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5 Infinity

5.1 Surjective and Injective Relations %%

There are a few properties of relations that will be useful when we take up the topic
of counting because they imply certain relations between @domains and

codomains. We say a binary relation R : A — B is:

e total when every element of A is assigned to some element of B; more con-
&“& :n(,lﬁ,‘n) cisely, R is total iff A = RB.
L

e surjective when every element of B is mapped to ar least once'; more con-
cisely, R is surjective iff AR = B.

e injective if every element of B is mapped to at most once, and

e bijective if R is total, surjective, and injective function.

Note that this definition of R being total agrees with the definition in Section 4.3
when R is a function.

If R is a binary relation from A to B, we define AR to to be the range of R. So
a relation is surjective iff its range equals its codomain. Again, in the case that R
is a function, these definitions of “range” and “total” agree with the definitions in
Section 4.3.

5.1.1 Relation Diagrams

We can explain all these properties of a relation R : A — B in terms of a diagram
where allt}meharnmts’_-_’___o’f_tﬁc_dgmi_nIJJ appear in one column (a very long one if
A is infinite) and all the elements of the codomain, B, appear in another column,
and we draw an arrow from a point a in the first column to a point b in the second
column when a is related to b by R. For example, here are diagrams for two
functions:

! The names “surjective” and “injective” are unmemorable and nondescriptive. Some authors use

the term onto for surjective and one-to-one for injective, which are shorter but arguably no more
memorable.
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A B A B
a —— ] a ——— 1
b /o b 2
c 3 [ 3
d 4 d 4
e 5

Here is what the definitions say about such pictures:

e “R-is a function” means that every point in the domain COlumn,ﬁ@
@ rrow out of it.

e “R is total” means that every point in the A column ha¥g

; S 2 . ~
out of it. Soif R i ing total really means every point in the A
column hasSexactly one arrow out of it.

e “R is surjective” means that every point in the codomain column, B, has at
one arrow into it.

e “R is injective” means that every point in the codomain column, B, has ar

e “IGs bijective” means that every point in the A column has exactly one arrow
out of it, and every point in the B column has exactly one arrow into it.

So in the diagrams above, the relation on the left is a total, surjective function

(every element in the A column has exactly one arrow out, and every element in the

B column has at least one arrow in), but not injective (element 3 has two arrows

going into it). The relation on the right is a total, injective function (every element

in the A column has exactly one arrow out, and every element in the B column has

. at most one arrow in), but not surjective (element 4 has no arrow going into it).

\J‘JLU\Q« C Notice that the arrows in a diagram for R precisely correspond to the pairs in

the graph of R. But graph(R) does not determine by itself whether R is total or

l 4 6%\\ surjective; we also need to know what the domain is to determine if R is total, and
we need to know the codomain to tell 1T it's surjective.

()(’ C\ g Example 5.1.1. The function defined by the formula 1/x? is total if its domain is

R but partial if its domain is some set of real numbers including 0. It is bijective

15 n\ 3 (\O(T if its domain and codomain are both R™, but neither injective nor surjective if its
)(\-L C\l/ domain and codomain are both IR.
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5.2 'The Mapping Rule

The relational properties above are useful in figuring out the relative sizes of do-
mains and codomains. :

If A is a finite set, we let@ the number of elements in A. A finite set
may have no elements (the empty set), or one element, or two elements,.. . or any
nonnegative integer number of elements. §f Aot 2

Now suppose R : A — B is a function. Then every arrow in the diagram for
R comes from exactly one element of A, so the number ot@ﬁs—at'mosrtheb

¢fiumber of elémw hat is, if R is a function, then

e

|A| > #arrows.

Similarly, if R is surjective, then every element of B has an arrow into it, so there
must be at lefist as many arrows in the diagram as the size of B. That is,

#arrows > | B|.
Combining these inequalities implies that if R is a su@t_i@mmﬁ&n, then |A| >
| B|. In short, if we write A surj B to mean that there is a surjective function from A
Py to B, then we’ve just proved a lemma: if A surj B, theﬁ |A] > [Bil The following
definition and lemma lists include this statement and three simijar rules relating
domain and codomain size to relational properties.
Definition 5.2.1. Let A, B be (not necessarily finite) sets. Then @éﬂ/f & /'Ze

1. A surj B iff there is a surjective function from A to B.

2. A inj B iff there is a total injective relation from A to B.

3. A bij B iff there is a bijection from A to B.

4o e o

|

4. A strict B iff A surj B, but not B surj A.
Lemma 5.2.2. [Mapping Rules] Let A and B be finite sets

m (.{ 1. ¥t A surj B, then |A| > |B|. €&
‘ 2. If ANqj B, then |A| < |B|.&
/ha) 3. If R bij
prvﬁ [f R bij

r'(/l % 4. If R strict

, then |A] = |B]. <
hen |A] > |B|.

Mapping rule 2 can be explained by the same kind of “arrow reasoning” we used
for rule 1. Rules 3 and 4*are immediate consequences of these first two mapping
rules.

- whet (s st
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Z/ l 5- 5.3 The sizes of infinite sets

Mapping Rule 1 has a converse: if the size of a finite set, A4, is greater than or equal
to the size of another finite set, B, then it’s always possible to definé A surjective
function fromﬂmection can be a total function. To see how
this works, suppose for example that

A ={ap,a1,a2,a3,a4,as)
ot Sl eg Ao

Then define a total function f : A — B by the rules

f(ao) == bo, f(a1) i=b1, flaz) :=ba, flas) = f(as) = f(as) ==

In fact, if A and B are finite sets of the s%sme then we could also define a
bllegtlon_trr-o— A to B by this method.

In short, we have figured out if A and B are finite sets, then |A| > |B| if and
only if A surj B, and similar iff’s hold for all the other Mapping Rules:

Lemma 5.3.1. For finite sets, A, B,

|A| = |B| iff Asurj B,
|| <|B| if Ainj B,
Al =|B| iff AbijB,
|A| > |B| iff A strict B.

This lemma suggests a way to generalize size comparisons to infinite sets, namely,
we can think of the relation surj as an “at least as big as” relation between sets, even
if they are infinite. Similarly, the relation bij cam be re s a “same size” re-
lation between (possibly infinite) sets, and strict can be thought of as a “strictly
bigger than” relation between sets.

Warning: We haven’t, and won’t, define what the “size” of an infinite is. The

G R e, - SR T :
definition of infinite “sizes” is cumbersome and technical, and we can get by just
fine without it. All we need are the_“as big as” and “same size” relations, surj and
bij s

ij, between sets. _

But there’s something else to watch out for. We’ve referred to surj as an “as big
as” relation and bij as a “same size” relation on sets. Of course most of the “as big
as” and “same size” properties of surj and bij on finite sets do carry over to infinite
sets, but some important ones don’t —as we’re about to show. So you have to be
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careful: don’t assume that surj has any particular “as big as” property on infinite
sets until it’s been proved. s vy

Let’s begin with some familiar properties of the “as big as” and “same size”
relations on finite sets that do carry over exactly to infinite sets:

Lemma 5.3.2. For any sets, A, B, C,
1. Asurj B and B surj C, implies A surj C. %\?El .-?(C}

2. Abij B and B bij C, implies AbijC. “}lh }B} ,l()

3. Abij B implies B bij A. ( H"-:m

Lemma 5.3.2.1 and 5.3.2.2 follow immediately from the fact that compositions of
surjections are surjections, and likewise for bijections, and Lemma 5.3.2.3 follows
from the fact that the inverse of a bijection is a bijection. We’ll leave a proof of
these facts to Problem 5.1. By T Al

Another familiar property of finite sets carries over to infinite sets, but this time
it’s not so obvious: e

Theorem 5.3.3 (Schréder-Bernstein). For any sets A, B, if A surj B and B surj A,

then A bij B. ‘&M) Z@{ (B/ Zﬁ Bﬁn M% &

That is, the Schroder-Bernstein Theorem says that if A 1s at least as big as
and conversely, B is at least as big as A, then A is the same size as B. Phrased
this way, you might be tempted to take this theorem for granted, but that would be
a mistake. For infinite sets A and B, the Schrdder-Bernstein Theorem is actually
pretty technical. Just because there is a surjective function f : A — B —which
need not be a bijection —and a surjective function g : B — A —which also need
not be a bijection —it’s not at all clear that there must be a bijectione : A — B.
The idea is to construct e from parts of both f and g. We’ll leave the actual
construction to Problem 5.6.

Infinity is different

A basic property of finite sets that does not carry over to infinite sets is that adding
something new makes a set bigger. That is, if A is a finite set and b ¢ A, then
|A U {b}| = |A| + 1, and so A and A U {b} are not the same size. But if A is
infinite, then these two sets are the same size! W, Ly / .

Lemma 5.3.4. Let A be asetand b ¢ A. Then A is infinite iff A bij A U {b}.

Proof. Since A is not the same size as A U {b} when A is finite, we only have to
show that A U {b} is the same size as A when A is infinite.
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That is, we have to find a bijection between A U {b} and A when A is infinite.
Here’s how: since A is infinite, it certainty ras-at teast ome-etement; call it aq. But
since A is infinite, it has at least two elements, and one of them must not Eé‘e_c']ual to
ap; call this new element a1. But since A is infinite, it has at least three elements,
one of which must not eﬁﬁl ap or ap; call this new element a;. Continuing in
the way, we conclude that there is an infinite sequence ag, ay, az,...,an,... of
different elements of A. Now it’s easy to define a bijection e : A U {b} = A:

e(b) = aq,
e(an) i=an+1 forn € N,

@M i e(a):=a fora € A—{b,ap,ay,...}.
/ A’“ﬂ Z% i

A set, C, is countable iff its elements can be listed in order, that is, the distinct
elements is A are precisely BTy T s

COacly'--vcnv‘-'-

This means that if we defined a function, f, on the nonnegative integers by the rule
that f(i) ::= c;, then f would be a bijection from N to C. More formally,

Definition 5.3.5. A set, C, is countably infinite iff N bij C i A set is countable iff
it is finite or countably infinite. ) (68 d esd, 'ﬂ 7* J.o/)

A small modification? of the proof of Lemma 5.3.4 shows that countably infinite
sets are the “smallest” infinite sets, namely, if A is a countably infinite set, then
A surj N.

Since adding one new element to an infinite set doesn’t change its size, it’s obvi-
ous that neither will adding any finite number of elements. It’s a common mistake
to think that this proves that you can throw in countably infinitely many new ele-
ments. But just because it’s ok to do something any finite number of times doesn’t
make it OK to @_@_Lu.ﬁﬂi[ﬁ_nﬂn_b,ci' of times. For example, starting from 3, you
can add 1 any finite number of times and the result will be some integer greater
than or equal to 3. But if you add add 1 a countably infinite number of times, you
don’t get an integer at all.

It turns out you really can add a countably infinite number of new elements to
a countable set and still wind up with just a countably infinite set, but another
argument is needed to prove this:

2See Problem 5.2




“mes” — 2011/2/6 — 3:08 — page 83 — #87

5.3. The sizes of infinite sets 83

Lemma 5.3.6. If A and B are countable sets, then so is A U B.

Proof. Suppose the list of distinct elements of A is ap, ay,... and the list of B is
bo, b1, .... Then a list of all the elements in A U B is just
ao,bg,al,bl,...an,b,,,.... (5.1)

Of course this list will contain duplicates if A and B have elements in common, but
then deleting all but the first gecurrences of each element in list (5.1) leaves a list
of all the distinct elements of A and B. |

5.3.1 Infinities in Computer Science

We’ve run into a lot of computer science students who wonder why they should
care about infinite sets: any data set in a computer memory is limited by the size
of memory, and since the universe appears to have finite size, there is a limit on the
possible size of computer memory.

The problem with this argument is that universe-size bounds on data items are
so big and uncertain (the universe seems to be getting bigger all the time), that it’s
simply not helpful to make use of possible bounds. For example, by this argument
the physical sciences shouldn’t assume that measurements might yield arbitrary
real numbers, because there can only be a finite number of finite measurements in
a universe of finite lifetime. What do you think scientific theories would look like
without using the infinite set of real numbers?

Similary, in computer science, it simply isn’t plausible that writing a program
to add nonnegative integers with up to as many digits as, say, the stars in the sky
(billions of galaxies each with billions of stars), would be any different than writing
a program that would add any two integers no matter how many digits they had.

That’s why basic programming data types like integers or strings, for example,
can be defined without imposing any bound on the sizes of data items. Each datum
of type st ring has only a finite number of letters, but there are an infinite number
of data items of type string. When we then consider string procedures of type
string—->string, not only are there an infinite number of such procedures,
but each procedure generally behaves differently on mat asingle
string-->string procedure may embody an infinite number of behaviors.

In short, an educated computer scientist can’t get around having to understand

infinite sets. {14&/
S

C;OQC/"O/Q 72

Gt

!
5 i
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Problems for Section 5.3
Class Problems

Problem 5.1.
Define a surjection relation, surj, on sets by the rule

Definition. A surj B iff there is a surjective function from A to B.
Define the injection relation, inj, on sets by the rule

Definition. A inj B iff there is a total injective relation from A to B.

(a) Prove that if A surj B and B surj C, then A surj C.

(b) Explain why A surj B iff B inj A.

(¢) Conclude from (a) and (b) that if A inj B and B inj C, then A inj C.

Problem 5.2. (a) Several students felt the proof of Lemma 5.3.4 was worrisome,
if not circular. What do you think?

(b) Use the proof of Lemma 5.3.4 to show that if A is an infinite set, then there is
surjective function from A to N, that is, every infinite set is “as big as” the set of
nonnegative integers.

Problem 5.3.
Let R : A — B be a binary relation. Use an arrow counting argument to prove the
following generalization of the Mapping Rule:

Lemma. If R is a function, and X C A, then

|X| = |XR].

Problem 5.4.

Let A = {ag,ay,...,an—1} be asetof size n, and B = {bg, by,...,bm—1} a set
of size m. Prove that |4 x B| = mn by defining a simple bijection from A x B to
the nonnegative integers from 0 to mn — 1.
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Problem 5.5.

The rational numbers fill in all the spaces between the integers, so a first thought is
that there must be more of them than the integers, but it’s not true. In this problem
you’ll show that there are the same number of nonnegative rational as nonnegative
integers. In short, the nonnegative rationals are countable.

(a) Describe a bijection between all the integers, Z, and the nonnegative integers,
N.

(b) Define a bijection between the nonnegative integers and the set, N x N, of all
the ordered pairs of nonnegative integers:

(0,0),(0,1),(0,2),(0,3),(0,4), ...
(1 15 P A DA e O e . G ) B
20002 1) 6220 (. 3 (0 ) e
P30y (300 (3. 21008 3) A8 4 o

(c) Conclude that N is the same size as the set, (), of all nonnegative rational
numbers.

Problem 5.6.
Suppose sets A and B have no elements in common, and

e Aisassmall as B because there is a total injective function f : A — B, and
e B isas small as A because there is a total injective function g : B — A.

Picturing the diagrams for f and g, there is exactly one arrow out of each
element—a left-to-right f-arrow if the element in A and a right-to-left g-arrow
if the element in B. This is because f and g are total functions. Also, there is at
most one arrow into any element, because f and g are injections.

So starting at any element, there is a unique, and unending path of arrows going
forwards. There is also a unique path of arrows going backwards, which might be
unending, or might end at an element that has no arrow into it. These paths are
completely separate: if two ran into each other, there would be two arrows into the
element where they ran together.

This divides all the elements into separate paths of four kinds:

1. paths that are infinite in both directions,

ii. paths that are infinite going forwards starting from some element of A.
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iii. paths that are infinite going forwards starting from some element of B.
iv. paths that are unending but finite.

(a) What do the paths of the last type (iv) look like?

(b) Show that for each type of path, either

e the f-arrows define a bijection between the A and B elements on the path, or
e the g-arrows define a bijection between B and A elements on the path, or

e both sets of arrows define bijections.
For which kinds of paths do both sets of arrows define bijections?

(c) Explain how to piece these bijections together to prove that A and B are the
same size.

Homework Problems

Problem 5.7.

Let f : A— Bandg: B — C befunctionsand & : A — C be their composition,
namely, h(a) ::= g(f(a)) foralla € A.

(a) Prove that if f and g are surjections, then so is /.

(b) Prove that if f and g are bijections, then so is 4.
(c) If f is a bijection, then define f’ : B — A so that
f'(b) ::= the unique a € A such that f(a) = b.

