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6.041 Fall 2009 Final Exam
Tuesday, December 15, 1:30 - 4:30 PM.

DO NOT TURN THIS PAGE OVER UNTIL
YOU ARE TOLD TO DO SO

Name:

Recitation Instructor:

TA:
Question Score Out of
Question | Score Out of 4 (a) 5
1 4 (b) 5
2 (a) 5 4 (c) 5
2 (b) 5 4 (d) 5
2 (c) 5 4 (e) 5
2 (d) 5 4 (f) 5
3 (a) 5 5 (a) 5
3 (b) 5 5 (b) 5
3 (c) 5 5 (c) 5
3 (d) 5 5 (d) 5
3 (e) 5 5 (e) 5
Your Grade 100

e This exam has 5 problems, worth a total of 100 points.

e When giving a formula for a PDF, make sure to specify the range over which
the formula holds.

e Write your solutions in this quiz booklet, only solutions in this quiz booklet will be graded.
Be neat! You will not get credit if we can’t read it.

e You are allowed three two-sided, handwritten, formula sheets plus a calculator.

® You may give an answer in the form of an arithmetic expression (sums, products, ratios,
factorials) of numbers that could be evaluated using a calculator. Expressions like (2) or

zz=0(1/2)k are also fine.

e The last page of this final contains a standard normal table.



MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering & Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Fall 2009)

Problem 1: (incorrect answers: -1 point) Write your name, your assigned recitation instructor’s name, and
assigned TA’s name on the cover of the quiz booklet. The Instructor/TA pairing is listed below.

| Recitation Instructor | TA | Recitation Time |
Jeffrey Shapiro Jimmy Li 10 & 11 AM
Danielle Hinton Uzoma Orji | 1 & 2 PM
William Richoux Ulric Ferner | 2 & 3 PM
John Wyatt (6.431) | Aliaa Atwi | 11 & 12 PM

Page 2 of 16



MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering & Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Fall 2009)

Problem 2. (20 points)
A pair of jointly continuous random variables, X and Y, have a joint probability density function given by

¢, in the shaded region of Fig. 1
fxy(z,y) =

0, elsewhere.

A 4

Figure 1: The shaded region is the domain in which fx y(z,y) = c.

(a) (5 points) Find c.
(b) (5 points) Find the marginal PDFs of X and Y, i.e., fx(z) and fy(y).

(c) (5 points) Find E[X | Y = 1/4] and Var[X | Y = 1/4], that is, the conditional mean and conditional
variance of X given that ¥ = 1/4.

(d) (5 points) Find the conditional PDF for X given that Y = 3/4, i.e., fx|y(z | 3/4).

Problem 3. (25 points)
Consider a Markov chain X,, whose one-step transition probabilities are shown in the figure.

(a) (5 points) What are the recurrent states?

Page 3 of 16



MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering & Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Fall 2009)

(b) (5 points) Find P(X, =4 | X = 2).

(¢) (5 points) Suppose that you are given the values of r;;(n) = P(X, = j | Xo = i). Give a formula for
r11(n + 1) in terms of the ri;(n).

(d) (5 points) Find the steady-state probabilities ; = lim, . P(X, = j | Xo = i), or explain why they do
not exist.

(e) (5 points) What is the probability of eventually visiting state 4, given that the initial state is Xy = 17

Problem 4. (30 points)

Al, Bonnie, and Clyde run laps around a track, with the duration of each lap (in hours) being exponentially
distributed with parameters Ay = 21, Ap = 23, and A\¢ = 24, respectively. Assume that all lap durations are
independent. At the completion of each lap, a runner drinks either one or two cups of water, with probabilities
1/3 and 2/3, respectively, independent of everything else, including how much water was consumed after previous
laps. (The time spent drinking is negligible, assumed zero.)

(a) (5 points) Write down the PMF of the total number of completed laps over the first hour.

(b) (5 points) What is the expected number of cups of water to be consumed by the three runners, in total,
over the first hour.

(¢) (5 points) Al has amazing endurance and completed 72 laps. Find a good approximation for the probability
that he drank at least 130 cups. (You do not have to use 1/2-corrections.)

(d) (5 points) What is the probability that Al finishes his first lap before any of the others?

(e) (5 points) Suppose that the runners have been running for a very long time when you arrive at the track.
What is the distribution of the duration of Al’s current lap? (This includes the duration of that lap both
before and after the time of your arrival.)

(£) (5 points) Suppose that the runners have been running for 1/4 hours. What is the distribution of the time
Al spends on his second lap, given that he is on his second lap?

Problem 5. (25 points)
A pulse of light has energy X that is a second-order Erlang random variable with parameter A, i.e., its PDF is

(1)

Mze=>% for z >0,
Ix(z) =

0, otherwise.

This pulse illuminates an ideal photon-counting detector whose output N is a Poisson-distributed random
variable with mean z when X = z, i.e., its conditional PMF is

ze ™ ¢ 0,1,2
==—, forn=0,1,2,...,
PN|X(" | z) = { n:

0, otherwise.

(a) (5 points) Find E[N] and Var[N], the unconditional mean and variance of N
(b) (5 points) Find py(n), the unconditional PMF of N.
(c) (5 points) Find Xlill(N ), the linear least-squares estimator of X based on an observation of V.

(d) (5 points) Find Xyap(N), the MAP estimator of X based on an observation of N.
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(e) (5 points) Instead of the prior distribution in Eq. (1), we are now told that

P(X =2) = 33/35, X —13)—:2%/35.
Given the observation N = 3, and in order to minimize the probability of error, which one of the two

hypotheses X = 2 and X = 3 should be ch@lf.

[Useful integral and facts:

E[X]=2/),  Var(X)=2/)2%

s \ QUOw =
// wi &0 J(MD @[ 0/04 ¥4
7 I by éﬁ AL § @n
i 5
xﬁ"?
Each question is repeated in the following pages. Please write your answer on
the appropriate page.
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Problem 2. (20 points)

A pair of jointly continuous random variables, X and Y, have a joint probability density function given by

¢, in the shaded region of Fig. 1
o Calolao s st =
0 (v ’

elsewhere.

Figure 2: The shaded region is the domain in which fx y(z,y) =c.

(a) (5 points) Find c.

ol o il
d 9 ot ells s L 4
L, 44 Y Y
107 &
\ ol )
B (=2
(b) (5 points) Find the marginal PDFs of X and Y, i.e., fx(z) and fy(y). T
{lulle
'« {N“!‘f\‘w / Y
| e
{1 = g
1)
L7/
. {;ir‘
b;:t |
{ (f'-’-'.,“- € na I/'Z l l g(f:’-p
s
. /
noraalize Weite at bl¢ °©

5o ' blic 0xin "{‘f/rl:;':f;[:.
(Y 7)’1,\A](x(ﬁ:(( O4X£[ {

: GO/ geye]
— (,6 dTb ) C 6 0&1?‘?%3 6 of 16
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(c) (5 points) Find E[X | Y = 1/4] and Var[X | Y = 1/4], that is, the conditional mean and conditional

variance of X given that ¥ = 1/4.

§9 st = //f wl«a‘} "lf FZKZ :f
;. U[f( = Un (o léﬁj

% {//*“{O//
o L » N
pob what gpo Tl vaves f{ 17

7

——~
£
s
o
T
~ N
S
ot
Sehdy
(
< —
] ——
™

4
,,,,,,,,,, fi— = Y .
' 2 (- (2
(d) (5 points) Find the conditional PDF for X given that Y = 3/4, i.e., fx)yv(z | 3/4).
] 1
j 0 K “ f
')t"'? e _’: :i

(™
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Problem 3. (25 points)
Consider a Markov chain X,, whose one-step transition probabilities are shown in the figure.

