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Problem Set 3

Due: February 25

Reading: Chapter 5.1-5.2, Chapter 6
Latest times for comments on different sections are indicated in the online tutor problem set TP.4.

Problem 1.
In this problem you will prove a fact that may surprise you —or make you even more convinced that set
theory is nonsense: the half-open unit interval is actually the same size as the nonnegative quadrant of the
real plane!” Namely, there is a bijection from (0, 1] to [0, c0)?.

(a) Describe a bijection from (0, 1] to [0, co).

Hint: 1/x almost works.

(b) An infinite sequence of the decimal digits {0, 1, ..., 9} will be called long if it has infinitely many
occurrences of some digit other than 0. Let L be the set of all such long sequences. Describe a bijection
from L to the half-open real interval (0, 1].

Hint: Put a decimal point at the beginning of the sequence.

(¢) Describe a surjective function from L to L? that involves alternating digits from two long sequences. a
Hint: The surjection need not be total.

(d) Prove the following lemma and use it to conclude that there is a bijection from L? to (0, 1]2.
Lemma 1.1. Let A and B be nonempty sets. If there is a bijection from A to B, then there is also a bijection
from Ax Ato B x B.
[}
(e) Conclude from the previous parts that there is a surjection from (0, 1] and (0, 1]2. Then appeal to the
Schroder-Bernstein Theorem to show that there is actually a bijection from 0/1] and (0, 1]2.

(f) Complete the proof that there is a bijection from (0, 1] to [0, c0)2.

Problem 2.
A group of n > 1 people can be divided into teams, each containing either 4 or 7 people. What are all the
possible values of n? Use induction to prove that your answer is correct.

Problem 3.

Claim 3.2. If a sequence of positive integers has sum n > 1, then the product of elements in the sequence is
at most 3"/3.
For example, the sequence 2, 2, 3, 4, 4, 7, has the sum:

242+434+4+447=22,

Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .
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2 Problem Set 3

and sure enough, the product is:

2-2-3-4-4.7=1344
< 322/3

~ 3154.2,;.

(a) Use strong induction to prove thatn < 3/3 for every integer n > 0.

(b) Prove the claim by induction.

Hint: Use induction on the length of the sequence rather than on the value of the sum.

Problem 4.
A sequence of numbers is weakly decreasing when each number in the sequence is > the numbers after it.
(This implies that a sequence of just one number is weakly decreasing.)

Here’s a bogus proof of a very important true fact, every integer greater than 1 is a product of a unique
weakly decreasing sequence of primes —a pusp, for short.

Explain what’s bogus about the proof.

Lemma 4.3. Every integer greater than 1 is a pusp.
For example, 252 =2-2-3-3-7

Bogus proof. We will prove Lemma 4.3 by strong induction, letting the induction hypothesis, P(n), be

—_—

n is a pusp.

So Lemma 4.3 will follow if we prove that P (n) holds for all n > 2.
Base Case: (n = 2) P(2) is true because 2 is prime, and so it is a length one product of pnmes and this
is obviously the only sequence of primes whose product can equal 2. Wh
Inductive step: Suppose that » > 2 and that i is a pusp for every integer i where 2 < | /Zn/ k- 1.} We
must show that P(n + 1) holds, namely, that n + 1 is also a pusp. We argue by cases:
If n + 1 is itself prime, then it is the product of a length one sequence consisting of itself. This sequence
is unique, since by definition of prime, n + 1 has no other prime factors. So n + 1 is a pusp, that is P(n +1)
holds in this case. (an lic‘ poe Than £ (oo )
Otherwise, n + 1 is not prime, which by definition means n -+ 1 = km for some integers k, m stch that MY
2 < k,m < n + 1. Now by the strong induction hypothesis, we know that k and m are pusps. It follows (7
immediately that by merging the unique prime sequences for k and m, in sorted order, we get a unique
weakly decreasing sequence of primes whose product equals n —%’— 1. Son + 1is a pusp, in this case as well.
So P(n + 1) holds in any case, which completes the proof by strong 1nduct1on that P(n) holds for
alln > 2. f nH o e '-wf b
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Solutions to Problem Set 3

Reading: Chapter 5.1-5.2, Chapter 6
Latest times for comments on different sections are indicated in the online tutor problem set TP.4.

Problem 1.

In this problem you will prove a fact that may surprise you —or make you even more convinced that set
theory is nonsense: the half-open unit interval is actually the same size as the nonnegative quadrant of the
real plane!! Namely, there is a bijection from (0, 1] to [0, 00)2.

(a) Describe a bijection from (0, 1] to [0, co).

Hint: 1/x almost works.
Solution. f(x) ::= 1/x defines a bijection from (0, 1] to [1, 00), so g(x) ::= f(x) — 1 does the job. O

(b) An infinite sequence of the decimal digits {0, 1, ..., 9} will be called long if it has infinitely many
occurrences of some digit other than 0. Let L be the set of all such long sequences. Describe a bijection
from L to the half-open real interval (0, 1].

Hint: Put a decimal point at the beginning of the sequence.

Solution. Putting a decimal point in front of a long sequence defines a bijection from L to (0, 1]. This
follows because every real number in (0, 1] has a unique long decimal expansion. Note that if we didn’t
exclude the non-long sequences, namely, those sequences ending with all zeroes, this wouldn’t be a bijection.
For example, the sequences 1000...and 099999...would both map to the same real number, namely,
1/10. O

(¢) Describe a surjective function from L to L? that involves alternating digits from two long sequences. a
Hint: The surjection need not be total.

Solution. Given any long sequence s = Xxg, X1, X2, ..., let
ha(s) == X0, X5 Xifissvs
be the sequence of digits in even positions. Similarly, let
hy(s) == x1,x3,Xs5,...
be the sequence of digits in odd positions. Then 4 is a surjective function from L to L?, where

(hl(S),hz(S)), if h1(s) € L and ha(s) € L,
undefined, otherwise.

h(s) == (D

(d) Prove the following lemma and use it to conclude that there is a bijection from L2 to (0, 1]2.

Creative Commons SI0Ele 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .
I'The half open unit interval, (0, 1],is {r € R | 0 < r < 1}. Similarly, [0,c0) :={r e R | r > 0}.
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2 Solutions to Problem Set 3

Lemma 1.1. Let A and B be nonempty sets. If there is a bijection from A to B, then there is also a bijection
from Ax Ato B x B.

