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S HeE Some sets

real numbers, R

complex numbers, C

infegers, Z

empty set, %)

set of all subsets of integers, pow(Z)
the power set
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What is a Set?

3 1“

Informally:

A set is a collection of mathematical

objects, with the collection treated

as a single mathematical object.

(This is circular of course:
what's a collection?)

Jec 3M 2
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o Some sets

{7, "Albert R", /2, T}

A set with 4 elements: two
numbers, a string, and a Boolean.

Same as
{T, "Albert R.", 7, /2}

-- order doesn't matter
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3+ IR Membership

5|n

BRI

X is a member of A: Xe A
/2 {7, "Albert R", /2, T}
/3 ¢{7, "Albert R.", 1/2, T}

14/2 € {7, "Albert R.", /2, T}

Jec 3M 5
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Synonyms for Membership
XeA
X is an element of A
X isin A
Examples:

7eZ, 2/34¢7, Zepow(R)
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:H—J In or Not In

a[wl=

An element is in or not in a set:

{7,m/2,7} is same as {7, m/2}
(No notion of being in the set
more than once)

gl Subset (c)

AcB

A is a subset of B
A is contained in B

Every element of A is also
an element of B:
VX [xe A IMPLIES xe B]

Jec 3IM B

R Subset

examples:
Z=R, ReC B3]}

AcC A, O ceveryset

omon @ c everything

Jec IM S

def: & B

VX [xe@ IMPLIES xeB]
True

Fabrunry 14, 2001 Jec 3MI0

:_Fia Defining Sets
The set of elements, x, in A
such that P(x) is true.

xe A|P(x)}

Defining Sets

The set of even integers:

{ne N |nis even}

fec 3412




DEE
B @ New sets from old

Venn Diagram for 2 Sets

infersection

Blwi~

AmmB::={x|xeA AND X e B}

s [n]7

S ~_Uunion
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A set-theoretic equality
AU(BNC) = (AUB)N(AUC)

proof: Show these have the same
elements, namely,

xe Left Hand Set iff xe RHS
for all x. '

¢ ENEDES
1| |

3+ A set-theoretic equality

AU(BNC) = (AUB)N(AUC)
proof uses fact from last time:
P OR (Q AND R) equiv
(P OR Q) AND (P ORR)

# ebrunry 14, 2011 Jec3M15

3 [ A set-theoretic equality

AU(BNC) = (AUB)N(AUC)
proof: xe AU(BNC) iff
xe A OR xe(BNC) (def of U)iff
Xe A OR (xe B AND xeC) (def n)iff
(xe A OR xe B) AND (xe A OR xe()
(by the equivalence)

Fabrunry 14, 2011 lec 3IM.20




ik« [ A set-theoretic equality

proof:
(xe A OR xeB)AND(xe A OR xeC) iff
(xe AUB)AND(xe AUC) (def U)iff

xe(AUB) N (AUC) (def N).
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Relations &

At & Meyer Fabruary 14, 2001 lec 321
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g« is taking subject” relation

HEE

subjects

lec IM 26

A« [ "nonstop bus trip” relation

580

cities cities

Providence -

New York

lez IM28

b e < 3uz3
sinjr
Sk« formula “evaluation” relation
arithmetic
formulas numbers

lec 3IM2T
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8y Binary relations

A binary relation, R, from a
set A foaset B

associates of elements of
A with elements of B.

e [ oy e W33




Binary relation R from A to B
do'Tam R:

codomain

arrows

Fabruary 34, 2013 fec IM34
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Binary relation R from BA 1o B

Jec INIT

Siig  Binary relation R from A to B

domain R . codomain
A | ]

s-@« archery on relations

<,2.= Larrow in

e i A— B
A function, f, from A to B
is a relation which associates

each element, a, of A with

at most one element of B,
Y

called f(a)

Jec 3IMI9

ey function archery

58|

< 1 arrow out

Jec 3040
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<1 arrow out

function archery

lec 3MAY

3
-
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:Ih totfal relation archery
2 1 arrow out

lec IM 47
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< 1 arrow out

function archery

Wm’wwn Febrvory 14, 2011 Jec 3IMAZ
s a. total relation archery

> 1 arrow out

February 14, 2001 Jec 3MA6

L total & function archery
exactly 1 arrow out

f(O) =@

February I4, 2011 Jec 3N A9




B - surjection archery

>1 arrow in

TR surjection archery

>1 arrcow in

ﬁ surjection archery

=1 arrow in

bijection archery

kS

B - Mapping Rule (bij)

A bijection from
A to B implies

|Al = |B]

A is same size as B

exactly 1 arrow out  exactly 1 arrow in

ooeE!
ﬁj Team Problems

alels

Problems
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Massachusetts Institute of Technology
6.042J/18.062], Spring *11: Mathematics for Computer Science February 14
Prof. Albert R Meyer revised Monday 14™ February, 2011, 09:53

In-Class Problems Week 3, Mon.

Problem 1.
Set Formulas and Propositional Formulas.
(a) Verify that the propositional formula (? AND Q) OR (P AND Q) is equivalent to P.

(b) Prove that
A=(A-B)U(ANB)

for all sets, A, B, by using a chain of iff’s to show that
xe€AIFFx e (A—B)U (AN B)

for all elements, x.

Problem 2.
Subset take-away? is a two player game involving a fixed finite set, A. Players alternately choose nonempty
subsets of A with the conditions that a player may not choose

e the whole set A, or

of ubmd.

e any set containing¥a set that was named earlier.

The first player who is unable to move loses the game.

For example, if A is {1}, then there are no legal moves and the second player wins. If A is {1, 2}, then
the only legal moves are {1} and {2}. Each is a good reply to the other, and so once again the second player
wins.

