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Problem Set 1
Due(F

Reading: Part I.Proofs, Chapters 1.What is a Proof?, 2.The Well Ordering Principle, 3.Propositional For-
mulas. These assigned readings do not include the Problem sections. (Many of the problems in the text
will appear as class or homework problems.)

Reminder: Email comments on the reading are due at times indicated in the online tutor problem set TP.2.
Reading Comments count for 3% of the final grade.

Problem 1.
The fact that that there are irrational numbers @, b such that a® is rational was proved in Problem 1.2 of the
course text. Unfortunately, that proof was nonconstructive: it didn’t reveal a specific pair, a, b, with this
property. But in fact, it’s easy to do this: leta := /2 and b ::=2 log, 3.

We know /2 is irrational, and obviously a® = 3. Finish the proof that this a, b pair works, by showing
that 2log, 3 is irrational.

Problem 2.
Use the Well Ordering Principle to prove that

n <33 (1)

for every nonnegative integer, n.
Hint: Verify (1) for n < 4 by explicit calculation.

Problem 3.

Describe a simple recursive procedure which, given a positive integer argument, n, produces a truth table
whose rows are all the assignments of truth values to n propositional variables. For example, for n = 2, the
table might look like:

SRR
SRR

Your description can be in English, or a simple program in some familiar language (say Scheme or Java),
but if you do write a program, be sure to include some sample output.

Problem 4.
Prove that the propositional formulas

PORQORR
and
(P AND NOT(Q)) OR (Q AND NOT(R)) OR (R AND NOT(P)) OR (P AND Q AND R).

are equivalent.

yWAarn)
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2 Problem Set 1

Problem 5.
For n = 40, the value of polynomial p(n) ::=n? +n + 41 is not prime, as noted in Section 1.1 of the course
text. But we could have predicted based on general principles that no nonconstant polynomial can generate
only prime numbers.
In particular, let g(n) be a polynomial with integer coefficients, and let ¢ ::= ¢(0) be the constant term of
q.
(a) Verify that g(cm) is a multiple of ¢ for all m € Z.

(b) Show that if ¢ is nonconstant and ¢ > 1, then there are infinitely many n € N such that g(n) is not
prime.

Hint: You may assume the familiar fact that the magnitude of any nonconstant polynomial, g(n), grows
unboundedly as n grows.

(¢) Conclude immediately that for every nonconstant polynomial, g, there must be an n € N such that g (n)
is not prime.

Optional:

Problem 6.

There are adder circuits that are much faster than the ripple-carry circuits of Problem 3.5 of the course text.
They work by computing the values in later columns for both a carry of 0 and a carry of 1, in parallel. Then,
when the carry from the earlier columns finally arrives, the pre-computed answer can be quickly selected.
We’ll illustrate this idea by working out the equations for an n + 1-bit parallel half-adder.

Parallel half-adders are built out of parallel “add1” modules. An n + 1-bit add1 module takes as input the
n+1-bit binary representation, a, . .. ajag, of an integer, s, and produces as output the binary representation,
CPn...P1Po,ofs+ 1.

(a) A 1-bit addl module just has input ag. Write propositional formulas for its outputs ¢ and pg.

(b) Explain how to build an n + 1-bit parallel half-adder from an n + 1-bit add1 module by writing a
propositional formula for the half-adder output, 0;, using only the variables a;, p;, and b.

We can build a double-size add1 module with 2(n + 1) inputs using two single-size add1 modules with

n + 1 inputs. Suppose the inputs of the double-size module are a2,41,...,a1,a0 and the outputs are
C, P2n+1,---» P1, Po. The setup is illustrated in Figure 1.

Namely, the first single size add1 module handles the first n + 1 inputs. The inputs to this module are the
low-order n + 1 input bits @, ..., a1, ap, and its outputs will serve as the first n + 1 outputs py, ..., p1, po
of the double-size module. Let c(;) be the remaining carry output from this module.

The inputs to the second single-size module are the higher-order n + 1 input bits as, 41, ..., Ap+2,Ap+1-
Call its first n + 1 outputs ry, ..., 71,79 and let ¢(2) be its carry.

(c) Write a formula for the carry, ¢, in terms of ¢(y and ¢(y).

(d) Complete the specification of the double-size module by writing propositional formulas for the remain-
ing outputs, p;, forn + 1 <i < 2n + 1. The formula for p; should only involve the variables a;, r; —(z+1),
and ¢(q)-

(e) Parallel half-adders are exponentially faster than ripple-carry half-adders. Confirm this by determining
the largest number of propositional operations required to compute any one output bit of an n-bit add module.
(You may assume » is a power of 2.)



Problem Set 1

Coy==+—  (n+1)-bit addl cy—=—  (n+1)-bit addl

: ry r ry

2(n+2)-bit add1 module

...............................................................................

p2n+1 p2n+2 pn-{-] Pn 7 Po

Figure 1 Structure of a Double-size Add1 Module.
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Student’s Solutions to Problem Set 1
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tlength of each section before it alternates; gets sucessivly smaller
tfor each column

len = numrows/2%j;

i =1; %rows are i

current = 0; %teo start
while 1 <= numrows

ct = 1; %reset section

if current == 1 %flip bit
current 0;

else
current

end

while ct <= len
table(i, j) = current;
ct = ¢t + 1;
i = i+1;

5

%output number in that section

end
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MATLARB Command Window

2/9/11 9:52 PM

>> truthtable(2)

table

- O o O

1 - O O

>> truthtable(3)

table =

- o4 o d4d o d O

- 4 O O 4 4 O O

- 4 4 4 O O O O

>> truthtable(4)

table

>> truthtable(5)

table
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MATLAB Command Window

2/9/11 9:52 PM

>> truthtable(6)

table
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MATLAR Command Window

2/9/11 9:52 PM

>>
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Massachusetts Institute of Technology
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Solutions to Problem Set 1

Reading: Part 1. Proofs: Introduction, Chapter 2?, What is a Proof?; Chapter ??, The Well Ordering Prin-
ciple; and Chapter ?? through 3.5, covering Propositional Logic. These assigned readings do not include
the Problem sections. (Many of the problems in the text will appear as class or homework problems.)

Reminder: Email comments on the reading are due at times indicated in the online tutor problem set TP.2.
Reading Comments count for 3% of the final grade.