Solution. Proof. Suppose f : A — B is a bijection. Let g : A> — B? be the function defined by the rule
g(x,y) = (f(x), f(»)). Itis easy to show that g is a bijection:

e g is total: Since f is total, f(a1) and f(ay) exist Vay,as € A and so g(ay,a2) = (f(a1), f(az))
also exists.

e g is surjective: Since f is surjective, for any b; € B there exists a; € A such that b; = f(a;). So for
any (b1, ba) is B2, there are is a pair (a1, az) € A% such that g(ay,az) := (f(a1), f(a2)) = (b1, by).
This shows that g is a surjection.

e g is injective:

g(ai,az) = glas,as) iff (f(a1), f(az)) = (f(as), f(as)) (by def of g)
iff f(a1) = f(as) AND f(az) = f(as)
iff a; = a3 AND a; = a4(since f is injective)

(a1,az2) = (a3, a4),

which confirms that g is injective.

4]
Since it was shown in part (b) that there is a bijection from L, to (0, 1], an immediate corollary of Lemma
1.1 is that there is a bijection from L? to (0, 1]>. 73]

(e) Conclude from the previous parts that there is a surjection from (0, 1] and (0, 1]2. Then appeal to the
Schréder-Bernstein Theorem to show that there is actually a bijection from (0, 1] and (0, 1]%.

Solution. There is a bijection between (0, 1] and L by part (b), a surjective function from L to L? and by
part (c), and a bijection from from L2 to (0, 1]? by part (d). These jections compose to yield a surjection
from (0, 1] to (0, 1.

Conversely, there is obviously a surjective function £ : (0, 1]> — (0, 1], namely
f({x,y) =x.
The Schréder-Bernstein Theorem now implies that there is a bijection from (0, 1] to (0, 1]%. |
(f) Complete the proof that there is a bijection from (0, 1] to [0, 00)?.
Solution. There is a bijection from (0, 1] to (0, 1]2 by part (e), and there is a bijection from (0, 1]? to [0, 00)?

by parts (a) and Lemmal.1. These bijections compose to yield a bijection from (0, 1] to [0, c0)?. |

Problem 2.
A group of n > 1 people can be divided into teams, each containing either 4 or 7 people. What are all the
possible values of n? Use induction to prove that your answer is correct.
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Solution. We begin by observing that the following numbers of people can be divided into teams with 4 or
7 people per team:

4=4

1=17

8§=4+4

11 =447
12=4+4+4
14=74+7
15=4+4+7
l6=4+4+44+4
18=44+T7+7

19=4+4+4+7
W=4+4+4+4+4

and these are the only numbers < 21 that can be divided into such teams. Now we claim that every group of
n > 18 people can be divided into teams, each containing either 4 or 7 people.

Proof. The proof is by strong induction on n. Let P(n) be the proposition that a group of n > 18 people
can be divided into teams, with each containing either 4 or 7 people.

Base cases: As shown above P(18), P(19), P(20), and P(21) are true.

Inductive step: For all n > 21, we assume that P(18), P(19), ..., P(n) are true in order to prove that
P(n + 1) is true.

Since n + 1 = (n — 3) + 4, a team of 4 people can be removed from the set of n + 1 people, leaving
n—3 > 18 people. By induction hypothesis, the n — 3 people can be further divided into disjoint teams with
4 or 7 people. Since this divides the n + 1 people into teams with 4 or 7, we have shown that P(n + 1) is
true. It follows by strong induction that P (n) holds for all n > 18.

So all the possible values of n are 4, 7, 8, 11, 12, 14, 15, 16, and > 18. |

Problem 3.

Claim 3.2. If a sequence of positive integers has sum n > 1, then the product of elements in the sequence is
at most 3"/3.
For example, the sequence 2, 2, 3, 4, 4, 7, has the sum:

24+24+3+44+447=22,
and sure enough, the product is:

2.2.3.4.4.7=1344
< 322/3

~ 3154.2,;

(a) Use strong induction to prove that n < 3"/3 for every integer n > 0.
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Solution. The proof is by strong induction. Let P (1) be the proposition that n < 3"/3_ First, we show that
P(0), P(1), P(2), P(3), and P(4) are true:

03 <30 0 <393
1?2 <3l 5 1<31/3
23 <32 52 <32/3
33533_>3S33/3

A gt T8

Each implication follows by taking cube roots. Next, we show that P(0), ..., P(n) imply P(n + 1) for all
n > 4. Thus, we assume that P(0), ..., P(n) are all true and reason as follows:

3(n+1)/3 —ig 3(?!—2)/3
>3.(n-2)
>n+1 (foralln = 7/2)

The first step is algebra. The second step uses our assumption P (n — 2). The third step is a linear inequality
that holds for all n > 7/2. (This forced us to deal individually with the cases P(3) and P(4), above.)
Therefore, P(n + 1) is true, and so P(n) is true for all n > 0 by induction. O

(b) Prove the claim by induction.

Hint: Use induction on the length of the sequence rather than on the value of the sum.

Solution. We use induction on the length of the sequence. Let P (k) be the proposition that every sequence
of k positive integers with sum n has product at most 37/3. First, note that P(1) is true by the preceding
problem part.

Next, we must show that P(k) implies P(k + 1) for all £ > 1. So assume that P(k) is true, and let
X1,...,Xk4+1 be a sequence of k + 1 positive integers with sum n. Then we can reason as follows:

X1 X2 X X1 < 3(H—Xk-§-|)/3 * Xk41
< 3(—xk41)/3  3xK41/3

— 3?1/3

The first step uses the assumption P (k), the second uses the preceding problem part, and the last step is
algebra. This shows that P(k + 1) is true, and so the claim holds by induction.

Problem 4.
A sequence of numbers is weakly decreasing when each number in the sequence is > the numbers after it.
(This implies that a sequence of just one number is weakly decreasing.)

Here’s a bogus proof of a very important true fact, every integer greater than 1 is a product of a unique
weakly decreasing sequence of primes —a pusp, for short.

Explain what’s bogus about the proof.
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Lemma 4.3. Every integer greater than 1 is a pusp.

For example, 252 = 7-3-3-2-2, and no other weakly decreasing sequence of primes will have a product
equal to 252.

Bogus proof. We will prove Lemma 4.3 by strong induction, letting the induction hypothesis, P (n), be
n is a pusp.

So Lemma 4.3 will follow if we prove that P(n) holds for alln > 2.

Base Case (n = 2): P(2) is true because 2 is prime, and so it is a length one product of primes, and this
is obviously the only sequence of primes whose product can equal 2.

