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Directed graphs & Partial Orders

s, cailed@for short, provide a handy way to represent how
things are connected together and how to get from one thing to another by following
the connections. They are usually pictured as a bunch of dots or circles with arrows
between some of the dots as in Figure 9.1. The dots arem
and the lines are calleddirected edges or arrows;sg the digraph in Figure .1 has 4
nodes and 6 directed edges.

Digraphs appear everywhere in computer science. In Chapter 10, we’ll use di-
graphs are used to describe commy_n_icgti_ogets‘fm' routing data packets. The di-
graph in Figure 9.2 has three “in” nodes (pictured as little squares) representing
locations where packets may arrive at the net, the three “out” nodes representing
destination locations for packets, and the remaining six nodes (pictured with lit-
tle circles) represent switches. The 16 edges indicate paths that packets can take
through the router.

Another digraph example, is the hyperlink structure of the World Wide Web. Let-
ting the vertices x1, ..., x, correspond to web pages and using arrows to indicate
when one page has a hyperlink to another, yields a digraph like the one Figure 9.3.
In the graph of the real World Wide W@uld be a number in the billions and
probably even the trillions. At first g ; this graph wouldn’t seem to be very
interesting. But in 1995, two students at Stanford, Larry Page and Sergey Brin ulti-
mately became multibillionaires from the realization of how useful the structure of
this graph could be in building a search engine. So pay attention to graph theory,

and who knows what might Trappest—
b ﬂd@/uﬁrﬁdw
& a[qu/g LEP
a ¢
d

Figure 9.1 A 4-node directed graph with 6 edges.
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Figure 9.2 A 6-switch packet routing digraph.
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Figure 9.3 Links among Web Pages
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u
Figure 9.4 A directed edg e = (u—v). The edge e starts at the tail vertex, u,
and ends at the head vertex, v. (
No 11N
9.1 Vertex Degrees
T lﬁfc?@g'e?o a vertex in a digraph is the number of arrows coming into it and
similarly 1ts out-dexree is the number of arrows out of it. More precisely,
Definition 9.1.1. If G is a digraph and v € V(G), then
indeg(v) ::= |{e € E(G) | head(e) = v}|
outdeg(v) ::= |{e € E(G) | tail(e) = v}|
i
An immediate consequence of this definition is
. .
Lemma 9.1.2.
Proof. Both sums are obv10usly equal to |E(G)|. O
& 51431 a( g
9.2 Digraph Walks and Paths
~ Definition 9.2.1. A directed graph. G, consists of a nonempty set, @alled
6‘0 ﬁv‘ﬂ 59715 the vertices of G, and ﬁ@ called the edges of G—An element of V(G) is
v ; | called @ A vertex is also called a node; the words “vertex” and “node” are
6)»‘“ l./(f(‘} {d@ used interchangeably. An element of E(G) is called a directed edge. A directed
, edge is also called an ‘@r simply an “edge.” A directed edge starts at some
E[G ﬂJ’ﬂ@ vertex, u, called the tail of the edge, and ends at some vertex, v, called the head

of the edge, as in Figure 9.4. Such an edge can be represented by the ordered pair / 1 %ﬁ};ﬁ?
(u, v). The notation {u — v) denotes this edge.

. , < et
There is nothing new in Definition 9.2.1 except for a lot of vocabulary. Formally,
a digraph G is the same as a binary relation on the se{_ V = V(G) ~that is, a
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Figure 9.5 The Digraph for Divisibility on {1,2,...,12}.

digraph is jus@i—nary relation whose domain and codomain are the sa@

In fact we’ve already referred to the arrows in a relation G as the “graph” of G.
Y Y

For example, the divisibility relation on the integers in the interval TI5 12] could be
g@/we, WLM pictured by the digraph in Figure 9.5.

‘ ( Picturing digraphs with points and arrows makes it natural to talk about following
S@e /‘?L rough the graph. For example, in the digraph of Figure 9.5, you ,J\

might start at vertex 1, successively follow the edges from vertex 1 to vertex 2, from

2 to 4, from 4 to 12, and then from 12 to 12 twice (or gs.many times as you like).
The sequence of edges followed in through the graph.
The obvious way to represent a walk is with the sequeriCe of sucessive vertices it

(J\/(ELLV = CQ{’L €€M+ went through, in this case:

— 1241212 12.

\/Qf 1'?(/)*9 However, it is conventional to represent a walk by an alternating sequence of suc-
cessive vertices and edges, so this walk would formally be

1 (152) 2 (2—4) 4 (4—12) 12 (12—12) 12 (12—12) 12. ) (9.1 (oL

\
) i
The redundancy of this definition is enough to make anycomputer scientist cringe, [f‘fo frle j
but it does make it easy to talk about how many times vertices and edges occur on
the walk. Here is a formal definition:

Definition 9.2.2. A walk in a digraph, G, is an alternating sequence of vertices and
edges that begins with a vertex, ends with a vertex, and such that for every edge
(4 —v) in the walk, vertex u is the element just before the edge, and vertex v is the
next element after the edge.
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So a walk, v, is a sequence of the form

7 vi=uwp (vo—>v1) v1 (Vi—=v2) V2 ... (Vp_1—>vE) vk

where (v; > vi11) € V(G) fori € [0, k). The walk is said to/57art at vg;4o Ereat
O‘j’h {4 l) t\ | (v and th@ of the walk is defined to be k. The walki iff all the
Wrlices

v;’s are different, that is, if i # j, then v; # vj;.

1 :
ﬂfL\jﬂL bQ Y l Note that a single vertex counts %ﬂlzeropath that begins and ends at itself.
U’Mﬁt . If you walk for a while, stop for a rest at some vertex, and then continue walking,
you have broken a walk into two parts. For example, stopping to rest after following
two edges in the walk (9.1) through the divisibility graph breaks the walk into the s~
first part of the walk o/“'éa;(
1 (150} Br(2=s )4 02, @ o |

%

from 1 to 4, and the rest of the walk Q?*}( \_/?
4 (2=>12):12:(125:10) 12 (12=+12) 12, 9.3) e,

from 4 to 12, and we’ll say the whole walk (9.1) is thf the walks (9.2)
ey and (9.3). In general, if a walk f ends with a vertex, v, and a Walk r starts with the

same vertex, v, we’ll say that their merg@ the walk that starts with f and

continues with r.! Two walks can only be merged if the first ends with the same

vertex, v, that the second one starts with. Sometimes it’s useful to name the node v

where the walks merge; we’ll use the notatiof £ r tp describe the merge of a walk

f that ends at v with a walk r that begins at v.

A consequence of this definition is that

Lemma 9.2.3. —
If7r| = |f] + [r|.

In the next section we’ll get mileage out of walking this way.

9.2.1 Finding a Path

If you were trying to walk somewhere quickly, you’d know you were in trouble if
you came to the same place twice. This is actually a basic theorem of graph theory.

—_——

Theorem 9.2.4. The shortest walk between a pair of vertices is a path.

11t’s tempting say the merge is the concatenation of the two walks, but that wouldn’t quite be right
because if the walks were concatenated, the vertex v would appear twice in a row where the walks

i (ol o
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Proof. 1f there is a walk from vertex u to v, there must, by the Well Ordering
Principle, be a minimum length walk w from u to v. We claim w is a path.

To prove the claim, suppose to the contrary that w is not a path, namely, some
vertex x occurs twice on this walk. That is,

w=exfXxg

for some walks e, f, g where the length of f is positive. But then deleting f yields is
a strictly shorter walk
exg

from u to v, contradicting the minimality of w. O

Definition 9.2.5. The {istanpe dist (u,v), in a graph from vertex u to vertex v is
thé& Jength of a shortest path from u to v.

As would be expected, this definition of distance satisfies:

Lemma 9.2.6. [The Triangle Inequality]

@5 dist (u, x) + dist (x, )

for all vertices u, v, x with equality holding iff x is on a shortest path from u to v.

Of course you may expect this property to be true, but distance has a technical
definition and its properties can’t be taken for granted. For example, unlike ordinary
distance in space, the distance from u to v is typically different from the the distance
from v to u. So let’s prove the Triangle Inequality:

Proof. To prove the inequality, suppose f is a shortest path from u to x and r
is a shortest path from x to v. Then by Lemma 9.2.3, f X r is a path of length
dist (u, x) + dist (x, v) from u to v, so this sum is an upper bound on the length of
the shortest path from u to v.

To prove the “iff” from left to right, suppose dist (4, v) = dist (u, x)+dist (x, v).
Then taking a shortest path from u to x followed by a shortest path from x to w
yields a path of whose length is dist (, x) +dist (x, v) which by assumption equals
dist (u, v). So this is a shortest path containing x.

To prove the “iff” from right to left, suppose vertex x is on a shortest path w
from u to v, namely, w is a shortest path of the form £ X r. The path f must be a
shortest path from u to x; otherwise replacing f by a shorter path from u to x would
yield a shorter path from u to v than w. Likewise from r must be a shortest path
from x to v. So dist (1, v) = |w| = |f| + |r| = dist (u, x) + dist (x, v).

Ay bv iy by abf -
e iom‘/f)d 11( 5“%/]@( ﬁ{nq
o gel ool
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9.3

Adjacency Matrices

If a graph, G, has n vertices, vg, v1, ..., Up—1, a useful way to represent it is with
an x n matrix of zeroes and ones called its adjacency marre ijth entry,
(Ag)ij, of the adjacency matrix is 1 if there’is an edge from vertex v; to vertex v,
and 0 otherwise. That is,

L if (5>v;) e V@), | Ace (amy
0 otherwise. 0@[(

For example, let H be the 4-node the graph shown in Figure 9.1. Then its adjacency
matrix A g is the 4 x 4 matrix:

(Ag)ij ==

|a b ¢ d |
al0 1 0 1
Ag= b|0 0 1 1
c|0 1 0 O
d|0 0 1 0
A payoff of this representation is that we can use matrix powers to count numbers
of walks between vertices. For example, there are two length-2 walks between
vericeS a and ¢ in the graptr H; namely s A
( has See
: on [ 7
a (a—b) b (b—c)c &M&/ / mt’{"fx /
b
a{a—>d) d {d=>c) ¢ 7 MO byt

and these are the only length-2 walks from a to c. Also, there is exactly one length-
2 walk from b to ¢ and exactly one length-2 walk from ¢ to ¢ and from d to b, and

these are the only length-2 walks in /7. It turns out we could have read these counts
# Df /g }/”L from the entries in [/hfﬂ@/
l/‘/ﬂli\_\,/‘/ la b ¢ d| OLZ ;
al0 0 2 0 v S,
(Ag)*>= 5|0 0 1 0 /;L#,
c|0 0 1 0 “w
d’| @07 0 g

More generally, the matrix (Ag)* provides a count of the number of lengt
walks between vertices in any digraph, G, as we’ll now explain.
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Chapter 9 Directed graphs & Partial Orders

atrix C such that

CD:g'on 9.3.1. The lengtl@valk counting matrix for an n-vertex graph G is the
nxn

Cyy ::= the number of length-k walks from u to v. 9.4)

Notice the adjacency matrix Ag is the length-1 walk counting matrix for
G, and that(Ag)?, Which by convention is the identity matrix, is the length-0 walk
counting 1

Theorem 9.3.2. If C is the length-k walk counting matrix for a graph G, and D

is the length-m walk counting matrix, then CD is the length k + m walk counting
. ———

matrix for G.

