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Massachvsetts Institvte of Technology
Department of Electrical Engineering and Computer Science
6.034 Recitation 11, Thursday, December 1

Probability & Naive Bayes Prof. Bob Berwick, 32D-728

Agenda:

1. Finish Boosting

2. Probability: Axioms, Conditional Probability, Chain rule,
Conditional independence, Bayes’ Theorem

3. Naive Bayes: another classifier (used for, e.g., Spam Asssasin)

4. Beyond naive Bayes: the maximum entropy stewpot

1. Boosting and the Adaboost algorithm
The idea behind boosting is to find a weighted combination of s “weak” classifiers (classifiers that
underfit the data and still make mistakes, though as we will see they make mistakes on less than %
the data), Ay, h....,hs, into a single strong classifer, H(x). This will be in the form:

H(X) = sign(a,h, (X)+ 0,7, (X)+---+ o h (X)

H(x)=sign (z.‘:l al.hl.()?))

where: H(X) € {-1,+1},h,(X) e {-1,+1}
Recall that the sign function simply returns +1 if weighted sum is positive, and —1 if the weighted
sum is negative (i.e., it classifies the data point as + or —).
Each training data point is weighted. These weights are denoted w; for i=1, ..., n. Weights are like
probabilities, from the interval (0, 1], with their sum equal to 1. BUT weights are never 0. This
implies that all data points have some vote on what the classification shuld be, at all times. (You
might contrast that with SVMs.)

The general idea will be to pick a single ‘best’ classifier A (one that has the lowest error rate when
acting all alone), as an initial ‘stump’ to use. Then, we will boost the weights of the data points
that this classifier mis-classifies (makes mistakes on), so as to focus on the next classifier / that
does best on the re-weighted data points. This will have the effect of trying to fix up the errors
that the first classifier made. Then, using this next classifier, we repeat to see if we can now do
better than in the first round, and so on. In computational practice, we use the same sort of
entropy-lowering function we used with ID/classifier trees: the one to pick is the one that lowers
entropy the most. But usually we will give you a set of classifiers that is easier to “see’, or will
specify the order.

In Boosting we always pick these initial ‘stump’ classifiers so that the error rate is strictly < "2.
Note that if a stump gives an error rate greater than %, this can always be ‘flipped’ by reversing the
+ and — classification outputs. (If the stump said —, we make it +, and vice-versa.) Classifiers with
error exactly equal to ¥ are useless because they are no better than flipping a fair coin.

1. Here are the definitions we will use.

Errors:

The error rate of a classifier s, E', is simply the sum of all the weights of the training points
classifier &, gets wrong.

(1-E%) is 1 minus this sum, the sum of all the weights of the training points classifier h; gets
correct.

By assumption, we have that:

E <% and (1- E) > %, so E* < (1- E°), which implies that (1- £°)/E" > |



Weights:

as is defined to be Y2 In[(1- £°) E%)], so from the definition of weights, the quantity inside the In
term is > 1, so all alphas must be positive numbers.

Let’s write out the Adaboost algorithm and then run through a few iterations of an example
problem.

Adaboost algorithm
Input: training data, (X,,y,).....(X,.¥,)
1. Initialize data point weights.

1
Set w' =— Vie(l,...,n)
n

2. Iterate over all ‘stumps’: fors=1, ..., T
a. Train base learner using distribution w’ on training data.
Get a base (stump) classifier /,(x) that achieves the lowest error rate E* .
(In examples, these are picked from pre-defined stumps.)

| _ s
b. Compute the stump weight: o, = Eln (1 Ef:? )

c. Update weights (3 ways to do this; we pick Winston’s method)

. . 1
For points that the classifier gets correct, w'*' = |:5 l lES ]w’
(Note from above that 1— E*> ¥, so the fraction 1/(1- E) must
be < 2, so the total factor scaling the old weight must
be < 1, i.e., the weight of correctly classified points must go
DOWN in the next round)

. . ; . 11
For points that the classifier gets incorrect, w"' = [5 & :| w;
(Note from above that E® < ', so the fraction 1/E%)
must be > 2, so the total factor scaling the old weight must
be > 1, i.e., the weight of incorrectly classified points must
go UP in the next round)

3. Termination condition:
If s > T or if H(x) has error 0 on training data or < some error threshold, exit;
If there are no more stumps /& where the weighted error is < 4, exit (i.e., all stumps now

have error exactly equal to /%)

4. Output final classifier:
H(x)= sign(z; af.h,.(,'\")) |this is just the weighted sum of the original stump classifiers]

Note that test stump classifiers that are never used are ones that make more errors than some pre-
existing test stump. In other words, if the set of mistakes stump X makes is a superset of errors
stump Y makes, then Error(X) > Error(Y) is always true, no matter weight distributions we use.
Therefore, we will always pick ¥ over X because it makes fewer errors. So X will never be used!

Let’s try a boosting problem from an exam (on the other handout).

Food for thought questions.

1. How does the weight o given to classifier k, relate to the performance of A, as a function of
the error £°?

2. How does the error of the classifier E* affect the new weights on the samples? (How does it

raise or lower them?)

How does AdaBoost end up treating outliers?

4. Why is not the case that new classifiers “clash” with the old classifiers on the training data?

2

W



5. Draw a picture of the training error, theoretical bound on the true error, and the typical test
eITor curve.

6. Do we expect the error of new weak classifiers to increase or decrease with the number of
rounds of estimation and re-weighting? Why or why not?

Answers to these questions:

1. How does the weight o’ given to classifier A, relate to the performance of /1, as a function of
the error £'?

Answer: The lower the error the better the classifier / is on the (weighted) training data, and the

larger the weight a' we give to the classifier output when classifying new examples.

2. How does the error of the classifier E* affect the new weights on the samples? (How does it
raise or lower them?)

Answer: The lower the error, the better the classifier / classifies the (weighted) training examples,

hence the larger the increase on the weight of the samples that it classifies incorrectly and similarly

the larger the decrease on those that it classifies correctly. More generally, the smaller the error,

the more significant the change in the weights on the samples.

Note that this dependence can be seen indirectly in the AdaBoost algorithm from the weight of the

corresponding classifier a; The lower the error E', the larger a,, the better A, is on the (weighted)

training data.

3. How does AdaBoost end up treating outliers?

Answer: AdaBoost can help us identify outliers since those examples are the hardest to classify
and therefore their weight is likely to keep increasing as we add more weak classifiers. At the
same time, the theoretical bound on the training error implies that as we increase the number of
base/weak classifiers, the final classifier produced by AdaBoost will classify all the training
examples. This means that the outliers will eventually be “correctly” classified from the standpoint
of the training data. Yet, as expected, this might lead to overfitting.

4. Why is not the case that new classifiers “clash” with the old classifiers on the training data?
Answer: The intuition is that, by varying the weight on the examples, the new weak classifiers are
trained to perform well on different sets of examples than those for which the older weak
classifiers were trained on. A similar intuition is that at the time of classifying new examples,
those classifiers that are not trained to perform well in such examples will cancel each other out
and only those that are well trained for such examples will prevail, so to speak, thus leading to a
weighted majority for the correct label.

5. Draw a picture of the training error, theoretical bound on the true error, and the typical test
error curve.
Answer:

o —cxpcctcd test error
{based on theoretical bound)

crror

typical test error

training error

6. Do we expect the error of new weak classifiers to increase or decrease with the number of
rounds of estimation and re-weighting? Why?



Answer: We expect the error of the weak classifiers to increase in general since they have to
perform well in those examples for which the weak classifiers found earlier did not perform well.

In general, those examples will have a lot of weight yet they will also be the hardest to classify
correctly.



2. Basics of probability (review & pictures)

The fundamentals of probability theory: the axioms of probability. Why are these important? The
power of the purse: Because while there are orher attempts to handle the notion of ‘uncertainty’,
e.g., ‘fuzzy logic’, *3-valued logic’, etc., these axioms are the only system with the property that if
you gamble with them, you cannot be unfairly exploited by an opponent who uses some other
system (Di Finetti, 1932 theorem).

So, some first concepts.

We say that 4 is a random variable if 4 denotes an event and there is some uncertainty if A is
true.

Typically, we let U denote the universe of all possible events (= all “possible worlds™). Then a
subset of U, call it 4, corresponds to the set of events in which A is true.

Example. Let the universe U be the set of all horse races. Let Paul Revere (abbreviation: P-R) be
a horse. Then we can let 4 denote the set of racing events in which Paul Revere wins. We can
draw this as a picture, where races labels the outer square, the universe, and the circle inside is the
set of all events where Paul Revere wins the race:

Universe of events
U= all races

A= Paul Revere
wins the race

Let us denote by P(A) the fraction of events (possible worlds in the universe of events) in which 4
turns out true. We could spend the next 2 hours on the philosophy of possible worlds and this
business. But we won’t.
We will compute probabilities using an informal notion of areas (formally, we’d use measure
theory). ’
The Universe of all events has total area 1, P(U)=1, because it denotes all the events that are true.
P(A) then is the area of the smaller rectangle with respect to U (= the fraction of the total universe
in which Paul Revere wins). P(—4)= the races in which Paul Revere does not win = the set
difference between U and 4. From this we will posit 3 axioms regarding P(A4):
(1) 0 <P(A4)<1 [because: the area of 4 cannotbe <0 or>1 ]
(2) P(true)=1
(3) P(false)=0
(4) P(AV B)=P(A) + P(B)-P(4,B) [where V means “or”, i.e., either 4 or B must be true; +
means “add together”, and the comma in 4, B means “and”, i.e., both 4 and B must be
true]
To see how this last axiom works, let’s look at the racing universe with event 4= Paul Revere wins
and a second event, B= the weather is clear. The shaded area represents the fraction of events

when both 4 and B are true, i.e., P(4,B)= true:

Universe of events
U= all races

weather
clear

A= Paul Revere
wins the race




It should be apparent that in order to figure out the probability of 4 or B, we need to add up the
areas corresponding to 4 and to B, but then subtract out the shaded area so that it is not counted
twice. In this way, we arrive at the formula for the probability of 4 or B.

We next turn to the notion of conditional probability.

We let P(4|B) denote the fraction of events/possible worlds in which B is true, and then also have
A true. That is, we ‘shrink’ the universe from U down to B, focusing in on a subset possibly more
relevant to our situation, and use that as our basis to calculate probabilities.

