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Circle the name of your TA:

Ali Nick Oscar @
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e Write your solutions in the space provided. If you need more space, write on the back of the sheet
containing the problem. Please keep your entire answer to a problem on that problem’s page.
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Problem 1 (5 points).

Set equalities such as the one below can be proved with a chain of iffs starting with “x € left-hand-set” and
ending with “x € right-hand-set,” as done in class and the text. A key step in such a proof involves invoking
a propositional equivalence. State a propositional equivalence that would do the job for this set equality:

A-B=(A-C)u(BNC)U((AuB)NnC)

Do not simplify or prove the propositional equivalence you obtain.
\\*‘—'—-—.

. For example, to prove A U (B N A) = A, we would have the following “iff chain’:
W& x€AU(BNA) iff xe AorRx e (BN A)
% iff x€ AOR(x € BANDX € A)
<é iff xeAd -~ (Since P OR (Q AND P) is equivalent to P.)
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Problem 2 (5 points).
Let A and B denote two countably infinite sets:

A ={ag,ay,az2,a3,...} J ‘ { e
B = {by.b1,b2.b3,... / ‘
{bo. b1, b3, b3 } \4 ‘C(o%jfofﬁyo{ (cq {7 t

Show that their product, A x B, is also a countable set by showing how to list the elements of 4 x B. You
need only show enough of the initial terms in your sequence to make the pattern clear — a half dozen or so
terms usually suffice.

Al = w[ L,,b())

@O / (30) ((l_;, bo) (&l by ) (a */bo)

(ﬂa/%,) (?‘!,&,\I} (0%/10) (ér\ /(3)

(O‘O/M)‘ {sz) (a",b?) (& 0-)

(&0/ D .. ) ( (o 2,61 x"’j‘ i [,)
@vu.,ldi i f)\e h"w; X & |
Matax  of o8 Cae We O N

\\CD\< y :To\)ﬁ(\

- e (halale,  [opep  Cach L?i,-;/fao (5 (pmﬁb(om

Mo el

wel
(Rl acons - -«
S tlly

- ek ot 1 (g
éeéétaq
“lat ol b putul gl o

Qod  $d'ed



mawmﬁf

Problem 3 (5 points).
The nth Fibonacci number, F,, is defined recursively as follows:

0 itn =0
Fy = | ifn =1

Your name: Mini-Quiz Mar. 2

Fuoy + Fyey ifn>2

These numbers satisfy many unexpected identities, such as
F§+ FE+ -+ F} = FyFum )

Equation (1) can be proved to hold for all n € N by induction, using the equation itself as the induction

hypothesis, P (n). \ iy S '
(a) Prove the base case (n = 0). HL‘/P t P(ﬂ} = -,:-01 t F, L i \bl-l r\/l - Fﬂ Eﬂf’

fa <0

? S
& 0 |

I,

(b) Now prove the inductive step. ’?v
E 2 . (" )
0? { }'in : A
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Problem 4 (5 points).
The set, M, of strings of brackets is recursively defined as follows:
a3 G LIaLR
Base case: A € M.
Constructor cases: If 5.t € M, then

e [s] € M, and
e s-teM.

The set, RecMatch, of strings of matched brackets was defined recursively in class. Recall the definition:
Base case: A € RecMatch.

Constructor case: If s, r € RecMatch, then [ s |1 € RecMatch.
catr ik

Fill in the following parts of a proof by structural induction that
RecMatch € M. 2)

__—_——‘—__\
(a) State an induction hypothesis suitable for proving (2) by structural jnduction.

P(n)\ RecdMatch EM o t e
I:( P(_) u*fj(" {O( PUV\ ]_‘;(}59_ /0"”:'.
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(b) State and prove the base case(s)
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(¢) Prove the inductive step.
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As a matter of fact, M = RecMatch, though we won’t prove this. An advantage of the RecMatch
definition is that it is unambiguous, while the definition of M is ambiguous.

(d) Give an example demonstrating that M is ambiguously defined.

WQ Jof’L! {/M'v WW‘( ‘7 /r/‘ Ml I\Y’ (vad b()

(n W’?P*‘f Gor o
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(e) Briefly explain what advantage unambiguous recursive definitions have over ambiguous ones. (Re-
member that “ambiguous definition” has a technical mathematical meaning which does not imply that the
ambiguous definition is unclear.)
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Solutions to Mini-Quiz Mar. 2

Problem 1 (5 points).

Set equalities such as the one below can be proved with a chain of iffs starting with “x € left-hand-set” and
ending with “x € right-hand-set,” as done in class and the text. A key step in such a proof involves invoking
a propositional equivalence. State a propositional equivalence that would do the job for this set equality:

A-B=(A-C)uBNC)U((AuB)NC)

Do not simplify or prove the propositional equivalence you obtain.

For example, to prove A U (B N A) = A, we would have the following “iff chain”:

xeAU(BNA) iff xe AoRx € (BNA)
iff x€ AOR(x € BANDX € A)
iff xed (since P OR (Q AND P) is equivalent to P).

Solution. The stated set equality holds iff membership in A — B implies and is implied by membership in
(Z — E) U@ neu ((Z u B) N a That is, the set equality holds iff, for all x,

xeA—B iff xe(A-C)U(BNC)U((AUuB)NC).

Define three propositions describing the membership of x in each of the sets A, B, and C:

P = xeAd
Q0 = xeB
R = xeC

Now, express membership in A — B in terms of P, 0, and R:

xcA—-B
iff NOT(x € (4N B))
iff NOT(x € AANDx € B)
iff NOT(x € A AND NOT (x € B))
iff NOT (P AND NOT (Q))

Then express membership in

(A-C)uBnC)U((AuB)nC)

2ol
Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .
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in terms of P, Q, and R:

xe(A-C)uBNC)U((AUB)NC)

iff xe(A—C)orxe(BNC)orxe ((AUB)NC)

iff xE(AﬂC)ORxE(BﬂC)OR(xe(_UB)ANDan

iff xe(ANC)orxe(BNC)OR(xe (AUB)ANDx ()

iff (xe AANDx €C)OR(x € BANDx € C)OR((x € AORXx € B) ANDx € C)

iff (NOT(x € A)ANDx € C)OR (x € BANDXx € C) OR ((NOT(x € A) ORx € B) ANDNOT (x € C))
iff (P AND R) OR (Q AND R) OR ((P OR Q) AND R)

So the stated set equality holds if and only if the following two propositional formulas are equivalent

NOT (P AND Q)

and
((P AND R) OR (Q AND R) OR ((P OR Q) AND R)).

Notice that you were not expected to write out a proof like this. We’ve written this out to remind you how
the propositional equivalence would be used in such a proof.

The point is that there is a clear correspondence between the set equality and the needed propositional
equivalence in such proofs, and once you’ve recognized this, you can read off the propositional equivalence
from the set equality without having to go through any long derivation.

|

Problem 2 (5 points).
Let A and B denote two countably infinite sets:

A ={ap,a1,a2,as,...}
B = {bg,by,b2,b3,...}

Show that their product, A x B, is also a countable set by showing how to list the elements of A x B. You
need only show enough of the initial terms in your sequence to make the pattern clear — a half dozen or so
terms usually suffice.

Solution. The elements of A x B can be arranged as follows:

(ao,bo) (ao.b1) (ap.b2) (ag.b3)
{01,b0) {11],!)1) (G[.bg) ((11,1)3)
(az2.bo) (az,b1) (a2.b2) (az,b3)
(as.hg) (az,b1) (asz.b2) (as,bs3)

Traversing this grid along successive lower-left to upper-right diagonals yields the required list:
(ap. bp), (ay, bo), (ao, b1), (623\ bo), (a1.Db1), (ap. bg), (as, /){)), (a», by), (a 1. b2), (ug. fJ_:;), e
Obviously, travelling in the opposite direction along each diagonal yields an equally acceptable list:

(:CI(}, bo), (00. bl ), ((I] ; b{)), (¢1p. J’Jg), {aay, :")1), {a=. bo), (agp. f)g), ({i} . IJQ), (t1n. !}1), {as, by),
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Problem 3 (5 points).
The nth Fibonacci number, Fj,, is defined recursively as follows:
0 ifn=20
F,=41 ifn=1

Foo1+ Fpp ifn=2
These numbers satisfy many unexpected identities, such as
F62+F12+“'+F3:FnFn+1 (1)

Equation (1) can be proved to hold for all n € N by induction, using the equation itself as the induction
hypothesis, P (n).