According to this theorem, the square (Ag)? of the adjacency matrix is the
length-2 walk counting matrix for G. Applying the theorem again to (Ag)%Ag,
shows that the length-3 walk counting matrix is (Ag)>. More generally, it follows
by induction that

{
n (L,Lt'mn Corollary 9.3.3. The lengt(k/c)ounting matrix of a digraph, G, is (Ac&/ 'for all

k e N.

In other words, you can determine the number of length k walks between any
pair of vertices simply by computing the kth power of the adjacency matrix!

That may seem amazing, but the proof uncovers this simple relationship between
matrix multiplication and numbers of walks.

Proof of Theorem 9.3.2. Any length-(k +m) walk between vertices u and v begins
with a length-k walk starting at # and ending at some vertex, w, followed by a
length-m walk starting at w and ending at v. Smength-(k + m)
walks from u to v that go through w at the kth step equals the number Cy,, of
length-k walks m, times the number D, of length-m walks from w to

{
on v. We can get the total ber of length-(k lks fi tov b ing,
m (gsR + (’nd,,()lm g number of length-(k 4 m) walks from u to v by summing

over all possible vertices w, the number of such walks that go through w at the kth
step. In other words,

#length-(k + m) walks from u tov = Z Cinn = Dipy (9.5)
weV(G)

But the right hand side of (9.5) is precisely the definition of (CD),,,. Thus, CD is
indeed the length-(k 4+ m) walk counting matrix. O
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9.3.1 Shortest Paths

The relation between powers of the adjacency matrix and numbers of walks is cool
(to us math nerds at least), but a much more important problem is finding shortest
paths _between pairs of nodes in a graph. For example, when you drive home for
vacation, you generally want to take the shortest-time route.

One simple way to find the lengths of all the shortests paths in an n-vertix graph,
G, is to compute the successive powers of Ag one by one up to the n — 1st, watch-
ing for the first power at which each entry becomies positive. That’s because The-
orem 9.3.2 implies that the length of the shortest path, if any, between u and v,
that is, the distance from u to v, will be the smallest value k for which (4¢g)%, is
nonzero, and if there is a shortest path, its length will be < n — 1. Refinements of
this idea lead to methods that find shortest paths in reasonably efficient ways. The
methods applymmlmmelled with weights
or costs and the objective isto find least weight, cheapest paths. These refinements
are typically covered in introductory algorithm courses, and we won’t go into them
here any further.

9.4 Path Relations

cbes tre exciof |
A basic question about a digraph is whether there is a path from one particular
vertex to another. So for any digraph, G, we interested in a binary relatio

called t here
u G* v = thereis a path@ (9.6)
Similarly, there is a@ath relation ~ non
- r
a G b= there is @ngth path in G from u to v. 9.7)

Since merging a path from u to v with a path from v to w gives a path from u to
w, bpth path relations have a relational property call@

Definition 9.4.1. A binary relation, R, on a set, A, is transitive iff
(a RbAND bR c) IMPLIES a R ¢
e —
forevery a,b,c € A.

Since there is a length-0 path from any vertex to itself, the path relation has
another relational property called reflexivity:

Definition 9.4.2. A binary relation, R, on a set, A, is reflexive iff a R a for all
ae€ A.

e /{Sl%/x

0 hert
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9.4.1 Composition of Relations

There is a simple way to extend composition of functions to composition of rela-
tions, and this gives another way to talk about paths in digraphs.

Let R: B — C and S : A — B be binary relations. Then the composition of R
with S is the binary relation (R o S@ﬁﬁned by the rule

a(RoS)cu:=3beB.(aS b)AND (bR c). (9.8)

This agrees with the Definition 4.3.1 of composition in the special case when R
and § are functions.”
Remembering that a digraph is #bina ertices; 1t makes sense to
compose a digraph Gewith'itself. Then if we Iet G" denote the composition of G
with itself n times, it m‘chéck (see Problem 9.4) th

relation:

aG"b iff thereisa len@ath in G froma to b.

This even works for n = 0, with the usual convention that G is the identity relation
Idy(G) on the set of vertices.’ So now we have*

G* =GV Gl UG2U...uGVO = (G yGYHV@I-1, (9.9)

The final equality points to the use of repeated squaring as a way to compute G*
with log n rather than n — 1 compositions of relations.

dw@}{i

9.5 Directed %c%?ic Graphs & Partial Orders

@%'k W‘tu{ g4 Cyo\e.

paty

Definition 9.5. 1 A @ a digraph is a walk thaf begins and ends at t

and ends atthe same vertex. A directed acyclic graph (DAG) is a directed graph

wimnm Aon 0

2The reversal of the order of R and S in (9.8) is not a typo. ho 6[05@& WQ;I&) QH’!?/

3The identity relation, Id 4, on a set, 4, is the equality relation:

aldg b iff a=b.

4Equation (9.9) involves a harmless abuse of notation: we should have written

graph(G*) = graph(G®) U graph(G')....
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9.5. Directed Acyclic Graphs & Partial Orders 241
fou Z% sl c/
»{w 6-3: SB in Computer Science and Engineering
Subjects
iy + Yy 6.UAT 6.UAP All subjects are 12 units
6 units 6 units
2 Advanced Undergraduate Suhjeqfs
S AUS T e R
1
3 [ s.osﬂ
Header comp sys
3
Foundation
2
Introductory
{= 1 Institute Lab) i
1806 or 1803
= BN 18.06 |[ 18.03 [ 6.042
(=2 REST) linear algebra diff eqs discrete math

exposure to programming

Elementary
(high school, IAP, or 6.00) )

June 2009 *new subject

Figure 9.6 Subject prerequisites for MIT Computer Science (6-3) Majors

which tasks must be completed before others can begin. For example, Figure 9.6
shows the prerequisite structure among MIT computer science subjects.
A positive length cycle in a prerequisite graph like this would have a dire effecth
on the ii_l:n_e’i_t’tgl;cs:tggraduate.
The edges in subject prerequisite DAG of Figure 9.6 show the direct prerequisites ¢4 /ﬁ&f S
listed for each subject, but to enroll for a subject you must of course have taken the M,, %4
prerequisites of the prerequisites and their prerequisites, and so on. In other words, 4
if D is relation, then subject u has to be completed before ~ &y 4
taking subject v i ry O ZI—E (4
The condition that D is a DAG is equivalent to saying that if there is a positive Y

¢
length path from vertex u to vertex v, there can’t be one from v back to u. This)é & ézo/

relational property is calle & /Q éj Cazy
V\f’\L W, 2 L
in DA i Z
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Definition 9.5.2. A binary relation, R, on a set, A, is asymmetric iff

=
a R b IMPLIES NOT(b R a)
=2
foralla,b € A.
A simpler way to say that a graph is a DAG is to say that there i€ no _positive
o {, e den'gt'ﬂ path from any vertm@ This property is calle
\ k

(/“1(/ L Definition 9.5.3. A binary relation, R, on a set, A, is’ﬁ’_reﬂexive iff

foralla € A.
efinition 9.5.4. A relation that called a(strict pa?j
tial order

To summarize, we have

Theorem 9.5.5. A relation is a strict partial order iff it is the gositive path relation

2 @ i
Corollary 9.5.6: A relation is a strict partial order iff it is transitive and irreflexivg.

A strict partial may be the positive path relation of different DAG’s. This raises
the question of finding a DAG with the smallest number of edges that determines
a given strict partial order. For finite strict partial orders, the smallest such DAG
turns out to be unique and easy to find (see Problem 9.2).

9.6 MWeaK Partial Order

Partial orders come up in many situations which on the face of it have nothing to do
with digraphs. For example, the less-than order, <, on numbers is a partial order:
__.——-——'"—-\._____________—-_-_-_-_-

nmr e ifx<yandy < zthenx < z,5s0 less—than@and
D‘w/gztph e if x < y than y £ x so less-than i@
“\ . . . .
\ i The proper containment relatio also a partial order:
édL (M"( TS prop r@ p

e if AC Band B C C then A C C, so containment is transitive, and
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e A ¢ A, so proper containment i@l

Partial orders have particular importance in computer science because, besides
modeling task scheduling problems, they capture key concepts used, for example,

in analyZiﬂg\?mol, as illustrated in Section 9.10.
The less-than-or-equal relation, <, is at least as familiar as t

less-than stri

partial order, and the ordinary containment relation, C, is even more common than

the:proper containment relatien. These are examples of weak partial orders.
‘H—-——‘_‘—‘—‘_‘—n—

Definition 9.6.1. A relation R on a set, A4, is a weak partial order iff there a there
is a strict partial order, .S on A such that

aRb iff (a5KOR a=b)
[ yerh adl Can bo gpq/

Weak partial orders can also be defined in terms of relational properties. We just

have to relax the asymmetry property to allow each element to be related to itself;
. . e ——
this property is ca]le

Definition 9.6.2. A binary relation, R, on a set A, is antisymmetric iff

foralla,b € A.

a R b IMPLIES NOT(b R a)

foralla # b € A. iy et

Atelation is weak partial order’ iff it is transitive, reflexive, and antisymmetric:

For weak partial orders in general, we often write an ordering-style symbol like
=< or C instead of a letter symbol lik(i: RS Likewise, we generally use < or [ to

fdicate a strict partial order. WA ‘Lff 'ﬁw“] (‘u/vta[ é _g ?

Two more examples of partial o our}s are worth mentioning;:

Example 9.6.3. Let A be some family of sets and definea R b iff a O b. Then R
is a strict partial order.

For integers, m,n we write m | n to mean that m divides n, namely, there is an

integer, k, such that n = km. n (‘S &flul‘b%w?. 6 p
Example 9.6.4. The divides relation is a weak partial order on g]e nonnegative

integers.

5Some authors define partial orders to be what we call weak partial orders, but we’ll use the phrase
“partial order” to mean either a weak or strict one.