Prove that f’ is a bijection. (The function f” is called the inverse of f. The
notation ! is often used for the inverse of f.)

Problem 5.8.
In this problem you will prove a fact that may surprise you—or make you even
more convinced that set theory is nonsense: the half-open unit interval is actually
the same size as the nonnegative quadrant of the real plane!® Namely, there is a
bijection from (0, 1] to [0, 00)?2.

(a) Describe a bijection from (0, 1] to [0, co).

Hint: 1/x almost works.

3The half open unit interval, (0, 1],is {r e R | 0 < r < 1}. Similarly, [0,c0) :i={r e R | r = 0}.
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(b) An infinite sequence of the decimal digits {0, 1, ..., 9} will be called long if
it has infinitely many occurrences of some digit other than 0. Let L be the set of
all such long sequences. Describe a bijection from L to the half-open real interval
(0, 1].

Hint: Put a decimal point at the beginning of the sequence.

(¢) Describe a surjective function from L to L? that involves alternating digits
from two long sequences. a Hint: The surjection need not be total.

(d) Prove the following lemma and use it to conclude that there is a bijection from
L? to (0, 1.

Lemma 5.3.7. Let A and B be nonempty sets. If there is a bijection from A to B,
then there is also a bijection from A x Ato B x B.

(e) Conclude from the previous parts that there is a surjection from (0, 1] and
(0, 1]%. Then appeal to the Schrider-Bernstein Theorem to show that there is actu-
ally a bijection from (0, 1] and (0, 1]2.

(f) Complete the proof that there is a bijection from (0, 1] to [0, c0)?.
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Larger Infinities

lots of different sizes of infinite sets. For example, starting with the
infinite set, f nonnegative integers, we can build the infinite sequence of sets

N strict P(N) stri (P(N)) strict P(P(P(N))) strict ....

By Theorem 5.2.6, each of these sets is sfii bigger than all the preceding ones.
But that’s not all: the union of all the sets in the seq is strictly bigger than each
set in the sequence (see Problem 5.7). In this way you can keep going indefinitely,
building “bigger” infinities all the way.

5.3 The Halting Problem

Granted that towers of larger and larger infinite sets is at best just a romantic con-
cern for a computer scientist, the reasoning that leads to these conclusions plays
a critical role in the theory of computation. Cantor’s proof embodies the simplest
form of what is known as a “diagonal argument.” Diagonal arguments are used to
establish show that lots of problems logically just can’t be solved by computation,
and there is no getting around it.

This story begins with a reminder that having procedures operate on programs
is a basic part of computer science technology. For example, compilation refers to
taking any given program text written in some “high level” programming language
like Java, C++, Python, ..., and then generating a program of low-level instruc-
tions that does the same thing but is targeted to run well on available hardware.
Similarly, interpreters or virtual machines are procedures that take a program text
designed to be run on one kind of computer and simulate it on another kind of com-
puter. Routine features of compilers involve “type-checking” programs to ensure
that certain kinds of run-time errors won’t happen, and “optimizing” the generated
programs so they run faster or use less memory. S

Now the fundamental thing that computation logically just can’t do is a gerfect
job of type-checking, optimizing, or any kind of analysis of the égrl:ffrﬁa
behavior of programs. In this section we’ll illustrate this with a basic example
known as the Halting Problem. The general Halting Problem for some program-
ming language is, given an arbitrary program, recognize when running the program
will not finish successfully —halt —because it aborts with some kind of error, or
because it simply never stops. Of course it’s easy to detect when any given program
will halt: just run it on a virtual machine and wait. The problem is what if the given

program does Wﬂile that? We will use a diagonal argu-




“mes” — 2011/2/15 — 19:09 — page 92 — #96

92

Chapter 5  Infinite Sets

ment to prove that if an analysis program tries to recognize non-halting programs, it
is bound to give wrong answers, or no answers, for an infinite number of programs
it might have to analyze!

To be precise about this, let’s call a programming procedure —written in your
favorite programming language such C++, or Java, or Python —a string procedure
when it is applicable to strings over a standard alphabet —say the 256 character
ASCII alphabet. When a string procedure applied to an ASCII string returns the
boolean value True, we’ll say the procedure recognizes the string. If the prccedure
does anything else —returns a value other than True, aborts with an error, runs
forever,...—then it doesn’t recognize the string.

As a simple example, you might think about how to write a string procedure that
recognizes precisely those double letter strings where every character occurs twice
in a row. For example, aaCC33, and zz++ccBB are double letter ASCII strings,
but textttaa;bb, b33, and AAAAA are not. Even better, how about actually writ-
ing a recognizer for the double letter ASCII strings in your favorite programming
language?

We’ll call a set of strings recognizable if there is a procedure that recognizes
precisely that set of strings. Sdtheserof touble letter strings is recognizable.

“Fhere 1s no harm in assuming that every program can be written using only the
ASCII characters; they usually are anyway. When an ASCII string, s, is actually
the ASCII description of some string procedure, we’ll refer to that string procedure
as Pg. You can think of P; as the result of g_o__rwj It’s technically helpful to
treat every ASCII string as a program for a string procedure. So when a string, s,
doesn’t parse as a proper string procedure, we’ll define Ps to be some default string
procedure —say one that always returns False. —_

Now can define the precise set of strings that describe non-halting programs:

Definition 5.3.1.

No-halt ::= {s | 5 is an ASCII string and Py does not recognize s}. (5.6)

Recognizing the strings in No-halt is a special case of the Halting Problem. We’ll.

blow way any chance of having a program solve the general problem by showing
that no program can solve this special case. In particular, we’re going to prove

Theorem 5.3.2. No-halt is not recognizable.

We’ll use an argument just like Cantor’s in the proof of Theorem 5.2.6.

3The string, s, and the procedure, Ps, have to be distinguished to avoid a type error: you can’t
apply a string to string. For example, let s be the string that you wrote as your program to recognize
the double letter strings. Applying 5 to a string argument, say aabbccdd, should throw a type
exception; what you need to do is compile s to the procedure Pg and then apply Ps to aabbccdd.
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Proof. Namely, let S be the set of ASCII strings, and for any string s € S, let f(s)
be the set of strings recognized by Ps:

f(s) :={t € § | Py recognizes t}.

By convention, we associated a string procedure, P;, with every string, s € S,
which makes f a total function, and by definition,

s € No-halt iff s ¢ f(s), 5.7)

for all strings, s € S.
Now suppose to the contrary that No-halt was recognizable. This means there is
some procedure Py, that recognizes No-halt, which is the same as saying that

No-halt = [ (sp).

Combined with (5.7), we get

s € f(so) iff s ¢ f(s) (5.8)

for all s € S. Now letting s = s¢ in (5.8) yields the immediate contradiction

so € f(so) iff so & f(s0).

This contradiction implies that No-halt cannot be recognized by any string pro-
cedure. i

So that does it: it’s logically impossible for programs in any particular language
to solve just this special case of the general Halting Problem for programs in that
language. And having proved that it’s impossible to have a procedure that figures
out whether a arbitrary program returns True, it’s easy to show that it’s impossible
to have a procedure that is a perfect recognizer for any complete run time property
of programs.

For example, most compilers do “static” type-checking at compile time to ensure
that programs won’t make run-time type errors. A program that type-checks is
guaranteed not to cause a run-time type-error. But since it’s impossible to recognize
perfectly when programs won’t cause type-errors, it follows that the type-checker
must be rejecting programs that really wouldn’t cause a type-error. The conclusion
is that no type-checker is perfect —you can always do better!

It’s a different story if we think about the practical possibility of writing pro-
gramming analyzers. The fact that it’s logically impossible to analyze perfectly
arbitrary programs does not mean that you can’t do a very good g'ob analyzing in-
teresting programs that come up in practice. In fact theSe “interesting” programs are
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commonly intended to be analyzable in order to confirm that they do what they’re
supposed to do.

So it’s not clear how much of a hurdle this theoretical limitation implies in prac-
tice. What the theory does provide is some perspective on claims about general
analysis methods for programs. The theory tells us that people who make such
claims either

e are exaggerating the power (if any) of their methods—say to make a sale or
get a grant. or

e are trying to keep things simple by not going into technical limitations they’re
aware of, or

e perhaps most commonly, are so excited about some useful practical successes
of their methods that they haven’t bothered to think about the limitations
which you know must be there.

So from now on, if you hear people making claims about having general program
analysis/verification/optimization methods, you’ll know they can’t be telling the
wholestory.

One more important point: there’s no hope of getting around this by switching
programming languages. Our proof covered programs written in some given pro-
gramming language like Java, for example, and concluded that no Java program can
perfectly analyze all Java programs. Could there be a C++ analysis procedure that
successfully takes on all Java programs? After all, C++ does allow more intimate
manipulation of computer memory than Java does. But there is no loophole here:
it’s possible to write a virtual machine for C++ in Java, so if there were a C++ pro-
cedure that analyzed Java programs, the Java virtual machine would be able to do
it too, and that’s impossible. These logical limitations on the power of computation
apply no matter what kinds of programs or computers you use.

5.4 The

c of Sets

54.1

Reasoning naively about.gets turns out to be risky. In fact, one of the earliest at-
tempts to come up with precise axioms for sets in the late nineteenth century by
the logician Gotlob Frege, was shotdawn by a three line argument known as Rus-

I’s Paradox




“mecs” — 2011/2/6 — 3:08 — page 89 — #93

k.

6

First-Order Logic

6.1 The Logic of Sets
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6.1.1 Russell’s Paradox

Reasoning naively about sets turns out to be risky. In fact, one of the earliest at-
tempts to come up with precise axioms for sets by a late nineteenth century logican
named Gotlob Frege was shot down by a three line argument known as Russell’s
Paradox:' This was an astonishing blow to efforts to provide an axiomatic founda-
tion for mathematics.

Let S be a variable ranging over all sets, and define
Wao={S|S¢&S§5}

So by definition,
SeWiff S €85,

for every set S. In particular, we can let S be W, and obtain the
contradictory result that

WeWiff W W.

A way out of the paradox was clear to Russell and others at the time: it’s unjus-
ti]iezaf_/rwmuha@& So the step in the proof where we let S be W has
no justification, because S ranges over sets, and W may not be a set. In fact, the
paradox implies that W had better notbe aset! ~—— ——

But denying that W is a set means we must reject the very natural axiom that
every mathematically well-defined collection of elements is actually a set. So the

problem faced by Frege, Russe i gues was how to specify which

IBertrand Russell was a mathematician/logician at Cambridge University at the turn of the Twen-
tieth Century. He reported that when he felt too old to do mathematics, he began to study and write
about philosophy, and when he was no longer smart enough to do philosophy, he began writing about
politics. He was jailed as a conscientious objector during World War I. For his extensive philosophical
and political writing, he won a Nobel Prize for Literature.
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well-defined collections are sets. Russell and his fellow Cambridge University col-
league Whitehead immediately went to work on this problem. They spent a dozen
years developing a huge new axiom system in an even huger monograph called
Principia Mathematica.

6.1.2 The ZFC Axioms for Sets

It’s generally agreed that, using some simple logical deduction rules, essentially all
of mathematics can be derived from some axioms about sets called the Axioms of

Zermelo-Frankel Set Theory with Choice (ZFC).
€Te not going to be working wi xioms in this course, but we thought

you might like to see them —and while you're at it, get some practice reading quan-
tified formulas:

Extensionality. Two sets are equal if they have the same members. In formal log-

—1ical notation, this would be statedas;

(Vz. (z € x IFF z € y)) IMPLIES x = y.

Pairing. For any two sets x and y, there is a set, {x, y}, with x and y as its only

— elements:

V¥x,y.Ju_Nz. [z enimp (z =x0r 2z = p)]

Union. The union, u, of a collection, z, of sets is also a set:

——
Vz.3uVx. (Ay.x € yANDy € Z) IFF X € u.

Infinity. There is an infinite set. Specifically, there is a nonempty set, x, such that
for any set y € x, the set {y} is also a member of x. ( \\‘ 104

Power Set. All the subsets of a set form another set:
_—l—— o T i

Vx.dp.Yu.u C x IFFu € p.

Wnent. Suppose a formula, ¢, of set theory defines the graph of a function,
that is,
Vx,y,z. [¢(x,y) AND ¢(x, z)] IMPLIES y = .

Then the image of any set, s, under that function is also a set, f. Namely,

Vst Vy.[Ax.¢p(x,y) IFF y € t].
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Foundation. There cannot be an infinite sequence

c+E€EXp €E-- € X] €Xp

of sets each of which is a member of the previous one. This is equivalent
to saying every nonempty set has a “member-minimal” element. Namely,
define

member-minimal(m, x) :=[m € x ANDVy € x. y ¢ m].
Then the Foundation axiom is

Vx.x # @ IMPLIES Jm.member-minimal(m, x).

Cheice. Given a set, s, whose members are nonempty sets no two of which have
any element in common, then there is a set, ¢, consisting of exactly one
element from each set in s.

6.1.3 Avoiding Russell’s Paradox

These modern ZFC axioms for set theory are much simpler than the system Russell
and Whitehead first came up with to avoid paradox. In fact, the ZFC axioms are
as simple and intuitive as Frege’s original axioms, with one technical addition: the
Foundation axiom. Foundation captures the intuitive idea that sets must be built
up from “simpler” sets in certain standard ways. And in pmm
implmmthQMHe modern resolution of Russell’s
paradox goes MS for all sets S, it follows that W, defined

above, contains every set. This means W can’t be a set —or it would be a member

of itself. |
//[ (e 50/(///0 1

It turns out that the ideas behind Russell’s Paradox, which caused so much trouble
for the early efforts to formulate Set Theory, lead to a correct and astonishing fact
about infinite sets: they are not all the same size.

In particular, el T8

6.1.4 Power sets are strictly bigger

Theorem 6.1.1. For any set, A, the power set, P(A), is strictly bigger than A.

Proof. First of all, P(A) is as big as A: for example, the partial function f :
P(A) — A, where f({a}) ::=a fora € A and f is only defined on one-element
sets, is a surjection.
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To show that P(A) is strictly bigger than A, we have to show that if g is a
function from A to P(A), then g is not a surjection. So, mimicking Russell’s
Paradox, define

Agi={acd|a¢g@)}
Now A is a well-defined subset of A, which means it is a member of P(A). But
Ag can’t be in the range of g because if it were, we would have

Ag = g(ao)
for some ag € A, so by definition of Ag,
ac€glag) iff aeAdy, iff a¢ g(a)
forall a € A. Now letting a = ag yields the contradiction

ao € glao) iff ao ¢ g(ao).

So g is not a surjection, because there is an element in the power set of A, namely

the set Ag, that is not in the range of g. H
\__‘_‘_’__'_____

Larger Infinities

There are lots of different sizes of infinite sets. For example, starting with the
infinite set, N, of nonnegative integers, we can build the infinite sequence of sets

<

N, P(N), P(P(N)), P(P(P(N))), ....

By Theorem 6.1.1, each of these sets is strictly bigger than all the preceding ones.
But that’s not all: the union of all the sets in the sequence is strictly bigger than each
set in the sequence (see Problem 6.1). In this way you can keep going, building still
bigger infinities.

So there is an endless variety of different size infinities.

6.1.5 Does All This Really Work?

So this is where mainstream mathematics stands today: there is a handful of ZFC
axioms from which virtually everything else in mathematics can be logically de-
rived. This sounds like a rosy situation, but there are several dark clouds, suggest-
ing that the essence of truth in mathematics is not completely resolved.

e The ZFC axioms weren’t etched in stone by God. Instead, they were mostly

made up by some guy named Zermelo. Probably some days he forgot his
house keys. i
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So maybe Zermelo, just like Frege, didn’t get his axioms right and will be
shot down by some successor to Russell who will use his axioms to prove a
proposition P and its negation NOT P. Then math would be broken. This
sounds crazy, but after all, it has happened before.

In fact, while there is broad agreement that the ZFC axioms are capable of
proving all of standard mathematics, the axioms have some further conse-
quences that sound paradoxical. For example, the Banach-Tarski Theorem
says that, as a consequence of the Axiom of Choice, a solid ball can be di-
vided into six pieces and then the pieces can be rigidly rearranged to give wo
solid balls, each the same size as the original!

e Georg Cantor was a contemporary of Frege and Russell who first developed /

’ S
40

the theory of infinite sizes (because he thought he needed it in his study of ¢
Fourier series). Cantor raised the question whether there is a set whose size
is strictly between the “smallest®” infinite : he guessed not:

Cantor’s Continuum Hypothesis: There is no set, 4, such that P(N) is
strictly bigger than A and A is strictly bigger than N.