The first interesting case is when A has three elements. This time, if the first player picks a subset with
one element, the second player picks the subset with the other two elements. If the first player picks a subset
with two elements, the second player picks the subset whose sole member is the third element. Both cases
produce positions equivalent to the starting position when A has two elements, and thus leads to a win for
the second player.

Verify that when A has four elements, the second player still has a winning strategy.’

Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .
The ser difference, A — B, of sets A and B is

A—Bu=lacA|a¢ B}

2From Christenson & Tilford, David Gale's Subset Takeaway Game, American Mathematical Monthly, Oct. 1997
3David Gale worked out some of the properties of this game and conjectured that the second player wins the game for any set
A. This remains an open problem.
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In-Class Problems Week 3, Mon.

Problem 3.
The inverse, R™!, of a binary relation, R, from A to B, is the relation from B to A defined by:

bR Ya iff aRb.

In other words, you get the diagram for R™! from R by “reversing the arrows” in the diagram describing R.
Now many of the relational properties of R correspond to different properties of R™1. For example, R is an
total iff R™V is a surjection.

Fill in the remaining entries is this table:

R is iff, - R7lis
total a surjection
a function

a surjection
an injection
a bijection

Hint: Explain what’s going on in terms of “arrows” from A to B in the diagram for R.

Problem 4.
Define a surjection relation, surj, on sets by the rule

Definition. A surj B iff there is a surjective function from A to B.
Define the injection relation, inj, on sets by the rule

Definition. A inj B iff there is a total injective relation from A to B.

(a) Prove that if A surj B and B surj C, then A surj C.

(b) Explain why A surj B iff B inj A.

(¢) Conclude from (a) and (b) that if A inj B and B inj C, then A inj C.
Arrow Properties

Definition. A binary relation, R is
e is a function when it has the [< 1 arrow out] property.

e is surjective when it has the [> 1 arrows in] property. That is, every point in the righthand, codomain
column has at least one arrow pointing to it.

e is fotal when it has the [> 1 arrows out] property.
e is injective when it has the [< 1 arrow in] property.

e is bijective when it has both the [= 1 arrow out] and the [= 1 arrow in] property.
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Massachusetts Institute of Technology
6.042J/18.062J, Spring ’ 1 1: Mathematics for Computer Science February 14
Prof. Albert R Meyer revised Monday 14% February, 2011, 00:14

Solutions to In-Class Problems Week 3, Mon.

Problem 1.

Set Formulas and Propositional Formulas.
(a) Verify that the propositional formula (P AND Q) OR (P AND Q) is equivalent to P.

Solution. There is a simple verification by truth table with 4 rows which we omit.

There is also a simple cases argument: if Q is T, then the formula simplifies to (P AND F) OR (P AND T)
which further simplifies to (F OR P) which is equivalent to P.

Otherwise, if Q is I, then the formula simplifies to (P AND T) OR (P AND F) which is likewise equivalent
to P.

Finally, there is a proof by propositional algebra:

(P AND Q) OR (P AND Q) <—> P AND (Q OR Q) (distributivity)
<> PANDT «— P.

(b) Prove that!
A=(A—B)U(AN B)

for all sets, A, B, by using a chain of iff’s to show that
x€AIFFx € (A—B)U (AN B)

for all elements, x.

Solution. Two sets are equal iff they have the same elements, that is, x is in one set iff x is in the other set,
for any x. We’ll now prove this for A and (4 — B) U (A N B).

xe(A—B)U(ANB)

iff xe(A—B)ORxe(ANB) (by def of U)
iff (x€ AANDX € B)

OR(x € AAND X € B) (by def of N and —)
iff (P AND Q) OR (P AND Q) (where P ::=[x € A] and Q =[x € B])
iff P (by part (a))
iff xeA (by def of P).

Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .
IThe set difference, A — B, of sets A and B is

A—B:={aec A|a ¢ B}.



2 Solutions to In-Class Problems Week 3, Mon.

Problem 2.

Subset take-away? is a two player game involving a fixed finite set, A. Players alternately choose nonempty
subsets of A with the conditions that a player may not choose

e the whole set A, or
e any set containing a set that was named earlier.

The first player who is unable to move loses the game.

For example, if A is {1}, then there are no legal moves and the second player wins. If A4 is {1, 2}, then
the only legal moves are {1} and {2}. Each is a good reply to the other, and so once again the second player
wins.

The first interesting case is when A has three elements. This time, if the first player picks a subset with
one element, the second player picks the subset with the other two elements. If the first player picks a subset
with two elements, the second player picks the subset whose sole member is the third element. Both cases
produce positions equivalent to the starting position when A has two elements, and thus leads to a win for
the second player.

Verify that when A has four elements, the second player still has a winning strategy.’

Solution. There are way too many cases to work out by hand if we tried to list all possible games. But the
elements of A4 all behave the same, so we can cut to a small number of cases using the fact that permuting
around the elements of A in any game yields another possible game. We can do this by not mentioning
specific elements of A4, but instead using the variables a, b, c,d whose values will be the four elements of
A.

We consider two cases for the move of the Player 1 when the game starts:

1. Player 1 chooses a one element or a three element subset. Then Player 2 should choose the comple-
ment of Player one’s choice. The game then becomes the same as playing the n = 3 game on the
three element set chosen in this first round, where we know Player 2 has a winning strategy.

2. Player 1 chooses a subset of 2 elements. Let a, b be these elements, that is, the first move is {a, b}.
Player 2 should choose the complement, {c,d}, of Player 1’s choice. We then have the following
subcases:

(a) Player 1’s second move is a one element subset, {a}. Player 2 should choose {b}. The game is
then reduced to the two element game on {c, d } where Player 2 has a winning strategy.