5General relations are usually denoted by a letter like R instead of a cryptic squiggly symbol, so
=<is kind of Tike the musical performer/composer Prince, who redefined the spelling of his name to
be his own squiggly symbol. A few years ago he gave up and went back to the spellifig “Prince.”
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9.7 Representing Partial Orders by Set Containment

: PltclfU o It ’

(ﬂ\r\ﬁ\k \Lb e ;

Axioms can be a great way to abstract and reason about important properties of
objects, but it helps to have a clear picture of the things that satisfy the axioms.

We’ll show that every partial order can be pictured as elated by

ontainment That is, every partial order has the ‘tsamie shaps” as such a collection.
The technical word for “same shape” i@@)

Definition 9.7.1. A binary relation@on a setC/,f is isomorphic to a relation @
on a sefDViff there is a relation- preserngngectwn from A to D. That is, there is
bijection f : A — D, suchthatforalla,a’ € A,

‘gwtkw s aRd iff f(a)Sf(a)

what (s

To picture a partial order, @ on a set, /{'h as a co lecugn of sets, we simply
represent each element A by the set of elements that are < to that element, that is,

a «— {beA|b=<a}.

For example, if < is the divisibility relation on the set of integers, {1, 3,4, 6, 8, 12},
then we represent each of these integers by the set of integers in A that divides it.
So

e
3 «— {1,3}

4 «—— {1,4}

6 «— {1,3,6}

8 «— {1,4,8}

12 <> {1,3,4,6,12}

So, the fact that 3 | 12 corresponds to the fact that {1,3} € {1, 3,4,6, 12}.
In this way we have completely captured the weak partial order < by the subset
relation on the corresponding sets. Formally, we have

Lemma 9.7.2. Let < be a weak partial order on a set, A. Then =< is isomorphic to
the subset relation, C, on the collection of inverse images under the < relation of
elements a € A.

We leave the proof to Problem 9.10. Essentially the same construction shows
that strict partial orders can be represented by set under the proper subset relation,
C. To summarize
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Theorem 9.7.3. Every weak partial order, <, is isomorphic to the subset relation,
C, on a collection of sets.

Every strict partial order, <, is isomorphic to the proper subset relation, C, on a
collection of sets.

T dnt gt This cedion

9.8 Total Orders

8

L 98 =
[

Cqdilogf

The familiar order relations on numbers have an important additional property:

given two different numbers, one will be bigger than the other. Partial orders with
. . __—-_-_'__-___'-_‘__--—

this property are said to be total’ orders.

Definition 9.8.1. Let R be a binary relation on a set, A, and let a, b be elements of
A. Then a and b are comparable with respect to R iff [a R b OR b R a]. A partial

order for which every two different elements are comparable is called

S¢ < and < are total orders on On the other hand, the subset relation is
not total, since, for example, any two different finite sets of the same size will be
incomparable under C. The prerequisite relation om Course 6 required subjects is

also not total because, for exan;p\le, neither 8.01 nor 6.042 is a prerequisite of the
other. /

77 (2 [of(dn},d /@

9.9 Product Orders

Taking the product of two relations is a useful way to construct new relations from
'Struct new relations Hor
old ones.

Definition 9.9.1. The produ@f relations R; and R; is defined to be
the relation with

domain(Ry x Ry) := domain(R;) x domain(R3),
codomain(Ry x R3) := codomain(R) x codomain(R,),
(a1,a2) (Ry x Ry) (by,by) iff [ay Ry by and az Ry by].

Example 9.9.2. Define a relation, ¥, on age-height pairs of being younger and
shorter. This is the relation on the set of pairs (y, ) where y is a nonnegative

7“Total” is an overloaded term when talking about partial orders: being a total order is a much
stronger condition than being a partial order that is a total relation. For example, any weak partia
order such as C is a total relation.
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integer < 2400 which we interpret as an age in months, and / is a nonnegative
integer < 120 describing height in inches. We define ¥ by the rule

{ (y1,h1) Y (y2,h2) iff y; < y2 AND hy < hs.

That is, Y is the product of the <-relation on ages and the <-relation on heights.

It follows directly from the definitions that products preserve the properties of
transitivity, reflexivity, irreflexivity, and antisymmetry, as shown in Problem 9.19.
That is, if R; and R, both have one of these properties, then so does Rj x R5. This
implies that if R; and R are both partial orders, then so is R; X Rj.

On the other hand, the property of being a total order is not preserved. For
example, the age-height relation Y is the product of two total orders, but it is not
total: the age 240 months, height 68 inches pair, (240,68), and the pair (228,72) are
incomparable under Y.

\z\/d;!l,f {af 6[&55

9.10 Scheduling

Scheduling problems are a common source of partial orders: there is a set, 4, of
tasks and a set of constraints specifying that starting a certain task depends on
other tasks being complet . We can picture the constraMwing
labelled boxes corresponding to different tasks, with an arrow from one box to
another if the first box corresponds to a task that must be completed before starting
the second one.

For example, here is a drawing describing the order in which you could put on
clothes. The tasks are the clothes to be put on, and the arrows indicate what should
be put on directly before what.

When we have a partial order of tasks to be performed, it can be useful to have
an order in which to perform all the tasks, one at a time, while respecting the
dependency constraints. This amounts to finding a total order that is consistent

the partial order. This task of ﬁndmg a total ordering that is consis
\(J partml order is | known asTopological sorting:

(‘ \\&’ \ (ﬁeﬁmtlon 9.10.1. A topological sort of a partial orde:m
\ \ ordering, C, on A such that

h COQ\U\ N a <b IMPLIES a C b.

For example,

shirt C sweater T underwear C leftsock C rightsock C pants
C leftshoe T rightshoe C belt C jacket,
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Figure 9.7 Partial order describing which clothing items have to be put on before

others.
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is gm@f the partial order of dressing tasks given by Figure 9.7;
“there are several other possible sorts as well.

Topological sorts for partial orders on finite sets are easy to construct by starting

from Wts:

e o,

;Pff)eﬁﬁition 9.10.2. Let < be a partial order on a set, A. An element o € Ais
minimum iff it is < every other element of A, that is, ap < b for all b # ao.
The element ag is minimal iff no other element is < ag, that is, NOT(b =< ao)__ﬁo'r

—

There are corresponding definitions for maximum and maximal. Alternatively, a
maximum(al) element for a relation, R, could b|e defined to be as a minimum(al)
element for R™'. | [}P all e i (o Jii‘%\(ﬂﬂj

In a total order, mirfimum and minimal elements are the same thing. But a partial
order may have no minimum element but lots of minimal elements. There are four
minimal elements in the clothes example: leftsock, rightsock, underwear, and shirt.

To construct a total ordering for getting dressed, we pick one of these minimal
elements, sgy, shirt. Next we pick a minimal element among t ini S.
For exampl%)nce we have re d shi MWM;UB
in this way removing successive minimal elements until all elements have been
picked. The sequence of elements in the order they were picked will be a topologi-

cal sort. This is how the topological sort above for getting dressed was constructed.
So our construction shows:

Theorem 9.10.3. Every partial order on a finite set has a topological sort.

There are many other ways of constructing topological sorts. For example, in-

stead of starting “from the bottom” with minimal elements, we could build a total
starting anywhere and simply keep putting additional elements into the total order
wherever they will fit. In fact, the domain of the partial order need not even be
finite: we won’t prove it, but all partial orders, even infinite (%ues, have topological
sorts. (

9.10.1 Parallel Task Scheduling

For a partial order of task dependencies, topological sorting provides a way to ex-
ecute tasks one after another while respecting_the dependencies. But what if we
have the ability to execute more than one task at the same time? For example, say
tasks are programs, the partial order indicates data dependence, and we have a par-
allel machine with lots of processors instead of a sequential machine with only one.

How should we schedule the tasks? Our goal should be to minimize the total time

Were Q)Q}LS (ORRRN,
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A, left sock right sock underwear - shirt
® 9 b
A -
2 ® tie
|
L [ ]
A,y left shoe rightshoe  belt
[
®
A, jacket

Figure 9.8 A parallel schedule for the tasks-in-getting-dressed poset in Fig-
ure 9.7. The tasks in A; can be performed in step i for 1 < i < 4. A chain of
length 4 (the critical path in this example) is shown with bold edges.

to complete all the tasks. For simplicity, let’s say all the tasks take the same amount
of time and all the processors are identical. ——

So, given a finite partially ordered set of tasks, how long does it take to do them
all, in an optimal parallel schedule? We can also use partial order concepts to
analyze this problem. e

In the clothes example, we could do all the minimal elements first (leftsock,
rightsock, underwear, shirt), remove them and repeat. We'd need fots of hands,
or maybe dressing servants. We can do pants and sweater next, and then leftshoe,
rightshoe, and belt, and finally jacket. This schedule is illustrated in Figure 9.8.

In general, performing tasks specifies which tasks to do at succes-
sive steps. Every task; a, has be scheduled at some step, and all the tasks that have
to be completed before task @ must be scheduled for an earlier step.

Definition 9.10.4. A Qarallel schedule for a strict partial order, <, on a set, 4, is a

“th, g T beliet

-
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partition® of A into sets Ag, A1, ...,suchthatforalla,b € A,k € N,

[a € Ay ANDD <a] IMPLIES b € Aj forsome j < k.

The sis called the &gt of elements<Scheduled at step k, and the length of
the schedwte is the number of sets Ay 1 e-pa . The maximum number of

elements scheduled at any step is called mumber of processors required by the

; [
i f ot concirtat Yoms o}
So the schedule we chose above for clothes has four steps L ' N
6“/&\, fine. <

Aop ={leftsock, rightsock, underwear, shirt},

A1 ={pants, sweater}, (Xn a'l A

A, ={leftshoe, rightshoe, belt}, )

Az ={jacket}. ‘\11[“‘35
and requires four processors (to complet first step).

Notice that the dependencies constrain the tasks underwear, pants, belt, and

3( Jacket to be done in sequence. This implies that at least four steps are needed

)( ™ in every schedule for getting dressed, since if we used fewer than four steps, two of

\DU these tasks would have to be scheduled at the same time. A set of tasks that must
G be done in sequence like this is called a Lilﬁ_l'_?_i_.

Definition 9.10.5. A Chain)in a partial order is a set of elements such that any

two different elements in the set are(Comparabley A chain is said t@ an its

maximum element.

In general, the earliest step at which an element a can ever be scheduled must be
zE_lga, tas Jarge as a@ A hain ending at a is called a
ritical pathto a, and the size of the critical path is called th@&lo in any

possible parallel schedule, it takes at least depth (a) steps to complete task a.
There is a very simple schedule that completes every task in th "W
ber of steps. Just use a {(greedy” strategy of performing %a ible
hat’s how We

Namely, schedule all the elements of depfh & at step k.
schedule for getting dressed given above.