(a) Prove the base case (n = 0).

Solution. o

Y Fr=(F)*=0=(0)(1) = FoFy
i=0
Therefore, P(0) is true. |

(b) Now prove the inductive step.

Solution. We need to prove that P (n):
n
D FP = FaFyp
i=0

implies P(n + 1):

n+1
E F} = Foy1Fpia
i=0
Proof.
n+1 n
2 2 2
Z F = Z Fi+ Fpy
i=0 i=0
= Fn Fn-l—] + Fn2+1 By P(n).
= Fn+l (Fn +Fn+1)
= Fy+1Fn42 By the definition of the Fibonacci sequence.
|
Problem 4 (5 points).

The set, M, of strings of brackets is recursively defined as follows:
Base case: A € M.
Constructor cases: If 5,1 € M, then

e [s] € M,and

e s-1eM.
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The set, RecMatch, of strings of matched brackets was defined recursively in class. Recall the definition:
Base case: A € RecMatch.
Constructor case: If s, € RecMatch, then [ s ] ¢ € RecMatch.

Fill in the following parts of a proof by structural induction that
RecMatch C M. (2)

(a) State an induction hypothesis suitable for proving (2) by structural induction.

Solution.
Bix)si=xeM
o
(b) State and prove the base case(s).
Solution. Base case (x = 1): By definition of M, the empty string is in M.
|

(c) Prove the inductive step.

Solution. Proof. Constructor case (x = [s]¢ for s, € RecMatch): By structural induction hypothesis,
we may assume that s, € M. By the first constructor case of M, it follows that [s] € M. Then, by the
second constructor case of M, it follows that [s]7 € M.

As a matter of fact, M = RecMatch, though we won’t prove this. An advantage of the RecMatch
definition is that it is unambiguous, while the definition of M is ambiguous.

(d) Give an example demonstrating that M is ambiguously defined.

Solution. Consider derivations of the empty string. This could be derived directly from the base case A, or
by starting with A and then constructing AA through the second constructor case.

|
(e) Briefly explain what advantage unambiguous recursive definitions have over ambiguous ones. (Re-
member that “ambiguous definition” has a technical mathematical meaning which does not imply that the

ambiguous definition is unclear.)

Solution. If a definition is ambiguous, functions defined recursively on it may not be well-defined.
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Intro to

Number Theory:
Divisibility, 6CD's

8 Arithmetic Assumptions
assume usual rules for +,-, - :
a (b+c) = ab + ac, ab = baq,
(ab)c = a (bc), a-a =0,
a#0=a axli—a

Albert R Meyer February 28, 2011 lec 5M1 (= D5

The Division Theorem
For b >0 and any a, have
q = quotient(a,b)
r = remainder(a,b)

_______________________________

~

' 3 unique numbers q, r such that
Fiai-gqba tandi O < pe<<bl

ARert R Mayer February 28, 2011 Jec 5M3

Albert R Meyer February 28, 2011 ec SM2

"B Simple Divisibility Facts

* cla implies c|(sa)

[a=K'c implies

(sa)=(sK)c]
k

Alert & Meyer February 28, 2011 lec 5M5

Divisibility
c dix}ides a (cla)iff
a=k-c for some k

5115 because 15 = 3-5
n|0 because 0=0-n

Alert R Meyer February 28, 2001 Jec 54

oz i

Simple Divisibility Facts
* claimplies c|(sa)
» if c|la and c|b then
c|(a+b)
[if a=k;c, b=k,c then

a+b= (k+kp)c |




Simple Divisibility Facts
¢ a common divisor of a,b
e if claand c|b then
c| (sa+tb)
t....................r......_l

integer linear
combination of aand b

Albert R Mayer February 28, 2011 lec 5M7

[*]al7]

s 6CD

gcd(a,b) ::= the greatest
common divisor of a and b
gcd(10,12) =2

gcd(13,12) = 1

gead@ 1) =17

ged(@ =" for n>0

:QL~u' Albert R Meyer February 28, 2011 SM.I0

Euclidean Algorithm

as a State Machine:

States ii= N x N

start = (a,b)

state transitions defined by
(xy) = (y, rem(x,y))

for yz 0

Albert B Meyer February 28, 2011 lec 5W.13

« BOH
Common Divisors

Common divisors of a & b
divide integer linear
' combinations of a & b. |

Abert R Meyer February 28, 2011 lec 5M3

ggnm GCD Remalnder‘ Lemma

Lemma: for b = O
gcd(a,b) = ged(b, rem(a,b))

Proof: a=gb+r

any divisor 2 of these 3
terms, divides all 3.

Albert B Meyer Februory 28, 2011 lec 5W.12

g GCD correctness
Example: GCD(662,414)

= 6CD(414, 248) since rem(662,414) = 248
= 6CD(248, 166) since rem(414,248) = 166
= 6CD(166, 82) since rem(248,166)= 82
= 6CD(82, 2) since rem(166,82) = 2
= 6CD(2, 0) since rem(82,2) = @

return value: 2

Alert R Meyer February 28, 2011 lec SW.15




[+]u]7]
&4 GCD correctness

By Lemma, gcd(x,y) is constant.
so preserved invariant is

P((x.y)) = [ged(a,b) = ged(x.y)]

P(start) is trivially true:
(gcd(a,b) = ged(a,b))

Albert R Meyer February 28, 2011 lec 5W.16

EEEE 6CD Termination
y halves or smaller at
each step
reaches minimum in <
log2 b
Transitions

ARert B Mayer February 28, 2011 lec 5W.19

gcd(a,b) = sa+tb
Proof: Show how to find
coefficients s,t.

Method.: apply Euclidean
algorithm, finding
coefficients as you go.

6CD partial correctness
at Termination

x = gcd(a,b)

Proof: at termination,y = O, so
X = ng(X,O) = nng(x'Y) = gcd(q,b)]

preserved invariant

Albert R Meysr February 28, 2001 Jec 5W.18

- oo
Omoo

i GCD is a linear combination

Theorem: L
gcd(a,b) is an integer !
linear combination of

a and b.

ot e e e e e e o S . S S O B

Aert B Meyer Februery 28, 2011 lec 5M22

Finding s and t

Example: a = 899, b=493
899 = 1:493 + 406 so 406 = 1-899 + -1-493
493 =1406 + 87  so 87 =-493-1406

= -1-899 + 2-493
406 = 4-87 + 58 so 58 = 406 - 4-87

= 5:899 + -9-493
87 =158 +29 so 29 =87 -158

= -6-899 + 11-493
58 =229+0 done, gcd = 29

Abert R Meyer Februory 28, 2011 lec 5M.30




Finding s and t

Example: a = 899, b=493
899 = 1:493 + 406 so 406 = 1-899 + -1-493
493 = 1406 + 87 so 87 = 493 -1-406

=-1-899 + 2-493
406=487+58 5058 =406 - 487

= 5-899 + -9-493
87 =158+29 so 29 = 87 - 1-58

= -6:899 + 11-493
58 =229+0 done, gcd = 29
the Pulverizer s- ¢ t=-11
Slesls Albert RMeyer  February 26, 2011 lec 5M31

Finding s > 0 and t

gcd(899,493) = -6-899 + 11-493
get positive coeff. for 8992:
(-6+493k)-899 + (11-899k)-493
= -6-899 + 11-493
so use k=1: 487-899 + -888-493
= gcd(899,493)

Atert 8 Meyer February 28, 2011 lec 5433

% Prime Divisibility

Lemma: p prime and pl('d-b)
implies pla or p|b
pf: in Class Problem 3.

%] Prime Divisibility

Lgm ¢

Cor :If p is prime, and
playay - -,

then p|a; for some i.

pf: By induction on m.