(b) Player 1’s second move is a two element subset, {a, c¢}. Player 2 should choose its complement,
{b, d}. This leads to two subsubcases:

i. Player I's third move is one of the remaining sets of size two, {a,d}. Player 2 should
choose its complement, {b, ¢}. The remaining possible moves are the four sets of size 1,
where the Player 2 clearly wins after two more rounds.

ii. Player 1’s third move is a one element set, {a}. Player 2 should choose {b}. The game is
then reduced to the case two element game on {c, d } where Player 2 has a winning strategy.

So in all cases, Player 2 has a winning strategy in the Gale game for n = 4. O

2From Christenson & Tilford, David Gale's Subset Takeaway Game, American Mathematical Monthly, Oct. 1997
3David Gale worked out some of the properties of this game and conjectured that the second player wins the game for any set
A. This remains an open problem.



Solutions to In-Class Problems Week 3, Mon. 3

Problem 3.
The inverse, R™1, of a binary relation, R, from A to B, is the relation from B to A defined by:

bR Ya iff aRb.

In other words, you get the diagram for R~! from R by “reversing the arrows” in the diagram describing R.
Now many of the relational properties of R correspond to different properties of R~!. For example, R is an
total iff R™1 is a surjection.

Fill in the remaining entries is this table:

Ris iff R7lis
total a surjection
a function

a surjection
an injection
a bijection

Hint: Explain what’s going on in terms of “arrows” from A to B in the diagram for R.

Solution.

Ris iff R7'is

total . a surjection

a function an injection

a surjection total

an injection a function

a bijection a bijection

O

Problem 4.

Define a surjection relation, surj, on sets by the rule

Definition. A surj B iff there is a surjective function from A to B.
Define the injection relation, inj, on sets by the rule

Definition. A inj B iff there is a total injective relation from A to B.

(a) Prove that if A surj B and B surj C, then A4 surj C.

Solution. By definition of surj, there are surjective functions, F : A - Band G : B — C.

Let H ::= G o F be the function equal to the composition of G and F, that is
H(a) ::= G(F(a)).

We show that H is surjective, which will complete the proof. So suppose ¢ € C. Then since G is a
surjection, ¢ = G(b) for some b € B. Likewise, b = F(a) for some a € A. Hence ¢ = G(F(a)) = H(a),

proving that ¢ is in the range of H, as required. | . : i
Uke b b fid a froef
(b) Explain why A surj B iff B inj A.



Solutions to In-Class Problems Week 3, Mon.

Solution. Proof. (right to left): By definition of inj, there is a total injective relation, R : B — A. But this
implies that R~ is a surjective function from 4 to B.

(left to right): By definition of surj, there is a surjective function, F' : A — B. But this implies that F s
a total injective relation from A to B. [ |

(¢) Conclude from (a) and (b) that if A inj B and B inj C, then A4 inj C.

Solution. From (b) and (a) we have that if C inj B and B inj A, then C inj A, so just switch the names A
and C. |
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Mathematics for Computer Science
MIT 6.0427/18.0627
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Set Theory

Wl

8|17
]

BRI

Russell's Paradox

so [se W IFF s¢ s

Now let s be W, and
reach a contradiction:

(WeW IFF We W |

Albert R Meyer, February 16, 2011

Let W:={se Sets|s¢ s}

Jec IWS

sin7
| [w|s

i@+ ...but paradox is buggy
Assumes that W is a sef!

[seW IFF s¢ s]

for all sets s

...can only substitute
W for s if Wis a set

[l i

gl Axioms
Equality
VX[ xeye—xez]l—oy=z
Power set

VXEhYs si@ e < sieih

Albert R Meyer, Februory 16, 2011

i - Disaster: Math is broken!
I am the Pope,

Pigs fly,

and verified programs

crash...

Albert R Meyer, February 16, 2011

e IWS

...but paradox is buggy

Assumes that W is a sefl

We can avoid the paradox,
if we deny That W is a set!
..which raises the key question:

just which well-defined
collections are sets?

= Abert R berer

February 14, 2011




win

:EE Zermelo-Frankel Set Theory

No simple answer, but the
axioms of Zermelo-Frankel
along with the Choice axiom

(ZFC) do a prefty good job.

Albert R Meyer, February 16, 2011 Jec IW.10
s [n]7

stigq Zermelo-Frankel Set Theory

This implies that
(1) the collection of all sets is not
a set, and

(2) W equals the collection of all
sets ..which is why it's not a set

6‘
(S,
2]
@
-{5‘;

Albert R Meyer, February 16, 2011 lec IW.12

sinl7
w

g« ho surjection from A to pow(A)

wly

Pf by contradiction: suppose
surj fen f:A—pow(A). Let
W:={a€A | ag f(a)}, so

ae W iffag f(a).
f a surj, so W=f(ay), some a, € A.

@050 Albert R Meyer, February 18, 2011 lec IW 14

s[n]7

=
=l

Zermelo-Frankel Set Theory

According to ZF, the elements
of a set have to be "simpler”
than the set itself. In
particular,

no set is a member of itself.

E AbertR Meyer,  Februry 18,2011 lec W1

s [1]7

wis

g infinite sizes

a|elw

Are infinite sets the "same size"?
NO, by Russell paradox variant:
Theorem: No [>1 in] function
from A to pow(A),
even for infinite A

Albert R Meyer, February 16, 2011 lec IW.13

17

ﬁ no surjection from A to pow(A)

el

Pf by contradiction: suppose
surj fcn f:A—pow(A). Let
Wi:={a€A |ag f(a)}, so
a e f(ap) iff ag f(a).
Now let a be ag:
ag e f(ap) iff age f(ap)

Bo58 Alvert R Meyer, February 18, 2011 ez 3W.15
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Team Problems

Abert R

Problems

lidi 2

Meyer, February 16. 2011
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In-Class Problems Week 3, Wed.