8Partiticming a set, A)ymeans(’cutting it up” into non-overlapping, nonempty piecey. The pieces
are called the blocks of the partition. More precisely, a tiorr of A is a set Se elements are
nonempty subsets of A such that

e if B, B’ € B are different sets, then B N B’ = @, and
* Upep B =4.
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Theorem 9.10.6. Let < be a strict partial order on a set, A. A minimum length
schedule for < consists of the sets Ay, Ay, ..., where

={a | depth (a) = k}.

We’ll leave to Problem 9.27 the proof that the sets Az are a parallel schedule
according to Definition 9.10.4.

The minimusi number of steps needed to schedule a partial order, =, is called 4
th@ne require ; d—a—l-mgesqm/sgble chain in < is called @ F{(ZE 4 C/ﬂ

path for <. So we can summarize the story above by this way: with an unlimited

Q

number of processors, the minimum parallel time to complete all tasks is simply 464,

the size of a critical path: 7( ,’71)

Corollary 9.10.7¢ Parallel time = length of critical path~_ (%) /D/Ct Cesurs ffl %/é /
[/

9.10.2 Dilworth’s Lemma E _\\_‘_’_//mf

Definition 9.10.8. A@n a partial order is a set of elements such that any

R W e yiph & s agut

Our conclusions about scheduling also tell us something about antichains.

Corollary 9.10.9. If the large i rtial order on a set, /I,Tﬁf?tze\
then A can be partitioned into t antichains. €4€ A, ﬁl Lj e (10(v g /Z’ //

Proof. Let the antichains be the sets Ay ::= {a | depth(a) = k}. It is an easy
exercise to verify that each Ay is an antichain (Problem 9.27) O

Corollary 9.10.9 implies a famous result’ about partially ordered sets:

Lemma 9. 10 10 (Dllworth) For allt > 0, every partially ordered set with n ele-
ments must have eithera chain of size greater than t or an antichain of size at least
n/t.

Proof. Assume there is no chain of size greater than ¢, that is, the largest chain is of
size < t. Then by Corollary 9.10.9, the n elements can be partitioned into at most
t antichains. Let £ be the size of the largest antichain. Since every element belongs
to exactly one antichain, and there are at most ¢ antichains, there can’t be more
than £ elements, namely, £ > n. So there is an antichain with at least £ > n/t
elements. O

?Lemma 9.10.10 also follows from a more general result known as Dilworth’s Theorem which we
will not discuss.
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Corollary 9.10.11. Every partially ordered set with n elements has a chain of size
greater than /n or an antichain of size at least \/n.

Proof. Sett = 4/n in Lemma 9.10.10. O

Example 9.10.12. In the dressing partially ordered set, n = 10.
Try t = 3. There is a chain of size 4.
Try t = 4. There is no chain of size 5, but there is an antichain of size 4 > 10/4.

Example 9.10.13. Suppose we have a class of 101 students. Then using the product
partial order, Y, from Example 9.9.2, we can apply Dilworth’s Lemma to conclude
that there is a chain of 11 students who get taller as they get older, or an antichain of
11 students who get taller as they get younger, which makes for an amusing in-class
demo.

9.11 Equivalence Relations [} ), { A

Q\C‘MLT r

mga\m‘

-

g1 O 1

A relation is an(equivalence relation \f it isfeflexive, symmetric, and transitive.
Congruence modulo n is an excellent example of a i i

e It is reflexive because x = x (mod n).
e Itis symmetric because x = y (mod n) implies y = x (mod n).

e Itistransitive because x = y (mod n)and y = z (mod n) imply thatx = z
(mod n).

There is an even more well-known example of an equivalence relation: equality
itself. Thus, an equivalence relation is a relation that shares some key properties

=\ (s
9.11.1 Partitions

There is another way to think about equivalence relations, but we’ll need a couple
of definitions to understand this alternative perspective.

Definition 9.11.1. Given an equivalence relation R : 4 — A, the equivalence
class of an element x € A is the set of all elements of A related to x by R. The
equivalence class of x is denoted [x]g. Thus, in symbols:

[x]r :={y | x R y}.
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For example, suppose that A = Z and x R y means that x = y (mod 5). Then
g ={%:-3,2.7,12,22.... }.

Notice that 7, 12, 17, etc., all have the same equivalence class; that is, [7]g =
12z = [17]g = -+

Definition 9.11.2. Aartition of a finite set A is a collection of disjoint, nonempty

subsets Aj, A2, ..., Ay whose union is all of A. The subsets are usually called the
— A IR e
or example, one possible partition of A = {a, b, c,d, e}
Ay ={a,c} Az ={b, e} Az ={d}.
Here’s the connection between all this stuff: there is an exact correspondence

between equivalence relations on A and partitions of A. We can state this as a
theorem:

Theorem 9.11.3. The equivalence classes of an equivalence relation on a set A
form a partition of A.

We won’t prove this theorem (too dull even for us!), but let’s look at an example.
The congruent-mod-5 relation partitions the integers into five equivalence classes:
.s—-/—‘\‘

bone—50,5,10:15. 203 /\r
{ Sougdye sty ‘3/# all 7
it 1

PSS e N 8 I (. /%5%/9 757'

{..,-2,3,8,13,18,23,...} 7

{..,—1,4,914,19,24,...}
In these terms, x = y (mod 5) is equivalent to the assertion that x and y are both
in the same block of this partition. For example, 6 = 16 (mod 5), because they’re
both in the second block, but 2 £ 9 (mod 5) because 2 is in the third block while
9 is in the last block.

In social terms, if “likes” were an equivalence relation, then everyone would be
partitioned into cliques of friends who all like each other and no one else.

Problems for Section 9.5

Practice Problems

Problem 9.1.
Why is every strict partial order a DAG?

10%e think they should be called the parts of the partition. Don’t you think that makes a lot more
sense?
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Class Problems

Problem 9.2.

If a and b are distinct nodes of a digraph, then a is said to cover b if there is an
edge from a to b and every path from a to b traverses this edge. If a covers b, the
edge from a to b is called a covering edge.

(a) What are the covering edges in the following DAG?

(b) Let covering (D) be the subgraph of D consisting of only the covering edges.
Suppose D is a finite DAG. Explain why covering (D) has the same positive path
relation as D.

Hint: Consider longest paths between a pair of vertices.

(¢) Show that if two DAG’s have the same positive path relation, then they have
the same set of covering edges.

(d) Conclude that covering (D) is the uniqgue DAG with the smallest number of
edges among all digraphs with the same positive path relation as D.

The following examples show that the above results don’t work in general for
digraphs with cycles.

(e) Describe two graphs with vertices {1, 2} which have the same set of covering
edges, but not the same positive path relation (Hint: Self-loops.)

() (i) The complete digraph without self-loops on vertices 1,2, 3 has edges
between every two distinct vertices. What are its covering edges?

(ii) What are the covering edges of the graph with vertices 1,2,3 and edges
(1-2),{(2—3),3—=1)?
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(iii) What about their positive path relations?

Problem 9.3.

In a round-robin tournament, every pair of distinct players play against each other
just once. For a round-robin tournament with with no tied games, a record of
who beat whom can be described with a tournament digraph, where the vertices
correspond to players and there is an edge x — y if x beat y in their game.

A ranking is a directed simple path that includes all the players.

(a) Give an example of a tournament digraph with more than one ranking.
(b) If a tournament digraph is a DAG, then it has a unique ranking. Explain.

(c) Prove that every tournament digraph has a ranking. Hint: Induction on the
size of the tournament.

Homework Problems

Problem 9.4.

Let R be a binary relation on a set A. Then R" denotes the composition of R with
itself n times. Regarding R as a digraph, let R™ denote the length n path relation
R, that is,

a R™ p ::= there is a length n path from a to b in R.

Prove that
R" = R™ (9.10)

foralln € N.

Problem 9.5.
If R is a binary relation on a set, A, then R* denotes the relational composition of
R with itself k& times.

(a) Prove that if R is a relation on a finite set, A, then

a(RUI ™ b iff thereisapathin R of length length < n froma to b.

(b) Conclude that if A is a finite set, then

R* = (RU IpHMAI-L, (9.11)
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Problem 9.6.

In this problem we’ll consider some special cycles in graphs called Euler tours,
named after the famous mathematician Leonhard Euler. (Same Euler as for the
constant ¢ =~ 2.718—he did a lot of stuff.)

Definition 9.11.4. An Euler tour of a graph is a closed walk that includes every
edge exactly once.

So how do you tell in general whether a graph has an Euler tour? At first glance
this may seem like a daunting problem (the similar sounding problem of finding
a cycle that touches every vertex exactly once is one of those million dollar NP-
complete problems known as the Traveling Salesman Problem)—but it turns out to
be easy.

(a) Show that if a graph has an Euler tour, then the in-degree of each vertex equals
its out-degree.

A digraph is weakly connected if there is a “path” between any two vertices that
may follow edges backwards or forwards. More precisely, a digraph, G is weakly
connected iff there is a path from each vertex to every other vertex in the digraph
G UG L,

In the remaining parts, we’ll work out the converse: if a graph is weakly con-
nected and if the in-degree of every vertex equals its out-degree, then the graph has
an Euler tour. To do this, let’s define an Euler walk to be a walk that traverses each
edge at most once.

(b) Suppose that an Euler path in a connected graph does not include every edge.
Explain why there must be an edge not on the path whose head or tail is on the
path.

In the remaining parts, let W be the longest Euler path in the graph.
(c) Show that if W is a cycle, then it must be an Euler tour.
Hint: part (b)

(d) Explain why all the edges incident to the end of W must be on W.

(e) Show that if the end of W was not equal to the start of W, then the degree of
the end would be odd.

Hint: part (d)

(f) Conclude that if every vertex of a finite, connected graph has even degree, then
it has an Euler tour.
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Problem 9.7.
A 3-bit string is a string made up of 3 characters, each a 0 or a 1. Suppose you’d
like to write out, in one string, all eight of the 3-bit strings in any convenient order.
For example, if you wrote out the 3-bit strings in the usual order starting with 000
001 010..., you could concatenate them together to get a length 3 - 8 = 24 string
that started 000001010. ...

But you can get a shorter string containing all eight 3-bit strings by starting with
00010.... Now 000 is present as bits 1 through 3, 001 is present as bits 2 through
4, 010 is present as bits 3 through 5, ...

(a) Take a few moments to see how short a string you can make that contains every
3-bit string as 3 consecutive bits somewhere in it. Can you see why 10 bits is the
absolute minimum length for such a string?