Inductive step: Suppose that n > 2 and that i is a pusp for every integer i where 2 <i <n + 1. We
must show that P(n + 1) holds, namely, that n 4- 1 is also a pusp. We argue by cases:

If n + 1 is itself prime, then it is the product of a length one sequence consisting of itself. This sequence
is unique, since by definition of prime, n 4 1 has no other prime factors. Son + 1 is a pusp, thatis P(n + 1)
holds in this case.

Otherwise, n + 1 is not prime, which by definition means n + 1 = km for some integers k, m such that
2 < k,m < n + 1. Now by the strong induction hypothesis, we know that k and m are pusps. It follows
immediately that by merging the unique prime sequences for k and m, in sorted order, we get a unique
weakly decreasing sequence of primes whose product equals n + 1. So n + 1 is a pusp, in this case as well.

So P(n + 1) holds in any case, which completes the proof by strong induction that P(#n) holds for
alln > 2.

Solution. The problem is that even if n + 1 = km and k, m have unique factorizations, it is still possible
that n 4+ 1 = ij for different i and j, producing a different weakly decreasing sequence of primes whose
productis n + 1. |
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EE:‘.?’ Mathematics for Computer Science
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Recursive Definitions
& Structural Induction

Albert R Meyer, February 25, 2011 Jec 471

EEEE Matched Paren Strings, M

set of strings, M C {1.[ ¥
sBase: X\ € M,

(the empty string)
» Constructor:

If s, Tt € M, then
[s]t e M

Albert R Meyer, February 29, 2011 lec 4F.3

gao Recursive Definitions
Define something in terms of a
simpler version of the same thing:
Base case(s) that don't depend on
anything else.

Constructor case(s) that depend on
simpler cases.

Albert R Meyer, February 23, 2011 lec4F2

§§§ Matched Paren Strings M
strings [s]T € M

[] S= Noath =N
LIEIL] s =[] T=X
[1[1 5= X T =[1
LT s = [1 1 =[]

s=[[]1]t=X

[[[1]1]

Albert R Meyer, Februry 25, 2011 W10

o <
B0 not in M

strings starting with ]

are not in M because

» X does not start with ]

» [s]t does not start with ]

TWil

Eg Matched Paren Strings, M

set of strings, M C {1,[ }'
*Base: A\ € M,

-Constructor: If st € M,
then [s]t e M

'\« That's all |

Extremal Clause

(Implicit part of definition)

Slose Albert R Meyer, Februry 25, 2011 Jec 4F.12

Gz



Structural Induction

To prove P(x) holds for all x in
recursively defined set R, prove

*P(b) for each base case b € R

*P(c(x)) for each constructor, c,
assuming ind. hyp. P(x)

Albert R Meyer, February 29, 2011 TWY

EEE Matched Paren Strings M

Lemma: Every s in M has the
same number of 1's and ['s.

Proof by structural induction
on the definition of M

Albert R Meyer, February 29, 2011 lec 4F 14

Matched Paren Strings M
Lemma: Every s in M has the

same humber of 1's and ['s.

Let EQ ::= {strings with same
number of ] and [}

Lemma (restated): M C EQ

Albert R Meyer, February 25, 2011 fec 4715

Eﬁ Structural Induction on M
Proof:
Ind. Hyp. P(s) ::= (s € EQ)
Base case (s = \):
A has O Jsand O [’s,
so P(\) is true.
base case is OK

Albert R Meyer, February 25, 2011 lec 4FI7

E§E§ Structural Induction on M
Constructor step: s = [r]t

can assume P(r) and P('r)
#] ms"#] inr + #] m’r +1
il ms--#[ ine+ #[ mT +1

so - g—byP(r*) g—byP(T)

SO P(s) is true constrct case is OK

Albert R Meyer, February 25, 2011 Jec 4F .18

Structural Induction on M

so by struct. induct.

M C EQ
QED

g
@050 Albert R Meyer, February 25, 2011 le< AF.15
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(B The 18.01 Functions, F18
The set F18 of functions on R:
Idy, constant functions, and sin x
are in F18.
if f,g € F18, then
sf+qg, f g, ef (the constant e)
= the inverse, (1), of f, and
»fo g (the composition of f and g)
are in F18.

Albert R Meyer, February 25, 2011 lec 4F.20

- oo
onog

i The 18.01 Functions, F18

Lemma.
F18 is closed under
taking derivatives:

if f € F18, then f" € F18
Class Problem

Albert R Meyer, Febroary 2%, 2011 lec 422

ZE| The 18.01 Functions, F18
Some functions in F18:
=Xii= G 1)ax

Jx = () ——inverse
cos x = (1 - (sin x -sin X))/
Inx = (gx)('l)

Albert R Meyer, February 25, 2081 lec 4F 21

ﬁ':,a Recursive function on M
Def. depth(s) forse M
depth(\) =10
depth( [s]t ) :i=
max{1+d(s), d(1)}

EEEE k» — recursive function on N
expt(k,0) =1

expt(k, n+1) ::= k-expt(k,n)
--uses recursive def of N:
- 0eN

e ifne Nthenn+tl e N

Albert R Meyer, February 29, 2011 TW2T

Albert R Meyer, February 25, 2011 TW.26

BEED) ! L
Recursive Functions

summary:

f: Data — Values

f(b) def'd directly for base b
f(cnstr(x)) def'd using f(x), x

Alpert R Meyer, Februsry 25, 2011 wzs




Oy [sl7 ]
positive powers of two

2.€ PP2

if x,y € PP2, then x-y € PP2

2522
2 4

B

4-2, 4-4, 4-8, ..

8 16 =32 cpP?

Albert R Meyer, February 25, 2011

- Qog
loggy function on PP2

loggy(16) = loggy(8-2) £9

WAIT A SECL

loggy(16) = loggy(2-8)

=2 loggy(8)=2 +5

; .
-t H
P ’

g

Albert R Meyer, February 23, 2011

W0

R Team Problems

Problems

lec 4F.5)

loggy function on PP2
loggy(2)::= 1
loggy(x-y) ::= x +loggy(y)
for x,y € PP2
loggy(4) = loggy(2:2) =2 +1=3
loggy(8) = loggy(2-4) = 2 + loggy(4)
=2+3=5
loggy(16) = loggy(8-2) = 8 + loggy(2)
-8+1=9

Albert R Meyer, February 25, 2011 TWAS

ambiguous constructors
The Problem: more than one way to
construct elements of PP2 from
cnstret(xy)=x -y

16 = cnstrct(8,2) but also

16 = cnstrct(2,8)

ambiguous
Albert R Meyer, February 25,2011 Twst
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Massachusetts Institute of Technology
6.042)/18.062]. Spring "1 1: Mathematics for Computer Science February 25
Prof. Albert R Meyer revised Tuesday 22" February, 2011, 22:20

In-Class Problems Week 4, Fri.