Problem 1.
The method used to prove Cantor’s Theorem that the power set is “bigger” than the set, leads to many
important results in logic and computer science. In this problem we’ll apply that idea to describe a set of
N J> binary strings that can’t be described by ordinary logical formulas. To be provocative, we could say that we
will describe an undescribable set of strings!
\}Q/‘( beu‘?f’\ The following logical formula illustrates how a formula can describe a set of strings. The formula

NOT[Iy.3z.5 = ylz], (no-1s(s))

where the variables range over the set, {0, 1}*, of finite binary strings, says that the binary string, s, does not
contain a 1.

We’ll call such a predicate formula, G(s), about strings a string formula, and we’ll use the notation
strings(G) for the set of binary strings with the property described by G. That is,

strings(G) = {s € {0, 1}* | G(s)}.

A set of binary strings is describable if it equals strings(G) for some string formula, G. So the set, 0%, of
finite strings of 0’s is describable because it equals strings(no-1s)."

The idea of representing data in binary is a no-brainer for a computer scientist, so it won’t be a stretch to
agree that any string formula can be represented by a binary string. We'll use the notation G for the string
formula with binary representation x € {0, 1}*. The details of the representation don’t matter, except that
there ought to be a display procedure that can actually display G given x.

Standard binary representations of formulas are often based on character-by-character translation into
binary, which means that only a sparse set of binary strings actually represent string formulas. It will be
technically convenient to have every binary string represent some string formula. This is easy to do: tweak
the display procedure so it displays some default formula, say no-1Is, when it gets a binary string that isn’t
a standard representation of a string formula. With this tweak, every binary string, x, will now represent a
string formula, G.

Now we have just the kind of situation where a Cantor-style diagonal argument can be applied, namely,
we'll ask whether a string describes a property of itself! That may sound like a mind-bender, but all we’re
asking is whether x € strings(Gy).

For example, using character-by-character translations of formulas into binary, neither the string 0000 nor
the string 10 would be the binary representation of a formula, so the display procedure applied to either of
them would display no-1Is. That is, Goooo = G10 = no-1s and so strings(Goggo) = strings(G19) = 0*.
This means that

0000 € strings(Goopo) and 10 ¢ strings(G1p).

Now we are in a position to give a precise mathematical description of an “undescribable” set of binary
strings, namely, let

Theorem. Define
U:={x €{0,1}* | x ¢ strings(Gy)}. (1)

The set U is not describable.

; oelo ; ;
Creative Commons (SlE) 2011, Eric Lechman, F Tom Leighton, Albert R Meyer .
"no-1s and similar formulas were examined in Problem 3.13, but it is not necessary to have done that problem to do this one.




2 In-Class Problems Week 3, Wed.

Use reasoning similar to Cantor’s theorem (repeated below) to prove this Theorem.

Problem 2.
Let R : A — A be a binary relation on a set, A. If a1 R ag, we’ll say that @y is “R-smaller” than ag. R is
called well founded when there is no infinite “ R-decreasing” sequence:

-~ Ray R--- Ra; R ay, (2)

of elements a; € A.
For example, if A = N and R is the <-relation, then R is well founded because if you keep counting
down with nonnegative integers, you eventually get stuck at zero:

O<-v<n—1<n.
But you can keep counting up forever, so the >-relation is not well founded:
o> >eee> 1> 0.

Also, the =-relation on N is not well founded because a constant sequence of, say, 2’s, gets <-smaller
forever:
<2< <2 <2,

(a) If B is a subset of A, an element b € B is defined to be R-minimal in B iff there is no R-smaller
element in B. Prove that R : 4 — A is well founded iff every nonempty subset of A has an R-minimal
element.

A'logic formula of set theory has only predicates of the form “x € y” for variables x, y ranging over sets,
along with quantifiers and propositional operations. For example,

isempty(x) ;1= Yw. NOT(w € x)

is a formula of set theory that means that “x is empty.”

(b) Write a formula, member-minimal(u, v), of set theory that means that u is €-minimal in v.

(¢) The Foundation axiom of set theory says that € is a well founded relation on sets. Express the Founda-
tion axiom as a formula of set theory. You may use “member-minimal” and “isempty” in your formula as
abbreviations for the formulas defined above.

(d) Explain why the Foundation axiom implies that no set is a member of itself.




In-Class Problems Week 3, Wed. 3

Cantor’s Theorem
There is no bijection between any set A and its powerset P(A).

Proof. We show that if g is a total function from A to P(A), then g does not have the [> 1 in], surjection
property, and so is certainly not a bijection.
Define
Agi=laec Al|a ¢ g(a)}.

Since g is total, Ag is a well-defined subset of A, which means it is a member of P(A4). We claim Ag is
not in the range of g, and so g is not a surjection.
To prove that Ay ¢ range(g), assume to the contrary that it was in range(g). That is,
Ag = glap)
for some ag € A. Then by definition of Ag,
a€glag) iff aeAg iff a¢ gla)

for all @ € A. Now letling ¢ = ay yields the contradiction

ap € glag) 1iff ag ¢ glap).

No o Ceally viduchuds  proble
§ ﬂ\|tn I{H
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Solutions to In-Class Problems Week 3, Wed.

Problem 1.
The method used to prove Cantor’s Theorem that the power set is “bigger” than the set, leads to many
important results in logic and computer science. In this problem we’ll apply that idea to describe a set of
binary strings that can’t be described by ordinary logical formulas. To be provocative, we could say that we
will describe an undescribable set of strings!

The following logical formula illustrates how a formula can describe a set of strings. The formula

NOT[dy.3z.s = ylz], (no-1s(s))

where the variables range over the set, {0, 1}*, of finite binary strings, says that the binary string, s, does not
containa 1.