+1

10 +0

O —=

11
+1
+0 +1
+0
$ 00
01
+0 +1

(b) Imagine that the labels on the vertices of the graph above represent the last
two digits in a string you build by adding one bit at a time. Convince yourself that
the graph completely describes how the last two digits of your string can change
throughout this process.

(c¢) Find a directed path in this graph starting at some vertex, v, that contains every
edge exactly once. Note that vertices will have to be used more than once and the
path will have to end in v.

(d) Explain how such a path provides a shortest possible solution to the original
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problem.

(e) What about k-bit substrings, k = 4,5,...7 Can you define the appropriate
generalization of the useful graph above? (They’re called de Bruijn graphs.) If
you do it sucessfully, you should be able to see that the in-degree (as well as the
out-degree) of every vertex is 2.

Problem 9.6 shows that if the in-degree of every vertex is equal to its out-degree
then a directed path can be drawn in that digraph that uses every edge exactly
once.!! You might want to think about why this should be true or how you might
find such a path.

But if you do believe it, you should be able to see why all 2K k-bit strings can be
written as substrings of a string of length 2K 4+ k — 1. (These strings are essentially
de Bruijn strings.)

Problems for Section 9.7

Class Problems

Problem 9.8.

Direct Prerequisites Subject
18.01 6.042
18.01 18.02
18.01 18.03
8.01 8.02
8.01 6.01
6.042 6.046
18.02, 18.03, 8.02, 6.01 | 6.02
6.01, 6.042 6.006
6.01 6.034
6.02 6.004

(a) For the above table of MIT subject prerequisites, draw a diagram showing the
subject numbers with a line going down to every subject from each of its (direct)
prerequisites.

(b) Give an example of a collection of sets partially ordered by the proper subset
relation, C, that is isomorphic to (“same shape as”) the prerequisite relation among
MIT subjects from part (a).

UThe graph must also be weakly connected, see Problem 9.6.
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(c) Explain why the empty relation is a strict partial order and describe a collection
of sets partially ordered by the proper subset relation that is isomorphic to the empty
relation on five elements—that is, the relation under which none of the five elements
is related to anything.

(d) Describe a simple collection of sets partially ordered by the proper subset re-
lation that is isomorphic to the “properly contains” relation, D, on P{1, 2, 3, 4}.

Problem 9.9.
Consider the proper subset partial order, C, on the power set P{1,2,...,6}.

(a) What is the size of a maximal chain in this partial order? Describe one.
(b) Describe the largest antichain you can find in this partial order.

(c) What are the maximal and minimal elements? Are they maximum and mini-
mum?

(d) Answer the previous part for the C partial order on the set P{1,2,...,6} —@.

Homework Problems

Problem 9.10.

This problem asks for a proof of Lemma 9.7.2 showing that every weak partial
order can be represented by (is isomorphic to) a collection of sets partially ordered
under set inclusion (C). Namely,

Lemma. Let < be a weak partial order on a set, A. For any element a € A, let

L(a)::={beA|b=a},
L::={L(a) | a € A}.

Then the function L : A — L is an isomorphism from the < relation on A, to the
subset relation on L.

(a) Prove that the function L : A — L is a bijection.
(b) Complete the proof by showing that
a=<b iff L(a) CL(b) (9.12)

foralla,b € A.
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Problems for Section 9.8
Practice Problems

Problem 9.11.

For each of the binary relations below, state whether it is a strict partial order, a
weak partial order, or neither. If it is not a partial order, indicate which of the
axioms for partial order it violates. If it is a partial order, state whether it is a total
order and identify its maximal and minimal elements, if any.

(a) The superset relation, 2 on the power set P{1, 2, 3,4, 5}.

(b) The relation between any two nonegative integers, a, b that the remainder of
a divided by 8 equals the remainder of b divided by 8.

(c) The relation between propositional formulas, G, H, that G IMPLIES H is
valid. :

(d) The relation ’beats’ on Rock, Paper and Scissor (for those who don’t know the

game Rock, Paper, Scissors, Rock beats Scissors, Scissors beats Paper and Paper
beats Rock).

(e) The empty relation on the set of real numbers.
(f) The identity relation on the set of integers.
(g) The divisibility relation on the integers, Z.

Class Problems

Problem 9.12. (a) Verify that the divisibility relation on the set of nonnegative
integers is a weak partial order.

(b) What about the divisibility relation on the set of integers?

Problem 9.13.
Consider the nonnegative numbers partially ordered by divisibility.

(a) Show that this partial order has a unique minimal element.
(b) Show that this partial order has a unique maximal element.

(c) Prove that this partial order has an infinite chain.
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(d) An antichain in a partial order is a set of elements such that any two elements

in the set are incomparable. Prove that this partial order has an infinite antichain.
Hint: The primes.

(e) What are the minimal elements of divisibility on the integers greater than 1?
What are the maximal elements?

Problem 9.14.
How many binary relations are there on the set {0, 1}?
How many are there that are transitive?, . ..asymmetric?, .. .reflexive?, .. .irreflexive?,
...strict partial orders?, ... weak partial orders?
Hint: There are easier ways to find these numbers than listing all the relations
and checking which properties each one has.

Problem 9.15.

Prove that if a binary relation on a set is transitive and irreflexive, then it is asym-
metric.

Problem 9.16.
Prove that if R is a partial order, then so is R™!

Homework Problems

Problem 9.17.
Let R and S be binary relations on the same set, A.

Definition 9.11.5. The composition, S o R, of R and S is the binary relation on A
defined by the rule:'?

a(SoR)c iff db[aRb AND b S c].

Suppose both R and .S are transitive. Which of the following new relations must
also be transitive? For each part, justify your answer with a brief argument if the
new relation is transitive and a counterexample if it is not.

2Note the reversal in the order of R and S. This is so that relational composition generalizes
function composition, Composing the functions f and g means that f is applied first, and then g is
applied to the result. That is, the value of the composition of f and g applied to an argument, x, is
g(f(x)). To reflect this, the notation g o f is commonly used for the composition of f and g. Some
texts do define g o f the other way around.
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Exam Problems
Problem 9.18.

(a) For each row in the following table, indicate whether the binary relation, R,
on the set, A, is a weak partial order or a total order by filling in the appropriate
entries with either Y = YES or N = NO. In addition, list the minimal and maximal
elements for each relation.

A a R b | weak partial order | total order | minimal(s) | maximal(s)

R—-Rt alb

P1.2,3) jach

NU{i} |a>b

0.5in
(b) What is the longest chain on the subset relation, C, on P({1,2,3})? (If there

is more than one, provide ONE of them.)
1.5in

(c) What is the longest antichain on the subset relation, C, on P({1,2,3})? (If
there is more than one, provide one of them.)

Problems for Section 9.9
Class Problems

Problem 9.19.

Let R;, R; be binary relations on the same set, A. A relational property is preserved
under product, if R; x R, has the property whenever both R; and R, have the
property.
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(a) Verify that each of the following properties are preserved under product.

1. reflexivity,
2. antisymmetry,

3. transitivity.

(b) Verify that if either of R; or R is irreflexive, then sois R; x Rj.

Note that it now follows immediately that if if Ry and R, are partial orders and
at least one of them is strict, then Ry x R; is a strict partial order.

Problems for Section 9.10
Practice Problems

Problem 9.20.

What is the size of the longest chain that is guaranteed to exist in any partially
ordered set of n elements? What about the largest antichain?

Problem 9.21.

Describe a sequence consisting of the integers from 1 to 10,000 in some order so
that there is no increasing or decreasing subsequence of size 101.

Problem 9.22.

What is the smallest number of partially ordered tasks for which there can be more
than one minimum time schedule? Explain.

Class Problems

Problem 9.23.
The table below lists some prerequisite information for some subjects in the MIT
Computer Science program (in 2006). This defines an indirect prerequisite relation,
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<, that is a strict partial order on these subjects.

18.01 — 6.042 18.01 — 18.02

18.01 — 18.03 6.046 — 6.840

8.01 — 8.02 6.001 — 6.034

6.042 — 6.046 18.03,8.02 — 6.002
6.001, 6.002 — 6.003 6.001, 6.002 — 6.004
6.004 — 6.033 6.033 — 6.857

(a) Explain why exactly six terms are required to finish all these subjects, if you
can take as many subjects as you want per term. Using a greedy subject selection
strategy, you should take as many subjects as possible each term. Exhibit your
complete class schedule each term using a greedy strategy.

(b) In the second term of the greedy schedule, you took five subjects including
18.03. Identify a set of five subjects not including 18.03 such that it would be
possible to take them in any one term (using some nongreedy schedule). Can you
figure out how many such sets there are?

(c) Exhibit a schedule for taking all the courses—but only one per term.

(d) Suppose that you want to take all of the subjects, but can handle only two per
term. Exactly how many terms are required to graduate? Explain why.

(e) What if you could take three subjects per term?

Problem 9.24.

A pair of Math for Computer Science Teaching Assistants, Jay and Oscar, have
decided to devote some of their spare time this term to establishing dominion over
the entire galaxy. Recognizing this as an ambitious project, they worked out the
following table of tasks on the back of Oscar’s copy of the lecture notes.

1. Devise a logo and cool imperial theme music - 8 days.

2. Build a fleet of Hyperwarp Stardestroyers out of eating paraphernalia swiped
from Lobdell - 18 days.

3. Seize control of the United Nations - 9 days, after task #1.

4. Get shots for Jay’s cat, Tailspin - 11 days, after task #1.
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5. Open a Starbucks chain for the army to get their caffeine - 10 days, after
task #3.

6. Train an army of elite interstellar warriors by dragging people to see The
Phantom Menace dozens of times - 4 days, after tasks #3, #4, and #5.

7. Launch the fleet of Stardestroyers, crush all sentient alien species, and es-
tablish a Galactic Empire - 6 days, after tasks #2 and #6.

8. Defeat Microsoft - 8 days, after tasks #2 and #6.

We picture this information in Figure 9.9 below by drawing a point for each task,
and labelling it with the name and weight of the task. An edge between two points
indicates that the task for the higher point must be completed before beginning the
task for the lower one.

devise logo build fleet
8 18

seize control glet shots
1

open chain
10

train army

6 defeat Microsoft

launch fleet 8

Figure 9.9 Graph representing the task precedence constraints.

(a) Give some valid order in which the tasks might be completed.
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Jay and Oscar want to complete all these tasks in the shortest possible time.
However, they have agreed on some constraining work rules.

e Only one person can be assigned to a particular task; they can not work
together on a single task.

e Once a person is assigned to a task, that person must work exclusively on
the assignment until it is completed. So, for example, Jay cannot work on
building a fleet for a few days, run to get shots for Tailspin, and then return
to building the fleet.