Problem 1.
The Elementary 18.01 Functions (F18’s) are the set of functions of one real variable defined recursively as
follows:

Base cases:

e The identity function, id(x) ::= x is an F18,
e any constant function is an F18,

e the sine function is an F18,

Constructor cases:
If f, g are F18’s, then so are

1. f+ g, fg,e® (the constant e),
2. the inverse function f 1,
3. the composition f o g.

(a) Prove that the function 1/x is an F18.
Warning: Don’t confuse 1/x = x~! with the inverse, id=1 of the identity function id(x). The inverse
idD s equal to id.

(b) Prove by Structural Induction on this definition that the Elementary 18.01 Functions are closed under
taking derivatives. That is, show that if f(x) is an F18, then so is f’ = df/dx. (Just work out 2 or 3 of
the most interesting constructor cases; you may skip the less interesting ones.)

\‘__________‘___,"
Definition. Recursively define the set, RecMatch, of strings as follows:

e Base case: A € RecMatch.
e Constructor case: If 5,1 € RecMatch, then

[ s ]t € RecMatch.

Problem 2.
Let p be the string | ]. A string of brackets is said to be erasable iff it can be reduced to the empty string by
repeatedly erasing occurrences of p. For example, here’s how to erase the string [ [[ ][ 1]] ]:

0 ST =057 T g compresgd 07 | 7

On the other hand the string [ [ [[ [ [[[]] is not erasable because when we try to erase, we get stuck:

CITCCCC0IT — J00E) = M0 #~

Let Erasable be the set of erasable strings of brackets. Let RecMatch be the recursive data type of strings
of matched brackets given in Definition 7.1.1.

- o)
Creative Commons E089) 2011, Eric Lehman, F Tom Leighton, Albert R Mever .

Step ¢
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In-Class Problems Week 4, Fri.

(a) Use structural induction to prove that

RecMatch € Erasable.

(b) Supply the missing parts of the following proof that

Erasable C RecMatch. .

Proof. We prove by strong induction that every length-n string in Erasable is also in RecMatch. The induc-
tion hypothesis is
P(n) ::= Vx € Erasable. |[x| = n IMPLIES x € RecMatch.

Base case:
What is the base case? Prove that P is true in this case.

Inductive step: To prove P(n + 1), suppose |[x| = n + 1 and x € Erasable. We need to show that
x € RecMatch.

Let’s say that a string y is an erase of a string z iff y is the result of erasing a single occurrence of p in z.
Since x € Erasable and has positive length, there must be an erase, y € Erasable, of x. So [y| =n—1 > 0,
and since y € Erasable, we may assume by induction hypothesis that y € RecMatch.

Now we argue by cases:

Case (y is the empty string):

Prove that x € RecMatch in this case.

Case (y = [ s |1 for some strings s, € RecMatch): Now we argue by subcases.

e Subcase (x is of the form [ 5" ] 7 where s is an erase of 5'):
Since s € RecMatch, it is erasable by part (b), which implies that s" € Erasable. But |s’| < |x|, so
by induction hypothesis, we may assume that s’ € RecMatch. This shows that x is the result of the
constructor step of RecMatch, and therefore x € RecMatch.

e Subcase (x is of the form [ s |+’ where ¢ is an erase of t'):
Prove that x € RecMatch in this subcase.

e Subcase(x = p[s]1):
Prove that x € RecMatch in this subcase. t

) \
Yion
K ain Wh TLWL wor G
The proofs of the remaining subcases are just like this last one. i cases.

This completes the proof by strong induction on 1, so we conclude that P (n) holds for all n € N. Therefore
x € RecMatch for every string x € Erasable. That is, Erasable C RecMatch. Combined with part (a), we
conclude that

Erasable = RecMatch.




In-Class Problems Week 4, Fri. 3
Problem 3.
Here is a simple recursive definition of the set, £, of even integers:

Definition. Base case: 0 € E.
Constructor cases: If n € E, then so are n + 2 and —n.

Provide similar simple recursive definitions of the following sets: |
(a) Theset S ::= {2k3"5" | k,m,n € N}

(b) The set T ::= {2k32k+msm+n |k 1y n e N).

(c) Theset L == {(a,b) € Z? | 3| (a — b)}.
Let L' be the set defined by the recursive definition you gave for L in the previous part. Now if you did it
right, then L’ = L, but maybe you made a mistake. So let’s check that you got the definition right.

(d) Prove by structural induction on your definition of L’ that

L'el.

(e) Confirm that you got the definition right by proving that

Lcl

(f) See if you can give an unambiguous recursive definition of L.
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Massachusetts Institute of Technology
6.0421/18.062], Spring 1 1: Mathematics for Computer Science February 25
Prof. Albert R Meyer revised Friday 25" February, 2011, 14:47

Solutions to In-Class Problems Week 4, Fri.

Problem 1.

The Elementary 18.01 Functions (F18’s) are the set of functions of one real variable defined recursively as
follows:
Base cases:

e The identity function, id(x) ::= x is an F18,
e any constant function is an F18,
e the sine function is an F18,

Constructor cases:
If f, g are F18’s, then so are

1. f+ g, fg, e® (the constant e),
2. the inverse function f1),
3. the composition f o g.

(a) Prove that the function 1/x is an F18.

Warning: Don’t confuse 1/x = x™!

with the inverse, idY of the identity function id(x). The inverse
id™Y is equal to id.

Solution. log x is the inverse of e* so log x € F18. Therefore so is ¢ - log x for any constant ¢, and hence
eclo8* = x¢ ¢ F18. Nowletc = —1toget x~! = 1/x € F18.! |

(b) Prove by Structural Induction on this definition that the Elementary 18.01 Functions are closed under
taking derivatives. That is, show that if f(x) is an F18, then sois [’ ::= df/dx. (Just work out 2 or 3 of
the most interesting constructor cases; you may skip the less interesting ones.)

Solution. Proof. By Structural Induction on def of f € F18. The induction hypothesis is the above state-
ment to be shown.
Base Cases: We want to show that the derivatives of all the base case functions are in F18.

This is easy: for example, d id(x)/dx = 1 is a constant function, and so is in F18. Similarly, d sin(x)/dx =
cos(x) which is also in F18 since cos(x) = sin(x + 7/2) € F18 by rules for constant functions, the identity
function, sum, and composition with sine.