Problem 1.
The fact that that there are irrational numbers a, b such that a® is rational was proved in Problem 2? of the
course text. Unfortunately, that proof was nonconstructive: it didn’t reveal a specific pair, a, b, with this
property. But in fact, it’s easy to do this: leta ::= V2 and b := 2log, 3.

We know +/2 is irrational, and obviously a® = 3. Finish the proof that this a, b pair works, by showing
that 2 log, 3 is irrational.

Solution. Proof. Suppose to the contrary that 2 log, 3 was rational. Then log, 3 must also be rational, say

log, 3 = m/n for some positive integers m and n. So m = nlog, 3. Now raising 2 to each side of this

equation gives i
om _ on logy 3 _ (210g23)n = 3", (1)

But this is impossible, since right hand side of (1) is divisible by 3 and the left hand side is not.

So 2log, 3 must be irrational. X 41 : o $0iS [ |
b b ;/\OJF a nuwe Eradtin
Problem 2. :
Use the Well Ordering Principle to prove that
n<3n/3 2)

for every nonnegative integer, n.
Hint: Verify (2) for n < 4 by explicit calculation.

Solution. Suppose to the contrary that (2) failed for some nonnegative integer. Then by the WOP, there is a
least such nonnegative integer, m.

But 0 < 3%/3, som # 0. Also, 13 < 3!, so taking cube roots, 1 < 3!/3, which implies m # 1. Likewise,
23 < 32, 5o taking cube roots, 2 < 3%/3, which implies m # 2. Similar simple calculations show that
m # 3,4, so we know that m > 5.

Now since m > m — 3 > 0 and m is the least nonnegative integer for which the inequality (2) fails, the
inequality must hold when7w = m — 3. So

——
———

3"’!/3 — 3 . 3(”1—3);"3

>3.(m—3) (by (2) forn =m —3) 3
Also,
3-(m—=3)=3m-9
> 3m—2m sincem > 9/2
=m. )

Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .



2 Solutions to Problem Set 1

Combining (3) and (4), we get

e

mE3m[3’WsLWu [@/[{.ﬁ@ {‘o M

contradicting the assumption that (2) fails for n = m.
This contradiction implies that there cannot be a nonnegative integer for which (2) fails. By the WOP,

this means that (2) must hold for all nonnegative integers.
|

Problem 3.

Describe a simple recursive procedure which, given a positive integer argument, n, produces a truth table
whose rows are all the assignments of truth values to n propositional variables. For example, for n = 2, the
table might look like:

CECRE R
=3 =

Your description can be in English, or a simple program in some familiar language (say Scheme or Java),
but if you do write a program, be sure to include some sample output.

Solution. Start with an n = 1 table, namely a one-column table whose first row consists of a T entry and
second row an F entry. Build the n 4 1 table recursively by taking an »n table and attaching a T at the
beginning of every row, then taking another n table and attaching a F at the beginning of every row, and
finally placing the first table above the second table.

Here’s a Scheme program that carries out this procedure:

(define (truth-values n)

(1f -(=mn 1) " ((T) (E))
(let ((table (truth-values (- n 1))))
(append

(map (lambda (row) (cons 'T row)) table)
(map (lambda (row) (cons ’'F row)) table)))))
(truth-values 3)
;Value 17: (il £=8) bt oo lemfrEloalEd E4E)
(i £) W(E e E) SE EfRE) (ELE E))

Problem 4.
Prove that the propositional formulas
PORQORR

and
(P AND NOT(Q)) OR (Q AND NOT(R)) OR (R AND NOT(P)) OR (P AND Q AND R).

are equivalent.

Solution. We compare (P OR Q OR R) and K ::= (P AND NOT(Q)) OR (Q AND NOT(R)) OR (R AND
NOT(P)) OR (P AND Q AND R) using a truth table:
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Both (P OR Q OR R) and K have identical truth tables, thus the two statements are equivalent.

Problem 5.
For n = 40, the value of polynomial p(n)::=n? +n + 41 is not prime, as noted in Section ?? of the course
text. But we could have predicted based on general principles that no nonconstant polynomial can generate
only prime numbers.

In particular, let g(n) be a polynomial with integer coefficients, and let ¢ ::= ¢(0) be the constant term of

q.
(a) Verify that g(cm) is a multiple of ¢ for all m € Z.

Solution. Say g(n) =c¢ + Ef-;l a;n' where a; € Z. Then
- i st A
' Mt— ]
Iy . k
g(em) =c¢ + Za,- (c'm’) =c|1+ Zaim'c’_l
i=1 i=1

(b) Show that if ¢ is nonconstant and ¢ > 1, then there are infinitely many g(n) € N that are not primes.

Hint: You may assume the familiar fact that the magnitude of any nonconstant polynomial, g(n), grows
unboundedly as n grows.

Solution. If |g(cm)| > ¢ > 1, then g(cm) won’t be prime because by part (a), it has ¢ as a factor. Since
|g(n)| grows unboundedly with n, there will be infinitely many different such values of g(cm) as m grows.

\ \ .
'“n\ N 50’} his
(¢) Conclude immediately that for every nonconstant polynomial, ¢, there must be an n € N such that g(n)

is not prime.

Solution. By part (b), the only remaining case is when ¢ < 1. But in that case g(n) is not prime for
n=0. ]

Optional:
Problem 6.

There are adder circuits that are much faster than the ripple-carry circuits of Problem 3.4 of the course text.
They work by computing the values in later columns for both a carry of 0 and a carry of 1, in parallel. Then,



4 Solutions to Problem Set 1

when the carry from the earlier columns finally arrives, the pre-computed answer can be quickly selected.
We’ll illustrate this idea by working out the equations for an n + 1-bit parallel half-adder.

Parallel half-adders are built out of parallel “add1” modules. An n + 1-bit add1 module takes as input the
n+1-bit binary representation, a, . . . a1 ap, of an integer, s, and produces as output the binary representation,
CPn-.-P1 pg,OfS+l.

(a) A 1-bit addl module just has input ag. Write propositional formulas for its outputs ¢ and py.

Solution.
Po = ap XOR 1 = NOT(ayp) (5)
¢ =7 (6)
O

(b) Explain how to build an n + 1-bit parallel half-adder from an n + 1-bit addl module by writing a
propositional formula for the half-adder output, o;, using only the variables a;, p;, and b.