The Continuum Hypothesis remains an open problem a century later. Its \;/ =

difficulty arises from one of the deepest results in modern Set Theory
discovered in part by Godel in the 1930’s and Paul Cohen in the 1960’s
—namely, the ZFC axioms are not sufficient to settle the Continuum Hy-
pothesis: there are two collections of sets, each obeying the laws of ZFC,
and in one collection the Continuum Hypothesis is true, and in the other it is
false. So settling the Continuum Hypothesis requires a new understanding of
what Sets should be to arrive at persuasive new axioms that extend ZFC and
are strong enough to determine the truth of the Continuum Hypothesis one
way or the other.

e But even if we use more or different axioms about sets, there are some un-
avoidable problems. In the 1930’s, Godel proved that, assuming that an ax-
iom system like ZFC is consistent —meaning you can’t prove both P and
NOT P for any proposition, P —then the very proposition that the system is
consistent (which is not too hard to express as a logical formula) cannot be
proved in the system. In other words, no consistent system is strong enough
to verify itself.

2See Problem 5.2
\ | \
Thie oo afoesbing
bt vy foo Feohnta
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o
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6.1.6 Large Infinities in Computer Science

If the romance of different size infinities and continuum hypotheses doesn’t appeal
to you, not knowing about them is not going to lower your professional abilities
as a computer scientist. These abstract issues about infinite séiSTarely come up in
mainstream mathematics, and they don’t come up at all in computer science, where
the focus is generally on “countable,” and often just finite, sets. In practice, only
logicians and set theorists Tiaveto-worry about collections that are too big to be
sets. In fact, at the end of the 19th century, the general mathematical community
doubted the relevance of what they called “Cantor’s paradise” of unfamiliar sets of
arbitrary infinite size. ST

But the proof that power sets are bigger gives the simplest form of what is known
as a “diagonal argument.” Diagonal arguments are used to prove many fundamental
results about the Iumitatiors of computation, such as the undecidability of the Halt-
ing Problem for programs isee Problem 6.2) and the inherent, unavoidable, ineffi-
ciency (exponential time or worse) of procedures for other computational problems.
So computer scientists do need to study diagorﬁargu%ts‘m—oﬁer to understand
the logical limits of computation.




“mes” — 2011/2/6 — 3:08 — page 95 — #99

6.2. Glossary of Symbols 95

6.2 Glossary of Symbols

meaning

is defined to be

and

or

implies

not

not P

not P

iff

equivalent

Xor

exists

for all

is a member of

is a subset of

is a proper subset of
set union

set intersection
complement of a set, A
(A4) powerset of a set, A
the empty set, {}

Ilwlgujl<>=“u§
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Problems for Section 6.1
Class Problems

Problem 6.1.
There are lots of different sizes of infinite sets. For example, starting with the
infinite set, N, of nonnegative integers, we can build the infinite sequence of sets

N, P(N), P(P(N)), P(P(P(N))), ....

By Theorem 6.1.1 from the Notes, each of these sets is strictly bigger® than all the
preceding ones. But that’s not all: if we let U be the union of the sequence of sets
above, then U is strictly bigger than every set in the sequence! Prove this:

3Reminder: set A is strictly bigger than set B just means that A surj B, but NOT(B surj A4).
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Lemma. Let P"(N) be the nth set in the sequence, and

U= U P"(N).

n=0

Then
1. U surj P*(N) for everyn € N, but
2. there is non € N for which P" (N) surj U.

Now of course, we could take U, P(U), P(P(U)), ... and can keep on indefi-
nitely building still bigger infinities.

Problem 6.2.

Let’s refer to a programming procedure (written in your favorite programming
language—C++, or Java, or Python, ...) as a string procedure when it is appli-
cable to data of type st ring and only returns values of type boolean. When a
string procedure, P, applied to a st ring, s, returns True, we’ll say that P recog-

nizes s. If R is the set of strings that P recognizes, we’ll call P a recognizer for
R.

(a) Describe how a recognizer would work for the set of strings containing only
lower case Roman letter—a, b, ..., z—such that each letter occurs twice in a
row. For example, aaccaabbzz, is such a string, but abb, 00bb, AAbb, and a
are not. (Even better, actually write a recognizer procedure in your favorite pro-
gramming language).

A setof strings is called recognizable if there is a recognizer procedure for it.

When you actually program a procedure, you have to type the program text into a
computer system. This means that every procedure is described by some string
of typed characters. If a st ring, s, is actually the typed description of some string
procedure, let’s refer to that procedure as Ps. You can think of Ps as the result of
compiling 5.

In fact, it will be helpful to associate every string, s, with a procedure, Ps; we
can do this by defining Ps to be some fixed string procedure—it doesn’t matter
which one—whenever s is not the typed description of an actual procedure that can

4The string, s, and the procedure, Pj, have to be distinguished to avoid a type error: you can’t
apply a string to string. For example, let s be the string that you wrote as your program to answer
part (a). Applying s to a string argument, say oorrmm, should throw a type exception; what you
need to do is apply the procedure Ps to oorrmm. This should result in a returned value True, since
oorrmm consists of three pairs of lowercase roman letters




“mes” — 2011/2/6 — 3:08 — page 97 — #101

6.2. Glossary of Symbols 97

be applied to string s. The result of this is that we have now defined a total
function, f, mapping every string, s, to the set, f(s), of strings recognized
by Ps. That is we have a total function,

f :string — P(string). 6.1)

(b) Explain why the actual range of f is the set of all recognizable sets of strings.

This is exactly the set up we need to apply the reasoning behind Russell’s Para-
dox to define a set that is not in the range of f, that is, a set of strings, A/, that is
not recognizable.

(c) Let
N :={s e string|s ¢ f(s)}.
Prove that A is not recognizable.
Hint: Similar to Russell’s paradox or the proof of Theorem 6.1.1.

(d) Discuss what the conclusion of part (c) implies about the possibility of writing
“program analyzers” that take programs as inputs and analyze their behavior.

Problem 6.3.
Though it was a serious challenge for set theorists to overcome Russells’ Paradox,
the idea behind the paradox led to some important (and correct : —) ) results in

logic and computer science.

To show how the idea applies, let’s recall the formulas from Problem 3.13 that
made assertions about binary strings. For example, one of the formulas in that
problem was

NOT[dy Jz.s = ylz] (all-0s)

This formula defines a property of a binary string, s, namely that s has no occur-
rence of a 1. In other words, s is a string of (zero or more) 0’s. So we can say that
this formula describes the set of strings of 0’s.

More generally, when G is any formula that defines a string property, let ok-strings(G)
be the set of all the strings that have this property. A set of binary strings that equals
ok-strings(G) for some G is called a describable set of strings. So, for example,
the set of all strings of 0’s is describable because it equals ok-strings(all-0s).

Now let’s shift gears for a moment and think about the fact that formula all-0s
appears above. This happens because instructions for formatting the formula were
generated by a computer text processor (for this text, we used the I&IgX text pro-
cessing system), and then an image suitable for printing or display was constructed
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according to these instructions. Since everybody knows that data is stored in com-
puter memory as binary strings, this means there must have been some binary
string in computer memory—call it f,y.9s—that enabled a computer to display for-
mula all-0s once fy1.0s Was retrieved from memory.

In fact, it’s not hard to find ways to represent any formula, G, by a corresponding
binary word, ¢, that would allow a computer to reconstruct G from 7. We needn’t
be concerned with how this reconstruction process works; all that matters for our
purposes is that every formula, G, has a representation as binary string, fg.

Now let

V = {tg | G defines a property of strings and ¢ ¢ ok-strings(G)}.

Use reasoning similar to Russell’s paradox to show that V' is not describable.

Homework Problems

Problem 6.4.

Let [N — {1,2, 3}] be the set of all sequences containing only the numbers 1, 2,
and 3, for example,

31 18 2 O )
(80 3y
G2

For any sequence, s, let s[m] be its mth element.
Prove that [N — {1, 2, 3}] is uncountable.
Hint: Suppose there was a list

L = sequence, sequence,, sequences,, . . .

of sequences in [N — {1, 2, 3}] and show that there is a “diagonal” sequence diag €
[N — {1, 2, 3}] that does not appear in the list. Namely,

diag ::= r(sequence,[0]), 7 (sequence, [1]), r (sequence, [2]), . . .,

where r : {1, 2,3} — {1, 2, 3} is some function such that r (i) # i fori = 1,2, 3.

Problem 6.5.
For any sets, A, and B, let [A — B] be the set of total functions from A4 to B.

Prove that if A4 is not empty and B has more than one element, then NOT(A surj
[A — B)).




“mes” — 2011/2/6 — 3:08 — page 99 — #103

6.2. Glossary of Symbols 99

Hint: Suppose there is a function, o, that maps each element a € A to a function
og4 . A — B. Pick any two elements of B; call them 0 and 1. Then define

0if og(a) =1,

diag(a) :=
g(a) 1 otherwise.
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q (0\, nduction is a powerful method for showing a property is true for all natural num-
\& bers. Induction plays a central role in discrete mathematics and computer science,
b and in fact, its use is a defining characteristic of discrete —as opposed to continu-
% ous —mathematics. This chapter introduces two versions of induction —Ordinary
and Strong —and explains why work and how to use them in proofs. It also in-
troduces the Invariance Principle, which is a version of induction specially adapted
for reasoning about step-by-step processes.

Induction

6.1 Ordinary Induction

To understand how induction works, suppose there is a professor who brings to
class a bottomless bag of assorted miniature candy bars. She offers to share the
candy in the following way. First, she lines the students up in order. Next she states
two rules:

1. The student at the beginning of the line gets a candy bar.

2. If a student gets a candy bar, then the following student in line also gets a
candy bar.

Let’s number the students by their order in line, starting the count with 0, as usual
in computer science. Now we can understand the second rule as a short description
of a whole sequence of statements:

e If student O gets a candy bar, then student 1 also gets one.
e If student 1 gets a candy bar, then student 2 also gets one.

e If student 2 gets a candy bar, then student 3 also gets one.

Of course this sequence has a more concise mathematical description:

If student 1 gets a candy bar, then student n + 1 gets a candy bar, for
all nonnegative integers n.

N e
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So suppose you are student 17. By these rules, are you entitled to a miniature candy
bar? Well, student O gets a candy bar by the first rule. Therefore, by the second
rule, student 1 also gets one, which means student 2 gets one, which means student
3 gets one as well, and so on. By 17 applications of the professor’s second rule,
you get your candy bar! Of course the rules actually guarantee a candy bar to every
student, no matter how far back in line they may be.

oif it oni
6.1.1 A Rule for Ordinary Induction

The reasoning that led us to conclude that every student gets a candy bar is essen-
tially all there is to induction.

The Principle of Induction.

Let P be a predicate on nonnegative integers. 1f
e P(0) is true, and
e P(n) IMPLIES P(n + 1) for all nonnegative integers, n,

then TcF ‘(-5 ]LIUQ/

e P(m) is true for all nonnegative integers, m.

Since we’re going to consider several useful variants of induction in later sec-
tions, we’ll refer to the induction method described above as ordingry_induction
when we need to distinguish it. Formulated as a proof rule, this would be

Rule. Induction Rule

P(0), VneN.P(n)MPLIES P(n+ 1)
\I\MS 3 ~ Vim €N. P(m)

R This general induction rule works for the same intuitive reason that all the stu-

m%@‘\n\r dents get candy bars, and we hope the explanation using candy bars makes it clear

\\' why the soundness of the ordinary induction can be taken for granted. In fact, the

N&NQ&S rule is so obvious that it’s hard to see what more basic principle could be used to
v justify it." Whats not so obvious is how much mileage we get by using it.

Y‘\Quuw\ﬁ ~

e\

6.1.2 A Familiar Example

The formula (6.1) below for the sum of the nonnegative integers up to n is the kind
of statement about all nonnegative integers to which induction applies directly. We

But see Section 6.4.
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already already proved it (Theorem 2.3.1) using the Well Ordering Principle, but
now we’ll prove it using induction,

Theorem. Foralln € N,

nn+1
14243 4-ce4n (T)- (6.1)
To use the Induction Principle to prove the Theorem, define predicate P (1) to be
the equation (6.1). Now the theorem can be restated as the cTaim that P (n) is true
for all n € N. This is great, because the induction principle lets us reach precisely
that conclusion, provided we establish two simpler facts:

R\ AL
e Foralln € N, P(n) IMPLIES P(n + 1).

So now our job is reduced to proving these two statements. The first is true
because P(0) asserts that a sum of zero terms is equal to 0(0 + 1)/2 = 0, which is
true by definition. :

The second statement is more complicated. But remember the basic plan from
Section 1.5 for proving the validity of any implication: assume the statement on
the left and then prove the statement on the right. In this case, we assume P (n)—
namely, equation (6.1) —in order to prove P(n + 1), which is the equation

(n + D(n +2)
ST TR

These two equations are quite similar; in fact, adding (n + 1) to both sides of
equation (6.1) and simplifying the right side gives the equation (6.2):

s .
142434+ +nHn+1) n(”;- + (n +

_(m+2m+1)
E 2

Thus, if P(n) is true, then so is P(n + 1). This argument is valid for every non-
negative integer n, so this establishes the second fact required by the induction
principle. Therefore, the induction principle says that the predicate P(m) is true
for all nonnegative integers, m1, so the theorem is proved.

142434-+n+@n+1)= (6.2)

6.1.3 A Template for Induction Proofs

The proof of equation (6.1) was relatively simple, but even the most complicated
induction proof follows exactly the same template. There are five components:
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1. State that the proof uses induction. This immediately conveys the overall
structure of the proof, which helps your reader follow your argument.

2. Define an appropriate predicate P(n). The predicate P(n) is called the in-
duction hypothesis. The eventual conclusion of the induction argument will

\N h:& be that P(n) is true for all nonnegative 7. Clearly stating the induction hy-
A pothesis is often the-mostimportant part of an induction proof, and omitting
,b‘"-/ (L'{L it is the largest source of confused proofs by students.

i In the simplest cases, the induction hypothesis can be lifted straight from the

the induction hypothesis will involve several variables, in which case you

9
Q 0'(\- \ 30 proposition you are trying to prove, as we did with equation (6.1). Sometimes
should indicate which variable serves as 7.

3. Prove that P(0) is true. This is usually easy, as in the example above. This
part of the proof is called the base case or basis step.

4. Prove that P(n) implies P(n + 1) for every nonnegative integer n. This
is called the inductive step. The basic plan is always the same: assume that
P (n) is true and then use this assumption to prove that P(n+1) is true. These
two statements should be fairly similar, but bﬂdgingﬁ‘@@_may require
some ingenuity. Whatever argument you give must be valid for every non-
negative integer 7, since the goal is to prove the implications P(0) — P(1),
P(1) - P(2), P(2) = P(3), etc. all at once.

3. e induction. Given these facts, the induction principle allows you to
conclude that P(n) is true for all nonnegative n. This is the logical capstone
to the whole argument, but it is so standard that it’s usual not to mention it
explicitly.

Always be sure to explicitly label the base case and the inductive step. Tt will
make your proofs clearer, and it will decrease the chance that you forget a key step
(such as checking the base case).

6.1.4 A Clean Writeup

The proof of the Theorem given above is perfectly valid; however, it contains a
lot of extraneous explanation that you won’t usually see in induction proofs. The
writeup below is closer to what you might see in print and should be prepared to

produce yourself. o S

Revised proof of the Theorem. We use induction. The induction hypothesis, P(n),
will be equation (6.1).
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Figure 6.1 A 2" x 2" courtyard for n = 3.

Base case: P(0) is true, because both sides of equation (6.1) equal zero when
n=20.

Inductive step: Assume that P(n) is true, where n is any nonnegative integer.
Then

PN nn+1) : . .
1424+34+---4+n+n+1)= —— + (n 4+ 1) (by induction hypothesis)

i+ D) +2)
=L

~N
which proves P(n + 1). & [/LOV (?, ; —@5
0 We &%mf So it follows by induction that P(n) is true for all nonnegative n. O

(by simple algebra)

dg i ‘-’— ﬁ“ ) f"ﬁ Induction was helpful for proving the correctness of this summation formula, but
y not helpful for discovering it in the first place. Tricks and methods for finding such
Pf w4 Mwle formulas will be covered in Part III of the text.

d, 0 \6 [a/; 6.1.5 A More Challenging Example

' During the development of MIT’s famous Stata Center, as costs rose further and

8 \/f WMf & hf., further beyond budget, there were some radical fundraising ideas. One rumored
, . plan was to install a big courtyard with dimension_s_.?_’i_x_?_"_\lilh one of the central
pol‘qf\ m/!f’ squares” occupied by a statue of a wealthy potential donor —who we will refer to

2In the special case n = 0, the whole courtyard consists of a single central square; otherwise,
there are four central squares.
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Figure 6.2 The special L-shaped tile.

b 2
@ wl\% UL
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Figure 6.3 A tiling using L-shaped tiles for n = 2 with Bill in a center square.

as “Bill”, for the purposes of preserving anonymity. The n = 3 case is shown in
Figure 6.1.