This proves that the induction hypothesis holds in the Base cases.

N
Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .

I'There’s a little problem here: since log x is not real-valued for x < 0, the function f(x)::=1/x constructed in this way is only
defined for x > 0. To get an F18 equal to 1/x defined for all x # 0, use (x/ |x|) - f(]x|), where |x| = v/x2.



2 Solutions to In-Class Problems Week 4, Fri.

Constructor Cases: (). Assume f,df/dx € F18 to prove d f1(x)/dx € F18. Letting y = f(x),
sox = 1 (y), we know from Leibniz’s rule in calculus that

df "V (y)/dy = dx/dy =

dy/dx 1

For example,
d sin("l)(y)/dy = 1/(d sin(x)/dx) = 1/ cos(x) = I/cos(sin(_l)(y)).

Stated as in (1), this rule is easy to remember, but can easily be misleading because of the variable switching
between x and y. It’s more clearly stated using variable-free notation:

(7Y = Q) S @)

Now, since f’ € F18 (by assumption), so is 1/f” (by part (a)) and 1 (by constructor rule 2.), and
therefore so is their composition (by rule 3). Hence the righthand side of equation (2) defines a function in
F18.

Constructor Case: (f o g). Assume f, g,df/dx,dg/dx € F18to prove d(f o g)(x)/dx € F18.

The Chain Rule states that
d(f(g(x)) _ df(g) d_g_

dx dg dx

Stated more clearly in variable-free notation, this is
(fog) =(f0g)-g.

The righthand side of this equation defines a function in F18 by constructor rules 3. and 1.

The other Constructor cases are similar, so we conclude that the induction hypothesis holds in all Constructor
cases.

This completes the proof by structural induction that the statement holds for all f € F18. O
Definition. Recursively define the set, RecMatch, of strings as follows:
e Base case: A € RecMatch.

e Constructor case: If s, ¢ € RecMatch, then

[s]t € RecMatch.

Problem 2.
Let p be the string [ ] . A string of brackets is said to be erasable ift it can be reduced to the empty string by
repeatedly erasing occurrences of p. For example, here’s how to erase the string [[[11[1]1[]:

LLLIFLIEL =5 B3 =l i
On the other hand the string [ J1[ [ [[[ 1] is not erasable because when we try to erase, we get stuck:
[ITEETEES) — T L 1= I

Let Erasable be the set of erasable strings of brackets. Let RecMatch be the recursive data type of strings
of matched brackets given in Definition ??.



Solutions to In-Class Problems Week 4, Fri. 3

(a) Use structural induction to prove that

RecMatch C Erasable.

Solution. Proof. We prove by structural induction on the definition of RecMatch that the predicate
P(x) ::= x € Erasable

is true for all x € RecMatch.

Base case (x = A): The empty string is erasable by definition of Erasable—it can be reduced to itself by
erasing the substring [ O times.

Constructor case (x = [s]¢ for s, € RecMatch): By structural induction hypothesis, we may assume
that 5,7 € Erasable. So to erase x, erase s and then erase ¢ to be left with the substring [ ], and one more
erasure leads to the empty string.

This completes the proof by structural induction, so we conclude that
Vx.x € RecMatch IMPLIES x € Erasable

which by definition means that RecMatch C Erasable.

(b) Supply the missing parts of the following proof that

Erasable C RecMatch.

Proof. We prove by strong induction that every length-n string in Erasable is also in RecMatch. The induc-
tion hypothesis is
P(n) ::= Vx € Erasable. |x| = n IMPLIES x € RecMatch.

Base case:

What is the base case? Prove that P is true in this case.

Solution. The base case is (n = 0). Now P (0) is true because the empty string is the only string of length
0, and it is in RecMatch by the base case of Definition ?? of RecMatch. |

Inductive step: To prove P(n + 1), suppose [x| = n + 1 and x € Erasable. We need to show that
x € RecMatch.

Let’s say that a string y is an erase of a string z iff y is the result of erasing a single occurrence of p in z.

Since x € Erasable and has positive length, there must be an erase, y € Erasable, of x. So |y| =n—1 >0,
and since y € Erasable, we may assume by induction hypothesis that y € RecMatch.

Now we argue by cases:
Case (y is the empty string):

Prove that x € RecMatch in this case.
Solution. In this case x = p € RecMatch. |

Case (y = [ s ]¢ for some strings s,7 € RecMatch): Now we argue by subcases.
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Subcase (x is of the form [ s’ ]t where s is an erase of s'):

Since s € RecMatch, it is erasable by part (b), which implies that s’ € Erasable. But |s'| < |x|, so
by induction hypothesis, we may assume that s’ € RecMatch. This shows that x is the result of the
constructor step of RecMatch, and therefore x € RecMatch.

Subcase (x is of the form [ s ] ¢/ where ¢ is an erase of t'):

Prove that x € RecMatch in this subcase.

Solution. The proof is essentially identical to the previous case, with #,¢" in place of s, s’

Now ¢ is erasable by part (b), so t’ € Erasable. But |t'| < |x|, so by induction hypothesis, we may
assume that #/ € RecMatch. This proves that x is the result of the constructor step of RecMatch and
therefore x € RecMatch.

Subcase(x = p[s]1):
Prove that x € RecMatch in this subcase.

Solution. Let ¢’ ::= [s]¢ and s’ be the empty string. Then x = [s’ ]¢#/. But we know s, €
RecMatch, which implies that x € RecMatch because it is the result the RecMatch constructor step
applied to s/, t'. O

Are there any remaining subcases? If so list those. If not, explain why the above cases are sufficient.

Solution.

There are no other subcases.

One could argue that the following are subcases.

L.
2.
3.
4.

case (x = [ ps]t),
case (x = [sp]1),
case (x = [s] p1),
case (x = [ s ]tp).

But subcases 1 and 2 are analogous to the case where x is of the form [s’]¢ where s is an erase of s'.
Similarly, subcases 3 and 4 are analogous to the case where x is of the form [ s ]#/ where ¢ is an erase of ¢'.

This completes the proof by strong induction on 7, so we conclude that P(n) holds for all n € N. Therefore
x € RecMatch for every string x € Erasable. That is, Erasable € RecMatch. Combined with part (a), we
conclude that

Erasable = RecMatch.
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Problem 3.
Here is a simple recursive definition of the set, E, of even integers:

Definition. Base case: 0 € E.
Constructor cases: If n € E, then so are n + 2 and —n.