Solution.
0; = (b AND p;) OR (NOT(b) AND a;)

We can build a double-size add1 module with 2(n + 1) inputs using two single-size add1 modules with
n + 1 inputs. Suppose the inputs of the double-size module are az,41,...,a1,a0 and the outputs are
C, P2n+1.-- - P1, Po- The setup is illustrated in Figure 1.

Namely, the first single size add1 module handles the first n + 1 inputs. The inputs to this module are the
low-order n + 1 input bits a,, .. ., a1, ap, and its outputs will serve as the first n + 1 outputs py, ..., p1, Po
of the double-size module. Let ¢(;) be the remaining carry output from this module.

The inputs to the second single-size module are the higher-order n + 1 input bits azp41, . . ., @Gn+2,dn+1-
Call its first n + 1 outputs ry, ..., 11, ro and let ¢(z) be its carry.

(c) Write a formula for the carry, ¢, in terms of ¢y and ¢(2).

Solution.
¢ =¢(1) AND ¢(g).

(d) Complete the specification of the double-size module by writing propositional formulas for the remain-
ing outputs, p;, forn + 1 <i < 2n + 1. The formula for p; should only involve the variables a;, 7;_(y41),
and c(y).

Solution. The n + 1 high-order outputs of the double-size module are the same as the inputs if there is no
carry from the low-order n + 1 outputs, and otherwise is the same as the outputs of the second single-size
add1l module. So

pi = (NOT(c(1)) AND a;) OR (c(1) AND TIi_(n41))- (7
forn+1<i<2n+41. |
(e) Parallel half-adders are exponentially faster than ripple-carry half-adders. Confirm this by determining

the largest number of propositional operations required to compute any one output bit of an n-bit add module.
(You may assume » is a power of 2.)



Solutions to Problem Set 1 5

Solution. The most operations for an output are those specified in formula (7). So it takes at most 4 addi-
tional operations to get any one double-size output bit from the single-size output bits that it depends on. It
takes log, n doublings to get to from 1-bit to n-bit modules, so the largest number of operations needed for
any one output bit is 4 log, n.

This observation also shows that the fotal number of operations used in the parallel adder to calculate all
the output digits is propositional to n log, n. This is larger than the total for a ripple-carry adder by a factor
proportional to log, n. |

Co=—|  (n+1)-bitaddl cqoy==—1  (n+1)-bit addl

rn rl rU
Gt 2(n-+2)-bit add1 module
p2n+1 p?Ja+2 pn+] Pn P pO

Figure 1 Structure of a Double-size Add1 Module.
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Predicate Logic
Quantifiers V,3

Predicates
POuy)is=si [xaei2. 2.y ]
x=1andy=3: P(1,3)is frue

x=1andy=4: P(14)is false
NOT(P(1,4)) is true

February 11,2011 lec IWI

e

Y is like AND
.____..‘-"

Le.’r s range over 6.042
P(s) :i= [s is Pumped about 6.042]

Vs. P(s)

same as
P(Stav) AND P(Rich) AND

i P(Megumi) AND...AND P(Oscar)

f = domay

Vl{/]

et R Meyer, lec IW3

1€v'€mts %DC(M (over O““i I of

ﬁ\mﬁg

WQQX{ 1o 9{)@9\,(7

What vale

Predicates

Propositions with variables
Example:
Plxiy)n=
5

[x+2=y]

Albert R Meyer, 11, 20!

lec IW.Z

C(M‘t '}‘6 ]Lt L(A/Ju/ \(/7

Quantifiers

VX For i&x

3y There EXISTS somey

Albert B Meyer,  February 11, 2011

3 is like OR

Let t range over 6.042 staff
B(t) ::= [t took 6.042 Before]

=B

same as
B(Stav) OR B(Rich) OR
B(Megumi) OR..OR B(Oscar)

Albert R Meyer. F
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:E:I:EE Existential Quantifier i — Universal Quantifier
Let x, y range over N Enonncy " X,y range over N \
s ‘ R(y) = Vx. x<y = Says s [t
s =] aiaiie ¢ 2
Q(3) i?gip([xd] is T ft,p x=1) R(1)is F ([x<1]is F for x=H) \i1 -
o S i i R(8) is F ([x<8] is F for x=12) | *93¢d [},
Q1) is T ([x<1] is T fo::lx-O) R(10100) s F e
Q) is F ([x<0] is not ([1019%] s F for x=101%0) 2
for any x in N)
Abert B Meyer,  February 11,2011 ec 3, Albert R Meyer, ‘ February 11, 2011
Q[Ufazb TC‘E[S'@
¢ ‘ ba, V)c ~ M kes i an Q,Sﬁé’/ﬂmﬂ Céb/MLq/
MLSE : virus attack, II:3V 4
Ogb a Meh | [ 3de defense.vve virus. |
ettt ' dprotects against v
For every virus, I have a defense: That's what we want!
y against MYDOOM,  use Defender ;
Q\[@fr Vi, against ILOVEYOU, use Norton
against BABLAS,  use Zonealarm... Example: d is MITviruscan,
hey d v is expensive! protects against a/l viruses
QWQ AbertRMeyer,  Febmory L2081 | te IWH @T5T) Albert R Meyer,  February 11, 2011
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Yoo muoh e E Ll leare /)
DEE v[n]7]
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Massachusetts Institute of Technology
6.0421/18.062], Spring *11: Mathematics for Computer Science February 11
Prof. Albert R Meyer revised Tuesday 8 February, 2011, 23:24

In-Class Problems Week 2, Fri.

Problem 1.

For each of the logical formulas, indicate whether or not it is true when the domain of discourse is N,
(the nonnegative integers 0, 1, 2, ...), Z (the integers), (@ (the rationals), R (the real numbers), and C (the
complex numbers). Add a brief explanation to the few cases that merit one.

Hygtead
V_\‘.Ely.x2 =y
Vy.ﬂ,\'.x2 =y

Vx # 03dy.xy =1

dx3dy.x4+2y =2 AND 2x +4y =5

Problem 2.

The goal of this problem is to translate some assertions about binary strings into logic notation. The domain
of discourse is the set of all finite-length binary strings: A, 0, 1, 00, 01, 10, 11, 000, 001, .... (Here A
denotes the empty string.) In your translations, you may use all the ordinary logic symbols (including =),
variables, and the binary symbols 0, 1 denoting 0, 1.