A complication was that the building’s unconventional architect, Frank Gehry,
was alleged to require that only special L-shaped tiles (shown in Figure 6.2) be
used for the courtyard. For n = 2, a courtyard meeting these constraifits 1s shown
in Figure 6.3. But what about for larger values of n? Is there a way to tile a 2" x 27
courtyard with L-shaped tiles around a statue in the center? Let’s try to prove that
this is so.

Theorem 6.1.1. Forall n > 0 there exists a tiling of a 2" x 2" courtyard with Bill
in a central square.

Proof. ((@W) The proof is by induction. Let P(rn) be the proposition
that there exists a tiling of a 2" x 2" courtyard with Bill in the center.

Base case: P(0) is true because Bill fills the whole courtyard.

Inductive step: Assume that there is a tiling of a 2" x 2" courtyard with Bill in
the center for some 7 > 0. We must prove that there is a way to tile a 271 x 271
courtyard with Bill in the center ... . . [ |

- —
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Now we’re in trouble! The ability to tile a smaller courtyard with Bill in the
center isn’t much help in tiling a larger courtyard with Bill in the center. We haven’t
figured out how to bridge the gap between P(n) and P(n + 1).

So if we’re going to prove Theorem 6.1.1 by induction, we’re going to need some
other induction hypothesis than simply the statement about n that we’re trying to
prove.

Maybe you can figure one a good induction hypothesis for tiling. In class
we’ll present some hypotheses that do wm;}{

6.1.6 A Faulty Induction Proof

If we have done a good job in writing this text, right about now you should be
thinking, “Hey, this induction stuff isn’t so hard after all —just show P(0) is true
and that P(#n) implies P(n + 1) for any number n.” And, you would be right,
although sometimes when you start doing induction proofs on your own, you can
run into trouble. For example, we will now attempt to ruin your day by using
induction to “prove” that all horses are the same color. And just when you thought
it was safe to skip class and work on your robot program instead. Bummer!

False Theorem. All horses are the same color.

Notice that no n is mentioned in this assertion, so we’re going to have to re-
formulate it in-a-way that makes an n explicit. In particular, we’ll (falsely) prove

that |
. Thre s n
False Theorem 6.1.2. In every set @rses, all the horses are the same

color.

This a statement about all integers n > 1 rather > 0, so it’s natural to use a
slight variation on induction: prove P(1) in the base case and then prove that P (n)
implies P(n+1) forallp > 11 inductive step. This is a perfectly valid variant
of induction and is not the problem with the proof below. EE

Bogus proof. The proof is by induction on n. The induction hypothesis, P(n), will
be

In every set of n horses, all are the same color. (6.3)

Base case: (n = 1). P(1) is true, because in a set of horses of size 1, there’s
only one horse, and this horse is definitely the same color as itself.

Inductive step: Assume that P(#n) is true for some n > 1. That is, assume that
in every set of 71 horses, all are the same color. Now suppose we have a set of i1 + 1
horses:

hl, f’lz, T ]1,,, hn-}-l-

el o Show Cor ?/3 7254

J@é

¥

-
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‘We need to prove these n + 1 horses are all the same color.

By our assumption, the first # horses are the same color:
T —

h1, ha, ..oy hn, B
—_———

same color

Also by our assumption, the last n horses are the same color:

_T———m—
hl’ fI_Za ey hna hﬂ*f‘l)
same color
So 4, is the same color as the remaining horses besides 71,41 —thatis, k2, ..., hy.
Likewise, h,+1 is the same color as the remaining horses besides 7ry —that is,
ha, ..., hy,, again. Since h; and A, are the same color as ha, ..., hy, alln 41

horses must be the same color, and so P(n + 1) is true. Thus, P(n) implies P(n +
L.
By the principle of induction, P(n) is true foralln > 1. u
P

We’ve proved something false! Is math broken? Should we all become poets?
No, this proof has a mistake.

See if you can figure it out before we take it up in class.

Students sometimes explain that the mistake in the proof is because P(n) is
false for n > 2, and the proof assumes something false, namely, P(#), in order to
prove mou should think about how to explain to such a student why this
explanation would get no credit on a Math for Computer Science exam.

MY ait adctin— rot Yl base cuse

6.2 State Machines 6 O[ 4
L {

(.0

State machines are a simple abstract model of step-by-step processes. Since com-
puter programs can be understood as defining step—lly%teg)_cl:ngimiona] processes,
it’s not surprising mthat state machines come up regularly iIrcomputer science.
They also come up in many other settings such as digital circuit design and model-
ing of{gLQbMC‘EIg:esses. This section introduces Floyd’s Invariance Principle
which is a version of induction tailored specifically for proving propeorties of state
machines.

One of the most important uses of induction in computer science involves prov-
ing one or more desirable properties continues to hold at every-step in a process.
A property that is preServed through a series of operations O SIEpS 15 known as an
iwamples of desirable invariants include properties such as a variable
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Figure 6.4 State transitions for the 99-bounded counter.

never exceeding a certain value, the altitude of a plane never dropping below 1,000

feet without the wingflaps being deployed, and the temperature of a nuclear reactor
never exceeding the threshold for a meltdown.

6.2.1 States and Transitions

Formally, a state machine is nothing more than a binary relation on a set, except
that the elements of the set are called “states,” the relation is called the transition
relation, and an arrow in the graph of the transition relation is called a transition.
A transition from state ¢ to state r will be written q — r. The transition relation
is also called the state graph of Ihe ach ne. 1} tat ac ine also comes equipped
with a desxgnatem {S bale f(r(,w;f' prely
A simple example is a bounded counter, which counts from 0 to 99 and overflows
at 100. This state machine is pictured in Figure 6.4, with states pictured a circles,
transitions by arrows, and with start state 0 indicated by the double circle. To be
precise, what the picture tells us is that this bounded counter machines has

states == {0, 1,..., 99, overflow},
start state ::= 0,

@” blgansitions n={n—n+1]0=<n<99%U {99 — overflow, overflow —> overflow}.
———

B <%
This machine isn’t much use once it overflows, since it has no way to get out of its
overflow state. ——————
State machines for digital circuits and string pattern matching algorithms, for ex-
ample, usually have only a finite number of states. Machines that model continuing
computations typically have an infinite number of states. For example, instead of

A}

N —
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the 99-bounded counter, we could easily define an “unbounded” counter that just
keeps counwut overflowing. The unbounded counter has an infinite
state set, namely, the nonnegative integers, which makes its state diagram harder to
draw. :-)

States machines are often defined with labels on states and/or transitions to in-
dicate such things as input or output values. costs, capacities, or probabilities. Our
state machines don’t include any such labels because they aren’t needed for our
purposes. We do name states, as in Figure 6.4, so we can talk about them, but the
names aren’t part of the state machine.

6.2.2 Invariance for a Diagonally-Moving Robot

Suppose we have a robot that moves on an infinite 2-dimensional integer grid. The
state of the robot at any time can be specified by the integer coordinates (x, y) of
the robot’s current position. The start state is (0, 0) since it is given that the robot

starts at that position. At each step, the ay to a diagonally adjacent grid
point. To be precise, robot’s transitions are: )’)

{(m,n) — m*E1l,ntl)|mnelZ}
b —
For example, after the first step, the robot could be in states (1, 1), (1,—1), (-1, 1),
or (—1,—1). After two steps, there are 9 possible states for the robot, includ-
ing (0, 0).

Can the robot ever reach position (1, 0)?

If you play around with the robot a bit, you'll probably notice that the robot can
only reach positions (m, n which means, of course, that
it can’t reach (1, 0). This all follows because evenness L‘,)of the sum of coordinates is
preserved by transitions. We caqn ~+ do

This once, let’s go through this preserved-property argument again carcfully
highlighting where induction comes in. Namely, define the even-sum property of
states to be: sl

Even-sum((m,n)) ::== [m + n is even).

Lemma 6.2.1. For any transition, ¢ —> r, of the diagonally-moving robot, if
Even-sum(q), then Even-sum(r).

This lemma follows immediately from the definition of the robot’s transitions:
(m,n) — (m £ 1,n £ 1). After a transition, the sum of coordinates changes by
(£1) + (£1), that is, by 0, 2, or -2. Of course, adding 0, 2 or -2 to an even number
gives an even number. So by a trivial induction on the number of transitions, we

can prove:

(ﬂ'lﬂ 0’4}

W%
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Theorem 6.2.2. The sum of the coordinates of any state reachable by the diagonally-
moving robot is even.

Proof. The proofis duction an the number of transitions the robot has made. The
induction hypothesis\

P(n) ::=if g a state reachable in » transitions, then Even-sum(g).

base case: P(0) is true since the only state reachable in O transitions is the start
state (0, 0), and 0 4 0 is even. S

inductive case Assume that P(#) is true, and let 7 be any state reachable in 7 41
transitions. We need to prove that Even-sum(r) holds.

Now since r is reachable in n 4 1 transitions, there must be a state, g, reach-
able in n transitions such that ¢ — r. Now Even-sum(qg) holds since P(n) is
assumed to be true, so by Lemma 6.2.1, Even-sum(r) also holds. This proves that
P(n) IMPLIES P(n + 1) as required, completing the proof of the inductive step.

We conclude by induction that for all n > 0, if g is reachable in n transitions, then
Even-sum(q). This implies that every reachable state has the Even-sum property.

|

Corollary 6.2.3. The robot can never reach position (1,0).

Proof. By Theorem 6.2.2, we know the robot can only reach positions with coor-
dinates that sum to an even number, and thus it cannot reach position (1, 0). O

6.2.3 The Invariance Principle

Using the Even-sum invariant to understand the diag = ing robot is a sim-
ple example of a basic proof method calléd The Invariance Principled The Principle
summarizes how induction on the number of steps to reach a state applies to invari-

—_—

ants. To formulate it precisely, we need a definition of req_@é@y

Definition 6.2.4. The reachable states of a state machine, M, are defined recur-
sively as follows:

e the start state js reachable, and

e if p is a reachable state of M, and p — ¢ is a transition of M, then ¢ is
also a reachable state of M.

Definition 6.2.5. A ~imvarign! of a state machine is a predicate, P, on
states, such that whenever rstrue of a state, ¢, and ¢ —> r for some state, r,

then P (r) holds.

\ u “ A
—breal, it daun, hao i Nt tnpciodt” [

04&5
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The Invariant Principle

If a preserved invariant of a state machine is true for the start state,

then it is true for all reachable states.

The Invariant Principle is nothing more than the Induction Principle reformulated

in a convenientform-for-state-machines. Showing that a predicate is true in the start

state is the base case of the induction, and showing that a predicate is a preserved
invariant corresponds to the inductive step.’

3Preserved invariants are commonly just called “invariants” in the literature on program correct-
ness, but we decided to throw in the extra adjective to avoid confusion with other definitions. For
example, other texts (as well as another subject at MIT) use “invariant” to mean “predicate true of
all reachable states.” Let’s call this definition “invariant-2.” Now invariant-2 séems like a reason-
able™efimition, since unreachable states by defiditforrdomt matter, and all we want to show is that
a desired property is invariant-2. But this confuses the ebjective of demonstrating that a property is
invariant-2 with the method of finding a preserved invariant to show that it is invariant-2.

bap OLD,H' /x%ﬂ[ ﬂ@IL it
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Robert W. Floyd

The Invariant Principle was formulated by Robert Floyd at Carnegie Tech* in
1967. Floyd was already famous for work on formal grammars that transformed
the field of programming language garsmg that was how he got to be a professor
even though he never got a Ph.D. (He was admitted to a PhD program as a teenage
prodigy, but flunked out and never went back.)

In that same year, Albert R Meyer was appointed Assistant Professor in the
Camnegie Tech Computer Science Department where he first met Floyd. Floyd and
Meyer were the only theoreticians in the department, and they were both delighted
to talk about their shared interests. After just a few conversations, Floyd’s new
junior colleague decided that Floyd was the smartest person he had ever met.

Naturally, one of the first things Floyd wanted to tell Meyer about was his new,
as yet unpublished, Invariant Principle. Floyd explained the result to Meyer, and
Meyer wondered (privately) how someone as brilliant as Floyd could be excited
by such a trivial observation. Floyd had to show Meyer a bunch of examples be-
fore Meyer understood Floyd’s excitement —not at the truth of the utterly obvious
Invariant Principle, but rather at the insight that such a simple method could be so
widely and easi lied in verifying programs.

Floyd left for Stanford the following year. He won the Turing award —the
“Nobel prize” of computer science— in the late 1970’s, in recognition both of his
work on grammars and on the foundations of program verification. He remained
at Stanford from 1968 until his death in September, 2001. You can learn more
about Floyd’s life and work by reading the eulogy written by his closest colleague,
Don Knuth.

6.2.4 The Die Hard Example

The movie Die Hard 3: With a Vengeance includes an amusing example of a state
machine. The lead characters played by Samuel L. Jackson and Bruce Willis have

to disarm a bomb planted by the diabolical Simon Gruber:
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Simon: On the fountain, there should be 2 jugs, do you see them? A 5-
gallon and a 3-gallon. Fill one of the jugs with exactly 4 gallons of water
afid place it on the scale and the timer will stop. You must be precise;
one ounce more or less will result in detonation. If you're still alive in 5
minutes, we’ll speak. B

Bruce: Wait, wait a second. I don’t get it. Do you get it?
Samuel: No.

Bruce: Get the jugs. Obviously, we can’t fill the 3-gallon jug with 4 gal-
lons of water.

Samuel: Obviously.

Bruce: All right. T know, here we go. We fill the 3-gallon jug exactly to
the top, right?

Samuel: Uh-huh.

Bruce: Okay, now we pour this 3 gallons into the 5-gallon jug, giving us

exactly 3 gallons in the 5- jug, right?

Samuel: Right, then what?
Bruce: All right. We take the 3-gallon jug and fill it a third of the way...
e et
Samuel: No! He said, “Be precise.” Exactly 4 gallons.
preeise. =

Bruce: Sh - -. Every cop within 50 miles is running his a - - off and I'm
out here playing kids games in the park.

Samuel: Hey, you want to focus on the problem at hand?

Fortunately, they find a solution in the nick of time. You can work out how.

The Die Hard 3 State Machine

The jug-filling scenario can be modeled with a state machine that keeps track of the
amount, b, of water in the big jug, and the ammount, /, in the little jug. With the 3
and a 5 gallon water jugs, the states formally will be pair@f real numbers
suchthat 0 < b < 5,0 < < 3. (We can prove that the reachable values of b and
[ will be nonnegative integers, but we won’t assume this.) The start state is (0, 0),
since both jugs start empty.

Since the amount of water in the jug must be known exactly, we will only con-
sider moves in which a jug gets completely filled or completely emptied. There are
several kinds of transitions:

(I
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1. Fill the little jug: (b,1) — (b,3) for ] < 3.
2. Fill the big jug: (b,I) — (5,1) for b < 5.

3. Empty the little jug: (b,1) —> (b,0) for! > 0.

&

Empty the big jug: (b,1) — (0,1) forb > 0.

Lh

Pour from the little jug into the big jug: for / > 0,

(b +1,0) ifb+1<5,

b,0) — :
(5, —(5—0)) otherwise.

6. Pour from big jug into little jug: for b > 0,

0,b+1) ifb+1<3,

6.5) — .
(b—(3—1),3) otherwise.

Note that in contrast to the 99-counter state machine, there is more than one pos-
sible transition out of states in the Die Hard machine. Machines like the 99-counter
witRarTost one transition out of each state are called deterministic. The Die Hard
machine is Eondetergg’z_zggtfc because some states have transitions to several differ-
ent states. —

The Die Hard 3 bomb gets disarmed successfully because the staté (4,3) is reach-
able.