We’ll call such a predicate formula, G(s), about strings a string formula, and we’ll use the notation
strings(G) for the set of binary strings with the property described by G. That is,

strings(G) == {s € {0, 1}* | G(s)}.

A set of binary strings is describable if it equals strings(G) for some string formula, G. So the set, 0%, of
finite strings of 0’s is describable because it equals strings(no-1s).!

The idea of representing data in binary is a no-brainer for a computer scientist, so it won’t be a stretch to
agree that any string formula can be represented by a binary string. We’ll use the notation G for the string
formula with binary representation x € {0, 1}*. The details of the representation don’t matter, except that
there ought to be a display procedure that can actually display G given x.

Standard binary representations of formulas are often based on character-by-character translation into
binary, which means that only a sparse set of binary strings actually represent string formulas. It will be
technically convenient to have every binary string represent some string formula. This is easy to do: tweak
the display procedure so it displays some default formula, say no-1s, when it gets a binary string that isn’t
a standard representation of a string formula. With this tweak, every binary string, x, will now represent a
string formula, G.

Now we have just the kind of situation where a Cantor-style diagonal argument can be applied, namely,
we'll ask whether a string describes a property of itself! That may sound like a mind-bender, but all we’re
asking is whether x € strings(Gx).

For example, using character-by-character translations of formulas into binary, neither the string 0000 nor
the string 10 would be the binary representation of a formula, so the display procedure applied to either of
them would display no-1s. That is, Gogoo = G10 = no-1s and so strings(Goooo) = strings(G19) = 0*.
This means that

0000 € strings(Gopop) and 10 ¢ strings(Gyo).

Now we are in a position to give a precise mathematical description of an “undescribable” set of binary
strings, namely, let

Theorem. Define
U:={x€{0,1}* | x ¢ strings(Gx)}. (1)
The set U is not describable.

Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .
Lno-1s and similar formulas were examined in Problem ??, but it is not necessary to have done that problem to do this one.



2 Solutions to In-Class Problems Week 3, Wed.

Use reasoning similar to Cantor’s theorem (repeated below) to prove this Theorem.
Solution. By definition (1),
xeU iff x ¢strings(Gy). (2)
for x € {0, 1}*.
Also, U = strings(Gx,,) by assumption. This means:
xeU iff x € strings(Gx,). (3)
Combining (3) and (2), we have

x ¢ strings(Gy) <— x € strings(Gyy, ), )

forall x € {0, 1}*. Now plugging in xy for x in (4) gives an immediate contradiction.
So there cannot be any formula that describes U. |

Problem 2.
Let R : A — A be a binary relation on a set, A. If a; R ag, we’ll say that a; is “R-smaller” than ag. R is
called well founded when there is no infinite “R-decreasing” sequence:

---Ra,,R---RalRao, (5)

of elements a; € A.
For example, if A = N and R is the <-relation, then R is well founded because if you keep counting
down with nonnegative integers, you eventually get stuck at zero:

0<:---<n-1<n.
But you can keep counting up forever, so the >-relation is not well founded:
e>n>-e>1>0.

Also, the <-relation on N is not well founded because a constant sequence of, say, 2’s, gets <-smaller
forever:
e <2<...<2<2,

(a) If B is a subset of A4, an element b € B is defined to be R-minimal in B iff there is no R-smaller
element in B. Prove that R : A — A is well founded iff every nonempty subset of A has an R-minimal
element.

Solution. If there was an infinite R-decreasing sequence (5), then {ag, ay, ...} would itself be a nonempty

(20

- subset of A with no minimal element. This proves the right-to-left direction of the “”iff” (by contrapositive).

We’ll also prove the left-to-right direction by contrapositive. So suppose B is a nonempty subset of A with
no R-minimal element. We will show how to find an infinite R-decreasing sequence of elements of B:

Since B is nonempty, there is an element b9 € B. Since by cannot be minimal in B, there must be an
element b; € B that is R-smaller than bg. Again, since b; cannot be minimal in B, there must be an
R-smaller b, € B. Continuing in this way, we obtain an infinite R-decreasing sequence

«««Rby R--- R by R by.



Solutions to In-Class Problems Week 3, Wed. 3

A logic formula of set theory has only predicates of the form “x € y” for variables x, y ranging over sets,
along with quantifiers and propositional operations. For example,

isempty(x) = Yw. NOT(w € x)

is a formula of set theory that means that “x is empty.”

(b) Write a formula, member-minimal(u, v), of set theory that means that ¥ is €-minimal in v.
Solution.
member-minimal(u,v) = u € v ANDVx € v. X ¢ u.

(c) The Foundation axiom of set theory says that € is a well founded relation on sets. Express the Founda-
tion axiom as a formula of set theory. You may use “member-minimal” and “isempty” in your formula as
abbreviations for the formulas defined above.

Solution.
Vx. NOT(isempty(x)) IMPLIES Im. member-minimal(m, x).

(d) Explain why the Foundation axiom implies that no set is a member of itself.
Solution. If x € x, then
rEXE--rEXEX

is a e-decreasing sequence, violating well foundedness of the e-relation. Alternatively, {x} would be a
nonempty set with no e-minimal element. |



4 Solutions to In-Class Problems Week 3, Wed.

Cantor’s Theorem
There is no bijection between any set A and its powerset P(A).

Proof. We show that if g is a total function from A to P(A), then g does not have the [> 1 in], surjection
property, and so is certainly not a bijection.
Define

Ag:={ae Ala ¢ g(a)}.

Since g is total, Ag is a well-defined subset of A, which means it is a member of P(A4). We claim A is
not in the range of g, and so g is not a surjection.

