

For Unit A: z=
Wya xt+ Wyp\y ¥ W;\(-l) >0
Wxax+Wyay >W,

ForUnit B: z=
Wxgx+ Wygy+ Wp(-1)>0
Wxgx+Wygy >Wp

Why do we set Wxs x + Wy, y + W,(=1) >0 and not <0? Look at the graph on the tear-off sheet!
When z = Wxa x + Wya Y+ Wa(=1)>0, then sigmoid(z >0), and z grows and approaches 1, which
corresponds to the positive points/

When z = Wxa x + Wya Y+ Wa(=1) <0, then sigmoid(z <0), z decreases and approaches 0, which
corresponds to the negative points.

Thus, when expressed as > 0 the region is defined as pointing towards the positive points.

But when expressed as < 0, the region is defined as pointing towards the negative points.

We want the defined region to point to the positive points. So, we must adjust the equation for line (A)
so that it has the inequality in the form > (rather than as <). We can do this by multiplying through by a
—1, which will reverse the inequality, so the equation for line A becomes:

—2x-2y>-3

Now we are ready for the next step.

Step 5. Easy! Just read off the weights by correspondence.
2 x +-2y>3 line A’s inequality
Wxax+ Wyay> W, z equation for unit A. Therefore, Wxs=-2 Wya=-2 Wy=-3

2% + 2>l line B’s inequality
Wxp x + Wy y>Wp z equation for unit B. Therefore, Wxp=2 Wyp=2 Wp=1

Step 6. Solve the logic in the second neuron layer

The equation for the second laym:s W sc(output from A) + Wpe(output from B) — We < or > 0 (where we
pick the inequality to satisfy the sigmoid output description mentioned above — if we want the output to be 0 from
the logic unit, then we want the sigmoid to go negative, so we want < 0; if we want he out[i)u% to be 1, then we
want the sigmoid to go positivg,-so we want > (.) 1 Lb,L Wf' 6‘(3/";& MI{'\ (i@l/id’
We now want to compute (A B), for the next layer. (Remember, the final region we wap;yis the intersection
of the regions defined by unit (line) A, and unit (line) B.  So we build a Truth table for And and solve for the
constraints. (Note that we are not building a truth table for XOR — we want And.) So we want the output from C
to be true (1) iff the outputs from units A and B are both 1, as below.

A B desired output  |Equations Simplified

0 0 0 -We<0 We>0

0 1 0 Wpec—We <0 Wpge < We

1 0 0 Wac—Wc<0 Wac < We

1 1 1 Wac+ Wpc—Wce>0 [Wac+ Wpe>We

We notice the symmetry in Wge and W a¢, so we can make a guess that they have the same value:
WBC= 2 and WAcz 2

Then the inequalities in the table above condense down to the following:




/
/‘)
We >0 We=>2 (twice) We<2+2=4 ul.m[ J. Saw eﬂ//w/

Therefore, 2 < Wc< 4. Let’s make life easy and pick We = 3. This gives us one acceptable solution:
WBCZZ WAC=2 WC:3

Of course, there are many solutions. The following solution also works, because it still obeys the inequalities and

the constraints in the table: _—
WBC: 109 \V,\C‘ =109 WC: 110

- .._,__.,_,Q.lliZZ_e_S“_V_V_i_l_l always_ask._[br_l.lm : est ] oer jons.__——————— —
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This particular problem also illustrates how to combine networks using a logic gate. Thus, to compute more
complex regions, we need more neurons either at one level or at the output level. But first, to cement our
understanding of this problem, let’s look at a related quiz problem, from quiz 3, 2009.

givcn %his three-node neural network, and the training data on the right
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Question: which of the following sets of weights will correctly separate the dots from the diamonds? (Think
about what cuts the various weights make at the left neuron....)
Weight set A: {‘
wno Wiz Wit War Wi Wor Wi W2 Wit \L t),\ h) }\ﬂ/ /J
2 2 -1 303 -15 128 128 173 4
Weight set B: &') {ap‘]’
Wi Wiz Wit Wi Wi War W2 W War
2 -1 1 2 -2 1 100 100 50
Why does weight set A work but not weight set B?
Answer: weight set A d¢fines two negatively sloping lines, similar to the XOR case, which are required to
separate the dots from the diamonds.
Weight set B has as its first set of 3 weight a line that has M&S};‘Ec — this is the wrong slope for that
‘cut’, (Same for the next weight set). We need the weights to be both megative or both positive, so that the
‘cuts’ slope downwards, as required to separate the dot region from the diamonds.

Example 4. Some other examples of carving up the x-y plane & the associated multi-layer networks
Now let’s consider some other patterns in the x-y (or x,, x,) plane and what sort of qualitative network might be
required to encode them. (This was an exam question in 2008.)

First, let’s give the schematic pictures for (i) a perceptron; and then (ii) the simplest 2-layer neural net we have
just seen — note that we have removed all the clutter of the w’s, etc.:

g bo ﬂ_ﬂl,,
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(A) Perceptron: (B) Simplest 2-layer neural net:

A
\“Oy “‘O\Qy

Vgt % Ly 1 ob
SW ((/‘l‘ Cm J,/euf 1

Here is a basic picture of the kind of clasmﬁcation regions a perceptron (A) can describe: any single cut, at any
angle:

X
l
4.1 Question: Can a 2-layer network (B) also describe such a classification region? Why or why not?
Answer: yes, of course — a more powerful network can always do something that a less powerful net can do.

4.2 Now consider these two sorts of classification regions.
Question: Can a perceptron (net A) describe these kinds of regions? Can the 2-layer network (B) also
describe these kinds of regions? Why or why not?

Answer: perceptrons can’t do these — they require two cuts. A perceptron can only do one. The two-layer
network for XOR can be modified with different weights to classify both of these figures above. A
simplified two-layer network where unit A is fed just from X, and unit B is fed just from X, can describe

)the region on the RIGHT side (because unit A can describe any single vertical cut, X,= some constant; and
uni

t B can describe any single horizontal cut, X;= some constant. Then the logic unit C can combine the
two regions, as before. (See a picture of this net below, labeled $D”.) But this kind of simplified network
cannot describe the region on the left, because this requires diffeyent two horizontal cuts using the input X;,
so we would need a net with A and B units where the X, input ¢ nnects to both umts A and B (the X, input

is irrelevant and can be set to 0). PL(/M
"%65‘?