The Die Hard series is getting tired, so we propose a final Die Hard Once and For
All. Here Simon’s brother returns to avenge him, and he poses the same challenge,
but with the _5__g_al]0n jug replaced by a 9 gallon one. The state machine has the
same specification as in Die Hard 3, with all occurrences of “5” replaced by “9.”

Now reaching any state of the form (4, /) is impossible. We prove this using the
Invariant Principle. Namely, we definéthe preserved invariant predicate, P((b, 1)),
to be that b and / are nonnegative integer multiples of 3.

To prove that P is a preserved invariant of Die-Hard-Once-and-For-All machine,
we assume P(q) holds for some state ¢ ::= (b, /) and that g — r. We have to
show that P(r) holds. The proof divides into cases, according to which transition
rule is used.

One case is a “fill the little jug” transition. This means r = (b, 3). But P(q)
implies that b is an integer multiple of 3, and of course 3 is an integer multiple of
3, so P(r) still holds.

Die Hard Once and For All MJ V\f) \N/ FZ{M% /7'

(fﬁqﬂg




“mes” — 2011/2/20 — 13:05 — page 127 — #131

6.2. State Machines 127

Another case is a “pour from big jug into little jug” transition. For the subcase
when there isn’t enough room in the little jug to hold all the water, namely, when
b+1>3,wehaver = (b —(3—1),3). But P(g) implies that » and / are integer
multiples of 3, which means b — (3 — /) is too, so in this case too, P(r) holds.

We won’t bother to crank out the remaining cases, which can all be checked
just as easily. Now by the Invariant Principle, we conclude that every reachable
state satisifies P. But since no state of the form Ms_a.tisi.ﬁes_&_we have proved
rigorously that Bruce dies once and for all!

By the way, notice that the state (1,0), which satisfies NOT(P), has a transition
to (0,0), which satisfies P. So the negation of a preserved invariant may not be a

preserved invariant. /m ({ M Care ﬁ/ [7

6.2.5 Fast Exponentiation
Partial Correctness & Termination

Floyd distinguished two required properties to verify a program. The first property
is called partial correctness; this is the property that the final results, if any, of the
process must SHWHS. z

You might suppose that if a result was only partially correct, then it might also
be partially incorrect, but that’s not what Floyd meant. The word “partial” comes
from viewing a process that might not terminate as computing a partial relation.
Partial correctness means that when there is a result, it is correct, but the process
might not always produce a result, perhaps because it gets stuck in a loop.

The=second correctness property called termination is that the process does al-
ways produce some final value. :

Partial correctness can commonly be proved using the Invariant Principle. Termi-
nation can commonly be proved using the Well Ordering Principle. We’ll illustrate
this by verifying a Fast Exponentiation procedure.

Exponentiating

The most straightforward way to compute the bth power of a number, a, is to mul-
tiply a by itself b — 1 times. There is another way to do it using considerably fewer
multiplications called Fast Exponentiation. The register machine program below
defines the fast exponentiation algorithm. The letters x, y, z, r denote registers that
hold numbers. An assignment statement has the form “z := a” and has the effect
of setting the number in register z to be the number a.
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A Fast Exponentiation Program

Given inputs a € R, b € N, initialize registers x, y, z to a, 1, b respectively, and
repeat the following sequence of steps until termination:

e if z = O return y and terminate

e r := remainder(z, 2)

e z := quotient(z, 2)

o ifr =1,theny :=xy

o x:=x2

We claim this program always terminates and leaves y = ab.

To begin, we’ll model the behavior of the program with a state machine:
1. states :=R xR x N,

2. start state ::= (a, 1, b),

3. transitions are defined by the rule

2 - . .
X*, y,quotient(z, 2 if z is nonzero and even,
(xf y’ 2") ( 2 y q . ( )) . .
(x*, xy,quotient(z, 2)) if z is nonzero and odd.

The preserved invariant, P((x, y, z)), will be
z €e NAND yx* = ab. (6.4)

To prove that P is preserved, assume P((x, y,z)) holds and that (x, y,z) —
(x¢, y¢,2¢). We must prove that P((x;, y:, z;)) holds, that is,

z; € NAND y;x? = ab. (6.5)

- Since there is a transition from (x, y,z), we have z # 0, and since z € N
by (6.4), we can consider just two cases:
If z is even, then we have that x, = x2, y; = y, z; = quotient(z, 2). Therefore,
z € Nand

Zgiats 2-quotient(z,2)
Pix ="y q s

= yx2-(ZI2)
—t yxz

=a® (by (6.4))
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If z is odd, then we have that x; = x2, y; = xy, z; = quotient(z, 2). Therefore,
Zy € N and

Zr 2-quotient(z,2)
yexyt = xyx=9

_ yxl+2'(z-1)/2

e yx1+(z—1)

:yxz

= q° (by (6.4))

So in both cases, (6.5) holds, proving that P is a preserved invariant.

Now it’s easy to prove partial correctness, namely, if the Fast Exponentiation
program terminates, it does so with a® in register y. This works because obviously
1-ab = a®, which means that the start state, (a,1,b), satisifies P. By the Invariant
Principle, P holds for all reachable states. But the program only stops when z = 0,
so if a terminated state, (x, y, 0) is reachable, then y = yx® = a? as required.

Ok, it’s partially correct, but what’s fast about it? The answer is that the number
of multiplications it performs to compute ab is roughly the length of the binary
representation of . That is, the Fast Exponentiation program uses roughly log, b
multiplications compared to the naive approach of multiplying by a a total of b — 1
times.

More precisely, it requires at most 2([log, b] + 1) multiplications for the Fast
Exponentiation algorithm to compute ab for b > 1. The reason is that the number
in register z is initially b, and gets at least halved with each transition. So it can’t
be halved more than [log, b+ 1 times before hitting zero and causing the program
to terminate. Since each of the transitions involves at most two multiplications, the
total number of multiplications until z = 0 is at most 2([log, b] + 1) forb > 0
(see Problem 6.25).

6.3 Strong Induction

A useful variant of induction is callgd Srroﬁg Induction. Qong induction and ordi-
nary induction are used for exactly the same thing: proving that a predicate is true
for all nonnegative integers. Strong induction is useful when a simple proof that

the predicate holds for n + 1 do just from the fact that it holds at n,
bu mt i s for other val < 1=
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Chapter 6 Induction

6.3.1 A Rule for Strong Induction

Principle of Strong Induction.

Let P be a predicate on nonnegative integers. If
e P(0) is true, and
e foralln e N, P(0), P(1), ..., P(n) together imply P(n + 1),

then P (m) is true for all m € N.

The only change-f i ' ion principle is that strong induction
allows yet to assume more stuff in the inductive step of yourproof! In an ordinary
induction argument, you assume that P (n) is true and try to prove that P(n + 1)

is also true. In a strong induction argument, you may assume that P (0), P(1), ...,
and P (n) ay€ alptrue when you go to prove P(n + 1). These extra assumptions can
only make your job easier. Hence the name: strong induction.

Formulated as a proof rule, strong induction is

Rule. Strong Induction Rule

P(0), Vn eN.(P(0)AND P(1) AND...AND P(n)) IMPLIES P(n + 1)
Vm e N. P(m)

Stated more succintly, the rule is

Rule.
P(0), [Vk <neN.P(k)] IMPLIES P(n + 1)

Vm € N. P(m)

The template for strong induction proofs is identical to the template given in
Section 6.1.3 for ordinary induction except for two things:

e you should state that your proof is by strong induction, and
1>'¢’

e you can assume that P(0), P(1), ..., P(n) are all true instead of only P (n)
during the inductive step.

6.3.2 Products of Primes

As a first example, we’ll use strong induction to re-prove Theorem 2.4.1 which we
previously proved using Well Ordering.

Theorem. Every integer greater than 1 is a product of primes.
-_____/_‘-\-——ﬂ.
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Proof. We will prove the Theorem by strong induction, letting the induction hy-
pothesis, P (n), be
n is a product of primes.

So the Theorem will follow if we prove that P (n) holds for all n > 2.

Base Case: (n = 2): P(2)is t/rg;.because 2 is prime, so it is a length one product
of primes by convention. & ¢ /

Inductive step: Suppose that n > 2 and that k is a product of primes for every
integer k where 2 < k < n. We must show that P (n + 1) holds, namely, thatn + 1
is also a product of primes. We argue by cases:

If n + 1 is itself prime, then it is a length one product of primes by convention,
and so P(n + 1) holds in this case.

Otherwise, n + 1 is not prime, which by definition means n + 1 = km for some
integers k,m such that 2 <-k,m < n. Now by the strong induction hypothesis,
we know that & is a product of primes. Likewise, m is a product of primes. By
multiplying these products, it follows immediately that km = n is also a product
of primes. Therefore, P (n + 1) holds in this case as well.

So P(n + 1) holds in any case, which completes the proof by strong induction
that P(n) holds for all n > 2.

|
6.3.3 Making Change

The country Inductia, whose unit of currency is the Strong, has coins worth 3Sg
(3 Strongs) and 5Sg. Although the Inductians have some trouble making small
change like 4Sg or 7Sg, it turns out that they can collect coins to make change for
any number that is at least 8 Strongs.

Strong induction makes this easy to prove for n + 1 > 11, because then (n +
1) —3 = 8, so by strong induction the Inductians can make change for exactly
(n 4+ 1) —3 Strongs, and then they can add a 3Sg coin to get (7 + 1)Sg. So the only
thing to do is check that they can make change for all the amounts from 8 to 10Sg,
which is not too hard to do.

Here’s a detailed writeup using the official format:

Proof. We prove by strong induction that the Inductians can make change for any
amount of at least 8Sg. The induction hypothesis, P(n) will be:

There is a collection of coins whose value is n + 8 Strongs.

We now proceed with the induction proof:
Base case: P(0) is true because a 3Sg coin together with a 5Sg coin makes 8Sg.
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Inductive step: We assume P (k) holds for all k£ < n, and prove that P(n + 1)
holds. We argue by cases:

Case (n + 1 = 1): We have to make (n + 1) + 8 = 9Sg. We can do this using
three 3Sg coins.

Case (n + 1 =2): We have to make (n + 1) 4+ 8 = 10Sg. Use two 5Sg coins.

Case (n + 1 = 3): Then 0 < n —2 < n, so by the strong induction hypothesis,
the Inductians can make change for n — 2 Strong. Now by adding a 3Sg coin, they
can make change for (n + 1)Sg.

Since n > 0, we know that » + 1 > 1 and thus that the three cases cover
every possibility. Since P(n + 1) is true in every case, we can conclude by strong
induction that for all » > 0, the Inductians can make change for n 4 8 Strong. That
is, they can make change for any number of eight or more Strong. |

6.3.4 The Stacking Game

Here is another exciting game that’s surely about to sweep the nation!

You begin with a stack of n boxes. Then you make a sequence of moves. In each
move, you divide one stack of boxes into two nonempty stacks. The game ends
when you have n stacks, each containing a single box. You earn points for each
move; in particular, if you divide one stack of height @ + b into two stacks with
heights a and b, then you score ab points for that move. Your overall score is the
sum of the points that you earn for each move. What strategy should you use to
maximize your total score?

As an example, suppose that we begin with a stack of n = 10 boxes. Then the
game might proceed as shown in Figure 6.5. Can you find a better strategy?

Analyzing the Game

You will see in class how to use strong induction to analyze this game of blocks.

6.4 Strong Induction vs. Induction vs. Well Ordering

Strong induction looks genuinely “stronger” than ordinary induction —after all,
you can assume a lot more when proving the induction step. Since ordinary in-
duction is a special case of strong induction, you might wonder why anyone would
bother with the ordinary induction.

But strong induction really isn’t any stronger, because a simple text manipula-
tion program can automatically reformat any proof using strong induction into a

proof using ordinary induction —just by decorating the induction hypothesis with
—
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Stack Heights Score
10
5 5 25 points
5 3 2 6
4 3 2 1 4
2 3 21 2 4
22 -2°1+2-1 2
L2231 2 1 1 1
1 121 2111 1
1 11121111 1
1 111111111 1
Total Score = 45 points

Figure 6.5 An example of the stacking game with n = 10 boxes. On each line,
the underlined stack is divided in the next step.

a universal quantifier in a standard way. Still, it’s worth distinguishing these two
kinds of induction, since which you use will signal whether the inductive step for
n + 1 follows directly from the case for n or requires cases smaller than n, and that
is generally good for your reader to know.

The template for the two kinds of induction rules look nothing like the one for
theWell Ordering Principle, but this chapter included a couple of examples where
induction was used to prove something already proved using Well Ordering. In
fact, this can always be done. As the examples may suggest, any Well Ordering
proof calﬁﬁmeformatted it into an Induction proof. So theoretically,
no one need bother with the Well Ordering Principle either.

But wait a minute —it’s equally easy go the other way, and automatically re-
format any Strong Induction proof into a Well Ordering proof. The three proof

methods —Well Ordering, Induction, and Strong Induction, are simply diffi I-
mats for presenting the s ] ¥

So why three methods? Well, sometimes induction proofs are clearer because
they don’t require proof by contradiction. Also, induction proofs often provide
recursive procedures that reduce handling large inputs to handling smaller ones.
On the other hand, Well Ordering come out slightly shorter and sometimes seem
more natural (and less worrisome to beginners).

So which method shouldQu use? —whichever you find easier! But whichever
method you choose, be sufe to state the method up front to help a reader follow

your proof. a /’l 7 ‘(
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Problems for Section 6.1
Class Problems

Problem 6.1.
Use induction to prove that

P+2 .40’ = (
foralln > 1.
Remember to formally
1. Declare proof by induction.
2. Identify the induction hypothesis P (n).
3. Establish the base case.
4. Prove that P(n) = P(n +1).
5. Conclude that P(n) holds foralln > 1.

as in the five part template.

Problem 6.2.
Prove by induction on n that
n+1 _ 1
14r 4724 tm=" 2
r —

for all n € N and numbers r # 1.

Problem 6.3.
Prove by induction:

foralln > 1.

(6.6)

(6.7)

(6.8)
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Problem 6.4. (a) Prove by induction that a 2" x 2" courtyard with a 1 x 1 statue
of Bill in a corner can be covered with L-shaped tiles. (Do not assume or reprove
the (stronger) result of Theorem 6.1.1 that Bill can be placed anywhere. The point
of this problem is to show a different induction hypothesis that works.)

(b) Use the result of part (a) to prove the original claim that there is a tiling with
Bill in the middle.

Problem 6.5.
Find the flaw in the following bogus proof that a” = 1 for all nonnegative integers
n, whenever a is a nonzero real number.

Bogus proof. The proof is by induction on n, with hypothesis
P(n) ==Vk < n.ak =1,

where k is a nonnegative integer valued variable.

Base Case: P(0) is equivalent to a® = 1, which is true by definition of a°. (By
convention, this holds even if a = 0.)

Inductive Step: By induction hypothesis, ¥ = 1 forall k € N such thatk < n.
But then

n

n+1 _ 4
ah—1

which implies that P(n + 1) holds. It follows by induction that P () holds for all
n € N, and in particular, a” = 1 holds for all n € N.

a

N T |
a L W)
1

Problem 6.6.
We’ve proved in two different ways that

n(n+1)
2

But now we’re going to prove a contradictory theorem!

I 42 H3 4l =

False Theorem. Foralln > 0,

2_;_3_;_4_}_..._{.”:”(”—;_1)
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Proof. We use induction. Let P (n) be the propositionthat2 +3 +4 +---+n =
n(n+1)/2.

Base case: P(0) is true, since both sides of the equation are equal to zero. (Recall
that a sum with no terms is zero.)

Inductive step: Now we must show that P(n) implies P(n + 1) foralln = 0. So
suppose that P(n) is true; thatis, 2+ 3 +4 +---4+n = n(n + 1)/2. Then we can
reason as follows:

243+44-+n+@+1)=R4+34+4+--+n]+@+1)

:"—("ZH) +(+1)

_(+ D +2)
) 2

Above, we group some terms, use the assumption P (n), and then simplify. This
shows that P(n) implies P(n + 1). By the principle of induction, P (n) is true for
alln e N. o

Where exactly is the error in this proof?

Homework Problems

Problem 6.7.

Claim 6.4.1. If a collection of positive integers (not necessarily distinct) has sum
n > 1, then the collection has product at most 3n/3,
For example, the collection 2, 2, 3, 4, 4, 7 has the sum:

242434+44+44+7=22
On the other hand, the product is:

2.2.3.4.4.7=1344
< 322/3

~ 3154.2
(a) Use strong induction to prove that n < 3*/3 for every integer n > 0.