To prove that Ag ¢ range(g), assume to the contrary that it was in range(g). That is,
Ag = g(ao)
for some ag € A. Then by definition of A,
a€glag) iff aeAg iff a ¢ gla)
for all a € A. Now letting a = ag yields the contradiction

ag € gao) iff ao ¢ g(ao).
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Problem Set 2
Due: February 18

Reading: Chapter ??2??, covering Predicate Formulas, Chapter ????, covering Sets & Relations, Chap-

sections.

Note Chapter ??5.2-??, covering Cardinality is due for class on Friday, Feb. 18, but is not covered on the
pset.

Reminder: Email comments on the reading are due before the class in which the reading is covered.
Latest times for comments on different sections are indicated in the online tutor problem set TP.3. Reading
Comments count for 3% of the final grade.

Problem 1.
Translate the following sentence into a predicate formula:

/S

There is a student who has emailed exactly two other people in the class, besides (po@
herself. \

The domain of discourse should be the set of students in the class; in addition, the only predicates that
you may use are

e cquality, and

e E(x,y), meaning that “x has sent e-mail to y.”

Problem 2.

Express each of the following predicates and propositions in formal logic notation. The domain of discourse
is the nonnegative integers, N. Moreover, in addition to the propositional operators, variables and quantifiers,
you may define predicates using addition, multiplication, and equality symbols, and nonnegative integer
constants 0, 1,...), but no exponentiation (like x*). For example, the predicate “n is an even number” could
be defined by either of the following formulas:

dm. 2m = n), dm. (m +m = n).
(a) m is a divisor of n.
(b) n is a prime number.

(c) n is a power of a prime.

Problem 3.
Let A, B, and C be sets. Prove that:

AUBUC=(A-B)U(B-C)u(C-AHUANBNC). (1)
Hint: P OR Q OR R is equivalent to

(P AND Q) OR (Q AND R) OR (R AND P) OR (P AND Q AND R).

Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .



2 Problem Set 2

Problem 4.
There is a simple and useful way to extend composition of functions to composition of relations. Namely,

let R: B — Cand S : A — B be relations. Then the composition of R with S is the binary relation
(RoS): A— C defined by the rule

a(RoS)ci=3beB.(bRc)AND(a S b).

4.4

This agrees with the Definition ?? of composition in the special case when R and S are functions.
We can represent a relation, S, between two sets A = {ay,...,ap}and B = {by,...,bp}asann xm
matrix, Mg, of zeroes and ones, with the elements of Mg defined by the rule

Ms(@,j)=1 IFF a; S b;.

If we represent relations as matrices in this fashion, then we can compute the composition of two relations
R and S by a “boolean” matrix multiplication, ®, of their matrices. Boolean matrix multiplication is the
same as matrix multiplication except that addition is replaced by OR and multiplication is replaced by AND.
Namely, suppose R : B — C is a binary relation with C = {cy,...,cp}. So Mg is anm x p matrix. Then
Mg ® Mg is an n x p matrix defined by the rule:

[Ms ® MR](i, j) := OR}_,[Ms(i, k) AND Mg(k, j)]. )

Prove that the matrix representation, M gos, of R o S equals M5 ® Mg (note the reversal of R and S).

Problem 5. To appear.
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Problem Set 2
Due: February 18

Reading: Chapter 3.6, covering Predicate Formulas, Chapter 4, covering Sets & Relations, Chapter 5,
covering Infinite Sets.

Note: Wednesday lecture will cover Chapter 5.4 & 5.5, on Russell’s Paradox & The ZFC Story. This pset
does not cover Chapter 5.1-5.3, on Cardinality & the Halting Problem, but these sections are due for Friday
lecture, Feb. 18.

Reminder: Email comments on the reading are due before the class in which the reading is covered.
Latest times for comments on different sections are indicated in the online tutor problem set TP.3. Reading
Comments count for 3% of the final grade.

Problem 1.
Translate the following sentence into a predicate formula:

There is a student who has emailed exactly two other people in the class, besides possibly
herself.

The domain of discourse should be the set of students in the class; in addition, the only predicates that
you may use are

e equality, and

e [E(x,y), meaning that “x has sent e-mail to y.”

Problem 2.

Express each of the following predicates and propositions in formal logic notation. The domain of discourse
is the nonnegative integers, N. Moreover, in addition to the propositional operators, variables and quantifiers,
you may define predicates using addition, multiplication, and equality symbols, and nonnegative integer
constants 0, 1,...), but no exponentiation (like x”). For example, the predicate “n is an even number” could
be defined by either of the following formulas:

dm. 2m = n), Im. (m +m = n).
(a) m is a divisor of n.
(b) n is a prime number.

(c) n is a power of a prime.

Problem 3.
Let A, B, and C be sets. Prove that:

AUBUC=(A-B)UB-C)u(C-AUuANBNC). (n
Hint: P OR Q OR R is equivalent to

(P AND Q) OR (Q AND R) OR (R AND P) OR (P AND Q AND R).

Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .



2 Problem Set 2

Problem 4.
There is a simple and useful way to extend composition of functions to composition of relations. Namely,

let R: B — Cand S : A — B be relations. Then the composition of R with S is the binary relation
(RoS): A— C defined by the rule

a(RoS)c:=3beB.(bRc)AND (a S b).

This agrees with the Definition 4.3.1 of composition in the special case when R and S are functions.
We can represent a relation, S, between two sets A = {ay,...,ay}and B = {by,...,byp}asann xm
matrix, Mg, of zeroes and ones, with the elements of Mg defined by the rule

Ms(i,j)=1 1IFF a; S b;.