A string like 01x0y of binary symbols and variables denotes the concatenation of the symbols and the
binary strings represented by the variables. For example, if the value of x is 011 and the value of y is 1111,
then the value of 01x0y is the binary string 0101101111.

Here are some examples of formulas and their English translations. Names for these predicates are listed
in the third column so that you can reuse them in your solutions (as we do in the definition of the predicate
NO-18 below).

Meaning Formula Name

x is a prefix of y dz (xz=y) PREFIX(x, y)

X is a substring of y Fudv (uxv = y) SUBSTRING(x, y)
X is empty or a string of 0’s NOT(SUBSTRING(1, x)) NO-18(x)

(a) x consists of three copies of some string.
(b) x is an even-length string of 0’s.
(¢) x does not containbothaOandal.
(d) x is the binary representation of 2K + 1 for some integer k > 0.
(e) An elegant, slightly trickier way to define NO-15(x) is:
PREFIX(x, 0x). (*)

Explain why (¥) is true only when x is a string of 0’s.

Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .




2 In-Class Problems Week 2, Fri.

Problem 3.
Provide a counter model for the invalid implication. Informally explain why the other one is valid.

1. ¥x.dy.P(x,y) IMPLIES Jy. Vx. P(x,y)

2. dy.Vx.P(x,y) IMPLIES Vx.3dy. P(x,y)

Problem 4.

When the Poet says “There is a season for every purpose under heaven.” Which of the following does he
mean:

s € Season. ¥ p € Purpose. s is for p (1)

or
¥ p € Purpose. 3s € Season. s is for p (2)

Briefly explain.
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Massachusetts Institute of Technology
6.042J/18.062J, Spring *11: Mathematics for Computer Science February 11

Prof. Albert R Meyer revised Tuesday 8% February, 2011, 23:40

Solutions to In-Class Problems Week 2, Fri.

Problem 1.
For each of the logical formulas, indicate whether or not it is true when the domain of discourse is N,

(the nonnegative integers 0, 1, 2, ...), Z (the integers), Q (the rationals), R (the real numbers), and C (the
complex numbers). Add a brief explanation to the few cases that merit one.

Ix.x2 =2
Vx3dy.x2 =y
Vydx.x?=y

Vx #03dy.xy=1
dx3dy.x +2y =2 AND 2x + 4y =5

Solution.

Statement N Z Q R C

Ix.x2=2 FFF Tx=+v2 T

Vx.dy.x2 =y TTT Ty==x? T

¥y.Ix.x2=y F F F F(takey<0) T

¥x ey o= F FT T(y=1/x) T

dx.dy.x+2y=2AND 2x +4y=5 F F F F F

O

Problem 2. .
The goal of this problem is to translate some assertions about binary strings into logic notation. The domain
of discourse is the set of all finite-length binary strings: A, 0, 1, 00, 01, 10, 11, 000, 001, .... (Here A

denotes the empty string.) In your translations, you may use all the ordinary logic symbols (including =),
variables, and the binary symbols 0, 1 denoting 0, 1.

A string like 01x0y of binary symbols and variables denotes the concatenation of the symbols and the
binary strings represented by the variables. For example, if the value of x is 011 and the value of y is 1111,
then the value of 01x0y is the binary string 0101101111.

Here are some examples of formulas and their English translations. Names for these predicates are listed
in the third column so that you can reuse them in your solutions (as we do in the definition of the predicate
NO-18 below).

Meaning Formula Name

x is a prefix of y 3z (xz=1y) PREFIX(x, y)

X is a substring of y Juv (uxv = y) SUBSTRING(x, y)
x is empty or a string of 0’s NOT(SUBSTRING(1, x)) NO-158(x)

(a) x consists of three copies of some string.

1)
Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .



2 Solutions to In-Class Problems Week 2, Fri.

Solution. Jy (x = yyy)

(b) x is an even-length string of 0’s.

Solution. NO-18(x) AND 3y (x = yy)

Some students mentioned A in their formulas. Technically, this is not allowed, so they need to justify it by
giving a formula that means “x = A.” This is easy, for example: x = xx.

A serious mistake was to try writing a recursive definition of a predicate calculus formula, as in
P(x):=x = A 0R3y.x =00y AND P(y). (D

Such recursive formulas are, by definition, not part of predicate calculus—with good reason. Definition 1
resembles a simple recursive definition of a procedure to test if x is an even length string of 0’s, and its
meaning might be explained in procedural terms. But it’s hard to figure out in general what recursively
defined formulas mean. For example, let n be an integer-valued variable, and suppose we tried to define a
formula, Q(n), that means » is positive:

Q(n)::=(n =00RNOT(Q(n +1))) AND (n = 10R Q(n —1)).

might succeed in giving a procedural explanation for this example,

|
(¢) x does not contain both a0 and a 1.
Solution.
NOT[SUBSTRING(0, X) AND SUBSTRING(1, x)]
|
(d) x is the binary representation of 2K 4+ 1 for some integer k > 0.
Solution. (x = 10) OR (3y (x = 1y1 AND NO-15(y))) [ |
(e) An elegant, slightly trickier way to define NO-1S(x) is:
PREFIX(X, 0x). : (*)

Explain why (*) is true only when x is a string of 0’s.

Solution. Prefixing x with 0 rightshifts all the bits. So the nth symbol of x shifts into the (n + 1)st symbol
of 0x. Now for x to be a prefix of Ox, the n + 1st symbol of Ox must match the (n + 1)st symbol of x. So
if x satisfies (*), the nth and (7 + 1)st symbols of x must match. This holds for all n > 0 up to the length
of x, that is, all the symbols of x must be the same. In addition, if x 7 A, it must start with 0. Therefore, if
x satisfies (*), all its symbols must be 0’s.

Note that it’s easy to see, conversely, that if x = A or x is all 0’s, then of course it satisfies (*¥). O

Problem 3.
Provide a counter model for the invalid implication. Informally explain why the other one is valid.



Solutions to In-Class Problems Week 2, Fri. 3

1. Vx.3y.P(x,y) IMPLIES Ay.Vx. P(x,y)
2. dy.Vx.P(x,y) IMPLIES Yx.3y. P(x,y)

Solution. The first implication, Vx.3y. P(x,y) — 3y. Vx. P(x, y), is invalid.