Provide similar simple recursive definitions of the following sets:
(a) The set S = {2K3™5" | k,m,n € N}.
Solution. We can define the set S recursively as follows:

elelsS
e If n € §, then 2n, 3n, and 5n are in S.

(b) The set T = {2k32k+msm+n | b m p e N).
Solution. We can define the set T recursively as follows:

e leT
e Ifn € §,then 18n, 151, and 5n arein T.

(c) Theset L ::={(a,b) € Z*> |3 | (a — b)}.
Solution. We can define a set L’ = L recursively as follows:
e (0,0),(1,1),(2,2) e L’
o If (a,b) € L', then (a + 3,b), (a —3,b), (a,b + 3),and (a,b —3) are in L’.

Lots of other definitions are also possible. |

Let L' be the set defined by the recursive definition you gave for L in the previous part. Now if you did it
right, then L’ = L, but maybe you made a mistake. So let’s check that you got the definition right.

(d) Prove by structural induction on your definition of L’ that
el

Solution. For the L’ defined above, a straightforward structural induction shows that if (¢,d) € L', then
(c,d) € L. Namely, each of the base cases in the definition of L’ are in L since 3 | 0. For the constructor
cases, we may assume (a, b) € L, thatis 3 | (@ —b), and must prove that (¢ £3,b) € L and (a,b+3) € L.
In the first the case, we must show that 3 | ((a=3)—b). But this follows immediately because ((a £3)—b) =
(a —b) + 3 and 3 divides both (a — b) and 3. The other constructor case (a, b = 3) follows in exactly the
same way. So we conclude by structural induction on the definition of L’ that L./ C L. O

(e) Confirm that you got the definition right by proving that

Lica 1l
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Solution. Conversely, we must show that L € L’. So suppose (c,d) € L, thatis, 3 | (¢ — d). This means
that c = r + 3k and d = r + 3j forsome r € {0,1,2} and j,k € Z. Then starting from base case
(r,r) € L', we can apply the (a =+ 3, b) constructor rule |k| times to conclude that (c,r) € L', and then

apply the (a, b & 3) rule | j| times to conclude that (¢, d) € L’. This implies that L € L’, which completes
the proof that L = L'. [ |

(f) See if you can give an unambiguous recursive definition of L.

Solution. This is tricky. Here is an attempt:
base cases: (0,0), (1, 1), (2,2), (-1,-1),(-2,-2),(-3,-3)(1,-2),(2,-1),(-1,2),(—2,1) e L

Now the idea is to constrain the constructors so the two coordinates have absolute values that increase
differing by at most 1, then one coordinate only can continue to grow in absolute value. Let

lifx >0,
Se(x) = 3
Je s TS

constructors: if (@, b) € L’, then

e if ||a| — |b|| < 1, then (a + 3Sg(a), b + 3Sg(h)), (a + 3Sg(a), b), (a,b + 3Sg(b)) € L',
e if |a| > |b| + 1, then (a + 3Sg(a),b) € L',
o if |b| > || + 1, then (2, b + 3Sg(B)) € L.
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Number Theory:
Divisibility, 6CD's
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The Division Theorem
For b >0 and any a, have
q = quotient(a,b)
r = remainder(a,b)

I e

&

3 unique numbers q, r such that |
a=gb+r and 0<r<b. |

A

Albert R Meyer- Febeuary 28, 2011

-aon
oRod

:®; Simple Divisibility Facts
» c|aimplies c|(sa)
[a=K'c implies
(sa)=(sK)c]
k

2]

[ OGS Abert B Meyer February 28, 2011

Arithmetic Assumptions

a (b+c) = ab + ac, ab = baq,
(ab)c = a (bc), a-a =0,
a+ 0 =la s al s

Albart R Meyer February 28, 2018

assume usual rules for +,-, -:

Divisibility .
c divides a (c|a) iff |
a=k-c for some k

5|15 because 15 = 35
n|0 because 0=0:n

Albart R Meyer February 26, 2011

% Simple Divisibility Facts

e cla implies c|(sa)

e if c|laand c|b then
c|(a+b)

[if a=k;c, b=k,c then

a+b= (k+k;)c ]

Albert & Meyer February 28, 2011




Simple Divisibility Facts
¢ a common divisor of a,b
* if c|la and c|b then
c| (sa+tb)
t...................'.___l

integer linear
combination of aand b

Albert R Meyer February 28, 2011 lec BMT

i 6CD

gcd(a,b) ::i= the greatest
common divisor of aand b
gcd(10,12) = 2

gcd(13,12) = 1

gcd(17,17) = 17
ged(@m)E=n=forn=—0

:Q‘I.A.Q Alert R Meyer February 28, 2011 lec 5M10

Euclidean Algorithm

as a State Machine:

States = N x N

start := (a,b)

state ftransitions defined by
(xy) = (v, rem(x.y))

fortvizi0

Albert R Meyer February 28, 2011 lec 5W.13

Q[ [577]
Common Divisors

Comrnon divisors of a & b
, divide integer linear
. combinationsof a& b. |

Alert R Meyer February 28, 2011 lec 5M5

% 6CD Remainder Lemma
Lemma: for b = 0
gcd(a,b) = gcd(b, rem(a,b))

Proof: a=gb +r
any divisor 2 of these 3
terms, divides all 3.

At R Meyer February 28, 2011 Jec SW.12

2= GCD correctness
S0n") t

Example: GCD(662,414)

= 6CD(414, 248) since rem(662,414) = 248
= GCD(248, 166) since rem(414,248) = 166
= GCD(166, 82) since rem(248,166) = 82
= 6CD(82, 2) since rem(166,82) = 2
= 6CD(2, 0) since rem(82,2) = (0

return value: 2

Albert R Meyer February 26, 2011 lec 5W.15




iy GCD correctness

By Lemma, gcd(x,y) is constant.
so preserved invariant is

P((x.y)) ::= [gcd(a,b) = ged(x,y)]

P(start) is trivially true:
(gcd(a,b) = gcd(a,b))

Alert R Meyer February 28, 2011 lec 5W.16

el 6CD Termination

y halves or smaller at
each step
reaches minimum in <
log2 b
transitions

ARert R Mayer February 28, 2011 lec 5W.19

#% gcd(a,b) = sa+tb

Proof: Show how to find
coefficients s,t.

Method: apply Euclidean
algorithm, finding
coefficients as you go.

6CD partial correctness
at fermination

x = gcd(a,b)

Proof: at fermination, y = O, so
x = gcd(x,0) = Igcd(x,y) = gcd(a,b)

preserved invariant

Albart R Meyer February 28, 2011 lec SW.18

gcd(a,b) is an integer
. linear combination of |
' aand b.