4.3 Now let’s hone our intuitions by making the region more complex, and by considering different neural
networks.
Question: The 2-layer network (B) cannot describe this kind of region. Why not?

5 wh

So, we must complicate our neural network to capture this kind of more complex region.
Question: Please explain wiy the following neural network can successfully describe the region just above.
(Think about how we classified the region in our worked-out example earlier.)




Answer: this region requires three separate cuts, not just two. So we need three basic input units, and
then a second logic unit (as before) to combine their results via AND, like thisone:

-

BUT: This network cannot successfully describe the region below. Why not? (Think about this, and for
the next recitation, try to come up with the reason, and a modification, that is, a more complex neural

network, that can describe this region.) [,,

\ﬁrug H} 7 < ;,55/6)

4.4 Finally, let us consider a simpler two layer neural network, where the inputs to the top, leftmost hidden neuron
receives input only from x, , and the bottom, leftmost hidden neuron receives inputs only from x,. So the network
looks like the following. Can you intuit how this will restrict what regions the network can describe?

Can network (D) describe this region that we already saw above? Why or why not? (We answered this
already above.)

Finally, for next time, you might want to think about w/y network (D) cannot describe this region that we saw
before (while we have already discussed what the usual 2-layer network (B) can do in this case) (We also
answered this question already, above).
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6.034 Quiz 3
10 November 2010
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There are 8 pages in this quiz, including this one, but not including

blank pages and tear-off sheets. Tear-off sheets are provided at the end
with duplicate drawings and data. As always, open book, open notes,
open just about everything, including a calculator, but no computers.



Problem 1: Learning (50 points)

Alice and Bob, a pair of 6.034 students, traveled to DC last weekend for a rally. Over Saturday night,
they attended a cocktail party for rally-goers. They knew almost everyone there, but there were a
couple of really interesting party crashers.

Alice and Bob decided to use their 6.034 skills to figure out whether the party crashers were at the rally
to promote Fear, or restore Sanity.

Part A: Nearest Neighbors (25 points)

During the party, Bob suggests that they look at who the party crashers were spending their time with,
given what Bob and Alice know about their friends' reasons to attend the rally (with either Fear/’F” or
Sanity/”S”).

AM:DrawKNN (10points) Ml by

Alice sketches the above drawing on a napkin, indicating the party crashers, X and Y, and the leanings
of their friends, indicated by “F” or “S.” She then draws nearest neighbor decision boundaries.

On the above graph, draw the decision boundaries produced by k-nearest-neighbors where k=1
and distance measure is Euclidean distance.




A2: More KNN (15 points)

Based on Alice's decision boundaries, what are the classifications for X and Y?

_ !
4

L

Alice changes her mind and decides that those boundaries aren't quite right, and tells Bob they should

switchrto using k=3. “Why? That's so hard to draw!” Says Bob. “I think k=1 boundaries are
@ys Alice. What's the ¢ name for the problem with k=1 decision boun les”

z 1V L M th,,o

( (m‘b“ (Pff‘i’]., ;' mj‘{'/ O\/ﬂ/‘PH\
1y

She decides to classify the party goers using k= 3. If k=3, what are the classifications for X and Y?

Y

4 : ‘ J

“Okay okay! Based on what you just said, how about k=217 Alice says “I don't think that'd be a good
classifier either.” What's the problem Alice has with k=217

| Nf &(er;df?fs d“ Pl) TS
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Part B: ID Trees (25 points)

Alice and Bob give up on classifying the party goers using who they stand near at the party. “Why not
look at where they stood during the event?” says Bob. He then pulls up a high-resolution satellite
image of the event on his smart phone, zooms and enhances, picks out his and Alice's friends, and
sketches all their relative positions on a separate napkin.

Here's the picture he gets. He and Alice argue about the distance their friends were spread out over the
event, so he puts in distance from the stage, as well as spread from the center of the mall:

NOTE: lowercase x and y are axes, measuring distance from the stage(y) and the center of the mall(x).
There are 16 friends total.

(¥8]
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B1: ID Trees (15 points)

20 40 @ X

£ (fc 1 /f“f‘ 1

) 0 v
Using the greedy heuristic, determine the dec1snon boundaries Bob draws for ID trees. Ties are
broken by: vertical lines before horizontal lines, lesser values before m ‘\@J

greater values. Draw them on the picture, above, and write the equations in the box below.

The numbers in your equations need only be approximate values; we know you cannot produce \/%/ ’L
exact values from the diagram.
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the first of the decision boundaries? You may express your answer
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Draw the resulting decision tree in the space below. Order your branches such that the less-than-
threshold branch is left of the other branch. T

—
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B2: A Better Way (10 points)

Alice suggests that if they change their representation of the data, she and Bob may have an easier time
creating decision boundaries. Briefly describe how you would change how this data is represented.

b tbe X o (0,40) Yeslid s

Toes Tt

Based on your representation, what are the new decision boundaries and associated disorder?
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Problem 2: Neural Nets (50 points)
Part A: Warmup (25 points)

For the network below, answer the following questions:

Al: Simulate Forward Propagation. (15 points) Compute and fill in the values in the table below.
Leave numerical answers to 2-decimal precision. You may use the sigmoid table to help with your

calculations. Note that there are no threshold weights in this network. lables oo , 1 2 qre
X Y Wxa  |Z4 0 Wys |z 0p
60 70 1 [ . -1 O a
V'3 O e L O 5 - 7() & -~
Cubgd L(r ‘ -i'fn‘,‘ (f:
WBC l Oc d d - 0¢
0 1

0

It

Table of relevant values of the sigmoid function

X s(x) X s(x)

<-50 0.00 0 0.5

-10 4.5x10° 1 0.73

5 0.01 2 0.88

3 0.05 3 0.95 o
2 0.12 5 0.99

B 0.27 > 50 1.00

L
004



A2: Back Propagation: (10 points)
Compute numerical values for weight updates for back propagation. Write out the full expressions you
are calculating for partial credit. Assume that the learning rate a = 1.