One counter model is the predicate P(x, y)::=y < x where the domain of discourse is the real numbers,
R. For every real number x, there exists a real number y which is strictly less than x, so the antecedent of
the implication is true. But there is no minimum real number, so the consequent is false.

The second implication is valid. Let’s say that “x is good for y” when P(x.y) is true. The hypothesis
says that there is some element, call it g, that is good for everything. The conclusion is that every element
has something that is good for it, which of course is true since g will be good for it.

|

Problem 4.

When the Poet says “There is a season for every purpose under heaven.” Which of the following does he
mean:

ds € Season. VY p € Purpose. s is for p (2)

or
V p € Purpose. ds € Season. s is for p (3)

Briefly explain.

Solution. This poetic statement is meant to offer solace: this may be a bad season for you now, but be
hopeful, a season that suits your purpose will come. So the appropriate translation would be formula (3),
namely that given your Purpose, you can find a season that’s good for it. For example, if your purpose is
planting, take heart: even though it’s Winter now, Spring is coming.

Formula (2) says you can find a single season, say Spring, that’s good for every possible Purpose like
skiiing, leaf watching, .... This is false, so it’s clearly not what the Poet meant. But even though he really
meant (3), he used his poetic license to express (3) in a way that mechanically would translate into (2).

Note that a similar statement, “There is a man for all seasons,” is famously used to describe one extraor-
dinarily versatile man, Sir Thomas More. So this statement would actually best be translated as

dx € men. Vs € seasons. x is (good) for s



Mathematics for Computer Science

MIT 6.0427/18.0627

Sets &

Functions
o]

B - & Some sets
real numbers, R
complex numbers, C
integers, Z
empty sef, %]

set of all subsefs of integers, pow(Z)
the power set

fec IM3

B+ [ What is a Set?

Informally:

A set is a collection of mathematical
objects, with the collection treated
as a single mathematical object.
(This is circular of course:
what's a collection?)

12 wis

Some sets

{7,"Albert R", t/2, T}

A set with 4 elements: two
numbers, a string, and a Boolean.
Same as :

{T, "Albert R.", 7, /2}

-- order doesn't matter

O Fabruory 14, 2010

Jec 3M4

DE
s

0« [ E Mel’nber‘Ship

Bin

X is a member of A: xe A

m/e e i, ‘AlbertiR.Y, /2, T}
/3 ¢{7, "Albert R.", /2, T}
14/2 {7, “Albert R.", /2, T}

BEE

Jee IM5

Synonyms for Membership -
XeA
X is an element of A
xXisinA
Examples:

7eZ, 2/3 47, Zepow(R)

lec3M 6




In or Not In

An element is in or not in a set:

{7,m/2, 7} is same as {7, 1/2}
(No notion of being in the set
more than once)

e o Subset

examples:
ZeRe RO Shieds 7S]

AC A, O ceveryset

s[n]7

Bl ~ Subset (<)
AcB A is a subset of B
= A is contained in B
Every element of A is also
an element of B:
Vx [xe A IMPLIES Xe B]

DU e 2 merer Fubruary 14,2010 JecIN8

:ﬁﬁ @ c everything
def: @ cB

VX [X€@ IMPLIES xeB]
true

Fabruary 14, 2011 lec IS

Defining Sets

The set of elements, x, in A
such that P(x) is true.

{xe AIP(x)}

[C0CD sverrs merer Fabrvery 14, 2050 le< IMI0

Defining Sets

The set of even integers:
e N|niseven}

BB s RE e e

Jec 312




s DIEIE
BREE New sets from old
mom -

Venn Diagram for 2 Sets

Fobrary 10,2011 lec 3M.14

2w =

intersection

AmB:::{xIXEA AND X € B}

A set-theoretic equality
AU(BNC) = (AUB)N(AUC)
proof uses fact from last time:
P OR (Q AND R) equiv
(P OR Q) AND (P OR R)

union

Fabruary 14, 2011 Jec 3M15

A set-theoretic equality

AU(BNC) = (AUB)N(AUC)
proof: Show these have the same
elements, namely,

xe Left Hand Set iff xe RHS
for all x.

:” ,. A set-theoretic equality
AU(BNC) = (AUB)N(AUCQ)
proof: xe AU(BNC) iff
xe A OR xe(BNC) (def of L) iff
xe A OR (xeB AND xeC) (def N)iff
(xe A OR xeB) AND (xe A OR xe()

(by the equivalence)

Februnry 14, 2001 lee IM.20




s DIEIE DK
Hil - [ A set-theoretic equality Bl « [0
proof:
(xe A OR xe B)AND(xe A OR xeC) iff .
(xc AUB)AND(xc AUC) (def U) iff Relations &
xe(AUB) N (AUC) (def N). Func-ﬁons
QED
s [u]7 s[nf7
stige  is taking subject” relation i« formula “evaluation” relation
e =5 arithmetic
subjects formulas numbers

is taking

lec 3027

o [n]7 s [12]7
12 wis

:.‘ ; "". "nonstop bus trip” relation g - o _Binar'y relations

cities cities

A binary relation, R, from a
IR Bl set A to a set B

' associates of elements of
A with elements of B.

S Abart 8 Merer Fabeuney 14, 2011 lec IM28




Binary relation R from A to B
domain R . codomain
A L ]

arrows

Fabruary 4, 2011 fec 3M.34

12 nis

Binary relation R from A fo B
A B

graph(R) = {(a;,b,), (a1.bs), (a3.bs4)}

12 10

15| 8 |11

d [ e
ozmm R .