(b) Jay and Oscar want to know how long conquering the galaxy will take. Oscar
suggests dividing the total number of days of work by the number of workers,
which is two. What lower bound on the time to conquer the galaxy does this give,
and why might the actual time required be greater?

(c) Jay proposes a different method for determining the duration of their project.
He suggests looking at the duration of the “critical path”, the most time-consuming
sequence of tasks such that each depends on the one before. What lower bound
does this give, and why might it also be too low?

(d) What is the minimum number of days that Jay and Oscar need to conquer the
galaxy? No proof is required.

Problem 9.25. (a) What are the maximal and minimal elements, if any, of the
power set P({1,...,n}), where n is a positive integer, under the empty relation?

(b) What are the maximal and minimal elements, if any, of the set, N, of all non-
negative integers under divisibility? Is there a minimum or maximum element?

(c) What are the minimal and maximal elements, if any, of the set of integers
greater than 1 under divisibility?

(d) Describe a partially ordered set that has no minimal or maximal elements.

(e) Describe a partially ordered set that has a unique minimal element, but no
minimum element. Hint: It will have to be infinite.

Homework Problems

Problem 9.26.
The following procedure can be applied to any digraph, G:
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1. Delete an edge that is in a cycle.

2. Delete edge (u—v) if there is a path from vertex u to vertex v that does not
include (u—v).

3. Add edge (¥ — v) if there is no path in either direction between vertex ¥ and
vertex v.

Repeat these operations until none of them are applicable.
This procedure can be modeled as a state machine. The start state is G, and the
states are all possible digraphs with the same vertices as G.

(a) Let G be the graph with vertices {1, 2, 3,4} and edges
{(1-2),(2—3),(3—>4),(3—>2),(1>4)}

What are the possible final states reachable from G?

A line graph is a graph whose edges are all on one path. All the final graphs in
part (a) are line graphs.

(b) Prove that if the procedure terminates with a digraph, H, then H is a line
graph with the same vertices as G.

Hint: Show that if H is not a line graph, then some operation must be applicable.
(c) Prove that being a DAG is a preserved invariant of the procedure.

(d) Prove that if G is a DAG and the procedure terminates, then the path relation
of the final line graph is a topological sort of G.

Hint: Verify that the predicate
P(u,v) ::= there is a directed path from u to v

is a preserved invariant of the procedure, for any two vertices u, v of a DAG.

(e) Prove that if G is finite, then the procedure terminates.

Hint: Let s be the number of cycles, e be the number of edges, and p be the number
of pairs of vertices with a directed path (in either direction) between them. Note
that p < n? where n is the number of vertices of G. Find coefficients a, b, ¢ such
that as + bp + e + ¢ is nonnegative integer valued and decreases at each transition.
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Problem 9.27.
Let < be a partial order on a set, A, and let

Ay = {a | depth (a) = k}

where k € N.

(a) Provethat Ag, A1, ... is a parallel schedule for < according to Definition 9.10.4.

(b) Prove that Ay is an antichain.

Problem 9.28.
Let S be a sequence of n different numbers. A subsequence of S is a sequence that
can be obtained by deleting elements of .S.
For example, if
8i=46,4,7,9,4,2,5,3,8)

Then 647 and 7253 are both subsequences of .S (for readability, we have dropped
the parentheses and commas in sequences, so 647 abbreviates (6, 4, 7), for exam-
ple).

An increasing subsequence of S is a subsequence of whose successive elements
get larger. For example, 1238 is an increasing subsequence of S. Decreasing sub-
sequences are defined similarly; 641 is a decreasing subsequence of S.

(a) List all the maximum length increasing subsequences of S, and all the maxi-
mum length decreasing subsequences. :

Now let A be the set of numbers in §. (So A = {1,2,3,..., 9} for the example
above.) There are two straightforward ways to totally order A. The first is to order
its elements numerically, that is, to order A with the < relation. The second is to
order the elements by which comes first in S; call this order <g. So for the example
above, we would have

6<sd4<5T7<s9<sl<g2<55<53<s58
Next, define the partial order < on A defined by the rule
a=ali n=7a <iqdbanda<g a'.

(It’s not hard to prove that < is strict partial order, but you may assume it.)

(b) Draw a diagram of the partial order, <, on A. What are the maximal ele-
ments,. . . the minimal elements?
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(c) Explain the connection between increasing and decreasing subsequences of S,
and chains and anti-chains under <.

(d) Prove that every sequence, .S, of length n has an increasing subsequence of
length greater than ,/n or a decreasing subsequence of length at least /n.

(e) (Optional, tricky) Devise an efficient procedure for finding the longest in-
creasing and the longest decreasing subsequence in any given sequence of integers.
(There is a nice one.)

Problem 9.29.
We want to schedule n partially ordered tasks.

(a) Explain why any schedule that requires only p processors must take time at
least [n/p].

(b) Let Dy, be the strict partial order with n elements that consists of a chain of
t — 1 elements, with the bottom element in the chain being a prerequisite of all the
remaining elements as in the following figure:

t-1

n-(-1)

What is the minimum time schedule for D,, ,? Explain why it is unique. How many
processors does it require?

(c) Write a simple formula, M(n,t, p), for the minimum time of a p-processor
schedule to complete Dy, ;.
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(d) Show that every partial order with n vertices and maximum chain size, ¢, has
a p-processor schedule that runs in time M(n, t, p).

Hint: Induction on ¢.

Problems for Section 9.11
Homework Problems

Problem 9.30.
For any total function f : A — B define a relation = s by the rule:

a=ga iff f(a)= f(d). (9.13)
(a) Prove that =y is an equivalence relation on A.

(b) Prove that every equivalence relation on a set A is equal to = s for some total
function f : A — B.
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Communication Networks

Modeling communication networks is an important application of digraphs in com-
puter science. In this such models, vertices represent computers, processors, and
switches; edges will represent wires, fiber, or other transmission lines through
which data flows. For some communication networks, like the intemmet, the cor-
responding graph is enormous and largely chaotic. Highly structured networks, by
contrast, find application in telephone switching systems and the communication
hardware inside parallel computers. In this chapter, we’ll look at some of the nicest
and most commonly used structured networks.

10.1 Complete Binary Tree

Let’s start with a complete binary tree. Here is an example with 4 inputs and 4
outputs. The kinds of communication networks we consider aim to transmit packets
of data between computers, processors, telephones, or other devices. The term
packet refers to some roughly fixed-size quantity of data— 256 bytes or 4096 bytes
or whatever. In this diagram and many that follow, the squares represent terminals,
sources and destinations for packets of data. The circles represent switches, which
direct packets through the network. A switch receives packets on incoming edges
and relays them forward along the outgoing edges. Thus, you can imagine a data
packet hopping through the network from an input terminal, through a sequence of
switches joined by directed edges, to an output terminal.

Recall that there is a unique simple path between every pair of vertices in a tree.
So the natural way to route a packet of data from an input terminal to an output in
the complete binary tree is along the corresponding directed path. For example, the
route of a packet traveling from input 1 to output 3 is shown in bold.

10.2 Routing Problems

Communication networks are supposed to get packets from inputs to outputs, with
each packet entering the network at its own input switch and arriving at its own
output switch. We’re going to consider several different communication network
designs, where each network has N inputs and N outputs; for convenience, we’ll
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assume N is a power of two.

Which input is supposed to go where is specified by a permutation of {0, 1,..., N—
1}. So a permutation, 7, defines a routing problem: get a packet that starts at in-
put i to output 7 (i). A routing, P, that solves a routing problem, =, is a set of
paths from each input to its specified output. That is, P is a set of n paths, P;, for
i =0...,N —1, where P; goes from input i to output (7).

10.3 Network Diameter

The delay between the time that a packets arrives at an input and arrives at its
designated output is a critical issue in communication networks. Generally this
delay is proportional to the length of the path a packet follows. Assuming it takes
one time unit to travel across a wire, the delay of a packet will be the number of
wires it crosses going from input to output.

Generally packets are routed to go from input to output by the shortest path pos-
sible. With a shortest path routing, the worst case delay is the distance between the
input and output that are farthest apart. This is called the diameter of the network.
In other words, the diameter of a network’ is the maximum length of any shortest

I'The usual definition of diameter for a general graph (simple or directed) is the largest distance
between any two vertices, but in the context of a communication network we’re only interested in the
distance between inputs and outputs, not between arbitrary pairs of vertices.
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path between an input and an output. For example, in the complete binary tree
above, the distance from input 1 to output 3 is six. No input and output are farther
apart than this, so the diameter of this tree is also six.

More generally, the diameter of a complete binary tree with N inputs and outputs
is 2log N + 2. (All logarithms in this lecture— and in most of computer science —
are base 2.) This is quite good, because the logarithm function grows very slowly.
We could connect up 2'% = 1024 inputs and outputs using a complete binary tree
and the worst input-output delay for any packet would be this diameter, namely,
2log(219) +2 = 22.

10.3.1 Switch Size

One way to reduce the diameter of a network is to use larger switches. For example,
in the complete binary tree, most of the switches have three incoming edges and
three outgoing edges, which makes them 3 x 3 switches. If we had 4 x 4 switches,
then we could construct a complete fernary tree with an even smaller diameter. In
principle, we could even connect up all the inputs and outputs via a single monster
N x N switch.

This isn’t very productive, however, since we’ve just concealed the original net-
work design problem inside this abstract switch. Eventually, we’ll have to design
the internals of the monster switch using simpler components, and then we’re right
back where we started. So the challenge in designing a communication network
is figuring out how to get the functionality of an N x N switch using fixed size,
elementary devices, like 3 x 3 switches.

10.4 Switch Count

Another goal in designing a communication network is to use as few switches as
possible. The number of switches in a complete binary tree is 1 +2+4-+8-+4---+4N,
since there is 1 switch at the top (the “root switch™), 2 below it, 4 below those, and
so forth. By the formula (6.7) for geometric sums, the total number of switches is
2N — 1, which is nearly the best possible with 3 x 3 switches.
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10.5 Network Latency

We’ll sometimes be choosing routings through a network that optimize some quan-
tity besides delay. For example, in the next section we’ll be trying to minimize
packet congestion. When we’re not minimizing delay, shortest routings are not al-
ways the best, and in general, the delay of a packet will depend on how it is routed.
For any routing, the most delayed packet will be the one that follows the longest
path in the routing. The length of the longest path in a routing is called its latency.