A

Ol ‘.& P I‘f{d v Shall qgw&”i v
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Part B: Multi-class Output (25 points)

NOTE: For Networks from this point on, we will adopt the abbreviated network notation. 77

/)
X Wia :: — x
WXAE

One possible method for making neural n }t@ capable of multi-class classification is to change the
sigmoid function. Inspired by the 6.034'GPA function, Yuan decides to adopt a 2-step sigmoid
function as the output of the sigmoid unit, creating neural nets that can output roughly 3 values, 0, 1,
and 2. The 2-step sigmoid S»(x) has the following equation.

New Output function: 20
1 1
§y(x)=——+————==s(x)+s(x—k) 1.5
I+e™ 1+e " "} o
( ot ( L\ b ]J TR 10}
New performance Function: VAl L InG (x from -50 to 100
Ak | v

2
Pz(o):—%(d;") 0ld 5:jr'-wd °j. (ol 4)011
. . ,_,‘:'JPI A

-50 50 100

For instance, when k = 50, the sigmoid S,(x) would have the graph shown at the right. Thus, the output
is roughly, 0 whenxis<0, 1when0<x<50, and2 when x>50. Changing the sigmoid function
triggers a similar change in the performance functiomn in order to normalize range of values of the error.
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B1. (9 points) For the neural network, given above, where the sigmoid units use S, and the

0P, 00,
performance function is P,, write out the equation for 8g) = 50 S 5 Z'L' . Express your answer in terms
E E
of d, k@ and zg (the sum of weights times the inputs at node E).  Hint: og = s(zg) + s(ze-K).
L' pord {in )
|

Qv

ﬁz [ d el i~ (‘['O)? Jor | |
}O( rin’f;;;c doF 2(:—/ ﬂb:‘- ‘ ),3} Lale (\f;;\:

|
_’;/'%(‘—’;0) U;e\ | CSE :[5(&)([-5(&,)) b5 (2 -k}(}-s[@c@

]

z ClohE v G

h : L
B2. (8 points) Write out the equation for 8c. Express you answer in terms of d, k, s(), z., and any C[ 5&’) &-q

weights in the network or any answer you've computed before.

0c = 5(2) (140 v 5fa,4) (| ach)) ] e 0 F
?50 .h'? [\M \m ‘{‘?m.ﬁ Of ﬂl&

B3. (8 points) List all the weights that would be used in the fully expanded calculation for Wy' (the
new value of weight Wp).

| e \VEUJ/ Wi
\w(‘i J LBD "u?"'
oiE) wbe by Chgh

ﬂ‘w 15 M’ o i (onlex V%?"{ pfobiam




Tear off sheet, you need not hand this in.
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6.034 Quiz 3 Problem 1: Learning (50 points)

10 November 2010 Alice and Bob, a pair of 6.034 students, traveled to DC last weekend for a rally, Over Saturday night,
2 u B : : : e they attended a cocktail party for rally-goers. They knew almost everyone there, but there were a
Name S_t e f\'\l”\ C}J | ,O E couple of really interesting party crashers.
email e _ _ . _ o Alice and Bob decided to use their 6.034 skills to figure out whether the party crashers were at the rally
i i S il S . i T - = to promote Fear, or restore Sanity.
Circle your TA and recitation time (fOl‘ 1 pomt), so that we can more easily enter your score in
s reduil A Cefuin yar Qui Iy you procunl) Part A: Nearest Neighbors (25 points)
TA.-; TRREREE AT e ; , i T During the party, Bob suggests that they look at who the party crashers were spending their time with,
ek R N Thu CFi given what Bob and Alice know about their friends' reasons to attend the rally (with either Fear/'F" or
Martin Couturier . ‘Time Instructor Time ‘Instructor e
Lo ‘ 1-2  Bob Berwick 1-2  Randall Davis
Kenny Donahue = Tt A £ R e R e e
s 2-3 Bob Berwick 2-3  Randall Davis ] L
( Daryl Jones > 3-4 Bob Berwick 3-4  Randall Davis i 1
" Gleb Kuznetsov i 3 i L L
: myeem L - - ¥ K o
“Kendra Pugh
; & L
. Mark Seifter e : / S
“Yuan Shen
‘ -
. W F N
Problem number Maximum | Score - Grader ‘ /Y
1 50 < / é__g .
- A &
2 ; : 50 ¥
VTotal SR 100 S

A1: Draw KNN (10 points)

Alice sketches the above drawing on a napkin, indicating the party crashers, X and Y, and the leanings

There are 8 pages in this quiz, including this one, but not including of their friends, indicated by “F” or “S.” She then draws nearest neighbor decision boundaries

blank pages and tear-off sheets. Tear-off sheets are provided at the end
with duplicate drawings and data. As always, open book, open notes, On the above graph, draw the decision boundaries produced by k-nearest-nelghbors where k=1
open just about everything, including a calculator, but no computers. anddigtancenetamire ta Enclidens diitanee;



A2: More KNN (15 points)
Based on Alice's decision boundaries, what are the classifications for X and Y?

X= S
v=S

Alice changes her mind and decides that those boundaries aren't quite right, and tells Bob they should
switch to using k=3. “Why? That's so hard to draw!” Says Bob. “] think k=1 boundaries are too
specific,” says Alice. What's the name for the problem with k=1 decision boundaries?

QVERFITTING

She decides to classify the party goers using k=3, If k=3, what are the classifications for X and Y?