Albart B Meyer February 28, 2011 lec 5M22

Finding s and t

Example: a = 899, b=493
899 = 1493 + 406 so 406 = 1-899 + -1-493

493 = 1-406 + 87 so 87 = 493 -1-406

= -1-899 + 2:493
406 = 4-87 + 58 so 58 = 406 - 4-87

= 5:899 + -9-493
87 =158+29 so 29 = 87 - 1-58

= -6-899 + 11-493
58 =229+0 done, gcd = 29

Albert B Meyer February 28, 2011 lec 5M30




Finding s and t

Example: a = 899, b=493
899 = 1493 + 406 so0 406 = 1-899 + -1-493
493 = 1-406 + 87 so 87 = 493 - 1-406

= -1-899 + 2-493
406 = 487 + b8 so 58 = 406 - 4-87

= 5-899 + -9-493
87 =158 +29 s0 29 =87 -158

= -6-899 + 11-493
58 =2:29+0 done, gcd = 29
the Pulverizer s- ¢ +=11
=) D50 Albert R Meyer February 28, 2011 lec 5M 31

%% Prime Divisibility

Lemma: p prime and p|(a-b)
implies pla or p|b
pf: in Class Problem 3.

Finding s > 0 and t

gcd(899,493) = -6-899 + 11-493
get positive coeff. for 899?2:
(-6+493k)-899 + (11-899k)-493
= -6:899 + 11-493
so use k=1: 487-899 + -888-493
= gcd(899,493)

Abert R Meyer Februory 28, 2011 lec 5M.33

Prime Divisibility
Cor :If p is prime, and
plal.az. “ee .am
then p|a; for some i.
pf: By induction on m.

Albert R Meyer February 28, 2011 lec 5M.36

Albert R Meyer February 78, 2011 lec SM35

< Q00
omon

m  Fundamental Thm. of Arithmetic

Every integer > 1
factors uniquely into a!
weakly increasing
'sequence of primes

Albert B Meyer February 28, 2011 lec SM38

Unique Prime Factorization

Every integer n>1has a
unique factorization into
primes: po'py = ‘Px= N

with  po <p; < = < py




Unique Prime Factorization

Fundamental Theorem of Arithmetic
Example:

61394323221 =
888l 37 37E 3753

Albert R Meyer Febeuary 28, 2011 lec 5M40

Unique Prime Factorization

Pf: but q;|n & n=p;-p,-px
so q;|p; for some i by Cor,

confradicting that p; is
prime QED

Albert R Meyer February 28, 2011 lec 5MA2

Unique Prime Factorization
pf: suppose not. choose smallest n >1:
N =P1P2"Pk = 9192 "Gy
P1SPo< <Py
91592<<qy,
can assume q; < p;
SO q; = any p;

Albert R Meyer February 28, 2011

&% Team Problems

Problems
1-3

Albert R Meyer February 28, 2011
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In-Class Problems Week 5, Mon.

Problem 1.

A number is perfect if it is equal to the sum of its positive divisors, other than itself. For example, 6 is
perfect, because 6 = 1 + 2 + 3. Similarly, 28 is perfect, because 28 = 1 + 2 + 4 4+ 7 + 14. Explain why
2k=1(2k _ 1) is perfect when 2% — 1 is prime.'

Problem 2. (a) Use the Pulverizer to find integers x, y such that

X -50 4+ y - 21 = ged(50,21).

(b) Now find integers x’, y" with y" > 0 such that

x50 + y' - 21 = ged(50,21)

Problem 3.

For nonzero integers, a, b, prove the following properties of divisibility and GCD’S. (You may use the fact
that ged(a, b) is an integer linear combination of @ and b. You may not appeal to uniqueness of prime
factorization because the properties below are needed to prove unique factorization.)

(a) Every common divisor of @ and b divides ged(a, b).
(b) If @ | bc and ged(a, b) = 1, thena | c.
(¢) If p | ab for some prime, p,then p | a or p | b.

(d) Let m be the smallest integer linear combination of @ and b that is positive. Show that m = ged(a, b).

?PQ}( ~ad ¢als For H
\/(7f~1 MMW

Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .

'Euclid proved this 2300 years ago. About 250 years ago, Euler proved the converse: every even perfect number is of this
form (for a simple proof see http://primes.utm.edu/notes/proofs/EvenPerfect.html). Asis typical in number
theory, apparently simple results lie at the brink of the unknown. For example, it is not known if there are an infinite number of
even perfect numbers or any odd perfect numbers at all.
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(S

Appendix: The Pulverizer
Euclid’s algorithm for finding the GCD of two numbers relies on repeated application of the equation:
gcd(a, b) = ged(b, rem(a, b))

For example, we can compute the GCD of 259 and 70 as follows:

2cd(259,70) = gcd(70,49) since rem(259,70) = 49
= gecd(49,21) since rem(70, 49) = 21
= gcd(21,7) since rem(49,21) =7
= gcd(7,0) since rem(21,7) = 0
= 7

The Pulverizer goes through the same steps, but requires some extra bookkeeping along the way: as we
compute ged(a, b), we keep track of how to write each of the remainders (49, 21, and 7, in the example)
as a linear combination of ¢ and b (this is worthwhile, because our objective is to write the last nonzero
remainder, which is the GCD, as such a linear combination). For our example, here is this extra bookkeeping:

X y rem(x,y) = x—q-y
259 70 49 = 259-3-70
70 49 21 = 70—-1-49
= 70-1-(259-3-70)
= —1:259+4.70
49 21 7 = 49-2.21
= (259—-3.70)—2-(—1-259 + 4-70)
[3.259—11-70]
21 7 0
We began by initializing two variables, x = a and y = b. In the first two columns above, we carried

out Euclid’s algorithm. At each step, we computed rem(x, y), which can be written in the form x — ¢ - y.
(Remember that the Division Algorithm says x = ¢ - y + r, where r is the remainder. We getr = x —q - y
by rearranging terms.) Then we replaced x and y in this equation with equivalent linear combinations of a
and b, which we already had computed. After simplifying, we were left with a linear combination of @ and
b that was equal to the remainder as desired. The final solution is boxed.
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Solutions to In-Class Problems Week 5, Mon.

Problem 1.

A number is perfect if it is equal to the sum of its positive divisors, other than itself. For example, 6 is
perfect, because 6 = 1 + 2 + 3. Similarly, 28 is perfect, because 28 = 1 + 2 4+ 4 4 7 + 14. Explain why
2k=1(2k — 1) is perfect when 2¥ — 1 is prime.!