Example. In the figure below, we illustrate the following situation. Let /= probability that “I have
a headache”; F'= probability that “I am getting the flu”. These are denoted by the rectangles H and
F in the figure below. Let us assume:

P(H) = 1/10; P(F)=1/40.  Now let’s compute the conditional probability P(H|F), i.c., the
probability that I have a headache given that I have the flu. This is the fraction of flu-events that
are also headache events — that is, if we just look at the rectangle F, what proportion of F overlaps
with /17 (The answer is 1/2). Thus, P(H|F)=1/2.

o

In other words, to find P(H|F), we compute:
(# worlds in which H and F are true)/(# worlds in which F is true) or,
(area H and F)/(area of F), or

P(H, F)/P(F)

So this is the formula for conditional probability:
P(A.B
P(AIB)= ( ).
P(B)
Note how P(B) is in the denominator here. Multiplying out, we obtain the important formula

called the chain rule which we will uses in the naive Bayes classifier:
P(A,B)=P(A|B)-P(B)

Some other manipulations of conditional probability will be used in what follows. We consider
two: (i) simplifications to the right of the conditioning bar symbol |; and (ii) simplifications to the
left of the conditioning bar symbol.

Simplifications to the right of the bar:

Suppose we have lots of conditions to impose on whether or not Paul Revere wins. For example,
this could depend on not only if the weather’s clear, but also whether the jockey’s brother is a
friend of mine, whether Paul Revere won its last race, etc. In other words:

P(Paul Revere wins | weather clear, jockey’s brother a friend, P-R won last race)

Note that adding terms to the right only makes the conditions more stringent, so that this
probability should get lower and lower every time we add a new factor. (Why? Think about
intersection.) With more factors then, we have less bias, because we are focusing in on our
particular situation, but we will have more variance, because it will become harder and harder to
measure all these terms perfectly. So, sometimes we will want to reduce the number of factors to
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the right of the conditioning symbol to those we are more confident we can estimate; this is called
back off. (We will see this in action soon). There is no problem in simply doing this:
P(Paul Revere wins | weather clear, jeekey’s-brotherafriend, P-R-woenlastrace)

And then of course just having P(Paul Revere wins | weather clear) remaining. But what about if
there are more terms to the /eft of the bar, as in this case:
P(Paul Revere wins, Valentine loses, Epitaph loses | weather clear)

If we just care about Paul Revere, are we allowed to simply strike out the other two horses, this
way?
P(Paul Revere wins, Valentinetoses, Epitaphleses | weather clear)

The answer is: No! We need to carry out a more complex expansion to isolate Paul Revere on the
left. To see how, let’s abbreviate Paul Revere wins as R, Valentine loses as V, Epitaph loses as E,
and the Weather is clear as W. Then our conditional probability:

P(Paul Revere wins, Valentine loses, Epitaph loses | weather clear)

Can be abbreviated as:
P(R,V.E.W)

P(W)
We can use this formula to derive the chain rule for conditional probability:

P(Paul Revere wins, Valentine loses, Epitaph loses | weather clear)=
P(Paul Revere wins| Valentine loses, Epitaph loses, weather clear) x
P(Valentine loses | Epitaph loses, weather clear) »
P(Epitaph loses | weather clear)

Proof. Writing out the 3 terms:
P(R,V,EW) P(R,V,E,W) " P(V,E,W)>< P(EW)

P(W)  P(V.E.W) P(E,W) P(W)

Now, supposed it is the case that the following simpler expansion holds:
P(Paul Revere wins, Valentine loses, Epitaph loses | weather clear) =
P(Paul Revere wins| Valentine-loses;EpitaphJoses, weather clear) x

P(Valentine loses | Epitaph-loses, weather clear) *
P(Epitaph loses | weather clear)

In this case, whether Paul Revere wins or not depends only on whether the weather’s clear...and
not on what the other two horses do. They are irrelevant factors, so we can strike them out. In this
case, when the probability is unchanged when we drop out conditioning factors, we say that the
probability is conditionally independent (independent of the other horses, but still conditioned on
the weather). More generally, if there are n factors £, and each factor is independent of the other,
but still dependent on a condition ¢, we can write the following, which will be another key
ingredient in our naive Bayes classifier model:
P(f,,....[,le)=P(file)X...x P(f,]c)

That is, we can just write out the probability as the product of the # factors, assuming they are
independent from one another (the outcomes of these events do not affect the outcomes of one
another); note the factors are still dependent on the outcome of event c.

OK, we come to the last ingredient we shall need, Bayes’ Law. Again we can illustrate this with
the simple picture of headache and flu as before. Recall P(H)=1/10; P(F)=1/40, P(H|F)=1/2.
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—>
H

Now we will label each of the distinct regions in this diagram, 4, B, and C, as follows. A+B=area
of F; B+(C= area of H:

_—>
H C

By the definition of conditional probability, P(H|F)= P(H.F)/ P(F) = BAA+B).

Now consider this reasoning: one day you wake up with a headache, and you think, OMG, 50% of
flus are associated with headaches, so now I have a 50-50 chance of getting the flu.” Is this
reasoning correct?

What we want to compute is: P(F|H). We already know the other conditional probability, that of
headache given the flu. Further, by the definition of conditional probability, in terms of the
regions 4, B, and C, we have that: P(F|H) = BAB+C). To find this last ratio of regions, we can
take the conditional probability P(FIH) = B/AA+B), and multiply it by (4 +B)/(B + C), as follows:

B ___B A+B
B4C A%B BSC
P(F)

FIH)=P(HIF)
P(FIH)=P( )P(H)

. 1/2x1/40 1/80 1
in our example, 710 =”10*—“§

The term P(F) is called the prior probability (of getting the flu); the term P(H|F) is called the
likelihood; the term P(H) is the evidence (e.g., that you have a headache); and the term P(F|H) is
called the posterior probability of getting the flu (given that you have a headache). So this
updated probability is a kind of learning: given the fact (data) that you indeed have a headache,
how does the probability of getting the flu change? (It increases from 1/40 to 1/8.) Inverting from
P(H|F) to P(F|H) is called Bayes’ Law. It follows from a very simple manipulation of the
definition of conditional probability and then application of the chain rule, i.e., that P(4,B)=
P(A|B)=P(B):

B .. i
P(BIA)= PLAE) (by dfn of conditional probability)
-P(B
= M (by chain rule, replacing P(A, B))
P(B)
Or in words we can say this:
) likelihood x prior
posterior =

evidence



Now let’s put this all to work to build a classifier called Naive Bayes. Like k-means and ID-trees,
and Boosting, etc., this will take as input the values of some features and then output a
classification label.

As our example, we will use the common, but valuable task of classifying email into 1 of 2
categories: either good email (“ham”) or bad email (“spam™). The underlying probability model
follows what is called a Bayes’ net. We can imagine the following generative process: we pick a
label, e.g., “ham”, and given this label, email documents of this type will have a certain
distribution of feature values f;, ..., f,. If we pick the other label, “spam”, we will get another
distribution for the feature values (hopefully distinct). So the picture looks like this, and the idea
of course is that given a new email, we would like to figure out whether it is ham or spam:

Sfeature ... ...feature feature ... ...Jeature
71 9 /1 .

Crucially, we assume that the features are independent from one another. (This is the “naive”
part of Naive Bayes.) Their values depend on (are conditioned on) only the value of the label.
That is why we draw the networks as above, with no links between the features, only from the
label directed down to the features.

Now here’s the idea behind the classificiation.. Suppose we have estimated that 90% of our email
is “ham” (OK), and that 10% is “spam”. This gives us our prior probability estimates
P(label=ham)=0.9 and P(label=spam)=0.1. That’s what we can say about any new email without
any additional information. (We’ll see below how we get these estimates.)

Now, when we get a new email, we will get the values of its features and use these to adjust the
prior probabilities, as with our headache example. (In our example, to keep things simple, we will
use only two features.)

So, this new email comes along: “Buy this amazing new Ginsu knife for only $39.....
Is this ham or spam? We’ll assume that we use the following 2 features:

Feature 1: The email mentions money; this occurs in 30% of spam, and in 1% of ham
Feature 2: The email contains the word ‘buy’; this occurs in 10% of spam, and in 0.5% of ham

We can picture our calculation as follows: our initial prior probabilities for each category are
adjusted by multiplying the contribution each feature ‘votes’ (independently) as to how likely
each category is. Then we pick the most likely = biggest probability category at the end:



Prior estimate Mentions S8

Contains ‘buy’ Posterior likelihood
A A A A
1+ i e 1 L L
09 | []
X X =
03t
0.1 4
0.0031+
0.1 0.0 0.005_|_
0 o LL. 0 1 0
HAM SPAN HAM SPA HAM SPAN HAM SPA
Prior probability Prob feature 1 Prob feature 2 Probability of
estimate given label given label (label, featl, fear2)

So, in this case, our new email is classified as “spam” because this yields the largest posterior
likelihood. Note how we got this value. It is simply this:

P(label)x P(f, |label)x P(f, llabel) = P(label, f,. f,) [recall from dfn of conditional prob that:
P(label, f,, f,)
P(label)

In other words, we multiple the following out to find the label likelihood, and pick the biggest
likelihood:
Prior probability of a label x Probability of feature contributions = Posterior label likelihood

= P(f, llabel) X P(f, label) IF f,, f, are independent of one another]

In our case, for the two labels “ham” and “spam™:

Prior x Pr(featl ($)| 1) x Pr(feat 2 (‘buy’)|l) = Label likelihood
Ham: 0.9 x 0.01 x 0.005 =0.000045 (log of this likelihood: —4.34)
Spam: 0.1 x 0.30 x 0.10 =0.00303 (log of this likelihood: —2.52)

So, our email is more likely to be spam than ham. In fact, taking the ratios of the log likelihoods,
—2.52/-4.32, the email is about 2 orders of magnitude (100x) more likely to be spam than ham.
Recall that: (1) the features must be independent of one another; (2) we can add other features, of
course...this is what a program like Spam Assassin can do, by training; and (3) one can use this
method with lots more categories to classify documents (see the end of the handout).

Let’s turn to justifying this approach probabilistically, as well as how we actually estimate the
probability values above, via training, and highlighting some pitfalls.

First, why is this justified? We are computing the maximum probability that an input email will
have a particular label (category), given that it has a particular set of features. We pick the label
that maximizes: P(I=value | observed features). Let’s follow out this logic. We are maximizing the
following quantity over label values:

P( features,label . .
max P(label | features)= max Geanires.one) [by dfn of conditional probability]
P( features)

But note that the denominator in the expression above, P(features) = P(f}, ..., f») is constant no
matter what our choice of label value. So, to maximize the above quantity, it suffices to maximize

the numerator:

max P( features label)= P(f,..... [, .label)

By the chain rule, this quantity in turn is just:
max P(label) X P(f, ,.... [, |label)

But given that the features are all independent of one another, this is the same as (recall our Paul
Revere example!):
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max P(label)x P(f; |label)x...x P(f, |label)
max prior  X'vote'f, X...xX"vote'f,
This 1s exactly the computation we have carried out. It remains to figure out how we ‘train’ our
classifier — that is, how do we get the various estimates of the probabilities above? The simplest
thing is just to estimate them from counts in training text, that is, known examples of ham and
spam emails. These are the so-called maximum likelihood estimates:

r(# ] ils
Pilabel=Tan= count (# ham mna'ds) Pililet= sigmy= count (# spam emails)
count(total # emails) count(toral # emails)

count (# ham emails mention $)

P(f, label = ham)=

count(total # ham emails)

count (# spam emails mention §)

P(f, llabel = spam) =
count(total # spam emails)

count (# ham emails contain 'buy')

P(f, |label = ham)=
count(total # ham emails)

BOE bl =gpam)y= count (# spam emails contain 'buy')

count(total # spam emails)

So this is how we get the estimates. For example, if we have 1000 emails, 900/1000 are ham, and
100/1000 are spam. Of the 100 spam emails, 30/100 mention money, and 1/100 contain ‘buy’.
For ham emails, 1/100 mention money and 5/1000 contain ‘buy’.