—

x= |-
ve S

“Okay okay! Based on what you just said, how about k=217" Alice says “I don't think that'd be a good
classifier cither.” What's the problem Alice has with k=217

U(\d&f ‘(I '}-'{'»r'\j, Moole, C'F Your +rQ|‘f\ff\j Sb+

Part B: ID Trees (25 points)

Alice and Bob give up on classifying the party goers using who they stand near at the party. “Why not
look at where they stood during the event?” says Bob. He then pulls up a high-resolution satellite
image of the event on his smart phone, zooms and enhances, picks out his and Alice's friends, and
sketches all their relative positions on a separate napkin,

Here's the picture he gets, He ;:nd Alice argue about the distance their friends were spread out over the
event, so he puts in distance from the stage, as well as spread from the center of the mall:

NOTE: lowercase x and y are axes, measuring distance from the stage(y) and the center of the mall(x).
There are 16 friends total,

e

foed

aesenefsrenne

i !
40 20 40 X

B1: ID Trees (15 points)
Using the greedy heuristic, determine the decision boundaties Bob draws for ID trees. Ties are

broken by: vertical lines before horizontal lines, lesser values before

greater values. Draw them on the picture, above, and write the equations in the box below.
The numbers in your equations need only be approximate values; we know you cannot produce
exact values from the diagram.

X220 \7 e 23
V=17 12 1o 2§
XK= =Ll -9 4y -z%




What's the disorder associated with the first of the decision boundaries? You may express your answer’
in terms of logarithms.

12/ 5y2 8, 8
16 12 )3 T —Eiﬁ'ﬁ;>

Draw the resulting decision tree in the space below. Order your branches such that the less-than-
threshold branch is left of the other branch.

X<LLO

7N\

V<5 F

y
F X<£~-25

YY \z

B2: A Better Way (10 points)

Alice suggests that if they change their representation of the data, she and Bob may have an easier time
creating decision boundaries. Briefly describe how you would change how this data is represented.

Trenslate (O,Lio) 4 or]g(.r)
Ccr\v@r'l' VS Polac

Based on your representation, what are the new declsion boundaries and associated disorder?

~orZ0 g O[fSar‘C/ltej“z o

Problem 2: Neural Nets (50 points)
Part A: Warmup (25 points)

For the network below, answer the following questions:

I_A.:; Simulatg Forward Prupagat.ion. (15 points) Compute and fill in the values in the table below.
ve numerical answers to 2-decimal precision. You may use the sigmoid table to help with your

calculations. Note that there are no threshold weights in this network.

X Y Wi |za oA Wy |zp 0p
60 70 1 -1
60 1,00 ~7J0 | o000
Wee |z Oc d d-oc
0
1
(.00 0.3 0.2%
Table of relevant values of .r.hc. sigmoid function
<-50 0.00 0 0.5 ;
-10 4.5x10° 1 0.73
-5 0.01 2 0.88
-3 0.05 3 0.95
-2 0.12 5 0.99
-1 0.27 > 50 1.00
6




A2: Back Propagation: (10 points)
Compute numerical values for weight updates for back propagation. ‘Write out the full expressions you
are calculating for partial credit. Assume that the leaming rate a = 1.

AWae
Al O\ —Oc
AWy = - g;- o = 4-(0.23>(0.%3-(1-0.73))-1.00
=(0.2%#)"-0.%3
= 0.0532
AWxa

AWy =28, 0. = 1 (oﬁcl-oﬁ)éwnb-gg.x

s l~C|7l%a . ) (0. 0537)- 60

) |

Part B: Multi-class Output (25 points)

NOTE: For Networks from this point on, we will adopt the abbreviated network notation.

One possible method for making neural nets capable of multi-class classification is to change the
sigmoid function. Inspired by the 6.034 GPA function, Yuan decides to adopt a 2-step sigmoid
function as the output of the sigmoid unit, creating neural nets that can output roughly 3 values, 0, 1,
and 2. The 2-step sigmoid Sa(x) has the following equation.

New Output function: 20
1 1
K = +———=s(x)+s(x-k 1.3
() 1+e* 14e % (a3 )
New performance Function: . (x from -50 to 100)
1,d—o, 0.3
Py(o)=—=(——
(0)=-5(52) J
-5 i 50 100

For instance, when k = 50, the sigmoid Sy(x) would have the graph shown at the right. Thus, the output
is roughly, 0 whenx is <0, 1when0<x <50, and 2 when x>50. Changing the sigmoid function
triggers a similar change in the performance function in order to normalize range of values of the etror.

7

O we Wep Wee Whe , Wi

performance function is Py, write out the equation for &z = ———— . Express your answer in terms
E

of d, k, s(), and z (the sum of weights times the inputs at node E).  Hint: og = s(zg) + s(zg-k).

s ¢ts ¢ pis,

B2. (8 points) Write out the equation for 8c. Ex; i
. ) . press you answer in terms of d, k, s(), z., and
weights in the network or any answer you've computed before. 0.% =

¥ =0saG-5C2)) + SCze-1 (|- SC?L-Jc))] Wee -5

9’?4:'; Yots

B3. (8 points) List all the weights that would be used in the full i '
el s ully expanded calculation for Wy' (the

W all Oy, ant o\fﬂt&’zg,
camftrd

g& = [ S(ZE)(\ —S(ZE) + S(ze_k)(‘__ S(Lb-l())] . 0‘—(3[25@-1())
T F

fn 2 calealations,

;-:)Mfm&elg SM,‘)-'A—\ c-.l_\ weJJHJ s alse 6lenf  ow acconit



Michael E Plasmeier

From: : 6034_t5_f11-bounces@MIT.EDU on behalf of Erek Speed <espeed@MIT.EDU>
Sent: Tuesday, November 15, 2011 11:43 PM

To: 6034_t13_f11@mit.edu; 6034_t5_f11@mit.edu; 6034_t2_f11@mit.edu

Subject: Re: [6034_t5_f11] Notes on Neural Nets

I've gotten several questions about 2006 g3 today. Especially when it comes to choosing w_d and w_cd. A lot of my
answers have come down to relying on intuition and some heuristics | have but in my last write up | give a bit more
direction. Ifit's confusing at all and you already had good grasp of this type of question ignore the following.

Ak ok K ok ok ok ok ok ok sk ok

Right now we have equations for our 3 lines and we've solved all of their weights.
Ai-x1-2x2+2=0

B:x2-1=0

C:-x2+2=0

These equations come from the weights we already found which is why they aren't 'simplified.'