(a) (5 points) What are the recurrent states?
7
R *
/, { (/
(b) (5 points) Find P(Xy =4 | Xy = 2).
2 -1 [, = 7 @
pq(2) =k, | sl sl =2
i ( J ) T 3 ¢ | ,{.g .
!\ no ol ¥, F@ﬁ(b*lf‘le
L
dont cuke alqobry
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(c) (5 points) Suppose that you are given the values of r;;(n) = P(X, = j | Xo = 7). Give a formula for
{i(n + 1) in terms of the 7;;(n).

Ab gl qu
f“(’”l)-— 7 fuln) fu

ﬁkﬁﬁwjm Lqm‘/éxgpp

g]ﬂ((, f3 (f Wﬂfbm@ 5&/;\')%1@5 '![ﬁ
KW‘//J Ny AM M

o q/\“(n] *-—L-{-/\Z' (n) o bl e Wat
(d) (5 points) Find the steady-state probabilities 7; = lim, oo P(X, = j | Xo = 7), or explain why they do

not exist.

Wl ot pecuaet clased (o goraally rol

P,‘ j( fn Jﬂ}ﬁe/l(l Qn 6%&)’7{' ﬂLCV(@

9§< P(OL ‘H‘lﬁ‘} Ne Otéo/beaf //\ 94’4 5]1“9]6/ 9%/(/1 éf?yf %J}z{?flﬁ
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(e) (5 points) What is the probability of eventually visiting state 4, given that the initial state is Xy = 17
) ' [ 1 | ,
@ | ¥ 1.0 \"—"J | f
ﬂ (5 !5 F 4 j&(b! r:’ ‘N L[ g.l,.,, Slat {;?_;1 /

/
/A

0 e ’LL'( d, 4 lﬂ( 0, f%a‘/
’0 Tt nctde !
s '%ag . % G selr
o 7T 3%
A, :JCEO/; 4 j’;,ar 1(;

) — = — } +
/| 200t T2 Tl T
= i) L,
MTRMT T, = - 7:,
i | 8
= 0 .3 ,
12 2 "7
40
C,SL; iy = 8
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) \ e AN , ke 1 '{
Problem 4. (30 points) 60( ok L }Wm 2 9\8{5 )/ i
Al, Bonnie, and Clyde run laps around a track, with the duration of each lap (in hours) being exponentially
distributed with parameters Ay = 21, Ap = 23, and A¢ = 24, respectively. Assume that all lap durations are
independent. At the completion of each lap, a runner drinks either one or two cups of water, with probabilities
1/3 and 2/3, respectively, independent of everything else, including how much water was consumed after previous
laps. (The time spent drinking is negli?ble, assumed zero.)
(Prom bl [0~ 7DVl
(a) (5 points) Write down the PMF of the total number of completed laps over the first hour.

ege T 3 poresn  Plotessts
n 'K { J P ¢

IO @ W
L

) S 0 N
&/ )90 1 AW

/)

NV VE

o po 1scon ( \Z 147 j;?
e PO;%?M [£X>

]

\/P( o E[] = Aj Ne Ty do want Th PhF .
. ) vl =6 ¥/
N OB (U
‘ . Al A, . o
) f‘) and ey Il b
- \,\\r‘g have ¥ ash 6 Oﬂfwf'ae
(b) (5 points) What is th%d nurﬂb}r of cups of water to be consumed by the three runners, in total,

A o 4l ot o e T i
| W3

0 ( Oach G cival
9 p- 7 /it g[Cj' *:E[E[C[LZ?: P[LCff
E[ ﬂfj[(;yag . Fg‘ r](, F,,{ "?f'/'/';'-"g‘] & f[(—;? ‘E[Cz.? '
' e Al 12 T 5&/}"4”&‘/ f e
6 8 » g T SEmmba m faute d \é/gﬂtfo/e/ﬁf/cf B
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(c) (5 points) Al has amazing endurance and completed 72 laps. Find a good approximation for the probability
that he drank at least 130 cups. (You do not have to use 1/2-corrections.)
/\

= (oa I (Jp .;"

'T A/,,-r% r,’ld Vg’p (C]’

d(1-12% W”_ (%:)’H 3o
& ="(J /’;

(d) (5 points) What is the probability that Al finishes his first lap before any of the others?

P(a((;./a._) Lo o i b '“f'

— A 1((/"“1
LN
1
L

i 3 | ]
4] y -/g 5T el ( ! (
Y P { Lol oy 2
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L L
Y Seady STATC
(e) (5 points) Suppose that the runners have been running for a very long time when you arrive at the track.

What is the distribution of the duration of Al's current lap? (Thisincludes the duration of that lap both
before and after the time of your arrival.) ~ (Prdadm

Pdeiad dist

Olany oidor o
, l
_ Lyl =67,
Tf\/z(“/ﬁ S AR ®
“‘ };/‘b{,f‘ ({/’ '—mfdﬂﬁ/ﬂrws

(f) (5 points) Suppose that the runners have been running for 1/4 hours. What is the distribution of the time
Al spends on his second lap, given that he is on his second l;ﬁ?‘

L Comnby Y05 peans T vess f(f }Dro}))p
5{[, 1(;; Niw

Page 13 of 16



MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering & Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Fall 2009)

/ A

\ 1 - R i .I« e \ i
Problem 5. (25 points) CJ ol N ﬁ{@' (n (Al 965507
A pulse of light has energy X that is a second-order Erlang random variable with parameter A, i.e., its PDF is

————————

Aze=?*, forz >0,
fx(z) = { (1)

0, otherwise.

This pulse illuminates an ideal photon-counting detector whose output N is a Poisson-distributed random
variable with mean z when X = z, i.e., its conditional PMF is

—_— o
- { J (0 Uy
_'_a:"e f68 78 =0 Ve 1
leX(n | :C) — n! ? ! TR ! — ) ) o
0, otherwise. U@ ys Ve qole /g
e f. A,
Useful integral and facts: ] O il et U TLL [ (07 ¥ L
00 ’ [ 7
I
/ yre Y dy = %, fora>0and k=0,1,2,... (recall that 0l= 1)
° ) & « %8 O
The second-order Erlang random variable satisfies: 0w g0 !"’:“/‘; ! ;l
.
E[X]=2/A,  Var(X)=2/3. ~ ¢ (pf .
T (ovoh 97 Vs o i 3
(a) (5 points) Find E[N] and Var[N], the unconditional mean and variance of N ~Wwny (a7 |
e -
/" e
W) (U ,5 f ‘/
e { / 2 .

Lov of (o] Py b ﬁ #/Mtqf s A
LY, ©
Va/

ﬁ " Vi () < EZVW[/U W7 vy (el %

- E[R] Myes .?ff [){J g W/[AJ
7 S

I

. 0
T A
0%@55 Where ua/@)x]:E[/vh]:rX
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(b) (5 points) Find py(n), the unconditional PMF of N.ﬁe I oy ﬁ\:“”“j /“J’L are w5 lﬁf / ﬁ/ o H’d

. = [l /” iR
ﬁ(N f 62 Pucla 3] 4
Wf Coﬂh"w’ |
La%udf
sz H_Hq_,t’jﬂ
fv() nt W ‘(“JUK 0)7‘ %WU/
o clve

[. q Oyl

2
_Urﬂl n=0l, 2
CH e
(c) (5 points) Find X ( e(}inear least sql.gr Mm tor of X based on an observation of N.