(b) Prove the claim using induction or strong induction. (You may find it easier
to use induction on the number of positive integers in the collection rather than
induction on the sum »n.)
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Problem 6.8.
For any binary string, o, let num (&) be the nonnegative integer it represents in
binary notation. For example, num (10) = 2, and num (0101) = 5.

An n + 1-bit adder adds two n + 1-bit binary numbers. More precisely, an
n + 1-bit adder takes two length n + 1 binary strings

oy =ay...adop,

B =B . 2D B0y,
and a binary digit, cyp, as inputs, and produces a length n + 1 binary string
Op =Sy ...5150,
and a binary digit, c,+1, as outputs, and satisfies the specification:
num (e) + num (B,) + co = 2" epy1 + num (o) . (6.9)

There is a straighforward way to implement an n + 1-bit adder as a digital circuit:
an n + 1-bit ripple-carry circuit has 1 + 2(n + 1) binary inputs

an,...,a1,a0,bn,...,bl,b0,()0,

and n + 2 binary outputs,
Cn+1+Sn,y---,51,50.

As in Problem 3.5, the ripple-carry circuit is specified by the following formulas:

§; »=a; XOR b; XOR ¢; (6.10)
ci+1::=(a; AND b;) OR (a; AND c¢;j) OR (b; AND c;),. (6.11)

for0 <i <n.

(a) Verify that definitions (6.10) and (6.11) imply that
an+bn +Cﬂ =26n+1 +Sn. (6.12)
foralln € N,

(b) Prove by induction on n that an n + 1-bit ripple-carry circuit really is an n + 1-
bit adder, that is, its outputs satisfy (6.9).

Hint: You may assume that, by definition of binary representation of integers,

num (@p+1) = ap+12"" + num () . (6.13)
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Problem 6.9.

The Math for Computer Science mascot, Theory Hippotamus, made a startling
discovery while playing with his prized collection of unit squares over the weekend.
Here is what happened.

First, Theory Hippotamus put his favorite unit square down on the floor as in
Figure 6.6 (a). He noted that the length of the periphery of the resulting shape was
4, an even number. Next, he put a second unit square down next to the first so that
the two squares shared an edge as in Figure 6.6 (b). He noticed that the length
of the periphery of the resulting shape was now 6, which is also an even number.
(The periphery of each shape in the figure is indicated by a thicker line.) Theory
Hippotamus continued to place squares so that each new square shared an edge
with at least one previously-placed square and no squares overlapped. Eventually,
he arrived at the shape in Figure 6.6 (c). He realized that the length of the periphery
of this shape was 36, which is again an even number.

Our plucky porcine pal is perplexed by this peculiar pattern. Use induction on
the number of squares to prove that the length of the periphery is always even, no
matter how many squares Theory Hippotamus places or how he arranges them.

f98ps2-c.pdf

(@) (b) (©

Figure 6.6 Some shapes that Theory Hippotamus created.

Problems for Section 6.2
Practice Problems

Problem 6.10.
Which states of the Die Hard 3 machine below have transitions to exactly two
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states?

Die Hard Transitions
1. Fill the little jug: (b,!) — (b, 3) for !l < 3.
Fill the big jug: (b,1) — (5,1) for b < 5.
Empty the little jug: (b,1) — (b,0) for/ > 0.

P L]

Empty the big jug: (b,!) — (0,]) for b > 0.
5. Pour from the little jug into the big jug: for / > 0,

b +1,0) ifb+1 <5,

(B, 8) = (5,] —(5—0b)) otherwise.

6. Pour from big jug into little jug: for b > 0,

©,b+1) ifh+1 <3,

b)) — :
(b—(3—1),3) otherwise.

Problems for Section 6.2
Homework Problems

Problem 6.11.

You are given two buckets, A4 and B, a water hose, a receptacle, and a drain. The
buckets and receptacle are initially empty. The buckets are labeled with their re-
spectively capacities, positive integers a and b. The receptacle can be used to store
an unlimited amount of water, but has no measurement markings. Excess water can
be dumped into the drain. Among the possible moves are:

1. fill a bucket from the hose,

2. pour from the receptacle to a bucket until the bucket is full or the receptacle
is empty, whichever happens first,

3. empty a bucket to the drain,
4. empty a bucket to the receptacle,

5. pour from A to B until either A is empty or B is full, whichever happens
first,
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6. pour from B to A until either B is empty or A is full, whichever happens
first.

(a) Model this scenario with a state machine. (What are the states? How does a
state change in response to a move?)

(b) Prove that we can put k € N gallons of water into the receptacle using the
above operations if and only if gcd(a, b) | k. Hint: Use the fact that if a, b are
positive integers then there exist integers s, ¢ such that ged(a, b) = sa + tb from
Section 2?2.

Problem 6.12.
Here is a very, very fun game. We start with two distinct, positive integers written
on a blackboard. Call them @ and b. You and I now take turns. (I'll let you decide
who goes first.) On each player’s turn, he or she must write a new positive integer
on the board that is the difference of two numbers that are already there. If a player
can not play, then he or she loses.

For example, suppose that 12 and 15 are on the board initially. Your first play
must be 3, which is 15 — 12. Then I might play 9, which is 12 — 3. Then you might
play 6, which is 15 — 9. Then I can not play, so I lose.

(a) Show that every number on the board at the end of the game is a multiple of
ged(a, b).

(b) Show that every positive multiple of gcd(a, b) up to max(a, b) is on the board
at the end of the game.

(c) Describe a strategy that lets you win this game every time.

Problem 6.13.

In the late 1960s, the military junta that ousted the government of the small re-
public of Nerdia completely outlawed built-in multiplication operations, and also
forbade division by any number other than 3. Fortunately, a young dissident found
a way to help the population multiply any two nonnegative integers without risking
persecution by the junta. The procedure he taught people is:

procedure multiply(x, y: nonnegative integers)
ri=X;
5:=1Y;
a:=0;
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while s £ 0 do
if 3 | s then
re=r—+r+r;
s:=s/3;
elseif 3 | (s — 1) then
a:=a-r,;
ri=r4r+r;
s =in—=1)3
else
a:=a-+r+r;
r:=r+r+4r;
s:=(s—2)/3;
return a;

We can model the algorithm as a state machine whose states are triples of non-
negative integers (r, s, @). The initial state is (x, y, 0). The transitions are given by
the rule that for s > 0:

(3r,s/3,a) if 3]s
(r,s,a) = {(@r,(s—=1)/3,a+r) if3]|(s—=1)
(3r,(s —2)/3,a +2r) otherwise.

(a) List the sequence of steps that appears in the execution of the algorithm for
inputs x = 5and y = 10.

(b) Use the Invariant Method to prove that the algorithm is partially correct—that
is,if s = 0, thena = xy.

(c) Prove that the algorithm terminates after at most 1 + logs y executions of the
body of the do statement.

Problem 6.14.
A robot named Wall-E wanders around a two-dimensional grid. He starts out at
(0,0) and is allowed to take four different types of step:

(B LR
2 (CE,%2)

3' (+17 +1)




“mes” — 2011/2/20 — 13:05 — page 142 — #146

142

ant.pdf

Undredrawn

Chapter 6 Induction

4. (=3,0)

Thus, for example, Wall-E might walk as follows. The types of his steps are
listed above the arrows.

0:0) = (=1 B0 i 0] 5 =T

Wall-E’s true love, the fashionable and high-powered robot, Eve, awaits at (0, 2).
(a) Describe a state machine model of this problem.

(b) Will Wall-E ever find his true love? Either find a path from Wall-E to Eve or
use the Invariant Principle to prove that no such path exists.

Problem 6.15.

A hungry ant is placed on an unbounded grid. Each square of the grid either con-
tains a crumb or is empty. The squares containing crumbs form a path in which,
except at the ends, every crumb is adjacent to exactly two other crumbs. The ant is
placed at one end of the path and on a square containing a crumb. For example, the
figure below shows a situation in which the ant faces North, and there is a trail of
food leading approximately Southeast. The ant has already eaten the crumb upon
which it was initially placed.

& e

The ant can only smell food directly in front of it. The ant can only remember
a small number of things, and what it remembers after any move only depends on
what it remembered and smelled immediately before the move. Based on smell and
memory, the ant may choose to move forward one square, or it may turn right or
left. It eats a crumb when it lands on it.
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The above scenario can be nicely modelled as a state machine in which each state
is a pair consisting of the “ant’s memory” and “everything else”—for example,
information about where things are on the grid. Work out the details of such a
model state machine; design the ant-memory part of the state machine so the ant
will eat all the crumbs on any finite path at which it starts and then signal when it
is done. Be sure to clearly describe the possible states, transitions, and inputs and
outputs (if any) in your model. Briefly explain why your ant will eat all the crumbs.

Note that the last transition is a self-loop; the ant signals done for eternity. One
could also add another end state so that the ant signals done only once.

Problem 6.16.
Suppose that you have a regular deck of cards arranged as follows, from top to
bottom:

AQ2Q.. . KQABM2M.. KBS AS2®... K AO2$ ... KO

Only two operations on the deck are allowed: inshuffling and outshuffling. In
both, you begin by cutting the deck exactly in half, taking the top half into your
right hand and the bottom into your left. Then you shuffle the two halves together
so that the cards are perfectly interlaced; that is, the shuffled deck consists of one
card from the left, one from the right, one from the left, one from the right, etc. The
top card in the shuffled deck comes from the right hand in an outshuffle and from
the left hand in an inshuffle.

(a) Model this problem as a state machine.

(b) Use the Invariant Principle to prove that you can not make the entire first half
of the deck black through a sequence of inshuffles and outshuffles.

Note: Discovering a suitable invariant can be difficult! The standard approach is
to identify a bunch of reachable states and then look for a pattern, some feature that
they all share.’

Class Problems

Problem 6.17.

In this problem you will establish a basic property of a puzzle toy called the Fifteen
Puzzle using the method of invariants. The Fifteen Puzzle consists of sliding square
tiles numbered 1,..., 15 held in a 4 x 4 frame with one empty square. Any tile
adjacent to the empty square can slide into it.

3If this does not work, consider twitching and drooling until someone takes the problem away.
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The standard initial position is

[ A2 B e R
Sl bl 1 i B
9110|1112
1311415

We would like to reach the target position (known in the oldest author’s youth as
“the impossible™):

15|14 13|12
1110 9| 8
T-| 625,04
3 2] 4
A state machine model of the puzzle has states consisting of a 4 x 4 matrix with
16 entries consisting of the integers 1, ..., 15 as well as one “empty” entry—like

each of the two arrays above.

The state transitions correspond to exchanging the empty square and an adjacent
numbered tile. For example, an empty at position (2, 2) can exchange position with
tile above it, namely, at position (1, 2):

ni na h3 ng ni ns n4
R h n H n n n
5 6 7 > 2 6 7
ng Ng | nip | N1 ng Rg | N1p | N11
M2 | N13 |14 | 015 N2 |13 [ H14 | N15

We will use the invariant method to prove that there is no way to reach the target
state starting from the initial state.

We begin by noting that a state can also be represented as a pair consisting of
two things:

1. a list of the numbers 1,..., 15 in the order in which they appear—reading
rows left-to-right from the top row down, ignoring the empty square, and

2. the coordinates of the empty square—where the upper left square has coor-
dinates (1, 1), the lower right (4, 4).

(a) Write out the “list” representation of the start state and the “impossible” state.

Let L be a list of the numbers 1,...,15 in some order. A pair of integers is
an out-of-order pair in L when the first element of the pair both comes earlier in
the list and is larger, than the second element of the pair. For example, the list
1,2,4,5,3 has two out-of-order pairs: (4,3) and (5,3). The increasing list 1,2...n
has no out-of-order pairs.
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Let a state, S, be a pair (L, (i, j)) described above. We define the parity of
S to be the mod 2 sum of the number, p(L), of out-of-order pairs in L and the
row-number of the empty square, that is the parity of S is p(L) +i (mod 2).

(b) Verify that the parity of the start state and the target state are different.

(c) Show that the parity of a state is preserved under transitions. Conclude that
“the impossible” is impossible to reach.

By the way, if two states have the same parity, then in fact there is a way to get
from one to the other. If you like puzzles, you’ll enjoy working this out on your
OWI.

Problem 6.18.
A robot moves on the two-dimensional integer grid. It starts out at (0, 0), and is
allowed to move in any of these four ways:

1. (+2,-1) Right 2, down 1
2. (-2,41) Left 2, up 1

3. (+1,43)

4. (-1,-3)

Prove that this robot can never reach (1,1).

Problem 6.19.

The Massachusetts Turnpike Authority is concerned about the integrity of the new
Zakim bridge. Their consulting architect has warned that the bridge may collapse
if more than 1000 cars are on it at the same time. The Authority has also been
warned by their traffic consultants that the rate of accidents from cars speeding
across bridges has been increasing.

Both to lighten traffic and to discourage speeding, the Authority has decided to
make the bridge one-way and to put tolls at both ends of the bridge (don’t laugh, this
is Massachusetts). So cars will pay tolls both on entering and exiting the bridge, but
the tolls will be different. In particular, a car will pay $3 to enter onto the bridge and
will pay $2 to exit. To be sure that there are never too many cars on the bridge, the
Authority will let a car onto the bridge only if the difference between the amount
of money currently at the entry toll booth minus the amount at the exit toll booth is
strictly less than a certain threshold amount of $7p.
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The consultants have decided to model this scenario with a state machine whose
states are triples of natural numbers, (A4, B, C), where

e A is an amount of money at the entry booth,
e B is an amount of money at the exit booth, and
e C is a number of cars on the bridge.

Any state with C > 1000 is called a collapsed state, which the Authority dearly
hopes to avoid. There will be no transition out of a collapsed state.

Since the toll booth collectors may need to start off with some amount of money
in order to make change, and there may also be some number of “official” cars
already on the bridge when it is opened to the public, the consultants must be ready
to analyze the system started at any uncollapsed state. So let Ap be the initial
number of dollars at the entrance toll booth, By the initial number of dollars at the
exit toll booth, and Cy < 1000 the number of official cars on the bridge when it is
opened. You should assume that even official cars pay tolls on exiting or entering
the bridge after the bridge is opened.

(a) Give a mathematical model of the Authority’s system for letting cars on and oft
the bridge by specifying a transition relation between states of the form (4, B, C)
above.

The Authority has asked their engineering consultants to determine 7" and to
verify that this policy will keep the number of cars from exceeding 1000.

The consultants reason that if Cp is the number of official cars on the bridge
when it is opened, then an additional 1000 — Cy cars can be allowed on the bridge.
So as long as A — B has not increased by 3(1000 — Cp), there shouldn’t more than
1000 cars on the bridge. So they recommend defining

To :=3(1000 — Cp) + (Ap — Bo), (6.14)

where Ay is the initial number of dollars at the entrance toll booth, By is the initial
number of dollars at the exit toll booth.

(b) Let Dg ::=2A¢ — 3By — 6Cp and define
P(A,B,C)=[2A—-3B —6C = Dy] AND [C < 1000].
Verify that P is a preserved invariant of the state machine.

(¢) Conclude that the traffic won’t cause the bridge to collapse.
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(d) A clever MIT intern working for the Turnpike Authority agrees that the Turn-
pike’s bridge management policy will be safe: the bridge will not collapse. But she
warns her boss that the policy will lead to deadlock—a situation where traffic can’t
move on the bridge even though the bridge has not collapsed.

Explain more precisely in terms of system transitions what the intern means, and
briefly, but clearly, justify her claim.

Problem 6.20.
Start with 102 coins on a table, 98 showing heads and 4 showing tails. There are
two ways to change the coins:

(1) flip over any ten coins, or

(ii) let n be the number of heads showing. Place n + 1 additional coins, all
showing tails, on the table.

For example, you might begin by flipping nine heads and one tail, yielding 90
heads and 12 tails, then add 91 tails, yielding 90 heads and 103 tails.

(a) Model this situation as a state machine, carefully defining the set of states, the
start state, and the possible state transitions.

(b) Explain how to reach a state with exactly one tail showing.

(¢) Define the following derived variables:

C = the number of coins on the table, | H ::= the number of heads,
T := the number of tails, C> = remainder(C/2),
H, = remainder(H/2), T» == remainder(7/2).