These lines divide up our graph into 4 regions. For each region we want D to output the correct thing. Remember that
we are dealing with a threshold and not a sigmoid so we know that any input to a node > 0 will be 1 and 0 otherwise.

Because the problem insists that that L regions should be 1 and P regions 0 this means for ever L region the inputs to D
need to sum to greater than 0. In general it looks like this:
o_a*w_ad+o0_b*w _bd+o_c*w _cd-w_d>0

For P regions this should be <=to 0. (the <= is from the problem statement.)

For each region, some of the outputs will be 1 and some will be O (or all or none) which means each region will provide a
inequality. After examining every region you will get 4 inequalities which restrict w_d and w_cd.

Before we can do this, we must decide when each node will be 1 and when it will be 0. In the past, | used some hand
waving to do this and not everyone got the intuition. If you did, great! If not, read on.

For each line, test a point below or above it. Forinstance (0,0) is pretty easy usually. For your tests point, if the value is
negative then that node is O for ALL regions on the same side of the line as your test point. Itis 1 otherwise. (Due to the
threshold function any point will work because we don't have to worry about the sigmoid taking time to go from 0 to 1.)

For example, let's plug in 0,0 for this problem:
A: 0+0+2 => 2 which is greater than 0 so A will be 1 for the bottom region and O for the above regions.

|
B: 0+ -1=>-1which is less ‘than 0 so B will be O for the two regions below it and 1 for the two regions above it. M
C: 0+ 2 =>2 which is greater than 0 so C will be 1 for the 3 regions below it and O for the region above it. (Ce
Now we just need to use th|is information to find an inequality for each region. Mﬁ A\ ’
(

Bottom Corner Region:

Ais1,Bis0, Cis 1, we want the output to be 1.
Using the inequality from above:
1¥4+0*2+1*w_cd-w_d>0



simplifies to:
4+w_cd-w_d>0

The other regions follow a similar path.
The final step is to use your 4 inequalities to determine what w_d and w_cd must be.
Erek

2011/11/15 Erek Speed <espeed @mit.edu>:

> I'm gone but ask via email etc.

>

> 0On Nov 15, 2011 5:01 PM, "Erek Speed" <espeed@mit.edu> wrote:
>>

>> | decided to extend my office hours to the future. I'll be here for
>> several hours. 24-323.

>>

>> |f you're unsure of whether I'm still here email or text me.

>>

>>2011/11/14 Erek Speed <espeed@mit.edu>:

>> > Hi,

>> >

>> > These are the notes on neural nets which | mentioned (will mention)
>> > in tutorial should be absorbed:

>> > http://web.mit.edu/6.034/wwwbob/recitation8-fall11.pdf

>>>

>> > | think this test will be really hard so | want to help you guys as
>> > much as possible.

>> >

>>> Always you can email me to set up a time to meet during the day.
>> > In general, | prefer to be off campus at night but if it's

>> > necessary | will make exceptions.

>> >

>> > | can do group office hours but | think they're only useful if

>> > everybody has similar questions and they're like an extra tutorial.
>> > Feel free to use these lists to organize amongst yourselves.

>> >

>> > [f you contact me via email I'll probably reply pretty fast. You
>>>can even send it to the TAs list and either I'll reply or someone
>> > will if I'm feeling slow.

>> >

>>>You can find me on gtalk at melink14@gmail.com. You can even
>> > text/call me at 785-546-0123. At 3AM if you want.

>> >

>>>| could even setup a google hangout and do problems in gimp or
>> > something with a tablet.

>>>

>>>The bottom line is this: There are some pretty hard tests in the
>> > archive. This test is looking to be as hard as any of them and you
>>> will need to know all the concepts really well. Study now. Take

>> > tests. Time them. If anything is confusing ask me or another TA.
>>>




>>>
>>>That's all.
>> >

>> > Erek

>> >

>

6034_t5_f11 mailing list
6034 t5 fll@mit.edu
http://mailman.mit.edu/mailman/listinfo/6034 t5 f11




Tear Off Sheet

Figure from problem 1, part Al:
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Tear Off Sheet

Figure from problem 2, part A: W A /\ 1 //J [ 'f/ 1%
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Tear Off Sheet
Pertinent to problem 2, part lB:

Graph of the output (vertical axis) of the sigmoidal logistic transfer function versus its input. At an
input of 0, this transfer function outputs a value of 0.5.
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Tear Off Sheet — Blank Page



6.034 Quiz 3

November 16, 2011

Name [NUUIO

Email

Circle your TA and recitation (for 1 extra credit point), so that we can more easily enter your

score in our records and return your quiz to you promptly.

Avril Kenney Thu. 1-2, Bob Berwick
Adam Mustafa Thu. 2-3, Bob Berwick
Caryn Krakauer :;;T;hﬁ?@, qupgﬁvieﬁ ;
Qa’r'ek Speed Fri. 19? Randall Davis
Ga;y Planthaber Fri. 2-3, Randall Davis
Peter Brin Fri. 3-4, Randall Davis
Tanya Kortz
Problem Maximum Score Grader
Extra Credit 1 L. -’*{‘\\j;-‘\ %/)
1 0| 7% TMmkK
2 0| 5% A\
3 20| ¢ 25
Total 101 (] - — 5

There are a total of 10 pages in this quiz not including one or more tear off sheets
that may be provided at the end with duplicate drawings and data. As always, open

book, open notes, open just about everything, including a calculator, but no
computers.



Problem 1: Nearest Neighbors and ID Trees
(40 points) |
You move into a new house, and discover that the garden is overgrown with all kinds of plants. You

decide to figure out what they all are, and then deal with them accordingly. Fortunately, you know
some information about the characteristics of other types of plants to compare them with:

Classification Diameter Height Leaf shape

food 2 3 round —
food 9 3 round —
food 5 2 pointy
weed 2 8 round ——
weed 4 6 round —
psychoactive 7 1 pointy
psychoactive 7 6 pointy
psychoactive 10 4 pointy




D
First, you decide to use nearest-neighbor classification to categ zerygur plants. For this part, you will
only use the contmuous features (height and diameter), ignoring the binary feature (leaf shape).