If we represent relations as matrices in this fashion, then we can compute the composition of two relations
R and S by a “boolean” matrix multiplication, ®, of their matrices. Boolean matrix multiplication is the
same as matrix multiplication except that addition is replaced by OR and multiplication is replaced by AND.
Namely, suppose R : B — C is a binary relation with C = {c1,...,cp}. So Mg is an m x p matrix. Then
Ms ® Mg is an n x p matrix defined by the rule:

[Ms ® MR](i, j) := ORg_; [Ms (i, k) AND MR(k, j)). 2)

Prove that the matrix representation, M gos, of R o § equals Mg ® Mg (note the reversal of R and 5).

Problem 5.
The Axiom of Choice says that if s is a set whose members are nonempty sets that are pairwise disjoint—
that is no two sets in s have an element in common—then there is a set, ¢, consisting of exactly one element
from each set in s.

In formal logic, we could describe s with the formula,

pairwise-disjoint(s) = Vxe€s.x #@ANDVX,y €5.Xx # y IMPLIES x Ny = @.
Similarly we could describe ¢ with the formula
choice-set(c,s) :== Vxes.3lz.zecnNx.

Here “3!z.” is fairly standard notation for “there exists a unique z.”
Now we can give the formal definition:

Definition (Axiom of Choice).
Vs. pairwise-disjoint(s) IMPLIES Jc. choice-set(c, s).

The only issue here is that Set Theory is technically supposed to be expressed in terms of pure formulas
in the language of sets, which means formula that uses only the membership relation, €, propositional
connectives, the two quantifies V and 3, and variables ranging over all sets. Verify that the Axiom of
Choice can be expressed as a pure formula, by explaining how to replace all impure subformulas above with
equivalent pure formulas.

For example, the formula x = y could be replaced with the pure formula Vz.z € x IFF z € y.
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Massachusetts Institute of Technology Solutions cover sheet
6.0421/18.062J, Spring ’11: Mathematics for Computer Science February 11

Prof. Albert R Meyer

Student’s Solutions to Problem Set 2

Your name:
Due date: February 18
Submission date:

Circle your TA/LA: Ali Nick Oscar Oshani

Collaboration statement: Circle one of the two choices and provide all pertinent info.
1. I worked alone and only with course materials.
2. Icollaborated on this assignment with:
got help from:!

and referred to:2

DO NOT WRITE BELOW THIS LINE

Problem | Score
1
2
3
4
5
Total

Creative Commons Q388 201 1, Eric Lehman, F Tom Leighton, Albert R Meyer .
IPeople other than course staff.
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Massachusetts Institute of Technology
6.042]/18.062]J, Spring *11: Mathematics for Computer Science February 18
Prof. Albert R MB}’E!‘ ‘ revised Saturday 12 February, 2011, 19:14

Solutions to Problem Set 2

Reading: Chapter 3.6, covering Predicate Formulas, Chapter 4, covering Sets & Relations, Chapter 5,
covering Infinite Sets.

Note: Wednesday lecture will cover Chapter 5.4 & 5.5, on Russell’s Paradox & The ZFC Story. This pset
does not cover Chapter 5.1-5.3, on Cardinality & the Halting Problem, but these sections are due for Friday
lecture, Feb. 18.

Reminder: Email comments on the reading are due before the class in which the reading is covered.
Latest times for comments on different sections are indicated in the online tutor problem set TP.3. Reading
Comments count for 3% of the final grade.

Problem 1.
Translate the following sentence into a predicate formula:

There is a student who has emailed exactly two other people in the class, besides possibly
herself.

The domain of discourse should be the set of students in the class; in addition, the only predicates that
you may use are

e equality, and
e E(x,y), meaning that “x has sent e-mail to y.”

Solution. A good way to begin tackling this problem is by working “top-down” to translate the successive
parts of the sentence. First of all, our formula must be of the form

HAn.P(x)

where P (x) should be a formula that says that “student x has e-mailed exactly two other people in the class,
besides possibly herself”.

One way to write P(x) is to give names, say y and z, to the two students whom x has emailed. So we
translate P (x) as “besides x, there are two students, y and z, and ...”"

Wz X PAR AN AL e
“x has emailed .both yandz,and...”:
Ex, DAE(Xx,2)A ...
“if x has emailed somebody, it’s either x, y, or z.”:
Vs. E(x,5) — (s=xVs=yvs=2z).
Putting these together, we get:

Pla)s= Hdis: REYAT ST AT 20
Elx v A E(xz) »
[Vs.E(x,5) — (s=xVs=yvs=2)]

Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .



2 Solutions to Problem Set 2

Problem 2.

Express each of the following predicates and propositions in formal logic notation. The domain of discourse
is the nonnegative integers, N. Moreover, in addition to the propositional operators, variables and quantifiers,
you may define predicates using addition, multiplication, and equality symbols, and nonnegative integer
constants 0, 1,...), but no exponentiation (like x”). For example, the predicate “n is an even number” could
be defined by either of the following formulas:

dm. 2m = n), Im. (m +m = n).

(a) m is a divisor of n.

Solution.
mln:= 3k.k-m=n
O
(b) n is a prime number.
Solution.
IS-PRIME(n) ::= (n # 1) AND Vm. (m | n) IMPLIES (m = 1 ORm = n).
Note that n # 1 is an abbreviation of the formula NOT(n = 1). O

(¢) n is a power of a prime.

Solution. We can say that there is a prime, p, such that every divisor of n not equal 1 to is itself divisible
by p:
dp. [I1S-PRIME(p) AND Vm. (m | n AND m # 1) IMPLIES p | m].

Alternatively, we could say that at most one prime that divides n:

V p,q. (1S-PRIME(p) AND IS-PRIME(g) AND p | n AND g | n) IMPLIES p = q.

Problem 3.
Let A, B, and C be sets. Prove that:

AUBUC =4 -By0BIeyuicHu@nBno). )
Hint: P OR Q OR R is equivalent to
(P AND Q) OR (Q AND R) OR (R AND P) OR (P AND Q AND R).