Which of these variables is

strictly increasing
weakly increasing
strictly decreasing

bl

weakly decreasing
5. constant

(d) Prove that it is not possible to reach a state in which there is exactly one head
showing.
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Problem 6.21.
A classroom is designed so students sit in a square arrangement. An outbreak of
beaver flu sometimes infects students in the class; beaver flu is a rare variant of bird
flu that lasts forever, with symptoms including a yearning for more quizzes and the
thrill of late night problem set sessions.

Here is an illustration of a 6 x 6-seat classroom with seats represented by squares.
The locations of infected students are marked with an asterisk.

* *

Outbreaks of infection spread rapidly step by step. A student is infected after a
step if either

e the student was infected at the previous step (since beaver flu lasts forever),
or

e the student was adjacent to at least two already-infected students at the pre-
vious step.

Here adjacent means the students’ individual squares share an edge (front, back,
left or right); they are not adjacent if they only share a corner point. So each student
is adjacent to 2, 3 or 4 others.

In the example, the infection spreads as shown below.

* * * | % * *

*
¥ | K| ¥|*

* || *|*]|*
¥l | K| K| ¥]|*
* | ¥ | K| * | *

* * * | % *

In this example, over the next few time-steps, all the students in class become
infected.

Theorem. Iffewer than n students among those in an n xn arrangment are initially
infected in a flu outbreak, then there will be at least one student who never gets
infected in this outbreak, even if students attend all the lectures.
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Prove this theorem.

Hint: Think of the state of an outbreak as an n x n square above, with asterisks
indicating infection. The rules for the spread of infection then define the transitions
of a state machine. Show that

R(q)::=The “perimeter’”’of the “infected region”

of state g is at most k,

is a preserved invariant.

Problems for Section 6.3

Class Problems

Problem 6.22.
A sequence of numbers is weakly decreasing when each number in the sequence is
> the numbers after it. (This implies that a sequence of just one number is weakly
decreasing.)

Here’s a bogus proof of a very important true fact, every integer 1 is a product
of a unique weakly decreasing sequence of primes —a pusp, for short.

Explain what’s bogus about the proof.

Lemma 6.4.2. Every integer greater than 1 is a pusp.
For example, 252 =2-2-3-.3.7

Bogus proof. We will prove Lemma 6.4.2 by strong induction, letting the induction
hypothesis, P(n), be
n is a pusp.

So Lemma 6.4.2 will follow if we prove that P (n) holds for all n > 2.

Base Case: (n = 2) P(2) is true because 2 is prime, and so it is a length one
product of primes, and this is obviously the only sequence of primes whose product
can equal 2. .

Inductive step: Suppose thatn > 2 and that 7 is a pusp for every integer i where
2 =i < n+ 1. We must show that P(n + 1) holds, namely, that n + 1 is also a
pusp. We argue by cases:

If n + 1 is itself prime, then it is the product of a length one sequence consisting
of itself. This sequence is unique, since by definition of prime, n + 1 has no other
prime factors. Son + 1 is a pusp, that is P(n + 1) holds in this case.

Otherwise, n + 1 is not prime, which by definition means n + 1 = km for some
integers k, m such that 2 < k,m < n + 1. Now by the strong induction hypothesis,
we know that k and m are pusps. It follows immediately that by merging the unique
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prime sequences for k and m, in sorted order, we get a unique weakly decreasing
sequence of primes whose product equals n + 1. Son + 1 is a pusp, in this case as
well.
So P(n + 1) holds in any case, which completes the proof by strong induction
that P(n) holds for all n > 2.
|

Problem 6.23.

Define the potential, p(S), of a stack of blocks, S, to be k(k — 1)/2 where k is the
number of blocks in .S. Define the potential, p(A), of a set of stacks, A, to be the
sum of the potentials of the stacks in A.

Generalize Theorem ?? about scores in the stacking game to show that for any set
of stacks, A, if a sequence of moves starting with A leads to another set of stacks,
B, then p(A) = p(B), and the score for this sequence of moves is p(A4) — p(B).

Hint: Try induction on the number of moves to get from A4 to B.

Homework Problems

Problem 6.24.

A group of n > 1 people can be divided into teams, each containing either 4 or
7 people. What are all the possible values of n? Use induction to prove that your
answer is correct.

Problem 6.25.
Prove that the fast exponentiation state machine of Section 6.2.5 will halt after

[logon] + 1 (6.15)

transitions starting from any state where the value of z is n € intege rst.

Hint: Strong induction.

Problem 6.26.

The following Lemma is true, but the proof given for it below is defective. Pin-
point exactly where the proof first makes an unjustified step and explain why it is
unjustified.

Lemma 6.4.3. For any prime p and positive integers n,xi,Xz,...,Xn, if p |
X1X2...Xp, then p | x; for some 1 <i <n.
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Induction

Induction is by far the most powerful and commonly-used proof technique in dis-
crete mathematics and computer science. In fact, the use of induction is a defining
characteristic of discrete —as opposed to continuous —mathematics. To under-
stand how it works, suppose there is a professor who brings to class a bottomless
bag of assorted miniature candy bars. She offers to share the candy in the following
way. First, she lines the students up in order. Next she states two rules:

1. The student at the beginning of the line gets a candy bar.

2. If a student gets a candy bar, then the following student in line also gets a
candy bar.

Let’s number the students by their order in line, starting the count with 0, as usual in
Computer Science. Now we can understand the second rule as a short description
of a whole sequence of statements:

e If student O gets a candy bar, then student 1 also gets one.
e If student I gets a candy bar, then student 2 also gets one.

e If student 2 gets a candy bar, then student 3 also gets one.

Of course this sequence has a more concise mathematical description:

If student n gets a candy bar, then student n + 1 gets a candy bar, for
all nonnegative integers n.

So suppose you are student 17. By these rules, are you entitled to a miniature candy
bar? Well, student O gets a candy bar by the first rule. Therefore, by the second
rule, student 1 also gets one, which means student 2 gets one, which means student
3 gets one as well, and so on. By 17 applications of the professor’s second rule,
you get your candy bar! Of course the rules actually guarantee a candy bar to every
student, no matter how far back in line they may be.
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7.1 Ordinary Induction

The reasoning that led us to conclude every student gets a candy bar is essentially
all there is to induction.

The Principle of Induction.
Let P(n) be a predicate. If

e P(0) is true, and
e P(n) IMPLIES P(n + 1) for all nonnegative integers, n,
then

e P(m) is true for all nonnegative integers, m.

Since we’re going to consider several useful variants of induction in later sec-
tions, we’ll refer to the induction method described above as ordinary induction
when we need to distinguish it. Formulated as a proof rule, this would be

Rule. Induction Rule

P(0), VneN[P(n) MPLIES P(n + 1)]
VYm € N. P(m)

This general induction rule works for the same intuitive reason that all the stu-
dents get candy bars, and we hope the explanation using candy bars makes it clear
why the soundness of the ordinary induction can be taken for granted. In fact, the
rule is so obvious that it’s hard to see what more basic principle could be used to
justify it." What’s not so obvious is how much mileage we get by using it.

7.1.1 Using Ordinary Induction

Ordinary induction often works directly in proving that some statement about non-
negative integers holds for all of them. For example, here is the formula for the
sum of the nonnegative integer that we already proved (equation (2.1)) using the
Well Ordering Principle:

Theorem 7.1.1. Foralln € N,

1
1+2+3+---+n=—n(nz+ ) (7.1)

IBut see section 7.3.
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This time, let’s use the Induction Principle to prove Theorem 7.1.1.

Suppose that we define predicate P(n) to be the equation (7.1). Recast in terms
of this predicate, the theorem claims that P (n) is true for all n € N. This is great,
because the induction principle lets us reach precisely that conclusion, provided we
establish two simpler facts:

e P(0) is true.
e Foralln € N, P(n) IMPLIES P(n + 1).

So now our job is reduced to proving these two statements. The first is true
because P(0) asserts that a sum of zero terms is equal to 0(0 + 1)/2 = 0, which
is true by definition. The second statement is more complicated. But remember
the basic plan for proving the validity of any implication: assume the statement on
the left and then prove the statement on the right. In this case, we assume P(n) in
order to prove P (n + 1), which is the equation

(n+1Dn+2)
e

These two equations are quite similar; in fact, adding (n + 1) to both sides of
equation (7.1) and simplifying the right side gives the equation (7.2):

142434+---+n+m+1)= (7.2)

14243+ 4+n+@m+1) = +(+1)

(2 +1)
= .

nn+1)
2

Thus, if P(n) is true, then so is P(n + 1). This argument is valid for every non-
negative integer n, so this establishes the second fact required by the induction
principle. Therefore, the induction principle says that the predicate P(m) is true
for all nonnegative integers, m, so the theorem is proved.

7.1.2 A Template for Induction Proofs

The proof of Theorem 7.1.1 was relatively simple, but even the most complicated
induction proof follows exactly the same template. There are five components:

1. State that the proof uses induction. This immediately conveys the overall
structure of the proof, which helps the reader understand your argument.

2. Define an appropriate predicate P(n). The eventual conclusion of the in-
duction argument will be that P (n) is true for all nonnegative n. Thus, you
should define the predicate P(n) so that your theorem is equivalent to (or
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follows from) this conclusion. Often the predicate can be lifted straight from
the claim, as in the example above. The predicate P(n) is called the in-
duction hypothesis. Sometimes the induction hypothesis will involve several
variables, in which case you should indicate which variable serves as n.

3. Prove that P(0) is true. This is usually easy, as in the example above. This
part of the proof is called the base case or basis step.

4. Prove that P(n) implies P(n + 1) for every nonnegative integer n. This
1s called the inductive step. The basic plan is always the same: assume that
P (n) is true and then use this assumption to prove that P(n+1) is true. These
two statements should be fairly similar, but bridging the gap may require
some ingenuity. Whatever argument you give must be valid for every non-
negative integer n, since the goal is to prove the implications P(0) — P(1),
P(l) — P(2), P(2) — P(3), etc. all at once.

5. Invoke induction. Given these facts, the induction principle allows you to
conclude that P(n) is true for all nonnegative n. This is the logical capstone
to the whole argument, but it is so standard that it’s usual not to mention it
explicitly,

Explicitly labeling the base case and inductive step may make your proofs clearer.

7.1.3 A Clean Writeup

The proof of Theorem 7.1.1 given above is perfectly valid; however, it contains a
lot of extraneous explanation that you won’t usually see in induction proofs. The
writeup below is closer to what you might see in print and should be prepared to
produce yourself.

Proof. We use induction. The induction hypothesis, P (n), will be equation (7.1).
Base case: P(0) is true, because both sides of equation (7.1) equal zero when

n=0.
Inductive step: Assume that P(n) is true, where n is any nonnegative integer.
Then
1 g
14+243+---+n+@m+1)= @ + (n + 1) (by induction hypothesis)
2
= % (by simple algebra)

which proves P(n + 1).
So it follows by induction that P (n) is true for all nonnegative n. O
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Induction was helpful for proving the correctness of this summation formula, but
not helpful for discovering it in the first place. Tricks and methods for finding such
formulas will appear in a later chapter.

7.14 Courtyard Tiling

During the development of MIT’s famous Stata Center, costs rose further and fur-
ther over budget, and there were some radical fundraising ideas. One rumored plan
was to install a big courtyard with dimensions 2" x 2":

2”

2n

One of the central squares would be occupied by a statue of a wealthy potential
donor. Let’s call him “Bill”. (In the special case n = 0, the whole courtyard
consists of a single central square; otherwise, there are four central squares.) A
complication was that the building’s unconventional architect, Frank Gehry, was
alleged to require that only special L-shaped tiles be used:

A courtyard meeting these constraints exists, at least for n = 2:

For larger values of n, is there a way to tile a 2" x 2" courtyard with L-shaped
tiles and a statue in the center? Let’s try to prove that this is so.
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Theorem 7.1.2. For all n > 0 there exists a tiling of a 2" x 2" courtyard with Bill
in a central square.

Proof. (doomed attempt) The proof is by induction. Let P(n) be the proposition
that there exists a tiling of a 2" x 2" courtyard with Bill in the center.

Base case: P(0) is true because Bill fills the whole courtyard.

Inductive step: Assume that there is a tiling of a 2" x 2" courtyard with Bill in
the center for some n > 0. We must prove that there is a way to tile a 2" +1 x 27+1
courtyard with Bill in the center .... ||

Now we’re in trouble! The ability to tile a smaller courtyard with Bill in the
center isn’t much help in tiling a larger courtyard with Bill in the center. We haven’t
figured out how to bridge the gap between P(n) and P(n + 1).

So if we’re going to prove Theorem 7.1.2 by induction, we’re going to need some
other induction hypothesis than simply the statement about » that we’re trying to
prove.

‘When this happens, your first fallback should be to look for a stronger induction
hypothesis; that is, one which implies your previous hypothesis. For example,
we could make P(n) the proposition that for every location of Bill in a 2" x 27
courtyard, there exists a tiling of the remainder.

This advice may sound bizarre: “If you can’t prove something, try to prove some-
thing grander!” But for induction arguments, this makes sense. In the inductive
step, where you have to prove P(n) IMPLIES P(n -+ 1), you're in better shape
because you can assume P(n), which is now a more powerful statement. Let’s see
how this plays out in the case of courtyard tiling.

Proof. The proof is by induction. Let P (n) be the proposition

that for every location of Bill in a 2" x 2" courtyard, there exists a tiling of the
remainder.

Base case: P(0) is true because Bill fills the whole courtyard.

Inductive step: Assume that P(n) is true for some n > 0; that is, for every
location of Bill in a 2 x 2" courtyard, there exists a tiling of the remainder. Divide
the 2" +1 x2"*1 courtyard into four quadrants, each 2" x2”. One quadrant contains
Bill (B in the diagram below). Place a temporary Bill (X in the diagram) in each of
the three central squares lying outside this quadrant:
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i

2?1

2” 2)2

Now we can tile each of the four quadrants by the induction assumption. Replac-
ing the three temporary Bills with a single L-shaped tile completes the job. This
proves that P(n) implies P(n + 1) for all n > 0. The theorem follows as a special
case. O

This proof has two nice properties. First, not only does the argument guarantee
that a tiling exists, but also it gives an algorithm for finding such a tiling. Second,
we have a stronger result: if Bill wanted a statue on the edge of the courtyard, away
from the pigeons, we could accommodate him!

Strengthening the induction hypothesis is often a good move when an induction
proof won’t go through. But keep in mind that the stronger assertion must actually
be true; otherwise, there isn’t much hope of constructing a valid proof! Sometimes
finding just the right induction hypothesis requires trial, error, and insight. For
example, mathematicians spent almost twenty years trying to prove or disprove
the conjecture that “Every planar graph is 5-choosable™?. Then, in 1994, Carsten
Thomassen gave an induction proof simple enough to explain on a napkin. The
key turned out to be finding an extremely clever induction hypothesis; with that in
hand, completing the argument is easy!

7.1.5 A Faulty Induction Proof
False Theorem. All horses are the same color:

Notice that no » is mentioned in this assertion, so we’re going to have to re-
formulate it in a way that makes an n explicit. In particular, we’ll (falsely) prove
that

25-choosability is a slight generalization of 5-colorability. Although every planar graph is 4-
colorable and therefore 5-colorable, not every planar graph is 4-choosable. If this all sounds like
nonsense, don’t panic. We’ll discuss graphs, planarity, and coloring in a later chapter.
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False Theorem 7.1.3. In every set of n > 1 horses, all are the same color:

This a statement about all integers n > 1 rather > 0, so it’s natural to use a
slight variation on induction: prove P (1) in the base case and then prove that P (n)
implies P(n+1) forall n > 1 in the inductive step. This is a perfectly valid variant
of induction and is not the problem with the proof below.

False proof. The proof is by induction on n. The induction hypothesis, P (n), will
be

In every set of n horses, all are the same color. (7.3)

Base case: (n = 1). P(1) is true, because in a set of horses of size 1, there’s
only one horse, and this horse is definitely the same color as itself.

Inductive step: Assume that P(n) is true for some n > 1. that is, assume that
in every set of n horses, all are the same color. Now consider a set of n + 1 horses:

h], hz, vony hn. hn+1
By our assumption, the first n horses are the same color:

A ha 8 Ty
\-—V_-"

same color

Also by our assumption, the last n horses are the same color:

hl, hz, N ]In, hn+1

same color

So h; is the same color as the remaining horses besides /,1, and likewise 7,41
is the same color as the remaining horses besides &;. So h; and h, 4 are the same

color. That is, horses hy, hs, ..., h,+1 must all be the same color, and so P(n + 1)
is true. Thus, P(n) implies P(n + 1).
By the principle of induction, P(n) is true for all n > 1. |

We’ve proved something false! Is math broken? Should we all become poets?
No, this proof has a mistake.