Albert R Meyer February 28, 2011 lec 5SM36

Albert R Meyer February 28, 2011 lec M35

Every integer > 1 i
factors uniquely into a;
‘weakly increasing |

________________________________

Unique Prime Factorization

Every integer n>1 has a
unique factorization into
primes: po:py Pk = N

with  py < p; < - < py




< DOR
jul Teis}

“8 Unique Prime Factorization

Fundamental Theorem of Arithmetic
Example:

61394323221 =
SE SIS SIESEDS

Albert B Meyer February 26, 2011 lec M40

Unique Prime Factorization

Pf: but qiIn & n=p;-p,-py
so q,|p; for some i by Cor,

contradicting that p; is
prime QED

Unique Prime Factorization
pf: suppose not. choose smallest n>1:
N =P1P2"Pk = 9192y
P1SP2 < <py
G1<Q,<<qp,
can assume q; < p;

S0 q; = any p;

Albart R Meyer February 28, 2011

%5 Team Problems

Problems
1-3

Albert R Meyer February 28, 2011 lec SM42

ARart R Meyer Febnuory 28, 2011 lec SM.49
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In-Class Problems Week 5, Mon.

Problem 1.

A number is perfect if it is equal to the sum of its positive divisors, other than itself. For example, 6 is
perfect, because 6 = 1 + 2 + 3. Similarly, 28 is perfect, because 28 = 1 + 2 + 4 4+ 7 4 14. Explain why
2k=1(2k _ 1) is perfect when 2¥ — 1 is prime.'

Problem 2. (a) Use the Pulverizer to find integers x, y such that

x50 4 y-21 = ged(50, 21).

(b) Now find integers x’, y" with y" > 0 such that

x50 + y"- 21 = ged(50,21)

Problem 3.

For nonzero integers, a, b, prove the following properties of divisibility and GCD’S. (You may use the fact
that ged(a, b) is an integer linear combination of @ and b. You may not appeal to uniqueness of prime
factorization because the properties below are needed to prove unique factorization.)

(a) Every common divisor of @ and b divides ged(a, b).
(b) Ifa | bc and ged(a,b) = 1, thena | c.
(c) If p | ab for some prime, p,then p | a or p | b.

(d) Let m be the smallest integer linear combination of @ and b that is positive. Show that m = ged(a, b).

(R -aead ¢ds oo #9
\/6(»{ ;mfﬂf*w}

Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .

'Euclid proved this 2300 years ago. About 250 years ago, Euler proved the converse: every even perfect number is of this
form (for a simple proof see http: //primes.utm.edu/notes/proofs/EvenPerfect.html). As is typical in number
theory, apparently simple results lie at the brink of the unknown. For example, it is not known if there are an infinite number of
even perfect numbers or any odd perfect numbers at all.
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Appendix: The Pulverizer

Euclid’s algorithm for finding the GCD of two numbers relies on repeated application of the equation:
gcd(a, b) = ged(b, rem(a, b))

For example, we can compute the GCD of 259 and 70 as follows:

gcd(259,70) = gcd(70,49) since rem(259, 70) = 49
= gcd(49,21) since rem(70, 49) = 21
= gcd(21,7) since rem(49,21) =7
= gcd(7,0) since rem(21,7) = 0
=i -

The Pulverizer goes through the same steps, but requires some extra bookkeeping along the way: as we
compute ged(a, b), we keep track of how to write each of the remainders (49, 21, and 7, in the example)
as a linear combination of @ and b (this is worthwhile, because our objective is to write the last nonzero
remainder, which is the GCD, as such a linear combination). For our example, here is this extra bookkeeping:

X y rem(x,y) = x—q-y
259 70 49 = 259-3.70
70 49 21 = 70—-1-49
= 70—-1-(259-3-70)
= —1-25944-70
49 21 7 = 49-2-21
= (259-3-70)—2-(—1-259+4-70)
13-259—11-70|
21 7 0
We began by initializing two variables, x = a and y = b. In the first two columns above, we carried

out Euclid’s algorithm. At each step, we computed rem(x, y), which can be written in the form x —¢q - y.
(Remember that the Division Algorithm says x = ¢ - y + r, where r is the remainder. We getr = x —¢ -y
by rearranging terms.) Then we replaced x and y in this equation with equivalent linear combinations of a
and b, which we already had computed. After simplifying, we were left with a linear combination of @ and
b that was equal to the remainder as desired. The final solution is boxed.




Tn (lag f(ab\ms

" 6@ Jﬂ\lg (WAb ;4 m (owk

0 de not pork
2, 5,00

+7+ 5 =8 &
ey s i —anly fug
WJ‘ ‘15 'y ‘un(/f} 0&#
ot

Pt

Tttt 20-1 =g &)
e

le"l = l @ @NmL pqme 10/ mem'}/'ﬂﬂ
k=2

W 92 _| <3V oprimt

\
/Z (,3) :6 @Wgt (Dﬂ'f\/‘Q

‘ Bt it Moet e ar
~loolmj {or @5

),’1,3,@
1t1+3 @)

(m\b}qy

for

Py



BJF hov dsts e ok 9&@@

W FQH’G[% O m@ (N ?)(‘;me,/ n Pe/'fcclt

| O bagd, |
P90 ks Foloig fades ey, Mgl

) T ot g v ded by T FW’ Zl‘v}

]DJ Thse 1l G nat, b4 go in slead poress ot /

Thse cotega) 1,
o] (1) i) (2 (261 o [ 24) 2
b‘) l/ 2 Cf Q\’cz Newr show

3ummj (a) % gt g 1 pnw,

) 6Z10W ﬂlf{j ‘hws@_ Are

B8 0 e

5/9 sme 4 f He faclos ol ZuJ (’ZV,}) éﬁb"dﬁﬁ sel€ s

(2421 [ +1) v
@H) “M,O






pliant
- i
.56 #- 1% =
AR 7
+2 | 50

13540+ 22l =]
50 rh\\(g i &w;YL(J\\Mj wﬁ»‘(oh }<- ~
COV\ LL“P (]/ollqﬁ )’0 Ezad So CM605

O ~0e sk gth me ©
“0Tke gide gl moe ©)



Massachusetts Institute of Technology
6.042]/18.062J, Spring *11: Mathematics for Computer Science February 28
Prof. Albert R Meyer revised Monday 28" February, 2011, 22:20

Solutions to In-Class Problems Week 5, Mon.

Problem 1.

A number is perfect if it is equal to the sum of its positive divisors, other than itself. For example, 6 is
perfect, because 6 = 1 + 2 + 3. Similarly, 28 is perfect, because 28 = 1 + 2 + 4 + 7 + 14. Explain why
2k=1(2k — 1) is perfect when 2¥ — 1 is prime.!

Solution. If 2F — 1 is prime, then the only divisors of 2k—=1(2% _ 1) are:
L B 0 e €))

and

L-0F=d),. Dy, 0] ..., 2F2(Fqy 2

The sequence (1) sums to 2k — 1 (using the formula for a geometric series,? and likewise the sequence (2)
sums to (2~1 — 1) - (2¥ — 1). Adding these two sums gives 2k—1 (2" — 1), so the number is perfect. [ |

Problem 2. (a) Let m = 295%*11717'? and n = 237%221121113117°192. What is the ged(m,n)? What is
the least common multiple, lcm(m, n), of m and n? Verify that

ged(m, n) - lem(m,n) = mn. 3)
Solution.

()(/D g =217, é@gs I‘0+ Sy

e e s e L

(b) Describe in general how to find the ged(m, n) and lem(m, n) from the prime factorizations of m and n.
Conclude that equation (3) holds for all positive integers m, n.

Solution. The divisors of m correspond to subsequences of the weakly increasing sequence of primes in the
factorization of m, and likewise for n. So the factorization gcd(m,n) is the largest common subsequence
of the two factorizations. This can be calculated by taking all the primes that appear in both factorizations
raised to the minimum of the powers of that prime in each factorization.

Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .

'Euclid proved this 2300 years ago. About 250 years ago, Euler proved the converse: every even perfect number is of this
form (for a simple proof see http://primes.utm.edu/notes/proofs/EvenPerfect .html). Asis typical in number
theory, apparently simple results lie at the brink of the unknown. For example, it is not known if there are an infinite number of
even perfect numbers or any odd perfect numbers at all.

21t’s fun to notice the “computer science” proof that (1) sums to 2% — 1. The binary binary representation of 27 is a 107, so the
sum is represented by 1% This what you get by subtracting 1 from by 10% which is the binary representation of 2k,



2 Solutions to In-Class Problems Week 5, Mon.

Likewise, the factorization of lem(m, n) is the shortest sequence that has the factorizations of m and n as
subsequences. So the factorization of lem(m, n) can be calculated by taking all the primes that appear in
either factorization raised to the maximum of the powers of that prime in each factorization.