Note that as the # of data samples (amount of training data) increases, then our estimates should
get better; one of the properties of the maximum likelihood estimates is that they will converge to
the “true’ values as the amount of data goes to infinity. (The mean approaches the true average.)
But, if the # of training examples is small, our estimate will be very lousy, and have more noise
(variance); there are a variety of things we can do to improve this, but that’s for a machine learning
course.

However, there is one particular case we should note. Suppose a particular count is actually 0 -
that is, we never observe a particular feature associated with a particular label — this will happen
especially if we keep adding more and more features. In this case, note that the entire probability
product to find the likelihood will all be zero, just because one of the estimates is 0. So this is very
bad!

There is a whole cottage industry devoted to fixing this problem, and it is called smoothing. It is
basically the Robin Hood strategy: we rob probability mass from the rich and give it to the poor.
In particular, the simplest smoothing strategy, invented by Laplace, is called add-1 smoothing: if a
count is 0, we add 1 to it, so that, e.g., 0/100 goes to 1/100. (We must also subtract the appropriate
probability mass, i.e., counts, from the rest of our estimates, so that the probabilities still add up to
1 in all.)

A second method of smoothing (probability mass redistribution) is due to Alan Turing. He figured
this out when he was developing probability formulas for estimating the likelihood of finding
German submarines in particular areas of the ocean. What if a submarine had never been observed
in a particular spot? (Something that’s actually quite likely!) Turing reasoned that a fairly good
probability estimate of ‘things never seen’ would be quite close to the estimate of ‘things seen
exactly once’. This method, now called Good-Turing smoothing (only published until decades
after WWII), works well but is finicky. There are whole books devoted to this subject, for
machine learning and especially in natural language processing, where we quickly get word
sequences never seen before.

One more thing. You may note that in our calculation we multiply together a (possibly long)
string of probabilities, one for each feature. With a 1000 features, this value will quickly get very
11



very small. So, the usual method is to operate in log space, where multiplication is just addition,
50 we can maintain accuracy. (That’s why we used log likelihoods above.)

Beyond Naive Bayes (Optional)

OK, this method is fine so far as it goes, but it can be improved enormously. Here we will just
sketch one method, known as maximum entropy classification that can gobble down any set of
features, even if they are not independent. Yet remarkably, as first shown by Jaynes (1957), it is
the most probabilistically sound method of combining diverse features. It rationalizes the
general notion of just ‘scoring’ features and adding them up. We won’t prove this here, but just
indicate the general approach, which is now broadly used in, e.g., figuring out the part of speech
labels in text. (For instance, in the sentence, police police police, is the first police a Noun or a
Verb?)

1. To begin, let’s assume there are now 10 labels for documents, with categories 4, B, C, D, E, F,
G, H, I, J. (So, e.g., category A could be travel; B sports; C business; etc.) If we know this, and
no other information then given an email m, what is our best guess for category C (business)
given this email, i.e., P(C | m)?

The maximum entropy approach would claim it is 1/10: that is, we maximize the quantity in each
of the 10 bins, uniformly, by spreading out the total probability mass of 1 among 10 bins.

2. Now suppose I tell you that 55% of all emails are in category A4, travel? Now what is the
quantity P(C| m)? 1 think it should not be too hard to see that A4 gobbles up 0.55 of the probability
mass, leaving 0.45 to be distributed evenly over the remaining 9 categories, or 0.05 for each of the
remaining categories, including category C, business. So the maximum entropy estimate for P(C]
m) is 0.05.

3. Now suppose I add another constraint: that in addition to the fact in (2), we know that 10% of
all emails contain the word ‘buy’. What is P(C| m) now? This gets harder to visualize, so we’ll
write it out as a table, where the first row is the probability of containing ‘buy’ (which thus must
add up to 0.1 of all emails), and second row is the probability of not containing ‘buy’, which we
have labeled orher (which thus must add up to 0.9). Once again following the maximum entropy
idea, since we don’t know anything else about the ‘contains buy’ row, we should distribute its 0.1
total evenly among the 10 bins, thus giving 0.01 to each. Next, since all of category A must add up
to 0.55, and since the ‘contains buy’ cell holds 0.01, it must be that the cell in the row labeled
other and in column A4 must have the value 0.54 (so that the column total is 0.55). That leaves
0.9-0.54 = 0.36 for the rest of the 9 bins in the other row. Once again, spreading this evenly, we
get 0.36/9 = 0.04 for each of these bins (so that each column here adds to 05). Thus we have the
following table:

1 2 3 4 5 6 7 8 9 10

A B C D E F G H 1 J

buy 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

other | 0.54 0.04 0.04 | 0.04 0.04 | 0.04 0.04 0.04 0.04 0.04

So, why is this called maximum entropy? You should realize that by spreading out the values
evenly, we are maximizing the entropy of the cell values: —p log p summed over all entries is at a
maximum. (Below we indicate why this is a good thing to do.) In any case, we are maximizing the
entropy subject to the constraints specified. (We have two so far.)

4. So let’s add one more constraint. Suppose that in addition, 80% of the ‘buy’ emails are in either
category A or category C. Now we want to figure out P(C| m). Gulp! This one is much harder to
figure out — in fact, in general to do this, it is like spreadsheets, but we can indicate what has to be
true in our table now: the probability of the buy row, column A, plus the probability in the buy row,
column C, must add up to 0.08 (80% of the 10%). That turns out to be the values 0.051 and 0.029.
Since that leaves 0.020 for the rest of the bins in the buy row, these must be 0.020/8=0.0025.
Since column 4 must still add up to 0.55, then that leaves 0.499 for row other, column 4. Since
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the other row must still sum to 0.9, we have 0.9-0.499= 0.401 to distribute evenly over the rest of
the other bins, so this is 0.401/9 = 0.0446. If we impose these constraints, you’ll see that this is the
answer (we don’t say how we figured it out!)

1 2 3 4 5 6 7 8 9 10
A B C D E F G H | J
buy | 0.051 | .0025 | 0.029 | .0025 | .0025 | .0025 | .0025 | .0025 | .0025 | .0025
other | 0.499 | .0446 | .0446 | .0446 | .0446 | .0446 | .0446 | .0446 | .0446 | .0446

Now we know that P(buy, C)= 0.029; P(C| buy)= 0.29 (= 0.029/0.1); P(A4 | buy)= 0.51.

This is our classifier, a maximum entropy classifier.

The punchline. While there are many possible distributions that could yield the three observed
constraints, that 55% of the emails are in category 4, that 10% of the emails contain buy, and that
of these 10%, 80% are in category A or C, the one distribution that we picked, where we have
maximized the entropy of the probability mass subject to these constraints, turns out to be the

only one having the following two properties, the second one quite remarkable:

exp Z,- A, f.(email label) where

1.

2. This distribution maximizes the probability of the training data, HjP(emw'lj Jdabel))

This is what justifies the method!

This distribution follows the form: P(email,label)= Zl

(1)

the lambdas are the weights associated with each feature f;; the function f; returns 1 if the
feature is in the email, and 0 otherwise; and Z is a normalizing constant to make sure the
probabilities all add up to 1.
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Problem 2: Boosting (50 points)

After wearing Sauron'’s ring for several months, Frodo is rapidly losing his sanity. He fears that the ring
will interfere with his better judgement and betray him to an enemy. To ensure that he doesn't put his
trust into enemy hands, he flees Middle Earth in search of a way to classify his enemies from his
friends. In his travels he had heard rumors of the magic of Artificial Intelligence and has decided to hire
you to build him a classifier, which will correctly differentiate between his friends and his enemies.
Below is all of the information Frodo remembers about the people back in Middle Earth.

ID |Name Friend |Species |Has Part of the |Has/Had a Length of
Magic |Fellowship |ring of power |hair (feet)

1 Gandalf | Yes Wizard | Yes Yes No 2

2 |Sarumon |No  |Wizard |Yes  |No No 2.5

3 Sauron No Wizard Yes No Yes 0

4 Legolas Yes Elf Yes Yes No 2

5 Tree-Beard | Yes Ent No No No 0

6 Sam Yes Hobbit No Yes No J 0.25

7 Elrond Yes Elf Yes No \7(:;;_ 2 N

8 Gollum No Hobbit No No Yes 1

9 Aragorn Yes Mar; L No Yes No 0.75

10 | Witch-king |No Man Yes No Yes 2.5

of Angmar




Part A: Picking Classifiers (10 points)

A1 (6 points)

The data has a high dimensionality and so rather than trying to learn an SVM in a high dimension space
you think it would be a smart approach to come up with a series of 1 dimensional stubs that can be used
to construct a boosting classifier. Fill in the classifier table below. Each of the different classifiers are

given a unique ID and a test returns +1 (friend) if true and -1 (enemy) if false.

Classifier

Test

Misclassified

Species is a Wizard

Species is an EIf

cJ

2,3,4,56,79

1,5,6,9

‘

Species is not a Man

2,3,8,9

Does not have magic

1,4,7,8

:

[s not part of the Fellowship

1,2,3,4,6,8,9,10

HE)m C‘:Gmb’owrb

Has never owned a ring of power < 2,7

Hair <= 1ft 1,3,4.7.8
Hair <=2 ft = _3, 8

Friend <@
Enemy 1,4,5, 6,7,9

A2 (4 points)

Looking at the results of your current classifiers, you quickly see two more good weak classifiers
(make fewer than 4 errors). What are they?

Classifier

Test

Misclassified

K

1; & 10

L




Part B: Build a Strong Classifier (30 points)

B1 (25 points)

You realize that many of your tests are redundant and decide to move forward using only these four
classifiers:{B, D, F, I}. Run the Boosting algorithm on the dataset with these four classifiers. Fill in the
weights, classifiers, errors and alphas for three rounds of boosting. In case of ties, favor classifiers that

come first alphabetically. Note: initial weights are set to be EQUAL and so

1/10 (they must add up to 1)

So we pick F as our
first 'stump' - why?