>< <( E C‘V(H ¥
Al [ X/ 1 , W[w) ( f ‘f)

OL{MJFM fo €4 !, o VP
h e cxleh)- ) ELx287

< E/xA) 2
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(d) (5 points) Find Xyap(N), the MAP estimator of X based on an observation of N. L) rof- Aq,/(
(Panprrtd
Xf’i{ P ( )) = ) [—) J Qﬂreﬂtfd/}f' 5497( O 2
O M T ( X/

a i, s 74—7{

= SO (; kwf »(ﬂ/ ¥ Conttde & pox by oo
T

) d{%:x g&(q) ffv/‘c'(f‘/’?‘) dga-wal

= mg/ncm)f_‘ i e{lr)\}x ) 8{}:{ it

\
< 4(3 prgex an e~( 1+
(e) (5 points) Instead of the prior distribution in Eq. (1), we are now told that

P(X =2)=3%/35, P(X=3)=2/35:

Given the observation V = 3, and in order to minimize the probability of error, which one of the two
hypotheses X = 2 and X = 3 should be chosen?

(lpssid  4tals (lmw&e k,p il Zargmt Pasf?vzar p(pb
~ . .7 ‘ |
g”"i; ore ( X ﬂ/ ) PR Thal manlss dafy mosd Jikly

d \( Z (fl Vi1 ,moJ} [ 2 rf
O oo ol ol T T gl b

Px<2 IE 3 7 Px=3| W<g

PO P8l 2c2) _ p (e3) HOW=3 o]
—ma MWU’\
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Final Solutions:
December 15, 2009

Problem 2. (20 points)

(a) (5 points)
We're given that the joint PDF is constant in the shaded region, and since the PDF must
integrate to 1, we know that the constant must equal 1 over the area of the region. Thus,

(b) (5 points)
The marginal PDFs of X and Y are found by integrating the joint PDF over all possible
y’s and z’s, respectively. To find the marginal PDF of X, we take a particular value = and
integrate over all possible y values in that vertical “slice” at X = z. Since the joint PDF is
constant, this integral simplifies to just multiplying the joint PDF by the width of the “slice”.
Because the width of the slice is always 1/2 for any = € [0, 1], we have that the marginal PDF
of X is uniform over that interval:

1, 0z
fx(z) = { 0, otherwise.
Since the joint PDF is symmetric, the marginal PDF of Y is also uniform:
_ [ egy<1,
i ={ o Gyt

(c) (5 points)
To find the conditional expectation and variance, first we need to determine what the condi-
tional distribution is given Y = 1/4. At Y = 1/4, we take a horizontal slice of a uniform joint
PDF, which gives us a uniform distribution over the interval z € [1/4,3/4]. Thus, we have

EX|Y = 1/4] = %

var(X | Y =1/4) = /2 =—.

(d) (5 points)
At Y = 3/4, we have a horizontal slice of the joint PDF, which is nonzero when z € [0,1/4]U
[3/4,1]. Since the joint PDF is uniform, the slice will also be uniform, but only in the range

of z where the joint PDF is nonzero (i.e. where (z,y) lies in the shaded region). Thus, the
conditional PDF of X is

2, ze[0,1/4)U[3/4,1],
0, otherwise.

iy = {
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Problem 3. (25 points)

(a) (5 points)
The recurrent states are {3,4}.

(b) (5 points)
The 2-step transition probability from State 2 to State 4 can be found by enumerating all the

possible sequences. They are {2 — 1 — 4} and {2 — 4 — 4}. Thus,
7
-1

ey 1
3 1%

-
6

| =

P(X2=4|Xo=2)=

(c) (5 points)
Generally,

rmn+1) = Zpljrﬂ
Since states 3 and 4 are absorbing states, this expression simplifies to
1 1
ru(n+1) = —Tn(n) + Z?“Ql(n).

Alternatively,

Tu 71")-1 Zle(n Pk1

W =

=ry(n) - i + ri2(n) -

(d) (5 points)
The steady-state probabilities do not exist since there is more than one recurrent class. The

long-term state probabilities would depend on the initial state.

(e) (5 points)
To find the probability of being absorbed by state 4, we set up the absorption probabilities.

Note that a4y =1 and a3z = 0.

a1 1 1
a1 qa =+ 1% aE §a3+6a4
—1a +1a +1
g AT T 6
- +1a +la
G2 2 G108 T 70
1 +1
= —=Q —
AR

Solving these equations yields a; = %.
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Problem 4. (30 points)

(a) (5 points)

Given the problem statement, we can treat Al, Bonnie, and Clyde’s running as 3 independent
Poisson processes, where the arrivals correspond to lap completions and the arrival rates
indicate the number of laps completed per hour. Since the three processes are independent,
we can merge them to create a new process that captures the lap completions of all three
runners. This merged process will have arrival rate Ayy = Ay + Ag + Ag = 68. The total
number of completed laps, L, over the first hour is then described by a Poisson PMF with
Ay =68 and 7= 1:

68% % £=0,1,2
0 = £ b R i o RO
pr(t) { 0, otherwise.
(b) (5 points)
Let L be the total number of completed laps over the first hour, and let C; be the number of
cups of water consumed at the end of the ith lap. Then, the total number of cups of water

consumed is
L

g=Y

which is a sum of a random number of i.i.d. random variables. Thus, we can use the law of
iterated expectations to find

E[C] = E[E[C | L]] = E[LC}] = B[LIE[C}] = (Ay7) - (1 - % +2. g) — 68 g L %

(c) (5 points)
Let X be the number of laps (out of 72) after which Al drank 2 cups of water. Then, in order
for him to drink at least 130 cups, we must have

1-(72-X)+2-X > 130,

which implies that we need
X > 58.

Now, let X; be ii.d. Bernoulli random variables that equal 1 if Al drank 2 cups of water
following his ith lap and 0 if he drank 1 cup. Then
X=Xi+Xo+ -+ X7o.

X is evidently a binomial random variable with n = 72 and p = 2/3, and the probability we

are looking for is
72 k 72—k
Ryl2 1
P(X >58) = E = = _
S (k) (3) (3)

k=58
This expression is difficult to calculate, but since we're dealing with the sum of a relatively
large number of i.i.d. random variables, we can invoke the Central Limit Theorem to approx-
imate this probability using a normal distribution. In particular, we can approximate X as
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a normal random variable with mean np = 72-2/3 = 48 and variance np(1 — p) = 16 and
approximate the desired probability as

58 — 48
V16

P(X>58)=1-P(X<58)~1—-d ( ) =1— $(2.5) ~ 0.0062.

(d) (5 points)

(e)

The event that Al is the first to finish a lap is the same as the event that the first arrival in
the merged process came from Al’s process. This probability is

A _%
A+Ag+Ac 68

(5 points)

This is an instance of the random incidence paradox, so the duration of Al’s current lap
consists of the sum of the duration from the time of your arrival until Al’s next lap completion
and the duration from the time of your arrival back to the time of Al’s previous lap completion.
This is the sum of 2 independent exponential random variables with parameter Ay = 21 (i.e.
a second- order Erlang random variable):

AHe 2 4>,
fr(t) = { 0, otherwise.

(5 points)

As in the previous part, the duration of Al’s second lap consists of the time remaining from
t = 1/4 until he completes his second lap and the time elapsed since he began his second lap
until ¢ = 1/4. Let X be the time elapsed and Y be the time remaining. We can still model
the time remaining ¥ as an exponential random variable. However, we can no longer do the
same for the time elapsed X because we know X can be no larger than 1/4, whereas the
exponential random variable can be arbitrarily large.

To find the PDF of X, let’s first consider its CDF.

P(X <z) = P(The 1 arrival occurred less than z hours ago from time 1/4)

P(1 arrival in the interval [1/4 — z,1/4] and no arrivals in the interval [0,1/4 — z])

P(1 arrival in the interval [0,1/4])

P(1 arrival in the interval [1/4 — z,1/4])P(no arrivals in the interval [0,1/4 — z])

P(1 arrival in the interval [0,1/4])
P(1,z)P(0,1/4 — z)
P(1,1/4)
6—21:(212:)8721{1/‘1—;5)
e—21/4(21/4)

0, x<0,
. 4z, z €[0,1/4],
1, z>1/4.
Thus, we find that the X is uniform over the interval [0,1/4], with PDF

ey 4, T e [0: 1/41’
fx(z) = { 0, otherwise.
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The total time that Al spends on his second lap is T'= X + Y. Since X and Y correspond
to disjoint time intervals in the Poisson process, they are independent, and therefore we can
use convolution to find the PDF of T~

o) = f " () Relt— ) de

min(1/4,t)
= / 421~ 210=2) g
0

46721.! (821 min(1/4,t) _ 1) , t 2 0,
= 0, otherwise.