So in the factorization of ged(m, n) - lem(m, n) each prime appears raised to a power equal to the sum of its
powers in the factorizations of m and n, which is precisely its power in the factorization of mn. |

Problem 3. (a) Use the Pulverizer to find integers x, y such that

x-50 4 y - 21 = ged(50, 21).

Solution. Here is the table produced by the Pulverizer:

x Yy rem(xy) = x—gq-y

50 21 8§ = 50—2-21

21 8 SR R e
= 21-2-(50—2-21)
= —2.50+5-21

8 5 3= R1:5
= (50—2-21)—1-(=2-50+5-21)
= 3.50—17-21

5 3 2 = 5-1.3
= (=2:50+5-21)—=1-(3-50—7-21)
= —5.50+12-21

3 2 1 =hgieyo

(3550 =07 21 ) Tsi(=550: 12::21)

= 8-50—19-2]|

(b) Now find integers x', y’ with y’ > 0 such that
x'-50 + y’ - 21 = ged(50,21)

Solution. since (x, y) = (8,—19) works, so does (8 —21n,—19 + 50n) for any n € Z, so lettingn = 1,
we have
—13.50+31-21 =1

Problem 4.

For nonzero integers, a, b, prove the following properties of divisibility and GCD’S. (You may use the fact
that ged(a, b) is an integer linear combination of @ and b. You may not appeal to uniqueness of prime
factorization because the properties below are needed to prove unique factorization.)

(a) Every common divisor of a and b divides gcd(a, b).

Solution. For some s and ¢, ged(a, b) = sa + th. Let ¢ be a common divisor of @ and b. Since ¢ | a and
c|b,wehavea = kc,b =k'c so

sa +th = skc + tk'c = c(sk + tk')
soc |sa+th. o



Solutions to In-Class Problems Week 5, Mon. 3

(b) If a | bc and ged(a,b) = 1, thena | c.

Solution. Since ged(a, b) = 1, we have sa + tb = 1 for some s, . Multiplying by ¢, we have
sac + tbc =c¢

but a divides the second term of the sum since a | bc, and it obviously divides the first term, and therefore
it divides the sum, which equals c.

|
(c) If p | ab for some prime, p, then p |a or p | b.

Solution. If p does not divide a, then since p is prime, ged(p,a) = 1. By part (b), we conclude that
p|b. [ |

(d) Let m be the smallest integer linear combination of @ and b that is positive. Show that m = gcd(a, b).

Solution. Since gcd(a, b) is positive and an integer linear common of a and b, we have

m < ged(a, b).

On the other hand, since m is a linear combination of a and b, every common factor of a and b divides m.
So in particular, ged(a, b) | m, which implies

gcd(a, b) < m.

Appendix: The Pulverizer

Euclid’s algorithm for finding the GCD of two numbers relies on repeated application of the equation:
gcd(a, b) = ged(b, rem(a, b))

For example, we can compute the GCD of 259 and 70 as follows:

ged(259,70) = ged(70,49) since rem(259, 70) = 49
= gcd(49,21) since rem(70,49) = 21
= gcd(21,7) since rem(49,21) =7
= gcd(7,0) since rem(21,7) =0
= T

The Pulverizer goes through the same steps, but requires some extra bookkeeping along the way: as we
compute ged(a, b), we keep track of how to write each of the remainders (49, 21, and 7, in the example)
as a linear combination of a and b (this is worthwhile, because our objective is to write the last nonzero
remainder, which is the GCD, as such a linear combination). For our example, here is this extra bookkeeping:

x y rem(x,y) = x—q-y
259 70 49 = 259-3.70
70 49 21 = 70—1-49
70 —1- (259 — 3 - 70)
= —1.25944.70
49 21 7 = 49-2.21
= (259—3-70)—2-(—1-259 + 4-70)
= [3-259—11-70]

21 7 0



4 Solutions to In-Class Problems Week 5, Mon.

We began by initializing two variables, x = a and y = b. In the first two columns above, we carried
out Euclid’s algorithm. At each step, we computed rem(x, y), which can be written in the form x — ¢ - y.
(Remember that the Division Algorithm says x = g - y + r, where r is the remainder. We getr = x—¢q-y
by rearranging terms.) Then we replaced x and y in this equation with equivalent linear combinations of a
and b, which we already had computed. After simplifying, we were left with a linear combination of @ and
b that was equal to the remainder as desired. The final solution is boxed.
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Congruences:
arithmetic (mod n)

Alert R Meyer, March 2, 2011 Jec 5W.L

Congruence mod n
example:
66666663 = 788253 (mod 10)

WHY?
666666
=5 18825

XXXXXXX0

Y+ T=17)
Congruence mod n

Def: a = b (mod n)
iff n|(a - b) |

Z;Eh};ié"wé"ﬁ"”ifi”i”é”"(?ifé'&"@)
since

9 divides 30 - 12

(085 Albert & Meyer,  March 2, 2011 tec 5W.3

Remainder Lemma
a = b (mod n)
iff
rem(a,n) = rem(b,n)

example: 30 = 12 (mod 9)
since

Aloert R Meyer, March 2, 2011 lec 5WA

Remainder Lemma
a = b (mod n)
iff
rem(a,n) = rem(b,n)
abbreviate: r‘é,'n

(G085 Albert R Meyer,  March 2, 2011 lec W3

rem(30,9) = 3 = r'em(12 9)

(=) (XN Albert R Meyer,  March 2, 2011

§§§ proof: (if)
a=gqgn+ r'a,n

b=gyn+ry,
if rem's are =, then
a-b=(q,-q,)n so n|(a-b)

4/2/08 2:20PM

(only if) proof similar

(S 085 Albert R Meyer,  March 2, 2011 lec SW.11
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. Remamder Lemma
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' a= b (mod n)
. ifif |
rem(a n) = rem(b, n)
. @b

T
o &
o -

no -

Congruence mod n
._ If a = b (mod n), then
a+c = b+c (mod n)
pf: n | (a - b) implies
n | (@) - (bo))

S Abert R Meyer,  March 2, 2011 lec 5W18

¢ Q10

4%  More Corollaries
- Ssymmeftric
a = b (mod n) implies
b = a (mod n)
* transitive
a=b &b = c(modn)
implies a = ¢ (mod n)

|G, D0 Albert R Meyer,  March 2, 2011 Jec SWIT

R+ [ai7]
=] pela)

i  Congruence mod n
Cor: if a=a (mod n),
then replacing a by a
in any arithmetic
formula gives an

= (mod n) formula

(S T58 AlertR Meyer,  March 2, 2011

Congruence mod n
Corollary:
If a= b (modn) &

¢ = d (mod n),
thena-c = b-d (mod n)

[= 050 Abert R Meyer,  March 2, 2011 lec 5W 19

[E085 Albert R Meyer,  March2, 2011

4/2/08 2:20PM

% Remainder arithmetic
important: congruence &
a = rem(a,n) (mod n)
keeps (mod n) arithmetic
in tThe remainder range
0 to n-1

Sw.23

I6:33



% Remainder arithmetic
example: 287° = ? (mod 4)
287° = 3 since rpg74=3
= ((3%)%)% 3
= (12)2- 3 sinceirg4=1
= 3 (mod 4)

Albert R Meyer, March 2,201

Congruence mod n
- So arithmetic (mod n) a lot
like ordinary arithmetic
the main difference:
8:2'= 3:2"(mod 10)
8 %3 (mod 10)

no arbitrary cancellation

* ool
cancellation (mod n)

When can you cancel k?