Round 1 Round 2 Round 3
1 h,=F F correct: h, = hs=
wE 1o (why?) : (¢ | b I
we | o |Breng %7@ By ({Q Err =
w0 e o= ]/N) = o=
w4 | 110 | /[Q
w5 | 110 L/ [(Q
w6 1 1m0 L/ T
w7 | 110 bi,/ 1
w8 1 1/10 l
l6
w9 1o it
wi0 | {10 [ / "
Er®)| 1o L{[ (6
ErD)| 10 2 /[Q
Er(F) | /10
%VHY? ! { e
En) | 10 - [ %




B2 (5 points)

What is the resulting classifier that you obtain after three rounds of Boosting?

(x)= Sign[(1/2 In ) * F(x) + (1/2In ) * + (12In )*

Part C: Boost by Inspection (10 points)

As you become frustrated that you must have picked the wrong subset of classifiers to work with, one
of the 6.034 TA's, Martin, happens to walk by and sees your answer to part Al. He reminds you why
the boosting algorithm works and then tells you that there is no reason to actually run boosting on this
dataset. A boosted classifier of the form:

H(x) = Sign[h:(x) + h2(x) + hs(x)]

can be found which solves the problem. What three classifiers {h, h, hs} is Martin referring to, and
why is the resulting H(x) guaranteed to classify all of the points correctly?




Michael E Plasmeier

From: Patrick Henry Winston <phw@MIT EDU>
Sent: Sunday, December 04, 2011 4:53 PM
To: fa12-6.034@mit.edu

Subject: Important note on 6.034 end game
Friends,

Tomorrow's lecture, given by Professor Nancy Kanwisher, from the Department of Brain and Cognitive Science, will
address where in your brain you think various sorts of thoughts.

A substantial part of Quiz 5 @)Il come from material presented in the remaining lectures, especially this one.
If you show up, and pay attention, you will do well, but because the material is not yet available in textbook or note
form, you will likely find parts of Quiz 5 mysterious. References will be supplied, insofar as practicable, but the coverage
will be neither complete nor efficiently connected to the lectures.

g Oue Y Ived
- Q‘/\L’{/ § Oq£-1 on ﬂw{

Professor Patrick H. Winston

Massachusetts Institute of Technology

Room 251 | 32 Vassar Street | Cambridge, MA 02139

Email: phw@mit.edu | URL: http://people.csail.mit.edu/phw/ | Voice: 617.253.6754
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Massachvsetts Institvte of Technology
Department of Electrical Engineering and Computer Science
6.034 Recitation 12, Thursday, December 8
Naive Bayes & the Holy Grail Prof. Bob Berwick, 32D-728

Agenda:

0. Probability revie

1. Naive Bayes: another classifier (used for, e.g., Spam Asssasin)
2. How Google does translation

3. Beyond naive Bayes: the maximum entropy stewpot

0. Basics of probability (review & pictures)

The fundamentals of probability theory: the axioms of probability. Why are these important? The
power of the purse: Because while there are other attempts to handle the notion of ‘uncertainty’,
e.g., ‘fuzzy logic’, ‘3-valued logic’, etc., these axioms are the only system with the property that if
you gamble with them, you cannot be unfairly exploited by an opponent who uses some other
system (Di Finetti, 1932 theorem).

So, some first concepts.

We say that 4 is a random variable if 4 denotes an event and there is some uncertainty if 4 is
true.

Typically, we let U denote the universe of all possible events (= all “possible worlds”). Then a
subset of U, call it A, corresponds to the set of events in which 4 is true.

Example. Let the universe U be the set of all horse races. Let Paul Revere (abbreviation: P-R) be
a horse. Then we can let 4 denote the set of racing events in which Paul Revere wins. We can
draw this as a picture, where races labels the outer square, the universe, and the circle inside is the
set of all events where Paul Revere wins the race:

Universe of events
U= all races

A= Paul Revere
wins the race

Let us denote by P(A) the fraction of events (possible worlds in the universe of events) in which 4
turns out true. We could spend the next 2 hours on the philosophy of possible worlds and this
business. But we won’t.
We will compute probabilities using an informal notion of areas (formally, we’d use measure
theory).
The Universe of all events has total area 1, P(U)=1, because it denotes all the events that are true.
P(A) then is the area of the smaller rectangle with respect to U (= the fraction of the total universe
in which Paul Revere wins). P(—4)= the races in which Paul Revere does not win = the set
difference between U and 4. From this we will posit 3 axioms regarding P(A):
(1) 0<P(4) <1 [because: the area of A cannot be <0 or>1 ]
(2) P(true)=1
(3) P(false)=0
(4) P(A V B) = P(A) + P(B)-P(4,B) [where V means “or”, i.e., either 4 or B must be true; +
means “add together”, and the comma in 4, B means “and”, i.e., both 4 and B must be
true]



To see how this last axiom works, let’s look at the racing universe with event A= Paul Revere wins
and a second event, B= the weather is clear. The shaded area represents the fraction of events
when both 4 and B are true, i.e., P(4,B)= true:

Universe of events
U= all races weather

A= Paul Revere
wins the race

It should be apparent that in order to figure out the probability of 4 or B, we need to add up the
areas corresponding to 4 and to B, but then subtract out the shaded area so that it is not counted
twice. In this way, we arrive at the formula for the probability of 4 or B.

We next turn to the notion of conditional probability.

We let P(A|B) denote the fraction of events/possible worlds in which B is true, and then also have
A true. That is, we ‘shrink’ the universe from U down to B, focusing in on a subset possibly more
relevant to our situation, and use that as our basis to calculate probabilities.

Example. In the figure below, we illustrate the following situation. Let A= probability that “T have
a headache”; F= probability that “I am getting the flu”. These are denoted by the rectangles // and
F in the figure below. Let us assume:

P(H) = 1/10; P(F)=1/40. Now let’s compute the conditional probability P(H|F), i.e., the
probability that I have a headache given that I have the flu. This is the fraction of flu-events that
are also headache events — that is, if we just look at the rectangle F, what proportion of /" overlaps
with H? (The answer is 1/2). Thus, P(H|F)=1/2.

U

KF

In other words, to find P(H|F), we compute:
(# worlds in which A and F are true)/(# worlds in which F is true) or,
(area H and F)/(area of F), or

P(H, F)/P(F)

So this is the formula for conditional probability:
P(A,B
P(AIB)= Ll ) .
P(B)
Note how P(B) is in the denominator here. Multiplying out, we obtain the important formula

called the chain rule which we will uses in the naive Bayes classifier:
P(A,B)=P(Al B)-P(B)



Some other manipulations of conditional probability will be used in what follows. We consider
two: (i) simplifications to the right of the conditioning bar symbol |; and (ii) simplifications to the
left of the conditioning bar symbol.

Simplifications to the right of the bar:

Suppose we have /ots of conditions to impose on whether or not Paul Revere wins. For example,
this could depend on not only if the weather’s clear, but also whether the jockey’s brother is a
friend of mine, whether Paul Revere won its last race, etc. In other words:

P(Paul Revere wins | weather clear, jockey’s brother a friend, P-R won last race)

With more factors then, we have less bias, because we are focusing in on our particular situation,
but we will have more variance, because it will become harder and harder to measure all these
terms perfectly. So, sometimes we will want to reduce the number of factors to the right of the
conditioning symbol to those we are more confident we can estimate; this is called back off. (We
will see this in action soon). There is no problem in simply doing this:

P(Paul Revere wins | weather clear, joekeys-brotherafriend, P-Rwenlastrace)

And then of course just having P(Paul Revere wins | weather clear) remaining. But what about if
there are more terms to the /eft of the bar, as in this case:
P(Paul Revere wins, Valentine loses, Epitaph loses | weather clear)

Note that if we add terms to the left the probability should get lower and lower every time we add
a new factor. (Why? Think about intersection.) If we just care about Paul Revere, are we then
allowed to simply strike out the other two horses, this way?

P(Paul Revere wins, Valentine-loses, Epitaphleses | weather clear)

The answer is: No! We need to carry out a more complex expansion to isolate Paul Revere on the
left. To see how, let’s abbreviate Paul Revere wins as R, Valentine loses as V, Epitaph loses as E,
and the Weather is clear as . Then our conditional probability:

P(Paul Revere wins, Valentine loses, Epitaph loses | weather clear)

Can be abbreviated as:
P(R,V,E,W)

P(W)
We can use this formula to derive the chain rule for conditional probability:

P(Paul Revere wins, Valentine loses, Epitaph loses | weather clear)=
P(Paul Revere wins| Valentine loses, Epitaph loses, weather clear) =
P(Valentine loses | Epitaph loses, weather clear) *
P(Epitaph loses | weather clear)

Proof. Writing out the 3 terms:
P(R,V,E\W) P(RV.EW) g P(V.EW) ” P(E,W)

P(W) P(V.EW) P(E,W) P(W)

Now, supposed it is the case that the following simpler expansion holds:
P(Paul Revere wins, Valentine loses, Epitaph loses | weather clear) =
P(Paul Revere wins| Valentine-loses; Epitaphloses, weather clear) *

P(Valentine loses | Epitaph-leses, weather clear) x
P(Epitaph loses | weather clear)



In this case, whether Paul Revere wins or not depends only on whether the weather’s clear...and
not on what the other two horses do. They are irrelevant factors, so we can strike them out. In this
case, when the probability is unchanged when we drop out conditioning factors, we say that the
probability is conditionally independent (independent of the other horses, but still conditioned on
the weather). More generally, if there are » factors f, and each factor is independent of the other,
but still dependent on a condition ¢, we can write the following, which will be another key
ingredient in our naive Bayes classifier model:
P(fi,.... [, 1e)=P(filc)x...x P(f, | c)

That is, we can just write out the probability as the product of the » factors, assuming they are
independent from one another (the outcomes of these events do not affect the outcomes of one
another); note the factors are still dependent on the outcome of event c.

OK, we come to the last ingredient we shall need, Bayes’ Law. Again we can illustrate this with
the simple picture of headache and flu as before. Recall P(H)=1/10; P(F)=1/40, P(H|F)=1/2.

U

H

Now we will label each of the distinct regions in this diagram, 4, B, and C, as follows. 4+B=area
of F; B+C= area of H:

H

By the definition of conditional probability, P(H|F)= P(H,F)/ P(F)= BAA+B).
Now consider this reasoning: one day you wake up with a headache, and you think, OMG, 50% of
flus are associated with headaches, so now I have a 50-50 chance of getting the flu.” Is this

reasoning correct?