Problem 5. (25 points)

(a) (5 points)
Using the law of iterated expectations and the law of total variance,
E[N] =E[E[N | X]|
= E[X]
2
=i

var(N) = E[var(N | X)] + var(E[N | X])
= E[X] + var(X)
2. 2
=T
where var(N | X) =E[N | X] = X.

(b) (5 points)

pln) = [ Fx(@pypx(n] 2)de

= :
= / _$71+1e"(1'f'/\)md$

=0 n!
A (n+1)
T onl (14 A)n+2
2
_ (—QI(:’SLL)E n=0,1,2...
0 otherwise.

(c) (5 points)
The equation for Xj;,(N), the linear least-squares estimator of X based on an observation of
N, is

cov(X, N

Rin(N) = B{X] + 2V - B(V))
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The only unknown quantity is cov(X, N) = E[XN] — E[X|E[N] = E[XN] — (E[X])?. Using
the law of iterated expectations again,

E[XN] = E[E[XN | X]]

= E[XE[N | X]]

=E[X?] = var(X) + (E[X])?
6

=

Thus, cov(X, N) = 6/3% — 4/A? = 2/X%. Combining this result with those from (a),

(d) (5 points)

The expression for XMAP(N ), the MAP estimator of X based on an observation of N is

Xmap(N) = arg max fxy (2 | n)

 fx(@)pnx(n]|z)
= arg max
T PN (TL)
= argmax fx (z)pnix(n | z)
)\2
= arg max — i o
z )

= arg max 2" le~ (1T N7
&T

where the third equality holds since py(n) has no dependency on z and the last equality
holds by removing all quantities that have no dependency on z. The max can be found by
differentiation and the result is:

1+ N

Xuap(N) = T

This is the only local extremum in the range x € [0,00). Moreover, fx|n(z | n) equals 0 at
z = 0 and goes to 0 as © — co and fy|y(x | n) > 0 otherwise. We can therefore conclude

that X Ap(N) is indeed a maximum.

(e) (5 points)

To minimize the probability of error, we choose the hypothesis that has the larger posterior

Page 6 of 7
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probability. We will choose the hypothesis that X = 2 if

P(X=2|N=3)>P(X=3|N=3)
P(X:2)P(N=3|X=2)>P(X=3)P(N=3|X=3)
P(N = 3) P(N =3)
P(X=2P(N=3|X=2)>P(X=3)P(N=3|X=3)
33 923g2 23 33¢—3
3 3 35 3l

R

The inequality holds so we choose the hypothesis that X = 2 to minimize the probability of
error.

Page 7T of 7
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6.041/6.431 Spring 2009 Final Exam

Thursday, May 21, 1:30 - 4:30 PM.

Name:

Recitation Instructor:

e Write your solutions in this quiz packet, only solutions in the quiz packet will be graded.

You are allowed three two-sided 8.5 by 11 formula sheet plus a calculator.

You have 180 minutes to complete the quiz.

Be neat! You will not get credit if we can’t read it.

Question | Part Score Out of
0 2

1 all 18

2 all 24

3 a 4

b 4

c 4

4 a 6

b 6

c 6

5 a 6

b 6

6 a 4

b 4

C 4

d 5

e 5]

7 a 6

b 6

Total 120




MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering & Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Spring 2009)

Problem 0 (2 pts.)
Write your name, and your assigned recitation instructor’s name, on the cover of the quiz booklet.
The Instructors are listed below.

| Recitation Instructor | Recitation Time ]

Devavrat Shah 10 & 11 AM
Shivani Agarwal 11AM & 12PM
Asu Ozdaglar 12 & 1 PM
Pablo Parrilo (6.431) | 10 & 11AM
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Problem 1: True or False (2pts. each, 18 pts. total)

No partial credit will be given for individual questions in this part of the quiz.

a. Let O be a sequence of i.i. d random variables taking values in the interval [0, 0. 5] Consider
the foll tat t
e following statements: [,Z)“JQ]JJ/ f'I

CoNsPe A0 -
(A [X?2] converges to }/V as n — 0o tflen Xn Con'zrerges to 0 in probability.
(B)Nf'all X, have E[X,,] = 0.2 and var (X,,) converges to 0 as n — co then X, converges to 0.2

in probability. 60 My o6& ' IJ’\/([fLr
(C) The sequence of random variables Z,, defined by Z, = X; - Xp--- X, converges to 0 in
probability as n — co. ] ik ” r.pf /‘/_,

Which of these statements are always true? Write True or False in each of the boxes below.

r l’ o all £ gwe 2. ‘[’/Z/

v \/ = LD( Zn— O[ );—O IC”"’Vl?'\_:@j,é
| l féﬂ'?

b. Let X; (i =1,2,...) be i.i.d. random variables with mea@énd variance 2; ¥; (¢ =1,2,...) be
i.i.d. random varlables with medn 2) Assume that all variables X;, Y; are mdependent. Con51der

the following statements: A !
« $0re ﬂ//l 9 o,

Ve

L/

b |

(A) Z1ttXa converges to 0 in probability as n — co.

(B) 2 ...+X
n

(C) &Jf—i‘-xﬂ— converges to 0 in probability as n — oco. € ¢t

/ _‘ =/
converges to 2 in probability as n — co. 4 [ / a “ O o

Which of these statements are always true? Write True or False in each of the boxes below.
B: ‘ C: r

¢. We have i.i.d. random variables X7 ...

—_—

A:(

Xn with an unknown distribution, and with u = E[Xj].

We define M,, = (X7 +... + X,,)/n. Consider the following statements:
L gam le progs e T mod@

(A) M, is a maximum-likelihood estimator for u, irrespective of the distribution of the X;’s.
(B) M, is a consistent estimator for u, irrespective of the distribution of the X;’s.

(C) M, is an asymptotically unbiased estlmator for u, irrespective of the distribution of the
Xy’s. Celan L Al

Which of these statements are always true? Write True or False in each of the boxes below.

e F T T

B |

- def

J/ hm1 o /ﬁ”'

d'on

W/,

o

S frgp

.-
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Problem 2: Multiple Choice (4 pts. each, 24 pts. total)

Clearly circle the appropriate choice. No partial credit will be given for individual questions in this

part of the quiz.

a. Earthquakes in Sumatra occur according to a Poisson process of rate A = 2/year. Conditioned
on the event that exactly two earthquakes take place in a year, what is the probability that both
earthquakes occur in the first three months of the year? (for simplicity, assume all months have

30 days, and each year has 12 montbhs, i.e., 360 days).