Part A: Nearest Neighbors (16 points) (m =8

A1 (12 points) A L,\

The following graph shows the known data points in a two-dimensional space of height and diameter.
Draw the decision boundaries produced by nearest-neighbor cl'ﬁ,%iﬁcation_( 1 nearest neighbor). Ignore
the unlabeled (square) point.

S
/
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v
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\
~
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©C =~ N W A~ O
i
i

Figure duplicated on tear-off sheet.



A2 (4 points) .\ \/'\

The unlabeled (square) point is one of the plants you have observed in your garden and want to
classify.

How is it classified by 1-nearest neighbor? W \/

How is it classified by 3-nearest neighbors? {:

P

Part B: ID Trees (24 points) | \ \‘\

Now you decide to compare your nearest—nelghbﬁlT results to the results using ID trees. For this part,
you will use all three features.

B1 (8 points) A O
What is the disorder of theﬂé@g&@classiﬁer? (Your answer may contain fractions and logarithms.)

\\%V 4) -4 0(4)




B2 (10 points) \\U

You can now use any horizontal or vertical thresholds for the height and diameter features, in
addition to the leaf-shape feature. Construct an ID tree that correctly classifies all of the labeled
¢xamples, using no more than 3 classifiers (multiple uses of the same classifier count as multiple).
Your ID tree does NOT have to be constructed according to the greedy disorder-minimizing algorithm
coveredinclass. ( ,

(7 {

Draw your tree here:

oty \ il
f/f ’ e

B e
P - \\

®
W /o Nl o -
b/ F p




B3 (6 points) x \

Suppose there were an additional example in the’frainilj\g data with the following characteristics:

—

Classification Diameter Leaf shape
Food

If you tried to build an ID tree classifier based on all nine data points (the eight given initially plus this
one), what problem would you encounter?

\ - [P X\ - r f
(:’i J { (ﬁ?i! P('F J ff 0 8 ( Nd J\'n . oN Of
(2 5 Jv K&y 0n JOP O
, il [ v "f
)5S (’;,4 7t Vg 4 | ) jr ] A |, i
et PUar (wpy ale hs. a0 Pty leat Cagg
///
A

Would the 1-nearest-neighbor classifier constructed from all nine data points have this problem?
(Assume that you are still ignoring the leaf-shape feature.)

(Circle One) ['YES/ NO

: "L/Of_ (ﬁi ¢ {J
Would the 3-nearest-neighbors classifier constructed from all nine data points have this problem?
(Assume that you are still ignoring the leaf-shape feature.)

(Circle One) @-S\) NO
.) lrl O W ":(7 (

= 4

P o

et ’
Optionally, use this space to explain why your answer about 3-nearest-neighbors is correct (but don’t
waste time writing something if it’s not helpful).

¢ J ‘ ! ( " A D Dol
SILTAS! ‘ N/ @9-‘(‘) . ?f 19 ol f {' ol
of | i | | /
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Problem 2: Neural Networks (40 points)
Part A: Forward Propagation (15 points) ./

Pat/tylgvbits is new to neural networks and really never wanted to leave her cozy world of binary
logic. When Patty heard she could emulate binary logic using neural networks, she was ecstatic and
promiptly created several networks. Unfortunately, Patty forgot to label one of them and can no longer
remetnber what logic function the network performs.

o 0, fori<O
NOTE: This network uses the following unit step transfer function: #(i) = {1 for jw * Vhere i is the
’ = 5 1

sum of the weighted inputs and (i) is the output of the neuron. Don’t get confused: #(0) =1.”

Help Patty by CIRCLING the logic function (on the right) emulated by the network:

AND OR

XOR NOT(®B)

Something Else

Figure duplicated on tear-off sheet.

Write in your calculated values for z below and compare them against the provided values for each of
the prospective logic functions to find a match if one exists. ‘

BiS AND  OR AND NOR XOR NOT(B)
L 0 | 1 o 0 ’ 1 || 1 0 1
0 1 \ 0 1 || 1 || o 1 0
1 0 | 0 sy -5 0 1 1
1 1 ) 1 1 o | o 0 0
|




2

T

Part B: Manual Classification (25 points) 75

Ben Uberfitz has just joined a new biometric research group and his first task is to construct a system
that can accurately distinguish between points corresponding to iris pixels from those corresponding to
non-iris pixels in pictures of eyes. Ben is given a sample picture of an eye which he marked up (shown
below), and from which he derived the following classification function:

\
\ \\

iris, ls(x+1)2+y259

h(x,y) ={

not iris, otherwise

Ben is chomping at the bit to use a neural network for this task because he thinks it will sound extra
neato when people ask him what he does on dates and at dinner parties. Ben believes his neural
network is going to need some help to accomplish this task, so he devises a multiplier module
containing a set of multipliers that he places between his inputs and his neurons. The result i is the

following network: LNy {lg ey o T
i AR
WA
e (A
W N
WAC\ =1
%
WxB Wz WC

Wop

NOTE: All neurons in Ben’s network use the sigmoidal transfer function: t(:) = L . See tear-off
l+e™

sheet for a graph of this sigmoid function’s output. Ben will indicate a posmve classification (ms) if
z220.5 and a negative classification (not iris) otherwise. Remember, #(0) = 0.5. |

J



B1 (22 points) Below are tables, which map the names of weights in the dlagram to corresponding
values. Some weights have already been provided for you. Fill in the remammg wc1ghts consistent with
the provided ones such that the neural network will classify points as iris or not iris according to the
classification function given earlier.

Neuron B Neuron C

Weight Value Weight Value

Neuron A

\
)

R::

| ,” [ 7 | ':
l\/{ . !qu,/ 0 /)[ ( & /M /| i [ ! /
\; ‘ v /J/' (
: }m’ s a1 T i '
{ o 1'.' X
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/ B | » i Uiy “
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B2 (3 points) Is Ben’s solutlon likely to work properly on arbltrary eye images?