The error in this argument is in the sentence that begins, “So h; and h, . are
the same color.” The tation creates the impression that there are some
remaining horses besides h; and /1,4 1. However, this is not true when n = 1. In
that case, the first set is just #; and the second is /5, and there are no remaining
horses besides them. So /&1; and si; need not be the same color!

This mistake knocks a critical link out of our induction argument. We proved
P (1) and we correctly proved P(2) — P(3), P(3) — P(4), etc. But we failed
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to prove P(1) — P(2), and so everything falls apart: we can not conclude that
P(2), P(3), efc,, arctrae. And, of course, these propositions are all false; there are
horses of a different color.

Students sometimes claim that the mistake in the proof is because P(n) is false
for n > 2, and the proof assumes something false, namely, P (n), in order to prove
P(n + 1). You should think about how to explain to such a student why this claim
would get no credit on a 6.042 exam.

7.2 Strong Induction

A useful variant of induction is called strong induction. Strong Induction and Or-
dinary Induction are used for exactly the same thing: proving that a predicate P (n)
is true for alln € N.

Principle of Strong Induction. Let P(n) be a predicate. If
e P(0) is true, and
e foralln e N, P(0), P(1),..., P(n) together imply P(n + 1),

then P(n) is true for alln € N.

The only change from the ordinary induction principle is that strong induction
allows you to assume more stuff in the inductive step of your proof! In an ordinary
induction argument, you assume that P (n) is true and try to prove that P(n + 1)
is also true. In a strong induction argument, you may assume that P(0), P(1), ...,
and P (n) are all true when you go to prove P (n + 1). These extra assumptions can
only make your job easier.

7.2.1 Products of Primes

As a first example, we’ll use strong induction to re-prove Theorem 2.4.1 which we
previously proved using Well Ordering.

Lemma 7.2.1. Every integer greater than 1 is a product of primes.

Proof. We will prove Lemma 7.2.1 by strong induction, letting the induction hy-
pothesis, P(n), be
n is a product of primes.

So Lemma 7.2.1 will follow if we prove that P(n) holds for all n > 2.
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Base Case: (n = 2) P(2) is true because 2 is prime, and so it is a length one
product of primes by convention.

Inductive step: Suppose that » > 2 and that 7 is a product of primes for every
integer i where 2 <i < n 4+ 1. We must show that P(n + 1) holds, namely, that
n + 1 is also a product of primes. We argue by cases:

If n + 1 is itself prime, then it is a length one product of primes by convention,
so P(n + 1) holds in this case.

Otherwise, n + 1 is not prime, which by definition means n + 1 = km for some
integers k, m such that 2 < k,m < n + 1. Now by strong induction hypothesis, we
know that k is a product of primes. Likewise, m is a product of primes. it follows
immediately that km = n is also a product of primes. Therefore, P(n + 1) holds
in this case as well.

So P(n + 1) holds in any case, which completes the proof by strong induction
that P(n) holds for all nonnegative integers, n.

|

7.2.2 Making Change

The country Inductia, whose unit of currency is the Strong, has coins worth 3Sg
(3 Strongs) and 5Sg. Although the Inductians have some trouble making small
change like 4Sg or 7Sg, it turns out that they can collect coins to make change for
any number that is at least 8 Strongs.

Strong induction makes this easy to prove for n + 1 > 11, because then (n +
1) —3 = 8, so by strong induction the Inductians can make change for exactly
(n + 1) — 3 Strongs, and then they can add a 3Sg coin to get (n + 1)Sg. So the only
thing to do is check that they can make change for all the amounts from 8 to 10Sg,
which is not too hard to do.

Here’s a detailed writeup using the official format:

Proof. We prove by strong induction that the Inductians can make change for any
amount of at least 8Sg. The induction hypothesis, P(n) will be:

If n = 8, then there is a collection of coins whose value is n Strongs.

Notice that P(n) is an implication. When the hypothesis of an implication is
false, we know the whole implication is true. In this situation, the implication is
said to be vacuously true. So P(n) will be vacuously true whenever n < 8.°

3 Another approach that avoids these vacuous cases is'to define
Q(n) == there is a collection of coins whose value is n + 8Sg,

and prove that Q(n) holds for all n = 0.
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We now proceed with the induction proof:

Base case: P(0) is vacuously true.

Inductive step: We assume P (i) holds for all i < n, and prove that P(n + 1)
holds. We argue by cases:

Case (n + 1 < 8): P(n + 1) is vacuously true in this case.

Case (n + 1 = 8): P(8) holds because the Inductians can use one 3Sg coin and
one 5Sg coins.

Case (n + 1 =9): Use three 3Sg coins.

Case (n + 1 = 10): Use two 5Sg coins.

Case (n +1 > 11): Thenn > (n + 1) — 3 > 8, so by the strong induction
hypothesis, the Inductians can make change for (n + 1) —3 Strong. Now by adding
a 3Sg coin, they can make change for (n + 1)Sg.

So in any case, P(n + 1) is true, and we conclude by strong induction that for
all n > 8, the Inductians can make change for n Strong.

|

7.2.3 The Stacking Game

Here is another exciting 6.042 game that’s surely about to sweep the nation!

You begin with a stack of n boxes. Then you make a sequence of moves. In each
move, you divide one stack of boxes into two nonempty stacks. The game ends
when you have n stacks, each containing a single box. You earn points for each
move; in particular, if you divide one stack of height @ + b into two stacks with
heights a and b, then you score ab points for that move. Your overall score is the
sum of the points that you earn for each move. What strategy should you use to
maximize your total score?

As an example, suppose that we begin with a stack of n = 10 boxes. Then the
game might proceed as follows:

Stack Heights Score

10

5 5 25 points
5 32 6

4 3 2 1 4

2 3 2 1”2 4
22wyl 21 2

1 221 211 1

1 1212111 1

1 111 21111 1

. O W IR e G TS O | 1

Total Score = 45 points
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On each line, the underlined stack is divided in the next step. Can you find a better
strategy?

Analyzing the Game

Let’s use strong induction to analyze the unstacking game. We’ll prove that your
score is determined entirely by the number of boxes —your strategy is irrelevant!

Theorem 7.2.2. Every way of unstacking n blocks gives a score of n(n — 1)/2
points.

There are a couple technical points to notice in the proof:

e The template for a strong induction proof is exactly the same as for ordinary
induction.

e As with ordinary induction, we have some freedom to adjust indices. In this
case, we prove P (1) in the base case and prove that P(1),..., P(n) imply
P(n + 1) for all n = 1 in the inductive step.

Proof. The proof is by strong induction. Let P(n) be the proposition that every
way of unstacking n blocks gives a score of n(n — 1)/2.

Base case: If n = 1, then there is only one block. No moves are possible, and
so the total score for the game is 1(1 — 1)/2 = 0. Therefore, P (1) is true.

Inductive step: Now we must show that P(1), ..., P(n) imply P(n + 1) for
alln > 1. So assume that P(1), ..., P(n) are all true and that we have a stack of
n + 1 blocks. The first move must split this stack into substacks with positive sizes
a and b wherea +b =n + 1and 0 < a,b < n. Now the total score for the game
is the sum of points for this first move plus points obtained by unstacking the two
resulting substacks:

total score = (score for 1st move)
+ (score for unstacking a blocks)
+ (score for unstacking b blocks)
ala—1 b(b—1
( ) 4 ( )

=ab + 5 3 by P(a) and P(b)
_(a +b)* —(a +b) e +Db){aiH-0) —1)

2 2 3 2

_(n+Dn

e

This shows that P(1), P(2), ..., P(n) imply P(n + 1).
Therefore, the claim is true by strong induction. |
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Despite the name, strong induction is technically no more powerful than ordinary
induction, though it makes some proofs easier to follow. But any theorem that can
be proved with strong induction could also be proved with ordinary induction (using
a slightly more complicated induction hypothesis). On the other hand, announcing
that a proof uses ordinary rather than strong induction highlights the fact that P (n +
1) follows directly from P (n), which is generally good to know.

7.3 Induction versus Well Ordering

The Induction Axiom looks nothing like the Well Ordering Principle, but these two
proof methods are closely related. In fact, as the examples above suggest, we can
take any Well Ordering proof and reformat it into an Induction proof. Conversely,
it’s equally easy to take any Induction proof and reformat it into a Well Ordering
proof.

So what’s the difference? Well, sometimes induction proofs are clearer because
they resemble recursive procedures that reduce handling an input of size n + 1 to
handling one of size n. On the other hand, Well Ordering proofs sometimes seem
more natural, and also come out slightly shorter. The choice of method is really a
matter of style—but style does matter.

Problems for Section 7.1

Class Problems
Problem 7.1.
Use induction to prove that
nn+1 <
13+23+---+n3:(¥) : (7.4)

foralln > 1.
Remember to formally

1. Declare proof by induction.

2. Identify the induction hypothesis P (n).
3. Establish the base case.

4. Prove that P(n) = P(n + 1).

5

. Conclude that P(n) holds for all n > 1.
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as in the five part template.

Problem 7.2.
Prove by induction on n that
rn+1 —1

L Sernfar e dapies S e — (7.5)
for all n € N and numbers r # 1.
Problem 7.3.
Prove by induction:

1+1+1+ +1<2 1 (7.6)
4 9 n?2 n’ )

foralln > 1.

Problem 7.4. (a) Prove by induction that a 2" x 2" courtyard with a 1 x 1 statue
of Bill in a corner can be covered with L-shaped tiles. (Do not assume or reprove
the (stronger) result of Theorem 7.1.2 that Bill can be placed anywhere. The point
of this problem is to show a different induction hypothesis that works.)

(b) Use the result of part (a) to prove the original claim that there is a tiling with
Bill in the middle.

Problem 7.5.
Find the flaw in the following bogus proof that a” = 1 for all nonnegative integers
n, whenever a is a nonzero real number.

Bogus proof. The proof is by induction on n, with hypothesis
P(n):=Vk <n.a* =1,

where k is a nonnegative integer valued variable.
Base Case: P(0) is equivalent to a® = 1, which is true by definition of a°. (By
convention, this holds evenifa = 0.)
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Inductive Step: By induction hypothesis, a* = 1 for all k € N such thatk < n.
But then
pii @l 1-1

= s T

which implies that P(n + 1) holds. It follows by induction that P () holds for all
n € N, and in particular, a” = 1 holds for all n € N.
| |

Problem 7.6.
We’ve proved in two different ways that

n(n+1)

1+2+3+4+n=——

But now we’re going to prove a contradictory theorem!
False Theorem. For alln > 0,

nn+1)

S bl

Proof. We use induction. Let P(n) be the propositionthat2 +3 +4 4 ... 4+ n =
n(n+1)/2.

Base case: P(0) is true, since both sides of the equation are equal to zero. (Recall
that a sum with no terms is zero.)

Inductive step: Now we must show that P(n) implies P(n + 1) forall n > 0. So

suppose that P (n) is true; thatis,2+3 +4 +---+n = n(n + 1)/2. Then we can
reason as follows:

243444 +n+m+D)=R+3+4+--+n]+@O+1)

TS

_(+D(n+2)
=

Above, we group some terms, use the assumption P(n), and then simplify. This
shows that P(n) implies P(n + 1). By the principle of induction, P(n) is true for
alln e N. O

Where exactly is the error in this proof?
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Homework Problems

Problem 7.7.

Claim 7.3.1. If a collection of positive integers (not necessarily distinct) has sum
n > 1, then the collection has product at most 3n/3,
For example, the collection 2, 2, 3, 4, 4, 7 has the sum:
24+24+34+44+44+7=22

On the other hand, the product is:

2.2.3.4.4.7=1344
< 322/3

~~ 3154.2
(a) Use strong induction to prove that n < 3n/3 for every integer n > (.

(b) Prove the claim using induction or strong induction. (You may find it easier
to use induction on the number of positive integers in the collection rather than
induction on the sum n.)

Problem 7.8.
For any binary string, ¢, let num (&) be the nonnegative integer it represents in
binary notation. For example, num (10) = 2, and num (0101) = 5.

An n + 1-bit adder adds two n + 1-bit binary numbers. More precisely, an
n + 1-bit adder takes two length n 4 1 binary strings

Uy i=dy...d1dop,
ﬁn = bn . .‘blb[),

and a binary digit, ¢, as inputs, and produces a length n + 1 binary string
Op .= 8p...5150,
and a binary digit, ¢, 41, as outputs, and satisfies the specification:

num () + num (8,) + co = 2"t leu41 + num(oy) - (7.7)
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There is a straighforward way to implement an n + 1-bit adder as a digital circuit:
an n + 1-bit ripple-carry circuit has 1 4+ 2(n + 1) binary inputs

an?"‘valwa()vbny--'1b11b01601

and n + 2 binary outputs,
Cn+1v3n, LR asls SO'
As in Problem 3.4, the ripple-carry circuit is specified by the following formulas:

si »=a; XOR b; XOR c; (7.8)
ci+1::=(a; AND b;) OR (a; AND c;) OR (b; AND c¢;),. (7.9)
forO0<i <n.
(a) Verify that definitions (7.8) and (7.9) imply that

an + bp + cp = 2Cp41 + Sn- (7.10)

foralln € N.

(b) Prove by induction on n that an n + 1-bit ripple-carry circuit really is an n + 1-
bit adder, that is, its outputs satisfy (7.7).

Hint: You may assume that, by definition of binary representation of integers,

num (ep+1) = ap+12""' + num (a,) . (7.11)

Problem 7.9.

The Math for Computer Science mascot, Theory Hippotamus, made a startling
discovery while playing with his prized collection of unit squares over the weekend.
Here is what happened.

First, Theory Hippotamus put his favorite unit square down on the floor as in
Figure 7.1 (a). He noted that the length of the periphery of the resulting shape was
4, an even number. Next, he put a second unit square down next to the first so that
the two squares shared an edge as in Figure 7.1 (b). He noticed that the length
of the periphery of the resulting shape was now 6, which is also an even number.
(The periphery of each shape in the figure is indicated by a thicker line.) Theory
Hippotamus continued to place squares so that each new square shared an edge
with at least one previously-placed square and no squares overlapped. Eventually,
he arrived at the shape in Figure 7.1 (c). He realized that the length of the periphery
of this shape was 36, which is again an even number.

Our plucky porcine pal is perplexed by this peculiar pattern. Use induction on
the number of squares to prove that the length of the periphery is always even, no
matter how many squares Theory Hippotamus places or how he arranges them.
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(a) (b) ©

Figure 7.1 Some shapes that Theory Hippotamus created.

Problems for Section 7.2
Class Problems

Problem 7.10.

A group of n > 1 people can be divided into teams, each containing either 4 or
7 people. What are all the possible values of n? Use induction to prove that your
answer is correct.

Problem 7.11.

The following Lemma is true, but the proof given for it below is defective. Pin-
point exactly where the proof first makes an unjustified step and explain why it is
unjustified.

Lemma 7.3.2. For any prime p and positive integers n,xy,X2,...,Xn, if p |
X1X2...Xp, then p | x; for some 1 <i <n.

Bogus proof. Proof by strong induction on n. The induction hypothesis, P(n), is
that Lemma holds for n.

Base case n = 1: Whenn = 1, we have p | x;, therefore we can leti = 1 and
conclude p | x;.

Induction step: Now assuming the claim holds for all £ < n, we must prove it
forn + 1.
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So suppose p | X1X2 ... Xp+1- Lety,, = XpXp+1,850X1X2...Xp4+1 = X1X2...Xn—1Vn-

Since the righthand side of this equality is a product of n terms, we have by induc-
tion that p divides one of them. If p | x; for some i < n, then we have the desired
i. Otherwise p | y,. But since y, is a product of the two terms x,, X,+1, we have
by strong induction that p divides one of them. So in this case p | x; fori = n or
i=n+1. |

Problem 7.12.

Define the potential, p(S), of a stack of blocks, S, to be k(k — 1)/2 where k is the
number of blocks in S. Define the potential, p(A), of a set of stacks, A, to be the
sum of the potentials of the stacks in A.

Generalize Theorem 7.2.2 about scores in the stacking game to show that for any
set of stacks, A, if a sequence of moves starting with A leads to another set of stacks,
B, then p(A) = p(B), and the score for this sequence of moves is p(A) — p(B).

Hint: Try induction on the number of moves to get from A to B.