/ ( 1/12”. Wf (0) &P((Z gidls b0 do © / Qacc,als Y60 do v )

(ii) l/lﬁi fi ﬂ/fL . Y¥ ?
(i1 64/225 1he 3 p(’_;r"u ab i,'- r‘,() P(Z /w) hy Eﬁo_)’L
(v) 4e~ P Plackgs e % —9{ TR e —
) There is not enough infor‘mation to determine the requfr'ed probability. L= (’Z;j%é)’ ¢ =i
B Nosi Il — 3

(vi) None of the above.

b. Consider a continuous-time Markov chain with three states i € {1,2, 3}, with dwelling time in

each visit to Sta@elng an fexponential om variable with parameter v; =i, and transitioré o
" \ ~ | L
probabilities p;; defined by thegraph L) 6% 8” ( e M (lr) D} 2 0 ik
e S—_— ] —.‘-‘—_
- = 2 r#) 7
il R 1P /2 776
o7 { './—\("\9’ C b . ) .
g S e .
12 1 () b OO
L
=7 Loy
What is the long-term expected fraction of time spent in state @’) - ? ik g s a t ‘
012 fqll 0y - —,
sl LT T UMy [ o ol 4
}&) 2/5 Wt e [ [2:1)2 e 22
: Tﬂ - g {/}“ i 1
v il L= ekl o ~2 -
— : A1l el
one of the above. 9 1ias i |
> ol [ 7
/(p s |oay )
2= 5Ty o e s [6

4 N ‘-L/( )
< J N Oyl e g O




D g
Uiy =Vip,
(0 4, on oy Chogt et

%'2:‘{/21
q/%z =3

L/‘fH\"JgtPﬂ? MWM\/
M=y,
m'zfgff’}

\ormg | T %

MMAL 7 ﬁw(’s CL/

e ,)Mwe Jd ey gof P
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c. Consider the following Markov chain:

2 ' ~
f/“/\*mm ﬁﬁ /—\‘ (—\/\ )
sy

\-—
(o et ¢

A

i}ﬁ, mﬂ Mma /’7( (v bnpre b)ﬂ f
Starting in stat@hat is the steady-state probability of bemg in state 1'?

(i) 1/3 f) )(/’,r ; (/1; (S (',.1.‘,,'(;1._:
(i) 1/4

@

0

(v) None of the above.

d. Random variables X and Y are such that the pair (X,Y") is uniformly distributed over the
trapezoid A with corners (0,0), (1,2), (3,2), and (4,0) shown in Fig. 1:

X

[

Y

Figure 1: fxy(z,y) is constant over the shaded area, zero otherwise.
—_— e ——

l.e.
¢, (zy)eAd
0, else.

fxy(z,y) = {

We observe Y and use it to estimate X. Let X be the least mean squared error estimator of X
given Y. What is the value of var(X Xy = 1)2 (o ) =\ (suaf

| )
(i) 1/6 \_/ Vm ‘ X) Dl dm Le pagt @ ""f
(i) 3/2 ¢

e “da) n o r_‘_! ats naf wdflo
@ / \/ lff (‘) — Ly] y i {-‘} -
(iv) The information is not sufficient to compute this value
/
(v) None of the above. (- {} 2

2 )
5 M3

s [h pdlrm Forae
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—

B X wsw X are iid- Q’l/o/rygl random variables with mean valu&@d varianceﬁoth p and v
are unknown. We define M,, = (X; +...+ X,)/n and

IR 2 e ‘
Vn — | Z(X1 o Mn) / %’ _»" sz,/r:;:"r, i o

=i
T oy o1 for
We also deﬁn%?!x! to be the CDF for the sta,ndéﬁd normal distribution, and ¥,_;(z) to be the

CDF for th istribution with n=1-degrees of freedom. Which of the following choices gives
an exact 99% confidence interval for p for all n > 17 -

}\O'f[ (PSS P0ns ,*”/J-;(” o
(1) [Mn— 64/, M, + 81/ %] where § is chosen to give ®(5) = 0.99.

@ (M, — 8¢/, M, + 61/%“] where § is chosen to give ®(§) = 0.995.
(iti) [M; — 64/ %, My, + 51/ 2] where J is chosen to give ¥,,_1(5) = 0.99.

v) M, — &4/ —‘:LE,M'H + §4/ —‘;’1] where ¢ is chosen to give ¥, _1(d) = 0.995.

None of the above. O/f‘ Q’f 5Cpﬂ Q

f. We have i.i.d. random variables X, X3 which have an exponential distribution with unknown
parameter ¢. Under hypothesis Hg, 6 = 1. Under hypothesis H;, 8§ = 2. Under a likelihood-ratio
test, the rejection region takes which of the following forms? Ne f V g,’/, 5; od @ /

R = {(z1,22) : 1 + 22 > £} for some value &.
ii = {(z1,22) : 1 + z2 < &} for some value &.
(iii) R = {(z1,x2) : €1 + €%2 > £} for some value &.

(iv) R = {(z1,22) : €" + €™ < £} for some value £.

(v) None of the above. d@ft(pe /Q 3{ X 2(){/}){@) [L(K) 7%
a4

7 = " I | e/ X¢ “'61{
1 /r}, L(x) %&%}C&ee e
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Problem 3 (12 pts. total)

Aliens of two races (blue and green) are arriving on Earth independently according to Poisson process
distributions with parameters Ay and A, respectively. The Alien Arrival Registration Service Authority
(AARSA) will begin registering alien arrivals soon.

Let T7 denote the time AARSA will function until it registers its first alien. Let G be the event
that the first alien to be registered hirsf__i\green one. Let 75 be the time AARSA will function until at
least one alien of both races is registered.

(a) (4 points.) Express pq = E[T3] in terms of A\; and ;. Show your work.

r{} 0 fj’{? ﬂ! /_”,_ G U( g1 14

(b) (4 points.) Express p = P(G) in terms of A\, and ;. Show your work.
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(c) (4 points.) Express us = E[T3] in terms of A\, and ;. Show your work. f
o EII el Com PQY i sz? e ol el

s N o d
™ » 1 / _;r
{ / (; / / '-’:‘j. B /

f_d((ﬁ 5;mP17 Condibon o 6 alien éem& Ceut
3% oy & Memoless propedy of Wi o @
W{=Er7. t Ple) E] i ] dd §]+ P(6%) B (Yo il o
"B 1 1y EfRY) 7 4,{; e
il oY ©) []

vf,).-lr N [L
S e v I TV i v A 70 R
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Problem 4 (18 pts. total)

Researcher Jill is interested in studying employment in technology firms in Dilicon Valley. She denotes
by X; the number of employees in technology firm ¢ and assumes that X; are independent and identically
distributed with mean p. To estimate p, Jill randomly interviews n technology firms and observes the
number of employees in these firms.

) \ (JD',‘“ { el " f o /
& A fX NPT Sy R )Y/ e Y.V
(a) (6 points.) Jill uses F\ﬂ {mﬁ a (ﬂ we Gl OV WO
AR EY] f‘fwzﬁﬁ“h Mn _— u /!_4,:. J vy K(Q}]I‘f .
: 4 q [ e - ’ ;
e \, \r\:l-{ A/ 20me b
s B , as an estimator for p. Find the of P(M, < z) as n — oo for z < p. Find the limit of

(a0 JP(My < 2) a5 n — oo for 2 > p. Show your work.-=(
i Proso)s 1= Hh 2 - Elo
A 7
h r‘(ﬂ \P(Mr\ 7 ) H‘”n ~ "Z?’ 2 ‘f()/ X 7 f
e ,5£M€ M, (‘ “i Ma CMVM(]&S I (J(ﬁﬂ_{ - y
hin Pl £x) = 0 x<p okjaluile g
l \11» X7f

" m\;( (6 points.) Find the smallest n, the number of technology firms Jill must sample, for which the
61 r)’(’ﬂ“ Chebyshev inequality yields a guarantee 2
v J Gl /f o f O /
P(|M, —p| > 0.5) < 0.05. [

m/

Assume that var (X;) =@or some constant v. State your solution as a function K() f v. Show
your work.
Y] o A4
A~ plrge 2a
/ L )1'

L 0y Ox = voul;) =V

gu-e_gr;:'/ﬁ" i

et

C o \
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(c) (6 points.) Assume now that the researcher samples n = 5000 firms. Find an approximate value
for the probability ff“ s 0 mane”)

I 1"//
& Lo oy swall
P (| M5000 p|>05).\1 TG L (Caty 5

using the Central Limit Theorem. Assume again that var (X;) = v for some constant v. Give
your answer in terms of v, and the standard normal CDF ®. Show your work.