What we want to compute is: P(F|H). We already know the other conditional probability, that of
headache given the flu. Further, by the definition of conditional probability, in terms of the
regions A, B, and C, we have that: P(F|H) = B/(B+C). To find this last ratio of regions, we can
take the conditional probability P(F|H) = BAA+B), and multiply it by (4 +B)/(B + C), as follows:

B __B A+B.__
B+C A+B B+C
P(F)

: 1/2x1/40 1/80 1
in our example, /10 =1”0:§

The term P(F) is called the prior probability (of getting the flu); the term P(H|F) is called the
likelihood; the term P(H) is the evidence (e.g., that you have a headache); and the term P(F]H) is

4



called the posterior probability of getting the flu (given that you have a headache). So this
updated probability is a kind of learning: given the fact (data) that you indeed have a headache,
how does the probability of getting the flu change? (It increases from 1/40 to 1/8.) Inverting from
P(H|F) to P(F|H) is called Bayes’ Law. It follows from a very simple manipulation of the
definition of conditional probability and then application of the chain rule, i.e., that P(4,B)=
P(A|B)<P(B):

P(A,B o
P(BIA)= I(D(B) ) (by dfn of conditional probability)
P(A|B)-P(B
= ——% (by chain rule, replacing P(A, B))

Or in words we can say this:

. likelihood x prior
posterior =

evidence

Now let’s put this all to work to build a classifier called Naive Bayes. Like k-means and ID-trees,
and Boosting, etc., this will take as input the values of some features and then output a
classification label.

As our example, we will use the common, but valuable task of classifying email into 1 of 2
categories: either good email (“ham™) or bad email (“spam™). The underlying probability model
follows what is called a Bayes’ net. We can imagine the following generative process: we pick a
label, e.g., “ham”, and given this label, email documents of this type will have a certain
distribution of feature values f;, ..., f,. If we pick the other label, “spam”, we will get another
distribution for the feature values (hopefully distinct). So the picture looks like this, and the idea
of course is that given a new email, we would like to figure out whether it is ham or spam:

label=
spam

feature ... ..feature feature ... ...feature
J7 L I I

Crucially, we assume that the features are independent from one another. (This is the “naive”
part of Naive Bayes.) Their values depend on (are conditioned on) only the value of the label.
That is why we draw the networks as above, with no links between the features, only from the
label directed down to the features.

Now here’s the idea behind the classification.. Suppose we have estimated that 90% of our email
is “ham” (OK), and that 10% is “spam”. This gives us our prior probability estimates
P(label=ham)=0.9 and P(label=spam)=0.1. That’s what we can say about any new email without
any additional information. (We’ll see below how we get these estimates.)

Now, when we get a new email, we will get the values of its features and use these to adjust the
prior probabilities, as with our headache example. (In our example, to keep things simple, we will
use only two features.)

So, this new email comes along: “Buy this amazing new Ginsu knife for only 339.....
Is this ham or spam? We’ll assume that we use the following 2 features:

Feature 1: The email mentions money; this occurs in 30% of spam, and in 1% of ham
Feature 2: The email contains the word ‘buy’; this occurs in 10% of spam, and in 0.5% of ham



We can picture our calculation as follows: our initial prior probabilities for each category are
adjusted by multiplying the contribution each feature ‘votes’ (independently) as to-how likely
each category is. Then we pick the most likely = biggest probability category at the end:

Prior estimate Mentions $8

Contains ‘buy’ Posterior likelihood
A A A A
1 4 1 1 I
09 | []
X x =
03 L
0.1
0.003-+
0.1 0.0 0.005_|
0 0 ! 0 | o |
HAM SP. HAM SPA HAM SPA HAM SPA
Prior probability Prob feature | Prob feature 2 Probability of
estimate given label given label (label, featl, feat2)

So, in this case, our new email is classified as “spam” because this yields the largest posterior
likelihood. Note how we got this value. It is simply this:

P(label)x P(f, |label)x P(f, | label)= P(label, f,,f,) [recall from dfn of conditional prob that:
P(label, f,, f5)
P(label)

In other words, we multiple the following out to find the label likelihood, and pick the biggest
likelihood:
Prior probability of a label x Probability of feature contributions = Posterior label likelihood

= P(f, | label)x P(f, | label) 1F f,, f, are independent of one another]

In our case, for the two labels “ham” and “spam™:

Prior x Pr(featl ($)|1) x Pr(feat 2 (‘buy’)|l) = Label likelihood
Ham: 0.9 x 0.01 % 0.005 =0.000045 (log of this likelihood: —4.34)
Spam: 0.1 x 030 x 0.10 =0.00303 (log of this likelihood: —2.52)

So, our email is more likely to be spam than ham. In fact, taking the ratios of the log likelihoods,
~2.52/-4.32, the email is about 2 orders of magnitude (100x) more likely to be spam than ham.
Recall that: (1) the features must be independent of one another; (2) we can add other features, of
course...this is what a program like Spam Assassin can do, by training; and (3) one can use this
method with lots more categories to classify documents (see the end of the handout).

Let’s turn to justifying this approach probabilistically, as well as how we actually estimate the
probability values above, via training, and highlighting some pitfalls.

First, why is this justified? We are computing the maximum probability that an input email will
have a particular label (category), given that it has a particular set of features. We pick the label
that maximizes: P(/=value | observed features). Let’s follow out this logic. We are maximizing the
following quantity over label values:

P( features label)
P( features)
But note that the denominator in the expression above, P(features) = P(fi, ..., fx) is constant no
matter what our choice of label value. So, to maximize the above quantity, it suffices to maximize

the numerator:

max P(label | features)= max [by dfn of conditional probability]

max P( features,label) = P(f,,.... [, ,label)

By the chain rule, this quantity in turn is just:
max P(label)x P(f, ,.... f, | label)



But given that the features are all independent of one another, this is the same as (recall our Paul
Revere example!):

max P(label) X P(f, |label)x...x P(f, |label)

max prior X'vote'f,  X..x'vote'f,

Putting this down as a formula, we have:

P(C)I1;—, P(£ilC) :
P ) argmgxp((;*)i]:[lp(mc)
This is exactly the computation we have carried out. It remains to figure out how we ‘train’ our
classifier — that is, how do we get the various estimates of the probabilities above? The simplest
thing is just to estimate them from counts in training text, that is, known examples of ham and
spam emails. These are the so-called maximum likelihood estimates:

t (#h il ]
P(label = ham) = count (# ham emaf 5) P(label = spam) = count (# spam emails)
count(total # emails) count(total # emails)

count (# ham emails mention $)

argmg,xP(CUl, I arg max

P(f, llabel = ham) =
count(total # ham emails)

BeF lbel=gpamiye count (# spam emails mention §)

count(total # spam emails)

count (# ham emails contain 'buy")

P(f, llabel = ham) =
(2 ) count(total # ham emails)

P(F, Habel = spani)= count (# spam emails contain 'buy")

count(total # spam emails)

So this is how we get the estimates. For example, if we have 1000 emails, 900/1000 are ham, and
100/1000 are spam. Of the 100 spam emails, 30/100 mention money, and 1/100 contain ‘buy’.
For ham emails, 1/100 mention money and 5/1000 contain ‘buy’.

Note that as the # of data samples (amount of training data) increases, then our estimates should
get better; one of the properties of the maximum likelihood estimates is that they will converge to
the ‘true’ values as the amount of data goes to infinity. (The mean approaches the true average.)
But, if the # of training examples is small, our estimate will be very lousy, and have more noise
(variance); there are a variety of things we can do to improve this, but that’s for a machine learning
course.

A second worked example:
MIT decides to use surveys to determine how to sort students into into dorms.  They decide to
use Naive Bayes and survey data from current residents to classify where to put future students.

To collect this “training data:, they surveyed 30 random students.
Each surveyed student is asked to fill out a simple questionaire with 3 true/false questions.

0. Which dorm do you live in: {East Campus, West Campus, or FSILG}

1. Are a Pyro — i.e. do you enjoy performing feats with fire (or inadvertently trigger fire alarms)?
2. Are you a foreign student or do you like studying foreign languages?

3. Are you in Good shape?



Here are the results. It turns out that our random survey gave us exactly 10 students from each
dorm group.

Pyro ForeignLang GoodShape # surveyed
East Campus 8/10 1/10 3/10 10 10/30
West Campus 3/10 6/10 3/10 10 10/30
FSILG 1/10 3/10 8/10 10 10/30

What can you do this data? We can use these counts to make estimates of the following
probabilities:

P(O) (the prior probability of being in any dorm)
P(f;| C) (the likelihood of having one of the 3 features given being in a particular dorm)

E.g. P(Pyro=True | C=East Campus) =8 /10  P(Language = True|C= FSILG) = 3/10

Now we can use these probability estimates to classify new students by applying Bayes rule, i.e.,
our formula:

arg max P(Cfi, .. Jn) = argmax P(C) 121 P(fi|C)

Question 1: where would a new student who loves foreign languages most likely be classified if
they filled in their incoming survey as follows:

Pyro = True
ForeignLang = False
GoodShape = False

To do this, we compute P(C;| Pyro=True, ForeignLang=False, Goodshape=False) for all three
possible campuses, and find the largest one! (That is what the “arg max” part means.)

For C= East campus:
argmax P(C=East | P=T, F=F, G=F)
= argmax P(C=East) * [P(P=T | C=East) P(L=F|C=East) P(G=F|C=East) ]
= (10/30) * [(8/10) (1-1/10)(1-3/10) ] = 1/3*[(8*9*3)/1000] = 1/3 * [216/1000]
=0.072000

For C= West campus:
argmax P(C=West | P=T, F=F,G=F)
= argmax P(C=West) * [P(P=T'| C=West) P(L=F|C=West) P(G=F|C=West) ]
=(10/30) * [ (3/10) (1-6/10)(1-3/10) ]
=1/3 * [ 3*4*7/1000] = 1/3 * [84/1000]
=0.028000

For C=FSILG:
argmax P(C=FSILG | P=T,F=F,G=F)
= P(C=FSILG)*[P(P=T|C=FSILG) P(L=FC=FSILG) P(G=F|C=FSILG) ]
= (10/30) * [(1/10) (1-3/10)(1-8/10)]
= 1/3*[ (1*7*2*)/1000 = 1/3 * [14/1000] = 1/3[14/1000]
=0.004667




The largest value for such a student (Pyros frue, all other attributes, false) is East Campus.