Solution. If 2¥ — 1 is prime, then the only divisors of 2¥—1(2k — 1) are:
. B B s 2 (1)

and
@—=). - 081 4i0—dy, .. Tty 2)

The sequence (1) sums to ok 1 (using the formula for a geometric series,” and likewise the sequence (2)
sums to (261 — 1) - (2% — 1). Adding these two sums gives 2=1(2% — 1), so the number is perfect. O

Problem 2. (a) Let m = 2°52411717'2 and n = 237%21121113117°192. What is the gcd(m, n)? What is
the least common multiple, lcm(m, n), of m and n? Verify that

ged(m,n) - lem(m,n) = mn. 3)
Solution.

g =231117°,
l —_ 29524722112111311712192
gl = 2125397811 218931 1324192 —imn

(b) Describe in general how to find the ged(m, n) and lem(m, n) from the prime factorizations of m and n.
Conclude that equation (3) holds for all positive integers m, n.

Solution. The divisors of m correspond to subsequences of the weakly increasing sequence of primes in the
factorization of m, and likewise for n. So the factorization ged(m,n) is the largest common subsequence
of the two factorizations. This can be calculated by taking all the primes that appear in both factorizations
raised to the minimum of the powers of that prime in each factorization.

[ yarm
Creative Commons OSSS 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .

TEuclid proved this 2300 years ago. About 250 years ago, Euler proved the converse: every even perfect number is of this
form (for a simple proof see http://primes.utm.edu/notes/proofs/EvenPerfect .html). As is typical in number
theory, apparently simple results lie at the brink of the unknown. For example, it is not known if there are an infinite number of
even perfect numbers or any odd perfect numbers at all.

21t’s fun to notice the “computer science” proof that (1) sums to 2% 1. The binary binary representation of 2/ isa 107, so the
sum is represented by 1%, This what you get by subtracting 1 from by 10% which is the binary representation of 2k,
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Likewise, the factorization of lem(m, n) is the shortest sequence that has the factorizations of m and n as
subsequences. So the factorization of lem(rm, n) can be calculated by taking all the primes that appear in
either factorization raised to the maximum of the powers of that prime in each factorization.

So in the factorization of gcd(m, n) - lem(m, n) each prime appears raised to a power equal to the sum of its
powers in the factorizations of m and n, which is precisely its power in the factorization of mn. |

Problem 3. (a) Use the Pulverizer to find integers x, y such that
x-50 + y - 21 = ged(50,21).

Solution. Here is the table produced by the Pulverizer:

x y rem(x,y) = x—gq-y
50 21 8 = 50—2-21
21 8 5 = 21—2-8
= 21-2-(50-2-21)
= —2-50+5-21
8 5 3 = 8—1-5
= (50—2-21)—1-(=2-50+5-21)
= 3.50-7.21
5 3 2 = 58
= (-2-50+5-21)—1-(3-50—7-21)
= —5.50+12-21
3 g 1 = 3-1-2
= (3.50—7-21)—1-(~5-50 4 12-21)
[8-50—19-21]
2 1 0

(b) Now find integers x’, y” with y’ > 0 such that
x"-50 + y’-21 = ged(50,21)

Solution. since (x, y) = (8,—19) works, so does (8 — 21n,—19 + 50n) for any n € Z, so lettingn = 1,
we have

—-13-50+31-21=1

Problem 4.

For nonzero integers, a, b, prove the following properties of divisibility and GCD’S. (You may use the fact
that ged(a, b) is an integer linear combination of @ and . You may not appeal to uniqueness of prime
factorization because the properties below are needed to prove unique factorization.)

(a) Every common divisor of a and b divides gcd(a, b).

Solution. For some s and ¢, ged(a, b) = sa + tb. Let ¢ be a common divisor of @ and b. Since ¢ | a and
c¢|b,wehavea = kc,b = k’c so
sa + th = skc + tk'c = c(sk + tk)

soc|sa+th. O0
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(b) If a | bc and ged(a,b) = 1, thena | c.

Solution. Since ged(a, b) = 1, we have sa + tb = 1 for some s, /. Multiplying by ¢, we have
sac +tbc =c¢

but a divides the second term of the sum since a | bc, and it obviously divides the first term, and therefore
it divides the sum, which equals c.

(c) If p | ab for some prime, p,then p | a or p | b.

Solution. If p does not divide a, then since p is prime, ged(p,a) = 1. By part (b), we conclude that
p|b. o

(d) Let m be the smallest integer linear combination of a and b that is positive. Show that m = ged(a, b).

Solution. Since gcd(a, b) is positive and an integer linear common of @ and b, we have

m < gcd(a, b).

On the other hand, since m is a linear combination of @ and b, every common factor of a and & divides m.
So in particular, ged(a, b) | m, which implies

gcd(a, b) < m.

Appendix: The Pulverizer

Euclid’s algorithm for finding the GCD of two numbers relies on repeated application of the equation:
ged(a, b) = ged(b, rem(a, b))

For example, we can compute the GCD of 259 and 70 as follows:

gcd(259,70) = gcd(70,49) since rem(259, 70) = 49
= gcd(49,21) since rem(70, 49) = 21
= gcd(21,7) since rem(49,21) = 7
= gcd(7,0) since rem(21,7) =0
= i

The Pulverizer goes through the same steps, but requires some extra bookkeeping along the way: as we
compute ged(a, b), we keep track of how to write each of the remainders (49, 21, and 7, in the example)
as a linear combination of @ and b (this is worthwhile, because our objective is to write the last nonzero
remainder, which is the GCD, as such a linear combination). For our example, here is this extra bookkeeping:

x y rem(x,y) = x—gq-y
259 70 49 = 259-3.70
70 49 21 = 70—-1-49
70—1-(259—3-70)
= —1-259+4.70
49 21 7 = 49-2.2]
= (259—-3-70)—2-(—1-259+ 4-70)
13-259—11-70]

21 7 0



4 Solutions to In-Class Problems Week 5, Mon.

We began by initializing two variables, x = a and y = b. In the first two columns above, we carried
out Euclid’s algorithm. At each step, we computed rem(x, y), which can be written in the form x — g - y.
(Remember that the Division Algorithm says x = g - y + r, where r is the remainder. We getr = x—gq -y
by rearranging terms.) Then we replaced x and y in this equation with equivalent linear combinations of a
and b, which we already had computed. After simplifying, we were left with a linear combination of a and
b that was equal to the remainder as desired. The final solution is boxed.
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