--when k has no common
factors with n

Albert @ Meyer,  March 2,201 Jec SW.26

Albert R Meyer,  March 2, 2011 het 5W.25

inverses (mod n)

If gcd(k,n)=1, then have k'
k-k' =1 (mod n).

k is an inverse mod n of k

o s BT Tt e S e, e U

i i s e

‘gon
omon

EE;) cancellation (_mod n)

................................

multiply by k
(a-k)-k' = (b-k)-k' (mod n)
a-l — b1

lec SW 29

4/2/08 2:20PM

k is cancellable (mod n) |ff
k has an inverse (mod n) tff
k is relatively prime to n

[50E0 Albert R Meyer,  Morch 2, 2011 Jec SW.30

b



4/2/08 2:20PM i



(O1) lyows

ﬂﬁ‘iﬂaf W VF\ P[Qﬁ\( \//(7 H l-‘w_:},{-. fo hae Fnpe Ouo

L) (AAd0d  [ad Wt n ’
,ér-..ﬁmﬁ\l \,m.f;?.,@; V. CAL\C U ¢ {7 l«'f“ f"‘ﬂf{(l

44 /1) \
{J“Jz Sortina Ve

~ (oad OH \Cplu{(()ﬂ; ;; L’"b“

01 (’U\‘\\l’ {V\d ¢ ’:(f f‘ ( ( ‘fr (1 l

Mt b s sedn W/ZO

11—0\ f\th;ntlv’ﬁ ¥ vmdw in fm‘o@m
Z@WW[W@ ol el (e afaded b eoch Ghor
“ bk b Gomy Ih

B =1 (na 0) /

Sy

K74



9

QJ&MUL(\QF L?”WQ

f\/@“'- oy bo vesty % Gngreonl mgd ¢

(| E’M();) ,ﬂ) = (\b,ﬂ MTLO\,J(\IOQ

Pt
&:%ﬁknf‘@,/}
\OTG{/}DV\ ff\‘o,ﬂ

i3 lm = {104
B los
b @,ﬂ%{/b)n

o)

A~ ﬁfufﬂﬂ vt

mor{‘_ CO[O”a(E@
F_\Zl‘—“é;& &= b(nd 1 > bZa(mida)
—fwdle  g= b o b= C el 2 g = ()



Db e ae e({uw\‘n‘x{ Thak press opeatis
I@ 0= l()(md /\.) > OrC = LI‘C[VY\OC},/))

E‘j& (mlssed)

P

Coey
I f\)(vmd f\) A C;Q(ﬂwin)
M are T btd ()

A\ﬁﬂ oc= b d (mml n)
W Cor y famler 0lgohe exgessivns

[pr[a}Q a é\{ C\f/-’ 6‘(\/6) ?@D(J, ’1)

In Uy ac :ﬂmef;( fo%vla
ILL Mot ﬁ: nover va, +o Bﬂf 10"-9 (aq }J
) ¢ R b g,
0= rem /ﬂ) Qnacl /n /

be (”“’i 0] aithidc 1y Lom (ange O, n-|
[OJ "‘Y‘
T 4

ks does ok
e \M(/W&(

Eﬂ"(ﬂ@ l??q = /; mrocl‘i)
281t = 37 sine Coayy =3

- (8073

| \
bleewle  Savwe A




@ H\i{ aot el fo- bl 7«:27

bt = | md Y
<(1M%+3 swe G|
= 3 fwd 4

Watdy glngligl it — wm CYpont- |
A lb Ve odlary  artraithic
bt Gl el
8"2 = ?,»1 0‘40(1 40)
B#3 (i)
60%%@5 ! wl ok &
“lha b by mo (ommo 4 (cu,ﬁﬂfs w//l
BE gt ()t g 1

. {&"L&I -] (qu ”J
]/\ (9 O :rlu(?/bﬁ m/;J, N Og é(
P@fﬁ 6"1 Ha :) 4o

e
’D“ ﬂmL 5 (s Co@fﬁceml

~ “mar Comho) |
T ?u'v\/(’fh:@/‘ (migsed gone 4AF We)

]\/5% ot =g
I_Dil o m;("ﬂ& ok € N ompo




&

Ml by W

T dow ol = (56@ 6”(135)
0 Shw & -

oty
k6 canglltle (md 2] &

K hws o e (md n) X 1)
L\ lb ﬂ%ﬂ,v?x{f ,oft'na b N



Massachusetts Institute of Technology
6.0421/18.062], Spring *11: Mathematics for Computer Science March 2
Prof. Albert R Meycr revised Tuesday 1*' March, 2011, 19:52

In-Class Problems Week 5, Wed.

Problem 1. (a) Why is a number written in decimal evenly divisible by 9 if and only if the sum of its digits
is a multiple of 9?7 Hinz: 10 = 1 (mod 9).

(b) Take a big number, such as 37273761261. Sum the digits, where every other one is negated:
34(-D4+24+END+3+ED+H6+(-D+H2+(-6)+1=—11

Explain why the original number is a multiple of 11 if and only if this sum is a multiple of 11.

Problem 2. (a) Use the Pulverizer to find integers s, f such that

40s 4+ 7t = ged(40, 7).

(b) Adjust your answer to part (a) to find an inverse modulo 40 of 7 in [1, 40).

Problem 3.
Suppose a, b are relatively prime and greater than 1. In this problem you will prove the Chinese Remainder
Theorem, which says that for all m, n, there is a unique x € [0, ab) such that

x=m (moda), (1)
x=n (modb). (2)
(a) Prove that for any m, n, there is some x satisfying (1) and (2).

Hint: Let b~! be an inverse of » modulo a and define e, ::=b~1h. Define e}, similarly. Let x = me, +n €.

(b) Prove that if

(mod a), and

x=0
x=0 (modb),

then
x =0 (mod ab).
(¢) Conclude that if xg and x; both satisfy (1) and (2) (for the same m1, n), then
xg =x1 (mod ab).
(d) Prove thatif x = m (mod ab), then x = m (mod a) for all m.
(e) Conclude that there is an x € [0, ab) satisfying (1) and (2).

(f) Conclude that there is a unigue x € [0, ab) satisfying (1) and (2).

Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .




Massachusetts Institute of Technology
6.0421/18.062], Spring *11: Mathematics for Computer Science March 2
Prof. Albert R Meyer revised Wednesday 2™ March, 2011, 18:01

Solutions to In-Class Problems Week 5, Wed.

Problem 1. (a) Why is a number written in decimal evenly divisible by 9 if and only if the sum of its digits
is a multiple of 9? Hint: 10 = 1 (mod 9).
Solution. Since 10 = 1 (mod 9), so is

10F =1 =1 (mod 9). (1)
Now a number in decimal has the form:

dhe + 10 Sdliii » UM ooy 10 e

From (1), we have

dp - 10F +dp_y 105V 4. +dy-10+do=dy +dpe—y +...+d1 +do  (mod 9)

This shows something stronger than what we were asked to show, namely, it shows that the remainder when
the original number is divided by 9 is equal to the remainder when the sum of the digits is divided by 9. In
particular, if one is zero, then so is the other. |

(b) Take a big number, such as 37273761261. Sum the digits, where every other one is negated:
34(-D+2+DN+34+EN+H6+ED+H24(0)+1=-11
Explain why the original number is a multiple of 11 if and only if this sum is a multiple of 11.
Solution. A number in decimal has the form:
di- 108 iy <00 4wl - 105l
Observing that 10 = —1 (mod 11), we know:

di A0 sy 105 e 0 dy

=dp- (1) +dey - D+t dy (D +do- (-1)°  (mod 11)
=dyp—dyr_1+---—d; +dop (mod 11)

assuming k is even. The case where k is odd is the same with signs reversed.

The procedure given in the problem computes = this alternating sum of digits, and hence yields a number
divisible by 11 (= 0 (mod 11)) iff the original number was divisible by 11. ]

Problem 2. (a) Use the Pulverizer to find integers s, ¢ such that

40s + 7t = gcd(40,7).

Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .



2 Solutions to In-Class Problems Week 3, Wed.

Solution. s =3 andt = —17

Here is the table produced by the Pulverizer:

x y rem(n, ) = x—g-¥
40 7 5 = 40-5-7
7 5 2ri=slha 5
= 7—40-5-7)
= —1-404+6-7
5. 2 1 = 5-2.2
= (40-5-7)—2-(-1-40+6-7)
= 3.40-17-7
2 1 0
O
(b) Adjust your answer to part (a) to find an inverse modulo 40 of 7 in [1, 40).
Solution.
1=3-40—-17-7
=3-40—-7-40+40-7-17-7
=(3-=7)-40+ (40-17)-7
=—4-40+23-7
Therefore, 23 -7 = 1 (mod 40) and 23 is the inverse of 7 modulo 40.
Alternatively, since —17 is an inverse, so is rem(—17, 40) = 23.
O

Problem 3.
Suppose a, b are relatively prime and greater than 1. In this problem you will prove the Chinese Remainder
Theorem, which says that for all m, n, there is an x such that such that

x =m mod a, (2)
x=n modb. (3)

Moreover, x is unique up to congruence modulo ab, namely, if x” also satisfies (2) and (3), then
x" = x mod ab.

(a) Prove that for any m, n, there is some x satisfying (2) and (3).