Question 2. What about an all-round student who checks all the boxes in the incoming survey?
P(C=? | Pyro = True, ForeignLang = True, GoodShape = True)

P(C=East | P=T, F=T, G=T)
= P(C=East) * [P(P=T|C=East)P(L=T|C=East)P(G=T|C=East) ]
= 10/30* [(8/10) (1/10)(3/10)]
= 1/3 * [8%1%3/1000] = 1/3 * [24/1000]
=0.008000

P(C=West Campus| P=T, F=T, G=T)
= P(C=West) * [P(P=F|C=West) P(L=T|C=West) P(G=T|C=West)]
=10/30 * [(3/10) (6/10)(3/10)]
= 1/3 * [(3*6 *3/1000) = 1/3 *[54/1000]

P(C=FSILG| P=T, F=T,G=T)
= P(C=FSILG) * [ P(P=T |C=FSILG)P(L=T|C=FSILG)P(G=T|C=FSILG)]
= (1/3) * [ (1/10)(3/10)(8/10)]
=1/3* [1*3*8/1000] = 1/3 * [24/1000]
=0.008000

The maximum C is West Campus.

In Naive Bayes, the P(C= some value) is also known as the “prior”. Knowledge about the prior
probabilities can help us distinguish what proportion to assign to each class. In our case we got
lucky and it just happened that each campus got 10 students, so the prior in this case is Uniform.

Estimation & its discontents

There is at least one particular case about estimating the probabilities from data counts that we
should note. Suppose a particular count is actually 0 — that is, we never observe a particular
feature associated with a particular label — this will happen especially if we keep adding more and
more features. In this case, note that the entire probability product to find the likelihood will a/l be
zero, just because one of the estimates is 0. So this is very bad!

There is a whole cottage industry devoted to fixing this problem, and it is called smoothing. 1t is
basically the Robin Hood strategy: we rob probability mass from the rich and give it to the poor.
In particular, the simplest smoothing strategy, invented by Laplace, is called add-1 smoothing: if a
count is 0, we add 1 to it, so that, e.g., 0/100 goes to 1/100. (We must also subtract the appropriate
probability mass, i.e., counts, from the rest of our estimates, so that the probabilities still add up to
1 in all)

A second method of smoothing (probability mass redistribution) is due to Alan Turing. He figured
this out when he was developing probability formulas for estimating the likelihood of finding
German submarines in particular areas of the ocean. What if a submarine had never been observed
in a particular spot? (Something that’s actually quite likely!) Turing reasoned that a fairly good
probability estimate of ‘things never seen” would be quite close to the estimate of ‘things seen
exactly once’. This method, now called Good-Turing smoothing (only published until decades
after WWII), works well but is finicky. There are whole books devoted to this subject, for
machine learning and especially in natural language processing, where we quickly get word
sequences never seen before.

One more thing. You may note that in our calculation we multiply together a (possibly long)
string of probabilities, one for each feature. With a 1000 features, this value will quickly get very,
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very small. So, the usual method is to operate in log space, where multiplication is just addition,
so we can maintain accuracy. (That’s why we used log likelihoods above.)

Beyond Naive Bayes (Optional)

OK, this method is fine so far as it goes, but it can be improved enormously. Here we will just
sketch one method, known as maximum entropy classification that can gobble down any set of
features, even if they are not independent. Yet remarkably, as first shown by Jaynes (1957), it is
the most probabilistically sound method of combining diverse features. It rationalizes the
general notion of just ‘scoring’ features and adding them up. We won’t prove this here, but just
indicate the general approach, which is now broadly used in, e.g., figuring out the part of speech
labels in text. (For instance, in the sentence, police police police, is the first police a Noun or a
Verb?)

1. To begin, let’s assume there are now 10 labels for documents, with categories 4, B, C, D, E, F,
G, H I, J (So,e.g., category A could be travel; B sports; C business; etc.) If we know this, and
no other information then given an email m, what is our best guess for category C (business)
given this email, i.e., P(C | m)?

The maximum entropy approach would claim it is 1/10: that is, we maximize the quantity in each
of the 10 bins, uniformly, by spreading out the total probability mass of 1 among 10 bins.

2. Now suppose I tell you that 55% of all emails are in category A, travel? Now what is the
quantity P(C| m)? I think it should not be too hard to see that 4 gobbles up 0.55 of the probability
mass, leaving 0.45 to be distributed evenly over the remaining 9 categories, or 0.05 for each of the
remaining categories, including category C, business. So the maximum entropy estimate for P(C]
m) is 0.05.

3. Now suppose | add another constraint: that in addition to the fact in (2), we know that 10% of
all emails contain the word ‘buy’. What is P(C| m) now? This gets harder to visualize, so we’ll
write it out as a table, where the first row is the probability of containing ‘buy’ (which thus must
add up to 0.1 of all emails), and second row is the probability of not containing ‘buy’, which we
have labeled other (which thus must add up to 0.9). Once again following the maximum entropy
idea, since we don’t know anything else about the ‘contains buy’ row, we should distribute its 0.1
total evenly among the 10 bins, thus giving 0.01 to each. Next, since all of category 4 must add up
to 0.55, and since the ‘contains buy’ cell holds 0.01, it must be that the cell in the row labeled
other and in column A must have the value 0.54 (so that the column total is 0.55). That leaves
0.9-0.54 = 0.36 for the rest of the 9 bins in the other row. Once again, spreading this evenly, we
get 0.36/9 = 0.04 for each of these bins (so that each column here adds to 05). Thus we have the
following table:

1 2 3 4 i 6 7 8 9 10

A B C D E F G H I J

buy 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

other | 0.54 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04

So, why is this called maximum entropy? You should realize that by spreading out the values
evenly, we are maximizing the entropy of the cell values: —p log p summed over all entries is at a
maximum. (Below we indicate why this is a good thing to do.) In any case, we are maximizing the
entropy subject to the constraints specified. (We have two so far.)

4. So let’s add one more constraint. Suppose that in addition, 80% of the ‘buy’ emails are in either
category A or category C. Now we want to figure out P(C| m). Gulp! This one is much harder to
figure out — in fact, in general to do this, it is like spreadsheets, but we can indicate what has to be
true in our table now: the probability of the buy row, column 4, plus the probability in the buy row,
column C, must add up to 0.08 (80% of the 10%). That turns out to be the values 0.051 and 0.029.
Since that leaves 0.020 for the rest of the bins in the buy row, these must be 0.020/8=0.0025.
Since column 4 must still add up to 0.55, then that leaves 0.499 for row other, column 4. Since
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the other row must still sum to 0.9, we have 0.9-0.499= 0.401 to distribute evenly over the rest of
the other bins, so this is 0.401/9 = 0.0446. If we impose these constraints, you’ll see that this is the
answer (we don’t say how we figured it out!)

1 2 3 4 5 6 7 8 9 10
A B C D E F G H I J
buy | 0.051 | .0025 | 0.029 | .0025 | .0025 | .0025 | .0025 | .0025 [ .0025 | .0025
other | 0.499 | .0446 | .0446 | .0446 | .0446 | .0446 | .0446 | .0446 | .0446 | .0446

Now we know that P(buy, C)= 0.029; P(C| buy)= 0.29 (= 0.029/0.1); P(4 | buy)= 0.51.

This is our classifier, a maximum entropy classifier.

The punchline. While there are many possible distributions that could yield the three observed
constraints, that 55% of the emails are in category 4, that 10% of the emails contain buy, and that
of these 10%, 80% are in category 4 or C, the one distribution that we picked, where we have
maximized the entropy of the probability mass subject to these constraints, turns out to be the

only one having the following two properties, the second one quite remarkable:

exp Z'_ A, f.(email ,label) where

1.

2. This distribution maximizes the probability of the training data, HJ_P(email ;»label )

This is what justifies the method!

This distribution follows the form: P(email, label)=

1
Z(A)

the lambdas are the weights associated with each feature f; the function f; returns 1 if the
feature is in the email, and 0 otherwise; and Z is a normalizing constant to make sure the
probabilities all add up to 1.
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The Right Way:
ive Hypotheses




The Inner Language Hypothesis

 Food |

The Strong Story Hypothesis

The mechanisms that enable us
humans to tell, understand, and
recombine stories separate our
intelligence from that of other
primates.

We are different because we have a
symbolic inner language

Fairy and folk tales
Religious parables
Ethnic narratives
History

Literature
Experience

News

Law
Business
Medicine
Defense
Diplomacy
Engineering

Science




The Strong Story Hypothesis

The mechanisms that enable us
humans to tell, understand, and
recombine stories separate our
intelligence from that of other
primates.

e Commonsense level:

If someone kills you, then you become dead.

o Reflective level:

Description of “revenge’:
xx's harming yy leads to yy's harming xx.

A thane is a kind of noble. Macbeth and Macduff are thanes.
Lady Macbeth is Macbeth's wife and Lady Macbeth is
greedy. Duncan, who is Macduff's friend, is the king, and
Macbeth is Duncan's successor. Macbeth defeated a rebel.
Macbeth's success made Duncan become happy. Witches had
visions and talked with Macbeth. Duncan rewarded Macbeth
because Duncan became happy. Lady Macbeth is greedy.
Lady Macbeth is Macbeth's wife. Macbeth wants to become
king because Lady Macbeth persuaded Macbeth to want to
become the king. Macbeth murders Duncan. Then, Lady
Macbeth becomes crazy. Lady Macbeth kills herself.
Dunsinane is a castle and Burnham Wood is a forest.
Burnham Wood goes to Dunsinane. Then, Macduff fights
with Macbeth. Then, Macduff kills Macbeth. Macduff had
unusual birth. The witches's predictions came true.

A thane is a kind of noble. Macbeth and Macduff are thanes.
Lady Macbeth is Macbeth's wife and LLady Macbeth is
greedy. Duncan, who is Macduff's friend, is the king, and
Macbeth is Duncan's successor. Macbeth defeated a rebel.
Macbeth's success made Duncan become happy. Witches had
visions and talked with Macbeth. Duncan rewarded Macbeth
because Duncan became happy. Lady Macbeth is greedy.
Lady Macbeth is Macbeth's wife. Macbeth wants to become
king because Lady Macbeth persuaded Macbeth to want to
become the king. Macbeth murders Duncan. Then, Lady
Macbeth becomes crazy. Lady Macbeth kills herself.
Dunsinane is a castle and Burnham Wood is a forest.
Burnham Wood goes to Dunsinane. Then, Macduff fights
with Macbeth. Then, Macduff kills Macbeth. Macduff had
unusual birth. The witches's predictions came true.
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What’s New

The lsragks know the The Is-aeks know 10 celeat e The (sragis know Ingt the  The lsraelis beteve e ° StOI'y allgnment and analogy
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Duncan is a person. Lady Macbeth is a person. Macduff is
a person. Macbeth is a person. A thane is a noble.
Macbeth is a thane. Macduff is a thane. Lady Macbeth is
Macbeth's wife. Lady Macbeth is greedy. Duncan is the
king. Macbeth is Duncan's successor. Duncan is Macduff's
friend. Macbeth defeats a rebel. Appear is a success.
Macbeth has a success. Witches talk with Macbeth.
Witches have visions. Duncan rewards Macbeth because
Duncan becomes happy. Macbeth wants to become king
because Lady Macbeth persuades Macbeth to want to
become king. Macbeth murders Duncan.