Binary relation R from A to B

codomain
B

Jec 3IM33

12 w
a3l
| in

RO

<,2.= 1 arrow out

oL P

Fabruary 14, 2011 Jec 3W37

I
e

& fA—B
A function, f, from A to B
is a relation which associates
each element, a, of A with

at most one element of B
Y

called f(a)

al~[=

Februnry 14, 2011 Jec M3

archery on relations

<,2.= 1larrow in

Jec 3M 38

DK

a0 function archery

158"

< 1 arrow out

Februory 14, 2911




e function archery

<1 arrow out

i

lec IMAL

s [1]7
W[

h total relation archery

5n

> 1 arrow out

Jec JMA5

s [u]7])

s total relation archery

5|z in

> 1 arrow ouf

Jec IM 4T

BE-g function archery

188 |0

<1 arrow out

%'-ﬂ Fabruary 14, 201 Jec IMAZ

w5 total relation archery

158N

> 1 arrow out

shs total & function archery

1 arrow out

£©0) =

February W, 2011 lec 345




slh«  surjection archery

=1 arrow in

Sl surjection archery

=1 arrow in

sz

=L e Mapping Rule (bij)

A bijection from
A to B implies

|Al = |B]

A is same size as B

ufg
t

surjection archery

=1 arrow in

DEE

G- 0 bijection archery

11
exactly 1 arrow out  exactly 1 arrow in

Lopyright € Albart Ridbasmr iS008 AT rights reserved. lec 3IM 49

afn

z Team Problems
Problems
{4

Februnry 14, 2000 lec 3IMT1
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Massachusetts Institute of Technology
6.042J/18.062], Spring *11: Mathematics for Computer Science February 14
Prof. Albert R Meyer revised Monday 14" February, 2011, 09:53

In-Class Problems Week 3, Mon.

Problem 1.
Set Formulas and Propositional Formulas.
(a) Verify that the propositional formula (P AND Q) OR (P AND Q) is equivalent to P.

(b) Prove that
A=(A-B)U(ANB)

for all sets, A, B, by using a chain of iff’s to show that
x€e AIFFx € (A—-—B)U(AN B)

for all elements, x.

Problem 2.
Subset take-away? is a two player game involving a fixed finite set, A. Players alternately choose nonempty
subsets of A with the conditions that a player may not choose

e the whole set A, o

O L ind

e any set contarning'a set that was named earlier.

The first player who is unable to move loses the game.

For example, if A is {1}, then there are no legal moves and the second player wins. If A is {1, 2}, then
the only legal moves are {1} and {2}. Each is a good reply to the other, and so once again the second player
wins.

The first interesting case is when A has three elements. This time, if the first player picks a subset with
one element, the second player picks the subset with the other two elements. If the first player picks a subset
with two elements, the second player picks the subset whose sole member is the third element. Both cases
produce positions equivalent to the starting position when A has two elements, and thus leads to a win for
the second player.

Verify that when A has four elements, the second player still has a winning strategy.”

Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .
I'The ser difference, A — B, of sets A and B is

A—Bu=lac Al|a¢ B}.

2From Christenson & Tilford, David Gale’s Subset Takeaway Game, American Mathematical Monthly, Oct. 1997
3David Gale worked out some of the properties of this game and conjectured that the second player wins the game for any set
A. This remains an open problem.




2 In-Class Problems Week 3, Mon.

Problem 3.
The inverse, R™!, of a binary relation, R, from A to B, is the relation from B to A defined by:

bR Ya iff aRb.

In other words, you get the diagram for R™! from R by “reversing the arrows” in the diagram describing R.
Now many of the relational properties of R correspond to different properties of R~!. For example, R is an
total iff R is a surjection.

Fill in the remaining entries is this table:

R is iffs - Rhis
total a surjection
a function

a surjection
an injection
a bijection

Hint: Explain what’s going on in terms of “arrows” from A to B in the diagram for R.

Problem 4.
Define a surjection relation, surj, on sets by the rule

Definition. A surj B iff there is a surjective function from A to B.
Define the injection relation, inj, on sets by the rule

Definition. A inj B iff there is a total injective relation from A to B.

(a) Prove that if A surj B and B surj C, then A surj C.

(b) Explain why A surj B iff B inj A.

(¢) Conclude from (a) and (b) that if A inj B and B inj C, then A inj C.

Arrow Properties

Definition. A binary relation, R is
e is a function when it has the [< 1 arrow out] property.

e is surjective when it has the [> 1 arrows in] property. That is, every point in the righthand, codomain
column has at least one arrow pointing to it.

e is fotal when it has the [> 1 arrows out] property.
e is injective when it has the [< 1 arrow in] property.

e is bijective when it has both the [= 1 arrow out] and the [= 1 arrow in] property.
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Massachusetts Institute of Technology
6.042J/18.062]J, Spring ’ 1 1: Mathematics for Computer Science February 14
Prof. Albert R Meyer revised Monday 14% February, 2011, 00:14

Solutions to In-Class Problems Week 3, Mon.

Problem 1.
Set Formulas and Propositional Formulas.
(a) Verify that the propositional formula (P AND Q) OR (P AND Q) is equivalent to P.

Solution. There is a simple verification by truth table with 4 rows which we omit.

There is also a simple cases argument: if Q is T, then the formula simplifies to (P AND F) OR (P AND T)
which further simplifies to (F OR P) which is equivalent to P.

Otherwise, if Q is F, then the formula simplifies to (P AND T) OR (P AND F) which is likewise equivalent
to P.

Finally, there is a proof by propositional algebra:

(P AND Q) OR (P AND Q) <— P AND (Q OR Q) (distributivity)
<— PANDT «— P.

(b) Prove that!
A=(A—B)U(AN B)

for all sets, A, B, by using a chain of iff’s to show that
x€AIFFx € (A—B)U (AN B)

for all elements, x.

Solution. Two sets are equal iff they have the same elements, that is, x is in one set iff x is in the other set,
for any x. We’ll now prove this for 4 and (4 — B) U (A N B).

xe(A—B)U(AN B) .
iff xe(A—B)OrRx € (AN B) (by def of U)

iff (x € AANDX € B)

OR(x € AANDX € B) (by def of N and —)
iff (P AND Q) OR (P AND Q) (where P ::=[x € A]and Q =[x € B])
iff' P (by part (a))
iff xe A (by def of P).

Creative Commons (S8 Ogle 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .
I'The set difference, A — B, of sets 4 and B is

A—Bu={aeA|a¢ B}.



2 Solutions to In-Class Problems Week 3, Mon.

Problem 2.
Subset take-away? is a two player game involving a fixed finite set, A. Players alternately choose nonempty
subsets of A with the conditions that a player may not choose

e the whole set A, or
e any set containing a set that was named earlier.

The first player who is unable to move loses the game.

For example, if A is {1}, then there are no legal moves and the second player wins. If A is {1,2}, then
the only legal moves are {1} and {2}. Each is a good reply to the other, and so once again the second player
wins.