Solution. Proof. We prove that an element, x, is a member of the left hand side of (1) iff it is a member of
the right hand side.



Solutions to Problem Set 2 : 3

xeAUuBUC
iff (xe A OR(x€ B)OR(x €(C) (by def of U)
iff ((x € A) AND (x € B)) OR
((x € B) AND (x € C)) OR
((x € C) AND (x € A)) OR

((x € A) AND (x € B) AND (x € C)) (by the equivalence in the Hint)
iff (x€eA—B)OR(xe€B—-C)OR(xeC—A)OR

(xeANnBNC) (by def of —, N)
iff xe(A—B)U(B—-C)U(C—-AUMANBNC) (by def of U)

|
Alternative solution by cases:

We prove that the left side is contained in the right side, and that the right side is contained in the left side.
First, we show that the left side is contained in the right side. Let x be any element of A U B U C. Then
x belongs to at least one of A, B, and C. We distinguish two cases.

e x belongs to all three sets: Then x belongs to the intersection AN B N C.

e x does not belong to all three sets: Then at least one of A, B, C does not contain x. So overall, at
least one set contains x and at least one set doesn’t. We distinguish cases:

— If A contains x, then one of B and C must not contain it.

* If B does not contain it, then x € A — B.
% If B contains it, then C does not, therefore x € B — C.

— If A does not contain x, then one of B and C must contain it.

% If C does, then x € C — A.
# If C does not contain it, then B does, therefore x € B — C.

In all cases, we end up with x being a member of oneof A — B, B—C,C — 4, or AN B N C. Therefore,
it belongs to the right side. Hence, the set on the left is contained in the set on the right.

Next, we show that the right side is contained in the left. This is easier. Let x belong to the right side.
Then it belongs tooneof A— B, B—C,C — A,or AN B NC. In the first case, we clearly know x € A. In
the second case, x € B. In the third case, x € C. In the last case, x € A again. So, in all cases, x belongs

to one of A, B, or C. So x belongs to the left side. Therefore, the set on the right is contained in the set on
the left.

Since each set is contained in the other, they are equal.

Problem 4.

There is a simple and useful way to extend composition of functions to composition of relations. Namely,
letR: B — Cand S : A — B be relations. Then the composition of R with S is the binary relation
(RoS): A — C defined by the rule

a(RoS)c:=3beB.(bRc)AND (a S b).

This agrees with the Definition 4.3.1 of composition in the special case when R and S are functions.



4 Solutions to Problem Set 2

We can represent a relation, §, between two sets A = {a;,...,ap}and B = {by,...,bp}asann xm
matrix, Mg, of zeroes and ones, with the elements of M defined by the rule

Ms(i,j)=1 1FF a; S bj.

If we represent relations as matrices in this fashion, then we can compute the composition of two relations
R and S by a “boolean” matrix multiplication, ®, of their matrices. Boolean matrix multiplication is the
same as matrix multiplication except that addition is replaced by OR and multiplication is replaced by AND.
Namely, suppose R : B — C is a binary relation with C = {cy,...,cp}. So Mg is an m x p matrix. Then
Mg ® Mg is an n x p matrix defined by the rule:

[Ms ® MR](i, j) := ORE_ [Ms (i, k) AND Mg(k, j)). (2)
Prove that the matrix representation, Mpgog, of R o § equals Mg ® Mg (note the reversal of R and §).

Solution. Proof. We want to prove that

i(RoS)j IFF [Ms® MglG,j)=1. 3)
Now
[Ms ® MR](i,j) =1
FF ORJ_,[Ms (i, k) AND Mg(k, j)] = 1 (by (2))
IFF  [Mg(i,k) AND Mg(k, j)] = 1 forsome k,1 <k <m (def. of OR)
IFF  [Ms(i,k) = 1] AND [Mg(k, j)] = 1] forsome k,1 <k <m (def. of AND)
IFF i Sk AND k R jforsomek,l <k <m (def. of Mg, Ms)
IFF i(RoS)j (def. of @S).
04 ]
(o7 (s,
Problem 5.

The Axiom of Choice says that if s is a set whose members are nonempty sets that are pairwise disjoint—
that is no two sets in s have an element in common—then there is a set, ¢, consisting of exactly one element
from each set in s.

In formal logic, we could describe s with the formula,

pairwise-disjoint(s) == Vxe€s.x #@ANDVxX,y €s5.x # yIMPLIESx Ny = @.
Similarly we could describe ¢ with the formula
choice-set(c,s) := Vxes.3lz.zecnNx.

Here “3!z.” is fairly standard notation for “there exists a unique z.”
Now we can give the formal definition:

Definition (Axiom of Choice).
Vs. pairwise-disjoint(s) IMPLIES Jc. choice-set(c, §).

The only issue here is that Set Theory is technically supposed to be expressed in terms of pure formulas
in the language of sets, which means formula that uses only the membership relation, €, propositional
connectives, the two quantifies ¥V and 3, and variables ranging over all sets. Verify that the Axiom of
Choice can be expressed as a pure formula, by explaining how to replace all impure subformulas above with
equivalent pure formulas.

For example, the formula x = y could be replaced with the pure formula Vz.z € x IFF z € y.
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Solution. Here is how the impure subformulas used in the above definition of the Axiom of Choice can be
translated into pure formulas:

x # @ translatesinto 3Jy/y € x.
[x Ny =@] translatesinto NOT(Jz.z € x ANDz € y).
[zexNy] translatesinto z € x ANDz € y.
J!z. P(z) translatesinto 3z. P(z) AND Vw. P(w) IMPLIES w = Z.
This last formula is not pure because it uses =, but this is ok since we know it can be replaced by a pure

formula.
[ |