The latency of a network depends on what’s being optimized. It is measured by
assuming that optimal routings are always chosen in getting inputs to their specified
outputs. That is, for each routing problem, s, we choose an optimal routing that
solves . Then network latency is defined to be the largest routing latency among
these optimal routings. Network latency will equal network diameter if routings
are always chosen to optimize delay, but it may be significantly larger if routings
are chosen to optimize something else.

For the networks we consider below, paths from input to output are uniquely
determined (in the case of the tree) or all paths are the same length, so network
latency will always equal network diameter.

10.6 Congestion

The complete binary tree has a fatal drawback: the root switch is a bottleneck. At
best, this switch must handle an enormous amount of traffic: every packet traveling
from the left side of the network to the right or vice-versa. Passing all these packets
through a single switch could take a long time. At worst, if this switch fails, the
network is broken into two equal-sized pieces.

For example, if the routing problem is given by the identity permutation, Id(i)::=
i, then there is an easy routing, P, that solves the problem: let P; be the path from
input i up through one switch and back down to output i. On the other hand, if the
problem was given by 7 (i) ::= (N — 1) — i, then in any solution, Q, for m, each
path Q; beginning at input i must eventually loop all the way up through the root
switch and then travel back down to output (N — 1) —i. These two situations are
illustrated below. We can distinguish between a “good” set of paths and a “bad” set
based on congestion. The congestion of a routing, P, is equal to the largest number
of paths in P that pass through a single switch. For example, the congestion of the
routing on the left is 1, since at most 1 path passes through each switch. However,
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the congestion of the routing on the right is 4, since 4 paths pass through the root
switch (and the two switches directly below the root). Generally, lower congestion
is better since packets can be delayed at an overloaded switch.

By extending the notion of congestion to networks, we can also distinguish be-
tween “good” and “bad” networks with respect to bottleneck problems. For each
routing problem, =, for the network, we assume a routing is chosen that optimizes
congestion, that is, that has the minimum congestion among all routings that solve
7. Then the largest congestion that will ever be suffered by a switch will be the
maximum congestion among these optimal routings. This “maximin” congestion
is called the congestion of the network.

So for the complete binary tree, the worst permutation would be 7 (i) ::= (N —
1) —i. Then in every possible solution for m, every packet, would have to follow
a path passing through the root switch. Thus, the max congestion of the complete
binary tree is N —which is horrible!

Let’s tally the results of our analysis so far:

network | diameter | switch size | # switches | congestion
complete binary tree | 2logN +2| 3x3 [ 2N —1 | N

10.7 2-D Array

Let’s look at an another communication network. This one is called a 2-dimensional
array or grid.

Here there are four inputs and four outputs, so N = 4.

The diameter in this example is 8, which is the number of edges between input 0
and output 3. More generally, the diameter of an array with N inputs and outputs is
2N, which is much worse than the diameter of 2log N + 2 in the complete binary
tree. On the other hand, replacing a complete binary tree with an array almost
eliminates congestion.

Theorem 10.7.1. The congestion of an N -input array is 2.
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Proof. First, we show that the congestion is at most 2. Let & be any permutation.
Define a solution, P, for 7 to be the set of paths, P;, where P; goes to the right
from input i to column 7 (i) and then goes down to output 7 (i ). Thus, the switch in
row i and column j transmits at most two packets: the packet originating at input
i and the packet destined for output ;.

Next, we show that the congestion is at least 2. This follows because in any
routing problem, 7, where 7(0) = 0 and 7(N — 1) = N — 1, two packets must
pass through the lower left switch. [ |

As with the tree, the network latency when minimizing congestion is the same
as the diameter. That’s because all the paths between a given input and output are
the same length.

Now we can record the characteristics of the 2-D array.

network | diameter | switch size | # switches | congestion
complete binary tree | 2log N + 2 \ 3x3 ‘ 2N —1 \ N

2-D array 2N Dol N? 2

The crucial entry here is the number of switches, which is N 2 Thisis a major
defect of the 2-D array; a network of size N = 1000 would require a million
2 x 2 switches! Still, for applications where N is small, the simplicity and low
congestion of the array make it an attractive choice.

10.8 Butterfly

The Holy Grail of switching networks would combine the best properties of the
complete binary tree (low diameter, few switches) and of the array (low conges-
tion). The butterfly is a widely-used compromise between the two.

A good way to understand butterfly networks is as a recursive data type. The
recursive definition works better if we define just the switches and their connec-
tions, omitting the terminals. So we recursively define F}, to be the switches and
connections of the butterfly net with N ::= 2" input and output switches.

The base case is F; with 2 input switches and 2 output switches connected as in
Figure 10.1.

In the constructor step, we construct Fy,4+; with 2"+1 inputs and outputs out
of two F, nets connected to a new set of 2"*1 input switches, as shown in as in
Figure 10.2. That is, the ith and 2" + ith new input switches are each connected
to the same two switches, namely, to the ith input switches of each of two F,
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2 inputs 2 outputs
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Figure 10.1 Fy, the Butterfly Net switches with N = 2!.

components fori = 1,...,2". The output switches of F,,+; are simply the output
switches of each of the F}, copies.

So Fy41 is laid out in columns of height 2" %! by adding one more column of
switches to the columns in F,. Since the construction starts with two columns
when n = 1, the F,,+ switches are arrayed in n + 1 columns. The total number
of switches is the height of the columns times the number of columns, namely,
27+1(n 4+ 1). Remembering that n = log N, we conclude that the Butterfly Net
with N inputs has N(log N + 1) switches.

Since every path in F, 4 from an input switch to an output is the same length,
namely, n + 1, the diameter of the Butterfly net with 2”1 inputs is this length
plus two because of the two edges connecting to the terminals (square boxes) —
one edge from input terminal to input switch (circle) and one from output switch to
output terminal.

There is an easy recursive procedure to route a packet through the Butterfly Net.
In the base case, there is obviously only one way to route a packet from one of the
two inputs to one of the two outputs. Now suppose we want to route a packet from
an input switch to an output switch in F,q. If the output switch is in the “top”
copy of Fj, then the first step in the route must be from the input switch to the
unique switch it is connected to in the top copy; the rest of the route is determined
by recursively routing the rest of the way in the top copy of F,. Likewise, if the
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Figure 10.2  F, .1, the Butterfly Net switches with 2711 inputs and outputs.

output switch is in the “bottom” copy of F,, then the first step in the route must
be to the switch in the bottom copy, and the rest of the route is determined by
recursively routing in the bottom copy of F;,. In fact, this argument shows that the
routing is unique: there is exactly one path in the Butterfly Net from each input to
each output, which implies that the network latency when minimizing congestion
is the same as the diameter.

The congestion of the butterfly network is about /N, more precisely, the con-
gestion is +/N if N is an even power of 2 and \/N/2 if N is an odd power of 2. A
simple proof of this appears in Problem10.8.

Let’s add the butterfly data to our comparison table:

network | diameter | switchsize | #switches | congestion
complete binary tree | 2log N + 2 3x3 2N —1 N
2-D array 2N 2532 N2 2

butterfly | log N + 2 2x2 | N(log(N)+1)|+/Nor+/N/2

The butterfly has lower congestion than the complete binary tree. And it uses fewer
switches and has lower diameter than the array. However, the butterfly does not
capture the best qualities of each network, but rather is a compromise somewhere
between the two. So our quest for the Holy Grail of routing networks goes on.
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Figure 10.3 B, the Bene§ Net switches with 27+ inputs and outputs.

10.9 Benes Network

In the 1960’s, a researcher at Bell Labs named Bene§ had a remarkable idea. He
obtained a marvelous communication network with congestion 1 by placing two
butterflies back-to-back. This amounts to recursively growing Benes nets by adding
both inputs and outputs at each stage. Now we recursively define B, to be the
switches and connections (without the terminals) of the Bene$ net with N ::= 2"
input and output switches.

The base case, B, with 2 input switches and 2 output switches is exactly the
same as [ in Figure 10.1.

In the constructor step, we construct B, 41 out of two B, nets connected to a
new set of 2" 1 input switches and also a new set of 21 output switches. This is
illustrated in Figure 10.3.

Namely, the ith and 27 + i th new input switches are each connected to the same
two switches, namely, to the ith input switches of each of two B,, components for
i =1,...,2", exactly as in the Butterfly net. In addition, the ith and 2" + ith new
output switches are connected to the same two switches, namely, to the ith output
switches of each of two B, components.
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Now By 41 is laid out in columns of height 2”*! by adding two more columns
of switches to the columns in By,. So the B, 41 switches are arrayed in 2(n + 1)
columns. The total number of switches is the number of columns times the height
of the columns, namely, 2(n + 1)27+1,

All paths in By 41 from an input switch to an output are the same length, namely,
2(n + 1) — 1, and the diameter of the Bene§ net with 2" inputs is this length plus
two because of the two edges connecting to the terminals.

So Bene§ has doubled the number of switches and the diameter, of course, but
completely eliminates congestion problems! The proof of this fact relies on a clever
induction argument that we’ll come to in a moment. Let’s first see how the Bene$
network stacks up:

network | diameter | switchsize | #switches | congestion
complete binary tree | 2log N + 2 3x3 2N —1 N
2-D array 2N 22 N? 2
butterfly | logN +2 2562 N(log(N) +1) | /N or \/N/2
Benes | 2log N + 1 X352 2N log N 1

The Benes network has small size and diameter, and completely eliminates conges-
tion. The Holy Grail of routing networks is in hand!

Theorem 10.9.1. The congestion of the N -input Bene§ network is 1.

Proof. By induction on n where N = 2". So the induction hypothesis is

P(n) ::= the congestion of By is 1.

Base case (n = 1): By = Fj and the unique routings in F; have congestion 1.

Inductive step: We assume that the congestion of an N = 2"-input Benes
network is 1 and prove that the congestion of a 2N -input Bene§ network is also 1.

Digression. Time out! Let’s work through an example, develop some intuition,
and then complete the proof. In the Bene§ network shown below with N = 8 inputs
and outputs, the two 4-input/output subnetworks are in dashed boxes.
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in, 0 ——0 o) o 0 0 —=0—0 out,

By the inductive assumption, the subnetworks can each route an arbitrary per-
mutation with congestion 1. So if we can guide packets safely through just the first
and last levels, then we can rely on induction for the rest! Let’s see how this works
in an example. Consider the following permutation routing problem:

7(0) =1 7(4) =3
m(l) =5 7(5) =6
w(2) =4 7(6) =0
7(3) =7 (7)) =2

We can route each packet to its destination through either the upper subnetwork
or the lower subnetwork. However, the choice for one packet may constrain the
choice for another. For example, we can not route both packet 0 and packet 4
through the same network since that would cause two packets to collide at a single
switch, resulting in congestion. So one packet must go through the upper network
and the other through the lower network. Similarly, packets 1 and 5, 2 and 6, and 3
and 7 must be routed through different networks. Let’s record these constraints in
a graph. The vertices are the 8 packets. If two packets must pass through different
networks, then there is an edge between them. Thus, our constraint graph looks
like this:
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le—— @5

Jo—-s3

Notice that at most one edge is incident to each vertex.