The first interesting case is when A has three elements. This time, if the first player picks a subset with
one element, the second player picks the subset with the other two elements. If the first player picks a subset
with two elements, the second player picks the subset whose sole member is the third element. Both cases
produce positions equivalent to the starting position when A has two elements, and thus leads to a win for
the second player.

Verify that when A has four elements, the second player still has a winning strategy.’

Solution. There are way too many cases to work out by hand if we tried to list all possible games. But the
elements of A all behave the same, so we can cut to a small number of cases using the fact that permuting
around the elements of A in any game yields another possible game. We can do this by not mentioning
specific elements of A, but instead using the variables a, b, ¢, d whose values will be the four elements of
¥4

We consider two cases for the move of the Player 1 when the game starts:

1. Player 1 chooses a one element or a three element subset. Then Player 2 should choose the comple-
ment of Player one’s choice. The game then becomes the same as playing the n = 3 game on the
three element set chosen in this first round, where we know Player 2 has a winning strategy.

2. Player 1 chooses a subset of 2 elements. Let a, b be these elements, that is, the first move is {a, b}.

Player 2 should choose the complement, {c,d}, of Player 1’s choice. We then have the following
subcases:

(a) Player I’s second move is a one element subset, {a}. Player 2 should choose {b}. The game is
then reduced to the two element game on {c, d } where Player 2 has a winning strategy.

(b) Player 1’s second move is a two element subset, {a, c}. Player 2 should choose its complement,
{b, d}. This leads to two subsubcases:

i. Player 1’s third move is one of the remaining sets of size two, {a,d}. Player 2 should
choose its complement, {b, c}. The remaining possible moves are the four sets of size 1,
where the Player 2 clearly wins after two more rounds.

ii. Player I’s third move is a one element set, {a}. Player 2 should choose {b}. The game is
then reduced to the case two element game on {c, d } where Player 2 has a winning strategy.

So in all cases, Player 2 has a winning strategy in the Gale game for n = 4. O

2From Christenson & Tilford, David Gale’s Subset Takeaway Game, American Mathematical Monthly, Oct. 1997
3David Gale worked out some of the properties of this game and conjectured that the second player wins the game for any set
A. This remains an open problem.



Solutions to In-Class Problems Week 3, Mon. 3

Problem 3.
The inverse, R™!, of a binary relation, R, from A to B, is the relation from B to A defined by:

bR Ya iff aRb.

In other words, you get the diagram for R~! from R by “reversing the arrows” in the diagram describing R.
Now many of the relational properties of R correspond to different properties of R~1. For example, R is an
total iff R is a surjection.

Fill in the remaining entries is this table:

R is iff R7lis
total a surjection
a function

a surjection
an injection
a bijection

Hint: Explain what’s going on in terms of “arrows” from A to B in the diagram for R.

Solution.

Ris iff R~lis

total . a surjection

a function an injection

a surjection total

an injection a function

a bijection a bijection

O

Problem 4.

Define a surjection relation, surj, on sets by the rule
Definition. A surj B iff there is a surjective function from 4 to B.
Define the injection relation, inj, on sets by the rule
Definition. A inj B iff there is a total injective relation from A to B.
(a) Prove that if A surj B and B surj C, then A4 surj C.

Solution. By definition of surj, there are surjective functions, F : A — Band G : B — C.

Let H ::= G o F be the function equal to the composition of G and F, that is
H(a) := G(F(a)).

We show that H is surjective, which will complete the proof. So suppose ¢ € C. Then since G is a

surjection, ¢ = G(b) for some b € B. Likewise, b = F(a) for some a € A. Hence ¢ = G(F(a)) = H(a),

proving that ¢ is in the range of /, as required. | , : O
Ul b b A a froef

(b) Explain why A surj B iff B inj A.



4 Solutions to In-Class Problems Week 3, Mon.

Solution. Proof. (right to left): By definition of inj, there is a total injective relation, R : B — A. But this
implies that R~ is a surjective function from A to B.

(left to right): By definition of surj, there is a surjective function, F : A — B. But this implies that F~! is
a total injective relation from A to B. [ |

(¢) Conclude from (a) and (b) that if A inj B and B inj C, then A inj C.

Solution. From (b) and (a) we have that if C inj B and B inj A, then C inj A, so just switch the names A
and C. O
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Mini-Quiz Feb. 16 7#;
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Your name: WfLL!US t @ ‘{}fﬂ"ut!{){

Circle the name of your TA:

Ali Nick Oscar @

e This quiz is closed book. Total time is 25 minutes.

e Write your solutions in the space provided. If you need more space, write on the back of the sheet
containing the problem. Please keep your entire answer to a problem on that problem’s page.
7

e GOOD LUCK!

DO NOT WRITE BELOW THIS LINE

Problem | Points | Grade | Grader

1 5 213 [ 5
> s[5 [0
s 5 |7 lom
4 5 i | og

Total 20 13 oS

Creative Commons (@10Ele) 2011, Eric Lehman, F Tom Leighton, Albert R Mevyer .
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S Mini-Quiz Feb. 16
Problem 1 (5 points).

qe# o Q\’D\';{; .
Prove that logg 12 is irrational. Hint:
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3
Problem 2 (5 points).

Show that there are exactly two truth assignments for the variables P,Q,R,S that satisfy the following for-
mula:

(P OR Q) AND (Q OR R) AND (R OR S) AND (S OR P) .
e
Hint: A truth table will do the job, but it will have a bunch of rows. A proof by cases can be quicker; ff\\
you do use cases, be sure each one is clearly specified.
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Problem 3 (5 points).
The (flawed) proof below uses the Well Ordering Principle-to prove that every amount of postage that can
be paid exactly, using only 10 cent and 15 cent stamps;, is divisible by 5> Let S(r7) mean that exactly n cents

postage can be paid using only 10 and 15 cent stamps. Then the proof shows that

Mini-Quiz Feb. 16

S(n) IMPLIES 5|n, forall nonnegative integers n. ™

Fill in the missing portions (indicated by “...”
where the error in the proof is.

) of the following proof of (*), and at the final line point out

Let C be the set of counterexamples to (*), namely

C ::={n| 8(n)and NOT(5 | n)}

Assume for the purpose of obtaining a contradiction that C is nonempty. Then by the WOP,
there is a smallest number, m € C. Then S(m — 10) or S(m — 15) must hold, because the m
cents postage is made from 10 and 15 cent stamps, so we remove one.