%;ﬂﬁLﬁ LAV =y o 1 v
[ N

/ _ /’ how JCbCArd éfrﬁlp
P(/W"'h P) Z5 \;}*P”Wﬁ'i&) é{h) \/ dnd n (s gwm

n ‘/ %BA’W (s 5{/0”"
P( FXnp) 5 #7. fj’)
\)YT&;WN
2=20 [/
o L/—\//

b{)MU/W, ghg t5'-/\ |O

VOLLMQ Bt
Un 7
%V"n’f’ Z 6) L ~—®@

'wlm vhet does (//gp '
4 fhis
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Problem 5 (12 pts. total)

The RandomView window factory produces window panes. After manufacturing, 1000_panes were
loaded onto a truck. The weight W; of the i-th pane (in pounds) on the truck is modeled as a random

va.rla,ble with the assumption that the W;’s are independent and identically distributed.
nd

(a) (6 points.) Assun‘( that the measured weight of the load on the truck was 2340 pounds, and
that var (W;) g@ Find an approximate 95 percent ffidence interval for p = E[W;], using the

Central Limit Theorem (you may use the standard nor able which was handed out with this
\ L}\ (o}Y  quiz). Show your work. E 11 B st
\, L{ . '—'J‘ —i A i f‘ j —-b.._\}
P (M~ L0 CMT T
oo 000
7

2 < | -2 dctaly Find  Sanple Mrean esffmwf”f
DMt
0 Gl e, 7
(—)“9%_ 9100() = /2 24

6@;@& IZN
[,9¢ Eom P(}Q(ooo’/{/‘l LOOO (

ble

/L
4 }AM’V haw } \6 VO&’CWL\)JOC@ %_) 9 E;mo() ﬂ J‘/
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What is the maximum likelihood estimate of 6, given that the truckload has welgh 2340 pounds?

Show your work.
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Problem 6 (21 pts. total)

In Alice’s Wonderland, there are six different seasons: Fall (F'), Winter (W), Spring (Sp), Summer (Su),
Bitter Cold (B), and Golden Sunshine (G). The seasons do not follow any particular order, instead, at
the beginning of each day the Head Wizard assigns the season for the day, according to the following

Markov chain model:

Thus, for example, if it is Fall one day then there is 1/6 probability that it will be Winter the next
day (note that it is possible to have the same season again the next day). ; (" /\]/

(a) (4 points.) For each state in the above chain, identify whether it is recurrent or transient. Show

your work. '(]g,f- s / !,
éﬂ)/ QJ/E = (F)Ci'/(/?:nl ( f@;;,

= rewtrord ¢las

b
g
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VARS
1
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(b) (4 points.) If it is Fall on Monday, what is the probability that it will be Summer on Thursday
of the same week? Show your work. 4 Twe
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(c) (4 points.) If it is Spring today, will the chain converge to steady-state probabilities? If so,
compute the steady-state probability for each state. If not, explain why these probabilities do
not exist. Show your work.
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(d) (5 points.) If it is Fall today, what is the probability that Bitter Cold will never arrive in the
future? Show your work. \
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(e) (5 points.) If it is Fall today, what is the expected number of days till either Summer or Golden
Sunshine arrives for the first time? Show your work.
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Problem 7 (12 pts. total) i ~

/

A newscast covering the final baseball game between S‘\Et_i(R@Pand @e becomes noisy at the
crucial moment when the viewers are informed whether akee won the game.
Let a be the parameter describing the actual outcome: a = 1 if Y Nakee won, a = —1 otherwise.
There were n viewers listening to the telecast. Let Y;/be the information received by viewer ¢ (1 <7 < Dicdying) |

n). Under the noisy telecast, Y; = a with probabl y p,and Y; = —a w1th probablhty 1- p Assume "l F ~

that the random variables Y; are independent of each other. d
Th (O &s /(/; /
e viewers as a group come up with a joint estimator 2, Par 0 /
{/-D (i \f : n d dj i " N On el
o LYY 7 1 if Ez:IKZO o e Y
N \ y — ;
Al nd, el v 12w B —1 otherwise.
L. - ’ _
: A -
(a) (6 points.) ddf b0 7 - vau la win

Find lim, . P(Z, = a) assuming that p{>)0 5 and @ = 1. Show your work.
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(b) (6 points.) Find lim,_. P(Z, = a), assuming that p {} and @ = 1. Show your work.
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Problem 1: True or False (2pts. each, 18 pts. total)

No partial credit will be given for individual questions in this part of the quiz.

a. Let {X,} be a sequence of i.i.d random variables taking values in the interval [0,0.5]. Consider
the following statements:
(A) If E[X?] converges to 0 as n — oo then X,, converges to 0 in probability.

(B) If all X, have E[X,] = 0.2 and var (X,,) converges to 0 as n — oo then X, converges to 0.2
in probability.

(C) The sequence of random variables Z,,, defined by Z,, = X; - X5--- X, converges to 0 in
probability as n — oo.

Which of these statements are always true? Write True or False in each of the boxes below.

A: True B: True C: True

Solution:

(A) True. The fact that limp—.c E[X2] = 0 implies lim,_.co E[X,] = 0 and lim,, .o, var(X,) = 0.
Hence, one has

P(|X,-0>¢) < P(|Xn—-E[Xp]l>¢€/2)+ P (E[Xn] — 0| > ¢/2)
< Ecl/(iiz) + P (B[Xa] -0 2 ¢/2) ~ 0,

where we have applied Chebyshev inequality.

(B) True. Applying Chebyshev inequality gives

var(X,)

€2

P(|X, - E[X,]| > ¢) < 0.

Hence X, converges to E[X,] = 0.2 in probability.
(C) True. For all € > 0, since Z, < (1/2)" = P(|Z, — 0| > €) =0 for n > —log e/ log 2.

b. Let X; (1=1,2,...) be i.i.d. random variables with mean 0 and variance 2; ¥; (i = 1,2,...) be

ii.d. random variables with mean 2. Assume that all variables X, Y; are independent. Consider
the following statements:

(A) &E=tXn converges to 0 in probability as n — co.

X34+ X2 : o
(B) =——"= converges to 2 in probability as n — co.

(C) Ll-ﬁ:# converges to 0 in probability as n — oo.
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Which of these statements are always true? Write True or False in each of the boxes below.

A: True B: True C: True

Solution:

(A) True. Note that E[X"'n;“"xf’] =0 and var(%) = %22- = 2. One can see illn—tl‘ﬂ
converges to 0 in probability.

(B) True. Let Z; = X? and E[Z;] = 2. Note Z; are i.i.d. since X; are i.i.d., and hence one has
that Z1+=+Zn converges to E[Z;] = 2 in probability by the WLLN.

(C) True. Let W; = X.Y; and E[W;] = E[X;]E[Y;] = 0. Note W; are i.i.d. since X; and Y; are
respectively i.i.d., and hence one has that E’1+H_+Wn converges to E[W;] = 0 in probability
by the WLLN.

c. We have i.i.d. random variables X; ... X, with an unknown distribution, and with p = E[Xj].
We define M, = (X + ...+ X,)/n. Consider the following statements:

(A) M, is a maximum-likelihood estimator for u, irrespective of the distribution of the X;’s.

(B) M, is a consistent estimator for p, irrespective of the distribution of the Xj;’s.

(C) M, is an asymptotically unbiased estimator for p, irrespective of the distribution of the
X.i’s.

Which of these statements are always true? Write True or False in each of the boxes below.

A: False B: True C: True

Solution:

(A) False. Consider X; follow a uniform distribution Ufp — 4, + 3]. The ML estimator for p
is any value between max(Xy, -+ ,Xp) — % and min(Xy,--- , X,) + %, instead of M,,.

(B) True. By the WLLN, M, converges to p in probability and hence it is a consistent estimator.