(Circle One) YES N9
Briefly explain your reasoning: |
-,1 E'\‘ 1 (1 0 Huds Th ool . r-rf{{a“if ” \!U /
;l' AY§ ™ won D'-._‘(..“,f‘v",;‘l{f < '.f,f'; ‘r ; \] o4 }'1(4(5 Fid Mas¥
— 0
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Problem 3: Near-miss Learning (20 points) /

6.034 is so much fun, you decide to ask Professor Winston if he could use a UROP student. “Do you
have any UROPs projects available?” He replies, “I was thinking of writing a system that would learn
concepts like revenge, using near miss learning.”

) j Al { P 1P

“Think about this,” he says, handing you a sheet of paper with some scribbles on it. Then, he rushes off
to the airport. “Words in CAPS indicate elements that must be present,” he says over his shoulder.

Unfortunately, he has spilled coffee on the paper and several cells in the table have become unreadable.

Fill in the blank cells in the table making reasonable assumptions.

I/(
| |

- Example Near Miss? What is learned Heuristic
Macbeéth murders Duncan No Initial model. | None.
leads to
Macduff kills Macbeth.
Macﬁéth swindles Duncan Macbeth HARMS Duncan Climb tree. 4
leads to }{ 0 leads to S
Macduff sues Macbeth. =5 Macduff HARMS Macbeth.
- fii=t2
|5 ‘ /IF X &/
Pat pinches Chris - No 1 Maae,
leads to (j{‘]j ].//:‘ (l'f"’,/‘ \, Hu [ \ f 210
Chris hits Pat. PR L g U
Ches TIRER
S I . i /
Mo Yes PERSON X HARMS PERSON Y ;
i ' ‘{, r Dingk LEADS TO (\{j( :I‘ Lol }!/n f'j
i PERSON Z HARMS PERSON X. | L4/t 1111
Pl
Facail | [ 14
R - {
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6.034 Quiz 3 - Solutions
November 16, 2011

Name Charles Babbage

Email

Circle your TA and recitation (for 1 extra credit point), so that we can more easily enter your
score in our records and return your quiz to you promptly.

Avril Kenney Thu. 1-2, Bob Berwick
Adam Mustafa Thu. 2-3, Bob Berwick
Caryn Krakauer Thu. 3-4, Bob Berwick
Erek Speed Fri. 1-2, Randall Davis
Gary Planthaber Fri. 2-3, Randall Davis
Peter Brin Fri. 3-4, Randall Davis
Tanya Kortz

Problem Maximum Score Grader
Extra Credit 1
1 40
2 40
3 20
Total 101

There are a total of 10 pages in this quiz not including one or more tear off sheets
that may be provided at the end with duplicate drawings and data. As always, open

book, open notes, open just about everything, including a calculator, but no
computers.



Problem 1: Nearest Neighbors and ID Trees
(40 points)
You move into a new house, and discover that the garden is overgrown with all kinds of plants. You

decide to figure out what they all are, and then deal with them accordingly. Fortunately, you know
some information about the characteristics of other types of plants to compare them with:

Classification Diameter Height Leaf shape
food 2 3 round
food 9 3 round
food 5 2 pointy
weed 2 8 round
weed 4 6 round

psychoactive 7 1 pointy

psychoactive 7 6 pointy
psychoactive 10 4 pointy




Part A: Nearest Neighbors (16 points)

First, you decide to use nearest-neighbor classification to categorize your plants. For this part, you will
only use the continuous features (height and diameter), ignoring the binary feature (leaf shape).

A1 (12 points)

The following graph shows the known data points in a two-dimensional space of height and diameter.
Draw the decision boundaries produced by nearest-neighbor classification (1 nearest neighbor). Ignore
the unlabeled (square) point.
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Figure duplicated on tear-off sheet.



A2 (4 points)

The unlabeled (square) point is one of the plants you have observed in your garden and want to
classify.

How is it classified by 1-nearest neighbor? | weed (W)

How is it classified by 3-nearest neighbors? | food (F)

Part B: ID Trees (24 points)

Now you decide to compare your nearest-neighbor results to the results using ID trees. For this part,
you will use all three features.

B1 (8 points)

What is the disorder of the leaf-shape classifier? (Your answer may contain fractions and logarithms.)

Leaf-shape classifier takes a set of 8 samples and creates 2 branches of 4 samples each:
Leaf shape = round: 2 food, 2 weed.

Leaf shape = pointy: 1 food, 3 psychoactive.

Disorder (average entropy) = %(—%logz%—%log2%)+%(-—%log2-i—%logZ%)
1,1, 1 1 3 3
= dglp by, lody, o
2o (Tglomyyloey)
B = .
= -2-—§log23 (NOTE: Simplification was not required)




B2 (10 points)

You can now use any horizontal or vertical thresholds for the height and diameter features, in
addition to the leaf-shape feature. Construct an ID tree that correctly classifies all of the labeled
examples, using no more than 3 classifiers (multiple uses of the same classifier count as multiple).
Your ID tree does NOT have to be constructed according to the greedy disorder-minimizing algorithm
covered in class.

Draw your tree here:

Several distinct ID tree solutions are possible for this problem. Some examples include:

weed food psychoactive  food

Height > 3.5

| Diameter > 5.5 | | Height>1.5 |

A

hal
psychoactive weed food psychoactive

round

food psychoactive  weed food

For Diameter > 6, threshold can be anything between 5 and 7.
For Height > 4, threshold can be anything between 3 and 6.




B3 (6 points)

Suppose there were an additional example in the training data with the following characteristics:

Classification Diameter Height Leaf shape

If you tried to build an ID tree classifier based on all nine data points (the eight given initially plus this
one), what problem would you encounter?

The new sample with classification “food” has all the same feature values as another, existing sample
with classification “psychoactive”, so the ID tree would have no way to separate these two samples.

Would the 1-nearest-neighbor classifier constructed from all nine data points have this problem?
(Assume that you are still ignoring the leaf-shape feature.)

(Circle One) QES) No

Would the 3-nearest-neighbors classifier constructed from all nine data points have this problem?
(Assume that you are still ignoring the leaf-shape feature.)

(Circle One) YES (Yes was accepted, if an adequate explanation was given)

Optionally, use this space to explain why your answer about 3-nearest-neighbors is correct (but don’t
waste time writing something if it’s not helpful).