Hint: Let b~ be an inverse of b modulo a and define e, ::= b~'b. Define e, similarly. Let x = me, +ne,.

(b) Prove that
[x=0moda AND x =0 mod b] implies x =0 mod ab.

(c) Conclude that
[x =x'"moda AND x = x'mod b| implies x = x’mod ab.
(d) Conclude that the Chinese Remainder Theorem is true.

(e) What about the converse of the implication in part (c)?

Solutioné‘TBA\
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6.042]/18.062]J, Spring *11: Mathematics for Computer Science February 26
Prof. Albert R Meyer revised Sunday 27% February, 2011, 01:33
Problem Set 4
Due: March 4

Reading: Chapter §-8.3. GCD’s and Unique factorization, by Monday, Feb 28
Chapter 8.4-8.6. Arithmetic mod a prime, by Wed. Mar. 2
Chapter 8.7. Euler’s Theorem, by Fri. Mar. 4
Chapter 8.8-8.9. The RSA crypto-system, by Mon. Mar. 7
This pset covers Ch. 7 and Ch. 8-8.6.

Problem 1.

Definition 1.1. The set, RecMatch, of strings of matching brackets, is defined recursively as follows:

e Base case: A € RecMatch.

e Constructor case: If s, € RecMatch, then

[s]t € RecMatch.
S
One precise way to determine if a string is matched is to start with 0 and read the string from left to right,
adding 1 to the count for each left bracket and subtracting 1 from the count for each right bracket. For
example, here are the counts for two sample strings:
(1 1o0o0rrorri1111
010-1012234321F290

[ [

[ ] [
012 32

Ed &l ]
1 21 010
A string has a good count if its running count never goes negative and ends with 0. So the second string
above has a good count, but the first one does not because its count went negative at the third step.

Definition 1.2. Let
GoodCount ::= {s € {],[ }* | s has a good count}.

The matched strings can now be characterized precisely as this set of strings with good counts.
(a) Prove that GoodCount contains RecMatch by structural induction on the definition of RecMatch.

(b) Conversely, prove that RecMatch contains GoodCount. 8 ’ 1 6 <t st 60{,1 (éu’#

Problem 2. (a) Use the Pulverizer to find the inverse of 13 modulo 23 in [1, 22].

(b) Use Fermat’s theorem to find the inverse of 13 modulo 23 in [1, 22].

Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .



2 Problem Set 4

Problem 3.
Define the Pulverizer State machine to have:
states ::= N7
start state ::= (a,5,0,1,1,0) (wherea = b > 0)
transitions ::= (x, y, §,f,u,v) —
(y, rem(x, y), u —sq, v—1q, s, t) (for g = gent(x, y),y > 0).

(a) Show that the following properties are preserved invariants of the Pulverizer machine:

ged(x, y) = ged(a, b), (D
sa+th =y, and ' (2)
ua + vb = x. 3

(b) Conclude that the Pulverizer machine is partially correct.

(c) Explain why the machine terminates after at most the same number of transitions as the Euclidean
algorithm.



Doieg P-set

L What i Shucu@f 2 0vct o "75‘”
[esd p o quz
(Rusie afa tpes
Pm Ca%e = Sgre [ math s
Congutar = ilf p

+o plove il elawuh of data ')\/m N.e fﬂ{;g%/

W/
g B%E (ae <0 |
P\f} &)(an;laﬂ;i 5 & ' ._—I

}{ 5 ) ') lsofh s O

5 nd @t oF b () oppt
T t——

I A (0n Clﬁﬂ T '}W()

7
Wk\’l dO(’j a ﬂéll 09 ﬂ,/ f!p[ p&i Vﬂz/h

——



KZ‘ l/\/}loﬁ 5&H£’n
OL# iR SE¢

\‘—-—‘_‘_‘_——

DW} s ﬁn{ a\.C(ﬂ(\*Nﬂ,.’}//f fl’ob,é?/rl
Whve I lenat chi bl dor



#2
Nl sage Slarghlfouad

,_,——-—__“_A

I /4 /\401L (Pduy (;/{d‘lﬁj [f)[' /:’\E W’MYL
Foc Tt lquninah v potl yoo o W gimply
Lhow, 1

( —(gn T e o
Oc o that ,ore-Hy it 47



Massachusetts Institute of Technology Solutions cover sheet
6.0421/18.062J, Spring 1 1: Mathematics for Computer Science February 26
Prof. Albert R Meyer

Student’s Solutions to Problem Set 4

}/ilj.{1,[_ i J( {r’
Your name: (b Uél / aomg 01 . 7
|}
Due date: March 4 coe *
Submission date: ? (~{
Circle your TA/LA: Ali Nick Oscar (" Oshani )
& >

Collaboration statement: Circle one of the two choices and provide all pertinent info.
1. I worked alone and only with course materials.

2. 1 collaborated on this assignment with: 1, olde hin Lot wed

' ol
got help from:! m@{f‘*’ ;L, d !L b (

and referred to:? U\/([ l{'{ A ﬁ“,!((i/},‘ /f! ‘ /f al (A //:Ic,p
YWY v ! LA A |

DO NOT WRITE BELOW THIS LINE

Problem | Score
1 |5+9
2 ¥

A
Total g W ’2 \_{
/% cool]

Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .
'People other than course staff.
2Give citations to texts and material other than the Spring *11 course materials.




#) ‘@ec [l Ch
CDL//F" {7{ ﬁ 0‘( +C dnd ) /‘/; a 5}/),7
! — |

O ) dhay, 7 () and <0 at ead

ol s 5607 10 1 s gud T

Cl. P{W‘g TMV[ Gﬁad(o\m’ CO’?M’@ {\)Q(_ hd‘/(,h w/ 57(/uc,f(//4)
(N d"CHM on W Matc

Ay P(s) hos  Gud Cant
@aﬁe (ase. Good (ot (l) -0 /
m Pﬂnply 5{/@ If\orb 0 ;)m,ghdé & '/f o =()

(had Ol.\vwws ZO /

CM 1f St €Ra Moty Thon

g £ D[F’ff(,
e P(s),p(,g@ o
ﬂ\\q b oSu g il $-1 A /

Flr)—1 r
()

e



TA(} /5 (f/fwf/f/ cfﬂ/f(;/z{
() I g

P/QO{ b\/ 5(){(,61(/@} Idwfﬂﬂ P(g) = #E[& #](6) = O
bue Case )\ flatonn \__= #L()=#70~

—_—

Jhe 6“”91 Cotlans () beacdets Prue 0\ |
=() gad ¢ aluays Z()
Consf/wfor (a0
A%W@ 6//f Ae b"ﬂ“ 0

Ltﬂm A5 p(s)}P(U \/
Now  gho, p( 17 4)

#[ ([s?ﬂ = (T) . WM, ¥ #{7(7]* #Ujﬁﬁ:((%)

P =
S OW+ - fou\’\j
= ()
The Shous Tha (Y +H7(9 =0 /

B
'D\cl ot oo mst be 20 gt all e
wa v coad Lo
[ | -
ot *"‘ bt A5 vavian see ghae The | (omes Test,

/ﬂriéa Mov can see ﬁr\dJr t‘f OL‘M\p O 6o it lever
@903 N(ﬂ;{'t{




}D QY h" at Qe Matn cofa s Coud (aat

p (oof by' ‘51[/@/'-9.-7 f'ﬂ.{_'}-«.z};fcm 90 r{ /gﬂgw gt
fY\@Al‘)F:; 9‘( 600& Cot < n
= f7-97-0
@0‘38 (GUQ t/\ o ?Mp)? 57"(1@
‘D\L ér}‘(;/y /'5 @mplr;;/ S0 Aﬂu o )fﬁﬁ}qf
o alk fo ()

[‘3 nStaotor

‘f-__A—Séu/NL p(ﬂ)
ﬂww That P&MZ) bolds

Holds i ! ;74

Om hoacta F vich & L ol |, 7
g]tt” Gums 1o 0

QECVML/]? ()\/a[u}‘fﬁé’ g/# 1LO be Sunp f?«f/y 65(0\0

\{L
Con R W
)

50 —-»l



Mikael F) ch-te?e/

OS]W; @
Tabe 1

Tt Fd  vese of (3 md 73
= (v2) ofy 21
Bhl Multalicble T ase
Al numbes Tt salisf

[l = [ (mod23)