(C) True. Since E[M,] = E[X;| = p, M, is unbiased estimator for y» and hence asymptotically
unbiased.
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Problem 2: Multiple Choice (4 pts. each, 24 pts. total)

Clearly circle the appropriate choice. No partial credit will be given for individual questions in this
part of the quiz.

a. Barthquakes in Sumatra occur according to a Poisson process of rate A = 2/year. Conditioned
on the event that exactly two earthquakes take place in a year, what is the probability that both
carthquakes occur in the first three months of the year? (for simplicity, assume all months have
30 days, and each year has 12 months, i.e., 360 days).

(i 1/12

)

i
(iii) 64/225
(iv) de*

(v) There is not enough information to determine the required probability.

(vi) None of the above.

Solution: Consider the interval of a year be [0, 1].

P(2in[0,1), 0in [1,1])

P@mp%ummu>=

P(2in [O, 1]))
B (,\.12/]4)2 e~ M1/4 . (’\'3/4)08‘)"3/4
Sre>
= 1
16

(alternative explanation) Given that exactly two earthquakes happened in 12 months, each earth-
quake is equally likely to happen in any month of the 12, the probability that it happens in the
first 3 months is 3/12 = 1/4. The probability that both happen in the first 3 months is (1/4)2.

b. Consider a continuous-time Markov chain with three states ¢ € {1,2,3}, with dwelling time in
each visit to state ¢ being an exponential random variable with parameter v; = i, and transition
probabilities p;; defined by the graph

What is the long-term expected fraction of time spent in state 27

(i) 1/2
(i) 1/4
(iii) 2/5
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.

(v) None of the above.

Solution: First, we calculate the g;; = v;p;j, i.e., 12 = g21 = go3 = 1 and g32 = 3. The balance
and normalization equations of this birth-death markov chain can be expressed as, w1 = w2, 72 =
3ms and 7 + w2 + w3 = 1, yielding mo = 3/7.
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c. Consider the following Markov chain:

Starting in state 3, what is the steady-state probability of being in state 17
(i) 1/3

(i) 1/4

(iii) 1

)

)

— =

(iv) [0]

(v) None of the above.

Solution: State 1 is transient.

d. Random variables X and Y are such that the pair (X,Y) is uniformly distributed over the
trapezoid A with corners (0,0), (1,2), (3,2), and (4,0) shown in Fig. 1:

Figure 1: fx y(z,y) is constant over the shaded area, zero otherwise.

i.e.
c, (zy)ed
0, else.

Ixy(z,y) = {

We observe Y and use it to estimate X. Let X be the least mean squared error estimator of X
given Y. What is the value of var(X — X|Y = 1)?

(i) 1/6
(i) 3/2

(ii)

(iv) The information is not sufficient to compute this value.
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(v) None of the above.

Solution: fx|y=1(z) is uniform on [0,2] therefore X =E[X|Y =1 =1 and var(X - X|Y =
1) = var(X|Y =1) = (2-0)3/12 =1/3.

. Xp...X, are i.i.d. normal random variables with mean value p and variance v. Both p and v
are unknown. We define M, = (X1 +...+ X,)/n and

I e "
Vo= — ;(Xi — M,)

We also define ®(z) to be the CDF for the standard normal distribution, and ¥,,_;(z) to be the
CDF for the t-distribution with n — 1 degrees of freedom. Which of the following choices gives
an exact 99% confidence interval for p for all n > 17

(i) [My, — v/ %, M, + 61/ Y2] where § is chosen to give ®(5) = 0.99.
(i) [My — 8¢/ ¥, My, + 31/ %] where 6 is chosen to give ®(5) = 0.995.

(iii) [M, —4¢ "—:ln, M, + 6\/%] where ¢ is chosen to give ¥,,_1(48) = 0.99.

(iv) | [My — 84/ ‘—flﬂ, My, + 6“%’-] where 4 is chosen to give ¥, _1(d) = 0.995.

(v) None of the above.

Solution: See Lecture 23, slides 10-12.

. We have i.i.d. random variables X;, X5 which have an exponential distribution with unknown
parameter 6. Under hypothesis Hy, ¢ = 1. Under hypothesis Hy, § = 2. Under a likelihood-ratio
test, the rejection region takes which of the following forms?

(i) R={(z1,22): 1+ 22 > £} for some value &.

)
(i) ‘R = {(z1,22) : &1 + z2 < &} for some value §.l
(iii) R = {(z1,22) : €' + €*2 > £} for some value &.
(iv) R = {(z1,x2) : €** + €"2 < £} for some value &.

(v) None of the above.
Solution: We defined R = {x = (x1,22)|L(z) > ¢} where

b o fF e = ﬁc‘(f"l—”l)(fmﬂﬂ — de—(@1+z2)
G fX(fE; HO) ﬂoe—ﬂom fpe—Coz2 33

So R = {(z1,x2)|z1 + 22 < —log (c/4)}
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Problem 3 (12 pts. total)

Aliens of two races (blue and green) are arriving on Earth independently according to Poisson process
distributions with parameters A, and A, respectively. The Alien Arrival Registration Service Authority
(AARSA) will begin registering alien arrivals soon.

Let T} denote the time AARSA will function until it registers its first alien. Let G be the event
that the first alien to be registered is a green one. Let 75 be the time AARSA will function until at
least one alien of both races is registered.

(a)

(4 points.) Express p; = E[T1] in terms of A\; and \,. Show your work.

== 1

Answer: p = E[T}] = vy v

Solution: We consider the process of arrivals of both types of Aliens. This is a merged Poisson
process with arrival rate Ag+Ay. 77 is the time until the first arrival, and therefore is exponentially

distributed with parameter Ay + Ap. Therefore py = E[T}] = m

One can also go about this using derived distributions, since 77 = min (77, T}) where T{ and T}
are the first arrival times of green and blue Aliens respectively (i.e., 7} and T{’ are exponentially
distributed with parameters A\, and Ay, respectively. )

(4 points.) Express p = P(G) in terms of A, and )\,. Show your work.

A
Answer: P(G) = ) vy

Solution: We consider the same merged Poisson process as before, with arrival rate A,+X,. Any
particular arrival of the merged process has probability /\—g’):f/\—h of corresponding to a green Alien

and probability ﬁ of corresponding to a blue Alien. The question asks for P(G) = A—;_%b
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(c) (4 points.) Express puz = E[T3] in terms of Ay and Ap.
Show your work.

Answe - + ' ( : ) + 2 ( 1 )

wer: o =
Ag+x  Ag+M \ N Ag+ A \Ag

Solution: The time 75 until at least one green and one red Aliens have arrived can be expressed as

Ty = max(T7, T?), where 7Y and T? are the first arrival times of green and blue Aliens respectively
(i.e., T{ and T? are exponentially distributed with parameters Ag and Ay, respectively.)

The expected time till the 1st Alien arrives was calculated in (a), p1 = E[T1] = ﬁ To

compute the remaining time we simply condition on the 1st Alien being green(e.g. event GG) or
blue(event G¢), and use the memoryless property of Poisson, i.e.,

E[T3] E[T1] + P(G)E[Time until first Blue drrives[G] + P(G°)E[Time until first Green arrives|G°

= E[0]+P(Q)E[T}] + (1 - P(G))E[TY]

1 n Ag s it Ay 1
Ag+ A Agt+ \ N Ag+ A \Ag

I
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Problem 4 (18 pts. total)

Researcher Jill is interested in studying employment in technology firms in Dilicon Valley. She denotes
by X; the number of employees in technology firm ¢ and assumes that X; are independent and identically
distributed with mean p. To estimate p, Jill randomly interviews n technology firms and observes the
number of employees in these firms.

(a) (6 points.) Jill uses
Xz o

n

M, =

as an estimator for p. Find the limit of P(M, < z) as n — oo for z < p. Find the limit of
P(M, < z) as n — oo for z > p. Show your work.