The output side of the network imposes some further constraints. For example,
the packet destined for output 0 (which is packet 6) and the packet destined for
output 4 (which is packet 2) can not both pass through the same network; that
would require both packets to arrive from the same switch. Similarly, the packets
destined for outputs 1 and 5, 2 and 6, and 3 and 7 must also pass through different
switches. We can record these additional constraints in our graph with gray edges:

1 5
0 2
4 6
7 3

Notice that at most one new edge is incident to each vertex. The two lines drawn
between vertices 2 and 6 reflect the two different reasons why these packets must
be routed through different networks. However, we intend this to be a simple graph;
the two lines still signify a single edge.

Now here’s the key insight: suppose that we could color each vertex either red
or blue so that adjacent vertices are colored differently. Then all constraints are
satisfied if we send the red packets through the upper network and the blue packets
through the lower network. Such a 2-coloring of the graph corresponds to a solu-
tion to the routing problem. The only remaining question is whether the constraint
graph is 2-colorable, which is easy to verify:

Lemma 10.9.2. Prove that if the edges of a graph can be grouped into two sets such
that every vertex has at most 1 edge from each set incident to it, then the graph is
2-colorable.
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Proof. 1t is not hard to show that A graph is 2-colorable iff every cycle in it has
even length (see Problem 10.9). We’ll take this for granted here.

So all we have to do is show that every cycle has even length. Since the two sets
of edges may overlap, let’s call an edge that is in both sets a doubled edge.

There are two cases:

Case 1: [The cycle contains a doubled edge.] No other edge can be incident
to either of the endpoints of a doubled edge, since that endpoint would then be
incident to two edges from the same set. So a cycle traversing a doubled edge has
nowhere to go but back and forth along the edge an even number of times.

Case 2: [No edge on the cycle is doubled.] Since each vertex is incident to
at most one edge from each set, any path with no doubled edges must traverse
successive edges that alternate from one set to the other. In particular, a cycle must
traverse a path of alternating edges that begins and ends with edges from different
sets. This means the cycle has to be of even length. |

For example, here is a 2-coloring of the constraint graph:

blue red
1 5
red O 2 red
blue 4 6 blue
7 3
blue red

The solution to this graph-coloring problem provides a start on the packet routing
problem:

We can complete the routing in the two smaller Bene§ networks by induction!
Back to the proof. End of Digression.

Let 7 be an arbitrary permutation of {0, 1,..., N —1}. Let G be the graph whose
vertices are packet numbers 0, 1, ..., N — 1 and whose edges come from the union
of these two sets:

Eyi={u—v | |u —v| = N/2}, and
Eyi={u—uw | |7 () — m(w)| = N/2}.
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Now any vertex, u, is incident to at most two edges: a unique edge u—v € E; and
a unique edge u—w € E,. So according to Lemma 10.9.2, there is a 2-coloring for
the vertices of G. Now route packets of one color through the upper subnetwork
and packets of the other color through the lower subnetwork. Since for each edge in
E 1, one vertex goes to the upper subnetwork and the other to the lower subnetwork,
there will not be any conflicts in the first level. Since for each edge in E2, one vertex
comes from the upper subnetwork and the other from the lower subnetwork, there
will not be any conflicts in the last level. We can complete the routing within each
subnetwork by the induction hypothesis P (n). O

Problems for Section 10.9
Exam Problems

Problem 10.1.
Consider the following communication network:

in,, in, in,

out, out; out,

(a) What is the max congestion? 0.5in
(b) Give an input/output permutation, g, that forces maximum congestion:
m0)=___  m()=___ mo(2) =____
(c) Give an input/output permutation, 1, that allows minimum congestion:
m@0)=___ m)=___ m@)=___
(d) What is the latency for the permutation m;? (If you could not find 7, just

choose a permutation and find its latency.) 0.5in

Class Problems

Problem 10.2.
The Bene§ network has a max congestion of 1; that is, every permutation can be
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routed in such a way that a single packet passes through each switch. Let’s work
through an example. A Benes$ network of size N = 8 is attached.

(a) Within the Benes network of size N = 8, there are two subnetworks of size
N = 4. Put boxes around these. Hereafter, we’ll refer to these as the upper and
lower subnetworks.

(b) Now consider the following permutation routing problem:

7(0) =3 (4 =2
x(l) =1 7(5) =0
w(2)=6 w(6) =17
@) =5 (7 = 4

Each packet must be routed through either the upper subnetwork or the lower sub-
network. Construct a graph with vertices 0, 1, ..., 7 and draw a dashed edge
between each pair of packets that can not go through the same subnetwork because
a collision would occur in the second column of switches.

(c) Add a solid edge in your graph between each pair of packets that can not go
through the same subnetwork because a collision would occur in the next-to-last
column of switches.

(d) Color the vertices of your graph red and blue so that adjacent vertices get
different colors. Why must this be possible, regardless of the permutation 7?

(e) Suppose that red vertices correspond to packets routed through the upper sub-
network and blue vertices correspond to packets routed through the lower subnet-
work. On the attached copy of the Benes$ network, highlight the first and last edge
traversed by each packet.

(f) All that remains is to route packets through the upper and lower subnetworks.
One way to do this is by applying the procedure described above recursively on
each subnetwork. However, since the remaining problems are small, see if you can
complete all the paths on your own.
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O —0 out,

O —0 out;

A multiple binary-tree network has n inputs and n outputs, where n is a power of 2.
Each input is connected to the root of a binary tree with n/2 leaves and with edges
pointing away from the root. Likewise, each output is connected to the root of a

binary tree with n/2 leaves and with edges pointing toward the root.

Two edges point from each leaf of an input tree, and each of these edges points
to a leaf of an output tree. The matching of leaf edges is arranged so that for every
input and output tree, there is an edge from a leaf of the input tree to a leaf of the

output tree, and every output tree leaf has exactly two edges pointing to it.

(a) Draw such a multiple binary-tree net for n = 4.

(b) Fill in the table, and explain your entries.

# switches | switch size | diameter | max congestion

Problem 10.4.

The n-input 2-D Array network was shown to have congestion 2. An n-input 2-
Layer Array consisting of two n-input 2-D Arrays connected as pictured below for
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n =4.

BYAT A
A

K
K

) A Y A AR
i

A

~ —F

O O O
out, out; out, outs

I
R

In general, an n-input 2-Layer Array has two layers of switches, with each layer
connected like an n-input 2-D Array. There is also an edge from each switch in
the first layer to the corresponding switch in the second layer. The inputs of the
2-Layer Array enter the left side of the first layer, and the »n outputs leave from the
bottom row of either layer.

(a) For any given input-output permutation, there is a way to route packets that
achieves congestion 1. Describe how to route the packets in this way.

(b) What is the latency of a routing designed to minimize latency?

(c) Explain why the congestion of any minimum latency (CML) routing of packets
through this network is greater than the network’s congestion.

Problem 10.5.

A 5-path communication network is shown below. From this, it’s easy to see what
an n-path network would be. Fill in the table of properties below, and be prepared
to justify your answers.

network | # switches | switch size | diameter | max congestion
5-path
n-path
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Figure 10.4 5-Path

Problem 10.6.
Tired of being a TA, Megumi has decided to become famous by coming up with a
new, better communication network design. Her network has the following specifi-
cations: every input node will be sent to a butterfly network, a Bene§ network and
a 2-d array network. At the end, the outputs of all three networks will converge on
the new output.

In the Megumi-net a minimum latency routing does not have minimum conges-
tion. The latency for min-congestion (LMC) of a net is the best bound on latency
achievable using routings that minimize congestion. Likewise, the congestion for
min-latency (CML) is the best bound on congestion achievable using routings that
minimize latency.

in [ }— [Jout,

in, [ }— Butterfly [_Jout,

ing [ }— [_Jout,
Benes

iy F—O—-d Array outy,

Fill in the following chart for Megumi’s new net and explain your answers.

network diameter # switches congestion LMC

CML

Megumi’s net
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Homework Problems

Problem 10.7.

Louis Reasoner figures that, wonderful as the Bene§ network may be, the butterfly
network has a few advantages, namely: fewer switches, smaller diameter, and an
easy way to route packets through it. So Louis designs an N -input/output network
he modestly calls a Reasoner-net with the aim of combining the best features of
both the butterfly and Bene$ nets:

The ith input switch in a Reasoner-net connects to two switches, a; and
b;i, and likewise, the jth output switch has two switches, y; and z;,
connected to it. Then the Reasoner-net has an N -input Bene§ network
connected using the a; switches as input switches and the y; switches
as its output switches. The Reasoner-net also has an N -input butterfly
net connected using the b; switches as inputs and; the z; switches as
outputs.

In the Reasoner-net a minimum latency routing does not have minimum conges-
tion. The latency for min-congestion (LMC) of a net is the best bound on latency
achievable using routings that minimize congestion. Likewise, the congestion for
min-latency (CML) is the best bound on congestion achievable using routings that
minimize latency.

Fill in the following chart for the Reasoner-net and briefly explain your answers.

diameter | switch size(s) | # switches | congestion | LMC | CML

Problem 10.8.

Show that the congestion of the butterfly net, /7, is exactly +/ N when » is even.
Hint:

e There is a unique path from each input to each output, so the congestion is
the maximum number of messages passing through a vertex for any routing
problem.

e If v is a vertex in column i of the butterfly network, there is a path from ex-
actly 2! input vertices to v and a path from v to exactly 2"~ output vertices.

e At which column of the butterfly network must the congestion be worst?
What is the congestion of the topmost switch in that column of the network?
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Problem 10.9.
In this problem you will prove:

Theorem. A graph G is 2-colorable iff it contains no odd length cycle.

As usual with “iff” assertions, the proof splits into two proofs: part (a) asks you
to prove that the left side of the “iff”” implies the right side. The other problem parts
prove that the right side implies the left.

(a) Assume the left side and prove the right side. Three to five sentences should
suffice.

(b) Now assume the right side. As a first step toward proving the left side, explain
why we can focus on a single connected component H within G.

(c) As asecond step, explain how to 2-color any tree.

(d) Choose any 2-coloring of a spanning tree, 7', of H. Prove that H is 2-
colorable by showing that any edge not in T must also connect different-colored
vertices.
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