Wildptdiay  Modulor Multipliefe Tavase of g fma
0TS (med )
90 ‘MVH(‘pll(qf;ze NASE s ;n e //;_9 o Tak mod m
O X S I (pwd m}

2 [ 9 22] Verng }D@/f/;zfr

dm s X gl That

e T '

60 }\gw J[0 ((/z(l/ @Uféﬁ- (fﬁd (:i”é’,(,!-{/'

7| ;B_

=~

;=3



le7
[ 7:9} N hl
k =
13? s [(
=}
[3eF = L
ll\:la X f! !
[3Jo=(30 - |9 A; ff. l’jw&/@
b= 1) il
1321] = . e
b= 17 Y,
kel o
(’L:ll{ . Q(
]}5:(5- [?
e

e Ta dg

§9 how 0‘"” ﬂumbf’fs CO«?%/U{”A)L 1[0

It md 13 de aleo multplalie 55
‘ i
Lie 16173 <39

[(+73+72 -
e+ 73, ‘5 g

B(ﬁ TL{ (dﬂgﬁ 901‘-/:/ /‘L/b‘i (1 W[C{‘I /'A'/f"/t/fll



G

b) Do ﬂ& Som \A/ Fomgl ¢ Uﬁ/@ D\Mm? {/3 l/md 23
763 [f’“vd;ﬂg =g a‘p/)/mm

,\ Pgl’\ = l (mad p)

(onpde rea(13” 23)
Bt €l nad fo e?xpan;/m’e
Do W owibh Gt expanialon (13,21)

X=a0:=173

N = l

2=b <]

Loop |
Tf 2 —’O_ (i, Toengle
(= ctmfz,7)

B g (20

b
&y (:l mﬁ '-f,.f: )(\/

X =2
End Lgap
go /L(/]

S o (2,2) = Tn U 4e =)

y=xoy = 3 <
e G [t



9
OT@((O,Z) =

= qut (10,7 =5

XX A? = (g9t =0

f = em 5’/2) = |

2= qxof(H) ¥,

Y= Xy 2941413 =971245

X=¥2= ﬁmﬁz;

(= 2,7 =)
% = quet (2,7) |
X = = (654 Veb0 g 717979

——

[= [Pm(l 2) = |
% (;{/UDT ( ] ’l) O /"
Y= Xy = &éﬁmo Mm’u

"2‘(7%%7 07967927 64417
¥ =x% . (age ool MHW)

S / v [3

Mck«k w/ Ca'( @WOMQ(\

@ujr shall hot dow all e math maf %
Stk Guer . ol Ul

31797



r=Ca{2,Y wod 23 = |
2 = quet (1,2) mat 23 =)D

VaXey s 3ol i 23 23
X=X )32 pod 239

—

(= feffl(l() 7,) rmod )3 = O
2 Ol/& (lO/Q) ff)t‘ﬂ) 23_

X: XZ = 82 /Ylad /23: [6? How do 0 (\/a mal 0/’”/,}//,'(
hod  Flat 0 P

Tvg"} da gad 4 M7 d a2 At
=(en(5,2) mad 93 = ) g

(

2 = {UO" (@2) mel 3 47
ery:lZs’ 13 mod f(jw):l»’
A :XZ :{’3’2 mod ’:9 _—2

C= (o (1Y od 2320
2 =4t (7,2) mod 73 -
X == md V=Y
—\F: (P (l/ ?,) = |
2 <6l 1,2) = (
= Xy mod 73= Yy = [
K X e -y
Cefun 16 C ol fol ot chaiteg n fad ggy Y TS AL

last por Clafer



Ard oo bock {5 Copls et
Co- -13H [ moJ Qg] \(\3”\} O%UU n
59 ; G & o f,"’ italue 10 vAse” ‘W

3 1l = 207 _93.. - ) @

MM@ P(WZL/OVL Cesylt



[Jechg | Plasrgior

Ogi‘iﬁg/z;'

Table 12 |

3 Dl Pulaizer Slale
]ldﬂL@) [ N 7

Hod  cak - ( b, OJI/I/O) What (62 4 670)

+/a_wm~ Ny, 54, v V) '\% (\/ renlig), - 9, v, 4,1)

0/ (% (I’! [Y/tf /Y>O)

7
0\) %OW ﬁ%i 1[0} OM )o/opw (.9 P{pgp/{d 1’/( W/z’ﬁ’/ﬁ
ot ﬁi u}l/ér@pf waching |

[ Yl (Y/Y) = gcd (a,b)

7%(5 (5 R5me P(@Cd 7(/‘/)) dad  4cd (‘f‘/k/) -)@Cd(x’,ﬁ
Pove P(gcd[x ')

QC&(Y/KPM K;y)) sl a §dl)

Ths 6 PO Fuclid 'q)ﬂ""fhm gl 4

p(w{ b. cl DML&/M DW/ 5—
h=qbtr

J@(«g( (?m(“) s @ liveor (ombo of !’ vod

Mhah gl m

by lowa 7137 j oy duse of b and € 5 Juwisor o?fa(



@)

Lilewise ¢ @ limar  Conbo *cgb of ¢ ad b
Go Wy dutor of @ danl b
1> e s h“d a, b "’(0«/0 fe Some  (ommyn dm‘&ﬂ/'ﬁ

as b #g P ﬁ{] bae T Cang Q/gdff’)?[ 6Ch,
éﬂ they dfe iy 0

U £ D/(n/(éﬂr Of 2

e e e e e

W b40 . Lab7-= ¢ by oumed b7
ffﬂt(ct,ln)

Hinlo \/é;ﬁ‘mad bY s @ shst of [“/b>
Sce (/\.:cLb%f



7 S0t =y

(h{’m(X,b) e X/ﬂodf

((H;L)a VAg) b= o )

VAt ) = Xy
o loar

V- (g ) t-4(yentlers)) b < cnlxy  yro

(U-SL%?UM(V—M%J)/;_: X mad v 70

(U—g X‘Xmodr. ~x Mo
(=5 (v (“5)) b= Xy

Ua “—0\5_)( —65X mad

" Vb _bi)‘ ‘M :\(moJ?/

J
(5 f(U\%) %) a } [f ._(\/__Jr

)a)b = 5 ol
C-0g 1547)0 4y 7

_ vy-tg7h O
((UESCL)*UC]/ *(U\-gq/)@?)a C{ L s
Vvt -g3)a o

Cjoeé nol  Goonm ot 104 f
0t ms {CJ £0(J(S50 ml\f



%.
(:0\0\ +
U__:Vf)b |
1) 4 h:
f_
[v
-
1)
b
< NM[
»

gv;hz
€Ch
e
/:
8;&
"
i
5 C’@)



,@ . -
6) CMIudQ Tl [7(,-}:“"’;%’ rache t pf)-r’f'sf-fé//;/ (oce]
Potally Couect > fgans i gne Gils a cesdb il caraf

14 moas  [hal "h\gfe (’5. a Tieal glate = Wihar ¢
ho fearsiiion . /0136‘5}@3{

W@” Yo 9@1 fo o P():-/U’ M4
gca (X 0)
’41\3 Jrap P)?Q/ M\Vﬂ y = =() h{ vale of
X (s The @CJ begpuse the szm it Prayyal
X = Q}Cd(x 0) = gcd(o)h)
\/,)U Cwr pot G any loor Ty
(e (Y/)

P h
be\f@%@ dwde L’f () Culor

N\‘1 do we coc.\- desieed %,\'ﬁu i

Za/b 744,07
§}_4_<g q’: A x +b\/

% 9= g (o)



d/E\,lP W“/ /Yle(,lﬂ;'/’\g ‘}O(ff!;rdﬁf/; CP['P/ af ot 77‘3 e
0€ 'f(dngjuoﬂb (25 m Fvcld@f’ ()[50/‘7”’3

Bocouse d s e Sane Thing Oxcopl wth extaq

papec worl o g

T R \/[,/a(’gw ls Mo Comm0ﬂ17 ‘L&nw»n s /?7@ €>k7(eq,o/ecf
EUC]}AEM ne) alﬁwﬁamf“

] ” t’ ‘ o | \
A (o ’MZ ° 0 hadg ﬂ‘{ ¢ €macm(1pf5 (xS [ Ieg s
- i \ ‘
ombiratus Js ¢ lnegr — Com bidlion of @ and b

L lost non~Jer (emainlor s Yhe |inar  Comhiation
We o {00} 9 {@r

T Pl ek s o o fomal 70k
O{ W bv\ﬂﬂgﬁ: ﬁi?ji)/{m



Massachusetts Institute of Technology
6.042]/18.062], Spring ’11: Mathematics for Computer Science March 4
Prof. Albert R Meyer revised Saturday 5" March, 2011, 13:39

Solutions to Problem Set 4

Reading: Chapter 8-8.3. GCD’s and Unique factorization, by Monday, Feb 28
Chapter 8.4-8.6. Arithmetic mod a prime, by Wed. Mar. 2
Chapter 8.7. Euler’s Theorem, by Fri. Mar. 4
Chapter 8.8-8.9. The RSA crypto-system, by Mon. Mar. 7
This pset covers Ch. 7 and Ch. 8-8.6.