Solution: Since Xj is i.i.d., M, converges to p in probability, i.e., lim,—.co P(|M,, — p| > €) = 0,
implying lim,, . P(M, <p—¢€) =0 and lim,, .o P(M,, > p+¢) =0, for all ¢ > 0. Hence

lm PO <o) = {55

(b) (6 points.) Find the smallest n, the number of technology firms Jill must sample, for which the
Chebyshev inequality yields a guarantee

P(|M, — p| > 0.5) < 0.05.

Assume that var (X;) = v for some constant v. State your solution as a function of v. Show
your work.

Solution: Since M, converges to p in probability and var(M,) = -5 -var(X;) = v/n, Chebyshev
inequality gives
. var(M,) v
P(|M, —p| >0.5) < = =0.05
(1 Pl )< 5 o5z = 00

= [n =80.]
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(c) (6 points.) Assume now that the researcher samples n = 5000 firms. Find an approximate value
for the probability
P(|M5000 — p| > 0.5)

using the Central Limit Theorem. Assume again that var (X;) = v for some constant v. Give
your answer in terms of v, and the standard normal CDF ®. Show your work.

Solution: By CLT, we can approximate by a standard normal distribution

A/ NV

when n is large, and hence,

Z?:] X'i —np
A/ U

P (|Msoco — p| > 0.5) = P (‘

where n = 5000.
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Problem 5 (12 pts. total)

The RandomView window factory produces window panes. After manufacturing, 1000 panes were
loaded onto a truck. The weight W; of the i-th pane (in pounds) on the truck is modeled as a random
variable, with the assumption that the W;’s are independent and identically distributed.

(a) (6 points.) Assume that the measured weight of the load on the truck was 2340 pounds, and
that var (W;) < 4. Find an approximate 95 percent confidence interval for p = E[W,], using the
Central Limit Theorem (you may use the standard normal table which was handed out with this
quiz). Show your work.

Answer: [2.216, 2.464]

Solution: The sample mean estimator ©,, = Plﬁn_“an in this case is

- 2340
= — =234
1000 1000

Using the CDF ®(z) of the standard normal available in the normal tables, we have ®(1.96) =
0.975, so we obtain

Owo—r g6y~ 0.5,

+/var (W;) /1000 —

Because the variance is less than 4, we have

P(|©1000 — | < 1.96+/var (W;) /1000) < P(|©1000 — 2| < 1.96+/4/1000),

and letting the right-hand side of the above equation = 0.95 gives a 95% confidence, i.e.,

s 4 - 4 A %
c - 1. —. 6 . —| = 1|0 —0.124,© 124
[©1000 — 1.964/ 1000° ©1000 + 1.96 1000] [©1000 , ©1000 + 0.124]
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(b) (6 points.) Now assume instead that the random variables W; are ii.d, with an exponential
distribution with parameter @ > 0, i.e., a distribution with PDF

fw (w; 0) = ge=

What is the maximum likelihood estimate of 8, given that the truckload has weight 2340 pounds?
Show your work.

Answer: O7le = %g = 0.4274

Solution: The likelihood function is

n

fw(w;0) = [ fws (wi; 0) = [[ 0=,
1=1

1=1

And the log-likelihood function is

n
log fw(w;8) = nlogh — 6 Zwi,
i=1
The derivative with respect to 6 is 3 — S, w;, and by setting it to zero, we see that the
maximum of log fiy(w; @) over # > 0 is attained at 6, = Tﬁ_w The resulting estimator is

i=]1

éml’e i n )
% o oW
In our case,
- 1000
emle = —— =(.4274
1000 = g = 0427
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Problem 6 (21 pts. total)

In Alice’s Wonderland, there are six different seasons: Fall (F), Winter (W), Spring (Sp), Summer (Su),
Bitter Cold (B), and Golden Sunshine (G). The seasons do not follow any particular order, instead, at

the beginning of each day the Head Wizard assigns the season for the day, according to the following
Markov chain model:

2/3 3/4
(\%h fx——(Sp) SU(_\?/Q)
1/6 1 1/10 \—)

Thus, for example, if it is Fall one day then there is 1/6 probability that it will be Winter the next
day (note that it is possible to have the same season again the next day).

(a) (4 points.) For each state in the above chain, identify whether it is recurrent or transient. Show
your work.

Solution: F and W are transient states; Sp, Su, B, and G are recurrent states.

(b) (4 points.) If it is Fall on Monday, what is the probability that it will be Summer on Thursday
of the same week? Show your work.

Solution: There is only one path from F to Su in three days.

P(Ss=SulSi=F) = P(

Sy = W|S, = F) - P(S; = Sp|S2 = W) - P(S4 = Su|S3 = Sp)
6 5 30
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(c) (4 points.) If it is Spring today, will the chain converge to steady-state probabilities? If so,

compute the steady-state probability for each state. If not, explain why these probabilities do
not exist. Show your work.

Solution: The Markov chain will stay in the recurrent class {Sp, Su,B}, and

mr =0
W =
g =0

mp + 7w +7g +7sp + sy + 7R =1

= |7F = 0,mw = 0,7 = 0,75, = 1/5, 754 = 2/5,mp = 2/5. |

(d) (5 points.) If it is Fall today, what is the probability that Bitter Cold will never arrive in the
future? Show your work.

Solution: Let ap and aw be the probabilities that Bitter Cold will never arrive starting from
Fall and Winter, respectively. This is equivalent to the Markov chain ends up in G.

- [w=371]
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(e) (5 points.) If it is Fall today, what is the expected number of days till either Summer or Golden
Sunshine arrives for the first time? Show your work.

Solution: Let pp and puw be expected number of days till either Summer or Golden Sunshine
arrives for the first time, respectively.

{MF=1+§'#F+%'#w+%-0
pw=1+g pp+g-pw+g-1

- (=55
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Problem 7 (12 pts. total)

A newscast covering the final baseball game between Sed Rox and Y Nakee becomes noisy at the
crucial moment when the viewers are informed whether Y Nakee won the game.

Let a be the parameter describing the actual outcome: a = 1 if Y Nakee won, a = —1 otherwise.
There were n viewers listening to the telecast. Let ¥; be the information received by viewer 7 (1 < <
n). Under the noisy telecast, ¥; = a with probability p, and ¥; = —a with probability 1 — p. Assume
that the random variables Y¥; are independent of each other.

The viewers as a group come up with a joint estimator

1 i e ip 50,
Ly = "
—1 otherwise.

(a) (6 points.) Find lim,_.o P(Z, = a) assuming that p > 0.5 and @ = 1. Show your work.

Solution: Note that

A n—oo n
t=]

n n Y‘
lim P(Z,=1)= lim P (ZYi 20) = lim P (z—=1—~ 20).
n—oo n—oo

Since Y; are i.i.d. with mean E[Y;] = 2p — 1 and finite variance var(¥;) = 1 — (2p — 1)2, one has,
by Chebyshev inequality, for all € > 0

lim P (’%ﬁ - (2p— 1)} > e) =),

n—oo

Take ¢ = p— %, and the above equation implies lim,, ., P (L—ll <(2p-1)/ 2) = (. Therefore,

‘limn_,ooP(Zn =1)= 1.]

(b) (6 points.) Find lim,—.o P(Z, = a), assuming that p = 0.5 and a = 1. Show your work.

Solution: Note that

n n -j».
i =1)= 1 E ; = li =l Tt S
nllm P(Z,=1) —nh_l‘n P( Y;ZU) —nhm P( o _0).

=1

Since Y; are i.i.d. with E[Y;] = 0 and var(Y;) = 1, we can approximate E—’;_”& as a standard

normal random variable when n goes to infinity. Thus, ‘IimrHoo PlZ, = 1)=1/2 I
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