YES: The 3-nearest-neighbors classifier will significantly reduce the size of the non-classifiable
region, but there are still locations in the space where points would continue to be non-classifiable.
Consider, for example, the point at Diameter = 8.5 and Height = 2.5: An attempt to classify at this
point would yield not 3, but 4 nearest-neighbors with no majority classification (2 psychoactive and
2 food). NOTE: This is a decision boundary and this is always trivially the case at any decision
boundary, including the ones drawn for unproblematic 1-nearest neighbor problems.

NO: With the exception of its resulting decision boundaries, the 3-nearest neighbors classifier
removes the classification ambiguity through its majority voting mechanism.




Problem 2: Neural Networks (40 points)

Part A: Forward Propagation (15 points)

Patty Luvbits is new to neural networks and really never wanted to leave her cozy world of binary
logic. When Patty heard she could emulate binary logic using neural networks, she was ecstatic and
promptly created several networks. Unfortunately, Patty forgot to label one of them and can no longer
remember what logic function the network performs.

0. Hfori<D Pt g
t
L fori=0 , where i is the

sum of the weighted inputs and #(i) is the output of the neuron. Don’t get confused: #(0) =1.

NOTE: This network uses the following unit step transfer function: #(7) =\[

Help Patty by CIRCLING the logic function (on the right) emulated by the network:

-1 0
AND OR
XOR NOT(B)
Something Else

Figure duplicated on tear-off sheet.

Write in your calculated values for z below and compare them against the provided values for each of
the prospective logic functions to find a match if one exists.

XOR  NOT(B)

0 0 1 0 0 1 1 0 1
0 1 1 0 1 1 0 1 0
1 0 1 0 1 1 0 1 1
1 1 0 1 1 0 0 0 0




Part B: Manual Classification (25 points)

Ben Uberfitz has just joined a new biometric research group and his first task is to construct a system
that can accurately distinguish between points corresponding to iris pixels from those corresponding to
non-iris pixels in pictures of eyes. Ben is given a sample picture of an eye which he marked up (shown
below), and from which he derived the following classification function:

.o 2 2
h(x,y)={ iris;> - 1=(x+1}+y* =9

not iris, otherwise

Ben is chomping at the bit to use a neural network for this task because he thinks it will sound extra
neato when people ask him what he does on dates and at dinner parties. Ben believes his neural
network is going to need some help to accomplish this task, so he devises a multiplier module
containing a set of multipliers that he places between his inputs and his neurons. The result is the
following network:

W,
I:x?' XA L A
WXA
G
= WxB W 2 WC

Tm
!
=

NOTE: All neurons in Ben’s network use the sigmoidal transfer function: #(i) = l;" See tear-off
+e

sheet for a graph of this sigmoid function’s output. Ben will indicate a positive classification (iris) if
z=0.5 and a negative classification (not iris) otherwise. Remember, t(O) =05.



B1 (22 points) Below are tables, which map the names of weights in the diagram to corresponding
values. Some weights have already been provided for you. Fill in the remaining weights consistent with
the provided ones such that the neural network will classify points as iris or not iris according to the
classification function given earlier.

Neuron A Neuron B Neuron C

Weight Value Weight Value Weight Value

. 1 W, %5
W, -16

Neatly show work / formulas (for possible partial credit):

Inner Circle Boundary: Outer Circle Boundary:
(x+1)°+y* =1 (x+1)"+y*=9
X +2x+y* =0 x*+2x+y*-8=0
Want to activate neuron from circle outward. Want to activate neuron from circle inward.
= Coefficients should be positive. = Coefficients should be negative.
= Consistent with given W . of neuron A. = Consistent with given W . of neuron B.
The coefficient of the x” term is 1, which is the same  So, multiply through by -2 to match the given weight:
as W ., . No scaling needed. This is neuron A’s —2x*-4x-2y*+16=0
input. Read off weights. This is neuron B’s input. Read off weights.

Careful, though, W multiplied by its -1 input = 16.

To find W, we need to ensure that the C neuron still crisply cuts off at the two boundaries. At each boundary,
one region has value 0.5 while the other is very nearly 1. We want t(O) at the boundaries, so W, = 1.5 to offset.

B2 (3 points) Is Ben’s solution likely to work properly on arbitrary eye images?

(Circle One) YES

Briefly explain your reasoning:

Ben’s solution is very specific to the geometry of the iris of this single sample image. Unless all
arbitrary eye images had irises that fit inside the precise region that this one did, it would likely fail to
properly classify iris pixels from non-iris pixels for most other images because the irises in those
images may have different sizes and proportions. His solution is not very general at all even though it
is engineered to work perfectly for this specific example.




Problem 3: Near-miss Learning (20 points)
6.034 is so much fun, you decide to ask Professor Winston if he could use a UROP student. “Do you
have any UROPs projects available?” He replies, “I was thinking of writing a system that would learn

concepts like revenge, using near miss learning.”

“Think about this,” he says, handing you a sheet of paper with some scribbles on it. Then, he rushes off
to the airport. “Words in CAPS indicate elements that must be present,” he says over his shoulder.

Unfortunately, he has spilled coffee on the paper and several cells in the table have become unreadable.

Fill in the blank cells in the table making reasonable assumptions.

Example Near Miss? What is learned Heuristic

Macbeth murders Duncan No Initial model. None.
leads to
Macduff kills Macbeth.
Macbeth swindles Duncan No Macbeth HARMS Duncan Climb tree.
leads to leads to
Macduff sues Macbeth. Macduff HARMS Macbeth.
Pat pinches Chris No PERSON X HARMS PERSON Y Climb tree.
leads to leads to
Chris hits Pat. PERSON Z HARMS PERSON X.

The individuals become variables with PERSON Y and

PERSON Z not necessarily being the same individual.
Jack punches John. Yes PERSON X HARMS PERSON Y Require link.
Fred kicks Jack. LEADS TO

PERSON Z HARMS PERSON X.

This example causes the model to learn that “leads to” is
required, and it is a near miss, so it has to be a negative example
that matches the model on everything except the “leads to”.