So suppose S(m — 10) holds. Then 5 | (m — 10), because. ..
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But 'fS | (m —10), then 5 | m, because..
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contrddlctmg the f’lC'[ that m is a counterexample. [ La, || ! fu -

{‘ Wi .gl-e‘(,;ﬂ/
Next suppose S(m — 15) holds. Then the proof for m — 10 carries over directly for'm — 15
to yield a contradiction in this case as well. Since we get a contradiction in both cases, we
conclude that C must be empty. That is, there are no counterexamples to (*), which proves that
(*) holds.

What was Wrong/missing in the argument? Your answer should fit in the line below.
/ |
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Mini-Quiz Feb. 16 Your name: 5
Problem 4 (5 points).
The following predicate logic formula is invalid:
SN———
Vx,3y.P(x,y) — Iy, Vx.P(x.y)
Which of the following are counter models for the implication above?
ﬁ 1. 2 ; The predicate P(x, y) = ‘yx = 1’ where the domain of discourse is Q.
Wﬂ dﬂ‘”é\l-{,b an X
/ \< The predicate P(x,y) = ‘y!‘ < x’ v\_{here the domain of discourse is RR.
ol dfl -
® A K (oc fhal /
\A The predicate P(x,y) = ‘yx }: 2" where the domain of discourse is R without 0.
i
A The predicate P(x,y) = ‘yxy = x’ where the domain of discourse is the set of all binary

strings, including the empty string.
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Solutions to Mini-Quiz Feb. 16

Problem 1 (5 points).
Prove that logg 12 is irrational. Hint: Proof by contradiction.

Solution. Proof. Suppose to the contrary that logg 12 = m/n for some integers m and n. Since logg 12 is
positive, we may assume that m and n are also positive. So we have

logg 12 =m/n

glogo 12 _ 9m/n
12 = (9)"/"
127 = g7 (1)

But this is impossible, since left hand side of (1) is even, but, because m is positive, the right hand side is
odd.

This contradiction implies that logg 12 must be irrational. |

Problem 2 (5 points).
Show that there are exactly two truth assignments for the variables P,Q,R,S that satisfy the following for-
mula:

(P OR Q) AND (Q OR R) AND (R OR S) AND (S OR P)

Hint: A truth table will do the job, but it will have a bunch of rows. A proof by cases can be quicker; if
you do use cases, be sure each one is clearly specified.

Solution. You can deduce the only two possibilities by cases:

If P is false, then in order to have any chance of satisfying clause 4, S must be false. Similarly, if S is
false, then in order to satisfy clause 3, R must be false. And similarly, Q must be false. On the other hand, if
P is true, then O must be true to make clause 1 true and have any chances of making the overall expression
true. Similarly, If Q is true, then R must be true and if R is true then S is true.

Those arguments prove there are at most 2 cases, but you need to show the assignments we are left with
actually satisfy the formula. This can be easily done, by plugging the values into the formula:

If all variables are set to true, then since clause 1 has Q clause 2 has R, clause 3 has S, and clause 4
has P, then every clause is satisfied, and the full AND is satisfied. If all are false, then since clause 1 has
P, clause 2 has O , clause 3 has R and clause 4 has S, then again every clause is satisfied and the overall
proposition is satisfied. So both of those satisfy the proposition.

|

Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .



2 Solutions to Mini-Quiz Feb. 16

Problem 3 (5 points).

The (flawed) proof below uses the Well Ordering Principle to prove that every amount of postage that can
be paid exactly, using only 10 cent and 15 cent stamps, is divisible by 5. Let S(n) mean that exactly n cents
postage can be paid using only 10 and 15 cent stamps. Then the proof shows that

S(n) IMPLIES 5 |n, forall nonnegative integers n. (*)

Fill in the missing portions (indicated by *...”) of the following proof of (*), and at the final line point out
where the error in the proof is. '

Let C be the set of counterexamples to (*), namely

C :={n| S(n) and NOT(5 | n)}

Assume for the purpose of obtaining a contradiction that C is nonempty. Then by the WOP,
there is a smallest number, m € C. Then S(m — 10) or S(rm — 15) must hold, because the m
cents postage is made from 10 and 15 cent stamps, so we remove one.

So suppose S(m — 10) holds. Then 5 | (m — 10), because. ..

Solution. ...if NOT(5 | (m — 10)), then m — 10 would be a counterexample smaller than m,
contradicting the minimality of . u

Butif 5| (m — 10), then 5 | m, because. ..
Solution. ...5| (m —10)and 5| 10,805 | (m — 10 + 10). |

contradicting the fact that m is a counterexample.

Next suppose S(m — 15) holds. Then the proof for m — 10 carries over directly for m — 15
to yield a contradiction in this case as well. Since we get a contradiction in both cases, we
conclude that C must be empty. That is, there are no counterexamples to (*), which proves that
(*) holds.

What was wrong/missing in the argument? Your answer should fit in the line below.

Solution. We didn’t check m > 0, if m = 0 neither S(m — 10) nor S(m — 15) hold. ]

Problem 4 (5 points).
The following predicate logic formula is invalid:

Vx,3y.P(x,y) — Ay, Vx.P(x,y)
Which of the following are counter models for the implication above?
1. The predicate P(x,y) = ‘yx = 1’ where the domain of discourse is Q.
2. The predicate P(x, y) = ‘y < x’ where the domain of discourse is R.
3. The predicate P(x, y) = ‘yx = 2’ where the domain of discourse is R without 0.

4. The predicate P(x,y) = ‘yxy = x’ where the domain of discourse is the set of all binary strings,
including the empty string.
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Solution. 1. In the rationals, 0 has no inverse. Hence the hypothesis is false, since not all rationals have
inverses. An implication with a false hypothesis is automatically true, so this is not a countermodel.

2. COUNTERMODEL. For every real number x, there exists a real number y which is strictly less than
x. So while the antecedent of the implication is true, the consequence is not since there is no minimum
element for the partial order, the strictly less than relation, <, on R.

3. COUNTERMODEL. in this case the hypothesis is true, but the conclusion is not: its not possible to
find a single number that will do this.

4. In the set of binary strings, both sides of the implication are true if we let y = A, the empty string.
|
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