Duncan becomes dead. Macbeth
becomes king.

Duncan is a person. Lady Macbeth is a person. Macduff is
a person. Macbeth is a person. A thane is a noble.
Macbeth is a thane. Macduff is a thane. Lady Macbeth is
greedy. Macbeth defeats a rebel. Appear is a success.
Macbeth has a success. Witches talk with Macbeth.
Witches have visions. Duncan rewards Macbeth because
Duncan becomes happy. Macbeth wants to become king
because Lady Macbeth persuades Macbeth to want to
become king. Macbeth murders Duncan.

Duncan becomes dead because if a
person murders another person, the
other person becomes dead.

Duncan is a person. Lady Macbeth is a person. Macduff is a person.
Macbeth is a person. A thane is a noble. Macbeth is a thane. Macduff is
a thane. Lady Macbeth is greedy. Macheth defeats a rebel. Appearis a
success. Macbeth has a success. Witches talk with Macbeth. Witches
have visions. Duncan rewards Macbeth because Duncan becomes
happy. Macbeth wants to become king because Lady Macbeth
persuades Macbeth to want to become king.

Duncan becomes dead because
Macbeth murders Duncan. Macbeth
becomes king because Duncan
becomes dead, Duncan is king, and
Macbeth is Duncan's successor.

Spoon feeding

Explanation
Explanation with intervention

X intervenes to prevent Y from acting
X understands Y’s point of view

X negotiates with Y

X explains situation to Y in Y’s terms
« X teaches Y how to interpret situation
« X shapes Y'’s reaction



What’s New

* Story alignment and analogy
* Story telling story

v" Concept discovery

In 1998, Afghan terrorists bombed
the U.S.'s embassy in Cairo,
killing over 200 people and 12
Americans. Two weeks later, The
U.S. retaliated for the bombing
with cruise missile attacks on the
terrorist's camps in Afghanistan,
which were largely unsuccessful.
The terrorists claimed that the
bombing was a response to
America torturing Egyptian
terrorists several months earlier.

In early 2010, Google's servers
were attacked by Chinese hackers.
As such, Google decided to
withdraw from China, removing
its censored search site and
publically criticizing the Chinese
policy of censorship. In response,
a week later China banned all of
Google's search sites.

The Social Animal Hypothesis

The Directed Perception Hypothesis

We developed an outer language
because we are social animals

The mechanisms that enable us
humans to direct and hallucinate
with our perceptual faculties
separate our intelligence from
that of other primates.
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6.034
Farewell Address

2011

~ Secondary
-/ visual cortex

‘-,=; l A ' 3 = -i' : oy ‘,\‘.u; ;:'_.
k. A S | !
i MR
N ﬁr P sieYy
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\
R LR

LA Primary
Optic Optic Optic Lateral geniculate visual cortex
nerve chiasm tract body (thalamus) (occipital lobe)

Copyright © 2007 Pearson Educasion, Inc., publishing as Benjamin Comimings.

The Exotic Engineering Hypothesis

There 1s a kind of engineering in our
heads about which we are nearly
clueless.
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Engineering Perspective

.-z
¥ 1 .
f ——'.,—.;261.1' =— tanj(arcsmxj
(1 — =2

3
_ tan(aresin x) Artificial Intelligence 1s about
+ arcsin x . ) .
building stuff with
Representations

Duncan is a person. Lady Macbeth is a person. Macduff’

is a person. Macbeth is a person. A thane is a noble.

Macrl))cth is a thane, Mncdlzm'is a thane. Lady Macbeth is MethOdS

greedy. Macbeth defeats a rebel. Appear is a success.

Macbeth has a success. Witches talk with Macbeth. ArChiteCtureS
Witches have visions. Duncan rewards Macbeth because

Duncan becomes happy. Macbeth wants to become king

because Lady Macbeth persuades Macbeth to want to

become king. Macbeth murders Duncan.

Duncan becomes dead because if a
person murders another person, the
other person becomes dead.

Scientific Perspective The Business Perspective
Artificial Intelligence 1s about Saves Creates New
Money Opportunity

understanding stuff with

Information
Representations Gatherers /\/

Methods Blunder
. Stoppers
Architectures e
Novice
Workers

Expert
Workers X




What Does Al Offer That Is Different How do you do 1t?

* A language for procedures e Characterize behavior

« New ways to make models * Formulate computational problems
 Enforced detail *  Propose computational solutions

« Opportunities to experiment * Implement exploratory systems
 Upper bounds « Crystallize out the principles

What Might Be on the Final Winston’s Picks

— 6.868 Minsky Society of Mind ? %)
Probabilistic Inference ‘ 6 o 034 A 6.891 Berwick Evolution
l - e 6.UAT Davis Communication r:-.j
SVM, Boosting S 6.945 Sussman Large Scale Symbolic Systems %}
NN, NN, and Identification trees / s‘ 9.71 (F) Kanwisher Functional MRI Investigations ;:');
I l = e Richards ,‘5}
I Games and Constraints Tenenbaum ..
| | | = ’ Sinha :f":)
Rules and Search o Bitilesads g
é UROP
6.xxx Winston Human Intelligence Enterprise

-

How to Speak
Friday, February 3, 11am



INTERESTED IN EVOLUTIONARY BIOLOGY?

6.049417.33 Winston’s Picks

Evolutionary Biology

Spring 2012
Instructors: . 3 S i
Bl Professor Dave Bartel : - . 6.868 Minsky Society of Mind ? d
Prolessar Robert C. Berwick 6 034 N § .
Tues, Thurs 11-12:30pm (56-154) = 6.891 Berwick Evolution _
First Class: Tuesday, February 7 T ' ) . L TR
Prereq: 7.03; 6.00, 6.01; or permission of instructor 6.UAT Davis Communication O)
4
An undergraduate elective in the new Course 6/7 degree in Computer 6.945 Sussman Large Scale Symbolic Systems d
Science & Molecular Biology . . X
MIT's only undergraduate course devoled entirely to evclutionary biology 9.71 (F) Kanwisher Functional MR1 lnvcsligations § ,"
% >)
- ] sy
+ What does evolutionary biology says aboul life, genomics, and drug Richards o}

discovery?
« Is Richard Dawkins right? Is everything explained by “selfish genes™?

» Has there been natural selection for a language gene? . 2
» How can maximizing fitness lead to evolutionary extinction? Sinha /_‘_9
+ Did humans ever mate with Neanderthals? / 3

Battlecode

Tenenbaum

Distinguished guest lecturers including:
« Dr. lan Tatersall, Curator of the American Museum of Natural History, — UROP
New York, on hurnan evolution and paleontology
Catalog Description: Explores and illustrates how evolution explains 6.xxx Winston Human Intelligence Enlerpnsc
biology, with an emphasis on computational model building for analyzing
avolutionary data, Covers key cencepls of biological evelution, including
adaptive evolution, neutral evolution, evolution of sex, genamic conflict, How to Speak

speciation, phylogeny and comparalive methods, Life’s history, coevalution, >
human evolution, and evolution of disease. FI’IdCJ\/, February 3, 11am

6.XXX Benefits 6.XXX Packaging Topics

Abstracts Business plans
 Understand the great ideas of the great Proposals Press releases
thinkers and how they got them

Slide presentations Job interviews

« Learn how to extract and evaluate ideas Promotion leters Study briefs
from original, sometimes opaque Letters of complaint Terms of reference
Sources Trip reports Panel discussions

» Learn how to package your own 1deas Elevator talks How to threaten people
and expose their greatness Openings



From the Underground Guide

From the Underground Guide

Exams were described as “incredibly
difficult,” “brutal,” and “frustrating.”
They were graded harshly and
“covered topics not taught in the
class.”

Officially, Winston has never
confirmed or denied that there are
quizzes for this class. His students
seem to take after him --- comments
were evenly split between complaints
of brutal weekly 9:30AM quizzes and
a "7-hour final", and denial of any
and all testing. We at the UG aren't
quite sure what to make of this.

Winston’s Picks

The Issues

6.034
™~
/ N\

How to Speak
Friday, February 3, 11am

What can we know about the physical world?
How do we handle abstract worlds?

What can we imagine and why?

How do we discover order in our perceptions?
How do experience and culture guide thinking?
How do symbols ground out in perception?
How do our faculties learn to communicate?

Why are human computers so robust?




Where Can You Go Next

MIT

Stanford

Where Can You Go Next

The Big Questions

U. British Columbia
U. Washington

Stanford

Cal Tech
Berkeley
UCLA
ucsbD
usc

Wisconsin chu M IT

Michigan
Northwestern
Purdue

Harvard

Tufts

Brandeis
Brown

Cornell

Johns Hopkins
Hunter College
Georgia Tech

U. Maryland

U. Massachusetts
U. Pennsylvania

* Is Al useful?
« What are the powerful 1deas?
 Can they be truly smart?

 Are we close?

The Chinese-Room Argument




The Homunculus Fallacy

The Biggest Issue

* It cannot be in the program
e It cannot be in the computer

e Therefore, it cannot be at all

» Are people too smart?

« Are people smart enough?

The Powerful Ideas

» Good representations make you smarter
 Sleep makes you smarter

* You cannot learn unless you almost know
 You think with mouths, eyes, and hands

 The Strong Story Hypothesis

The Staff
Avril Kenney Bob Berwick
Adam Mustafa Randy Davis
Caryn Krakauer
Erek Speed David Broderick
Gary Planthaber
Mark Seifter The Rolling Stones
Peter Brin The Black Eyed Peas

Tanya Kortz




A Really Powerful Idea

* You can change the world
* Only you can do it
* You can’t do it alone

* You are obliged to do it




6.034 - View Test Statistics

1 of 4

e s

https://ai6034.mit.edu:444/falll1/tester/view_stats/

yfEe

Grades for Michael E Plasmeier:

Lab Average: 5.0

Labs Started/Completed: 6

labS

Started: 2011-11-19 23:58:51
Ended: 2011-11-20 00:04:55
Lab Grade:

5.0

Test was Run to Completion:
YES

Submissions: 6

e lab5 theplaz MIT EDU 2011Nov19-221547 tar.bz2

lab5 theplaz MIT EDU 2011Nov19-224123.tar.bz2

lab5 theplaz MIT EDU 2011Nov19-233023.tar.bz2

lab5 theplaz MIT EDU 2011Nov19-234937.tar.bz2

lab5_theplaz MIT EDU 2011Nov19-235421 .tar.bz2

lab5 theplaz MIT EDU 2011Nov20-000217.tar.bz2

lab4

Started: 2011-10-31 19:44:41
Ended: 2011-10-31 19:50:34
Lab Grade:

5.0

Test was Run to Completion:
YES

Submissions: 8

e lab4 theplaz MIT EDU 20110ct30-214528.tar.bz2
e lab4 theplaz MIT EDU 20110ct31-173341.tar.bz2
e lab4d theplaz MIT EDU 20110¢t31-180921.tar.bz2

12/14/2011 4:45 PM
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lab4 theplaz MIT EDU 20110ct31-182048.tar.bz2

lab4

theplaz MIT EDU 20110ct31-192142.tar.bz2

lab4 theplaz MIT EDU 20110c¢t31-192927 tar.bz2

lab4

theplaz MIT EDU 20110ct31-192954.tar.bz2

lab4

theplaz MIT EDU 20110ct31-194532.tar.bz2

https://ai6034.mit.edu:444/falll1/tester/view_stats/

lab3

Started: 2011-10-14 22:56:04
Ended: 2011-10-14 23:04:41

Lab Grade:

5.0

Test was Run to Completion:

YES

Submissions: 13

e Jab3

theplaz MIT EDU 20110ct03-211514.tar.bz2

e lab3

theplaz MIT EDU 20110ct03-215856.tar.bz2

e lab3

theplaz MIT EDU 20110¢t03-223949 tar.bz2

e Jab3

theplaz MIT_EDU_20110ct03-230221.tar.bz2

e lab3

theplaz MIT EDU_20110ct10-165956.tar.bz2

e Jab3

theplaz MIT EDU 20110ct10-235302.tar.bz2

e Jab3

theplaz MIT EDU 20110ct11-012455.tar.bz2

e lab3

theplaz MIT EDU 20110c¢t14-211926.tar.bz2

e lab3

theplaz MIT EDU_20110ct14-224620.tar.bz2

e lab3

theplaz MIT EDU 20110ct14-225526.tar.bz2

e lab3

theplaz MIT EDU 20110c¢t14-225606.tar.bz2

e Jab3

theplaz MIT EDU 20110ct14-230736.tar.bz2

e lab3

theplaz MIT EDU 20110ct14-231611.tar.bz2

lab2

Started: 2011-09-25 02:02:02
Ended: 2011-09-25 02:02:17

Lab Grade:

5.0

Test was Run to Completion:

YES

Submissions: 6

o lab2

theplaz MIT EDU 2011Sep25-003250.tar.bz2

12/14/2011 4:45 PM
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e lab2

theplaz MIT EDU 2011Sep25-010213.tar.bz2

e Jab2

theplaz MIT EDU 2011Sep25-011148.tar.bz2

e lab2

theplaz MIT EDU 2011Sep25-012911.tar.bz2

e lab2

theplaz MIT EDU 2011Sep25-015649.tar.bz2

e lab2

theplaz MIT EDU 2011Sep25-020205.tar.bz2

https://ai6034.mit.edu:444/fall11/tester/view_stats/

lab0

Started: 2011-09-16 22:01:22

Ended: 201
Lab Grade:
5.0

1-09-16 22:01:29

Test was Run to Completion:

YES

Submissions: 15

e lab0

theplaz MIT EDU 2011Sepl16-172228.tar.bz2

e lab0

theplaz MIT EDU 2011Sep16-180550.tar.bz2

e lab0

theplaz MIT EDU_2011Sep16-180615.tar.bz2

e lab0

theplaz MIT EDU 2011Sepl16-180641.tar.bz2

e lab0

theplaz MIT EDU 2011Sep16-193148.tar.bz2

e lab0

theplaz MIT EDU 2011Sep16-193543.tar.bz2

e lab0

theplaz MIT EDU 2011Sep16-193627.tar.bz2

e lab0

theplaz MIT EDU 2011Sep16-193728.tar.bz2

e lab0

theplaz MIT EDU 2011Sepl16-194032.tar.bz2

e lab0

theplaz MIT EDU 2011Sepl16-194827.tar.bz2

e lab0

theplaz MIT EDU 2011Sep16-195054.tar.bz2

e lab0

theplaz MIT EDU 2011Sepl16-211514.tar.bz2

e lab0

theplaz MIT EDU 2011Sep16-214410.tar.bz2

e lab0

theplaz MIT EDU 2011Sepl16-215138.tar.bz2

e lab0

theplaz MIT EDU 2011Sep16-220124.tar.bz2

lab1l

Started: 2011-09-20 01:46:20

Ended: 201
Lab Grade:
5.0

1-09-20 01:46:30

Test was Run to Completion:

YES

Submissions: 6

12/14/2011 4:45 PM
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e Jabl

theplaz MIT EDU 2011Sep19-220902.tar.bz2

e Jabl

theplaz MIT EDU 2011Sep19-224442 tar.bz2

e labl

theplaz MIT EDU 2011Sep20-001854.tar.bz2

e Jabl

theplaz MIT EDU 2011Sep20-013703.tar.bz2

e labl

theplaz MIT EDU 2011Sep20-014622.tar.bz2

e labl

theplaz MIT EDU 2011Sep20-014905.tar.bz2

https://ai6034.mit.edu:444/fall11/tester/view_stats/

12/14/2011 4:45 PM



Reference material and playlist - 6.034 Fall 2011

1 of3

Reference material and playlist

F 14

From 6.034 Fall 2011

http://ai6034.mit.edu/fall11/index.php?title=Reference_material and...

Most of the readings come from Patrick Winston's Al textbook (third edition), which exists as a physical
book (http://www.amazon.com/Artificial-Intelligence-3rd-Winston/dp/0201533774/) , but is also
available on the internet (http://courses.csail.mit.edu/6.0341{/ai3/) (and there's a table of contents here

(http://people.csail.mit.edu/phw/Books/AITABLE.HTML) ).

Topics and Playlist 2011

-
September| Day Topic Quiz # Playlist
T Wed | What it's all about iLhis e gnigibedic |
last time, Stones
Goal trees and symbolic integration You can get it if |
12 Mon | (http://courses.csail.mit.edu/6.034f you really want it,
/ai3/saint.pdf) Jimmy Cliff
14 Wed Goals and rule-based systems (pp.53-60) Engineer’s Song,
(http://courses.csail.mit.edu/6.034f/ai3/ch3.pdf) Chorallaries
Basic search (http://courses.csail.mit.edu/6.034f sl
19 Mon /ai3/chd.pdf) Searchin’, Stones
. |Optimal search (http://courses.csail.mit.edu
23 Fri 16.034f/ai3/chS.pdf) Route 66, Stones
%6 M Games (http://courses.csail.mit.edu/6.034f It's Only Rock
O /ai3/ch6.pdf) and Roll, Stones
28 Wed | Quiz 1 -
October |Day Topic Quiz # Playlist
Constraints in drawings I Can't Get No
3 Wed | (http://courses.csail.mit.edu/6.034f Satisfaction,
/ai3/ch12.pdf) Stones
5 Wed | Constraints in maps and resource allocation Rain.it Biack,
Stones
Constraints in object recognition The First Time I
12 Wed | (http://courses.csail.mit.edu/6.034f Saw your Face,
/ai3/ch26.pdf) Presley
Nearest neighbor learning
14 Fri (http://courses.csail.mit.edu/6.034f ABC song, Ray
™ |/ai3/ch19.pdf) /Sleep Charles et al.
(http://courses.csail.mit.edu/6.034{/sleep.pdf)
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Identification tree learning

Romanian
national anthem,

17 Mon fh}';;;:/}/:;(iurzes.csall.mlt.edu/6.034f Desteapta-te
ai3/ch21.pdf) romane!
19 Wed Neural net learning (http://courses.csail.mit.edu Iszilzzr\:gus
%1/6.034f/ai3/netmath.pdf) - ’
tones
24 Mon Genetic algorithms (http://courses.csail.mit.edu Irf;hst .:)ge:t(;ile
/6.034f/ai3/ch25.pdf) e
ones
26 Wed | Quiz 2 -
31 Mon Learning in sparse spaces You talk too
© (http://courses.csail.mit.edu/6.803/pdf/yip.pdf) much, Peas
November | Day Topic Quiz # Playlist
Support-vector machines
(http://courses.csail.mit.edu/6.034f Get a little help
2 Wed |/ai3/SVM.pdf) , SVM (and Boosting) Notes from my friends,
(http://ai6034.mit.edu/fall11/images Beatles
/SVM_and Boosting.pdf)
Learning from near misses g
7 Mon | (http://courses.csail.mit.edu/6.034f :?TaBB; ng)ckmg
/ai3/ch16.pdf) s
Boos:tmg (V\ﬁnston-and‘ Ortiz notes) Workin' togethier.
(http://courses.csail.mit.edu/6.034f . ;
9 Wed | . : ) o Ike and Tina
/ai3/boosting.pdf) , Boosting (Shapiri paper) Tittgs
(http://courses.csail.mit.edu/6.034{/ai3/msri.pdf)
Selections from
14 Mon Frames and representation the Black Watch,
(http://courses.csail.mit.edu/6.034f/ai3/ch9.pdf) aka The Ladies
from Hell
16 Wed [ Quiz 3 -
Slides (http://courses.csail.mit.edu/6.034f
/ai3/Emotionmachine.pdf)
GPS, SOAR (http://courses.csail.mit.edu/6.034f Thus spake
21 Mon|/ai3/SOAR.pdf) , Subsumption Zarathustra,
(http://courses.csail.mit.edu/6.034f Strauss
/ai3/Subsumption.pdf) , Society of Mind
(http://web.media.mit.edu/~minsky/eb5.html)
. Money, money,
23 Wed | The Al Business ABBA
Probabilistic inference [
28 Mon | (http://courses.csail.mit.edu/6.034f gh NO’SI:IOt You
/ai3/bayes.pdf) ERlRIGHED
Probabilistic inference Il Tumbling Di
30 Wed | (http://courses.csail.mit.edu/6.034f Stl::l]esmg =

/ai3/bayes.pdf)
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December

Day

Topic

Quiz #

Playlist

Mon

Watching the brain at work, less than you want
to know (http://courses.csail.mit.edu/6.034f
/ai3/Kanwisher2010.pdf)

Watching the brain at work, more than you want
to know (http://web.mit.edu/bes/nklab
/publications.shtml)

Happy, Stones

Wed

Quiz 4

12

Mon

Slides (http://courses.csail.mit.edu/6.034f
/ai3/Rightway.pdf)

Hypotheses: more than you want to know
(http://courses.csail.mit.edu/6.034f
/ai3/Submitted.pdf)

Ode to Joy, Ninth

Symphony,
Beethoven

14

Wed

Slides (http://courses.csail.mit.edu/6.034f
/ai3/Farewell2011.pdf)

Cross-modal clustering: less and more than you
want to know (http://courses.csail.mit.edu

/6.034f/ai3/short-coen.pdf)

Cross modal
clustering,
remarks,
discussion of
the final

Don't
stop,
Stones
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