Problem 1.

One way to determine if a string has matching brackets, that is, if it is on the set, RecMatch, I is to start with
0 and read the string from left to right, adding 1 to the count for each left bracket and subtracting 1 from the
count for each right bracket. For example, here are the counts for two sample strings:

el Lasksdl abadinedo kg
010-10123432T1°0
I S S ! S i T
01 2 32 2 1 @270

A string has a good count if its running count never goes negative and ends with 0. So the second string
above has a good count, but the first one does not because its count went negative at the third step. Let

GoodCount ::= {s € {],[ }* | s has a good count}.

The empty string has a length 0 running count we’ll take as a good count by convention, that is, A €
GoodCount. The matched strings can now be characterized precisely as this set of strings with good counts.

(a) Prove that GoodCount contains RecMatch by structural induction on the definition of RecMatch.

Solution. We prove by induction on the definition of RecMatch (that is, structural induction) that every
element of RecMatch counts well, so RecMatch is contained in GoodCount. The induction hypothesis is

P(s) ::= s € GoodCount.

Proof. Base Case: P(A) holds since the count of the empty string ends when it starts at zero.
Inductive Step: Assume P(s) and P(t) are true. We need to show that P([ s ] ¢) is true.

The count values for [ s ]¢ start with 0. Reading the initial left bracket yields 1 as the next count value.
This 1 serves as the start of a series of count values exactly equal to the count values of s, with each value
incremented by one. Since s € GoodCount by hypothesis, these incremented count values begin with 1,
always stay positive, and end with 1. The right bracket immediately after s reduces the ending count to
0. This O serves as the start of the remaining count values which are exactly the count values of . Since

Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .
"The set, RecMatch, of strings of brackets is defined recursively as follows:

o Base case: A € RecMatch.

o Constructor case: If 5,¢ € RecMatch, then [ s ] 1 € RecMatch.



2 Solutions to Problem Set 4

t € GoodCount, these remaining values never go negative and end at 0. Hence the entire sequence of count
values for | s ] ¢ starts with 0, never goes negative, and ends with 0, which proves that [ s ] 1 € GoodCount.

(b) Conversely, prove that RecMatch contains GoodCount.

Hint: By induction on the length of strings in GoodCount. Consider when the running count equals 0 for
the second time.

Solution. Proof. We show that every string r € GoodCount is in RecMatch by strong induction on the
length of r. The induction hypothesis is

Q(n) ::= Vr € GoodCount. |r| = n IMPLIES r € RecMatch.

Base Case n = 0: In this case there is only one string of length n, namely the empty string, which is in
RecMatch by definition, proving Q(0).

Inductive Step: Assume that Q (k) is true for all k£ < n, we need to prove that Q(n + 1) is also true.
So suppose r is a length n + 1 string that counts well. We must prove that r € RecMatch.

Now since r has a good count, it must start with a left bracket (or else the count would immediately go
negative). Likewise, since the count for r returns to the value 0 by the end, r must end with right bracket. So
there must be a first right bracket in r after which the count returns to 0. Let 5 be the substring of r between
the initial left bracket and this right bracket. So

r:[s]t

for some string ¢.

Since counts only change by one as each bracket character is read, and the count for r first returns to 0
after the right bracket following s, the count during s must start and end with 1 and must stay positive in
between. But this implies that a count for s alone, which would start with 0, would also end with 0 and stay
nonnegative in between. That is, s by itself has a good count. Since the length of s € GoodCount is less
than the length of r, we have by strong induction that s € RecMatch.

Further, we know the count for r returns to 0 after the right bracket following s, and since r € GoodCount,
the count ends with 0 again and stays nonnegative in between. But this implies that # has a good count, and
since the length of 7 is less than the length of r, we have by strong induction that 1 € RecMatch. Now by
the second case in the definition of RecMatch, we conclude r = [ s ]t € RecMatch.

Problem 2. (a) Use the Pulverizer to find the inverse of 13 modulo 23 in the interval [1,23).

Solution. We first use the Pulverizer to find s, ¢ such that ged(23, 13) = 5-23 + ¢ - 13, namely,
1=4-23—-7-13.

This implies that —7 is an inverse of 13 modulo 23.



Solutions to Problem Set 4 3
Here is the Pulverizer calculation:
X y rem(x,y) = x—gq-y
23 13 10 = 23—-13
13 10 3 = 13-10
= 13—-(23-13)
= (-1)-23+2-13
10 3 1 = 10-3-3
= (23—-13)—=3-((-1)-23+2-13))
= (4.-23—-7-13
3 1 0 =
To get an inverse in the specified range, simply find rem(—7, 23), namely 16.
E

(b) Use Fermat’s theorem to find the inverse of 13 modulo 23 in [1, 23).

Solution. Since 23 is prime, Fermat’s theorem implies 13%2>=2 .13 = 1 (mod 23) and so rem (132372, 23)
is the inverse of 13 in the range {1,...,22}. Now using the method of repeated squaring, we have the

following congruences modulo 23:
132

134

138

1316

1321

Problem 3.

Define the Pulverizer State machine to have:

states ::= N6
start state ::= (@, b,0,1,1,0)
transitions ::= (x, y,s,¢,u,v) —>

(y, rem(x, y), u —sq, v—1q, s, t)

m Il

Il

i

169
rem(169,23) =8

82
64
rem(64,23) = 18

182
324
rem(324,23) =2

1316.134.13
4-18-13
(4-6)-(3-13)
24.39

1-39

rem(39,23) = [16].

(wherea = b > 0)

(for ¢ = qent(x, y),y > 0).



4 Solutions to Problem Set 4

(a) Show that the following properties are preserved invariants of the Pulverizer machine:

ged(x, y) = ged(a, b), (D
sa+th =y, and 2)
ua + vbh = x. (3)

Solution. To verify that these are preserved invariants, suppose
(x, y,8,t,u,9) — (x', ¥, s, ¢, o, v').

Note that (1) is the same one we observed for the Euclidean algorithm. This leaves proving that (2) and (3)
hold for the new state x’, y’,s", ¢/, u’, v'.

Now according to the procedure, u’ = 5,v’ = t,x’ = y, so (3) holds for v/, v/, x’ because of (2) for s, 1, y.
Also,

s’ = Sgapt il =gt by
where g = qent((, x), y), so
sa+tb=@u—-qs)a+v—gt)b=ua+vb—gqg(sa+th)=x—qy =y,
and therefore (2) holds for s, ¢/, y'. O

(b) Conclude that the Pulverizer machine is partially correct.

Solution. We claim that on termination, the values of s and ¢ at termination are the desired coefficients, that
is,

gcd(a,b) = sa + tb.

To prove this, we first check that all three preserved invariants are true just before the first time around the
loop. Namely, at the start:

x=a,y=bs=0,t=1 SO
sa+th=0a+1b=>b=y confirming (2).

Also,
u=1,v=0, SO
ua+vb=la+0b=a=x confirming (3).

Now by the Invariant Principle, they are true at termination. But at termination, y | x so preserved invari-
ants (1) and (2) imply
ged(a, b) = ged(x, y) = y = sa + tb.

so we have the desired coefficients s and ¢. o

(c) Explain why the machine terminates after at most the same number of transitions as the Euclidean
algorithm.

Solution. Note that x, y follows the transition rules of the Euclidean algorithm state machine given in
equation (8.3), except that this extended machine stops one step sooner. O
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Euler's Theorem

i) DS Albert R Meyer  March 4, 2011 lec 5F.1

Euler ¢ function
d(n) =
#ke [On) st

k has a (mod n)
inverse

IGe) O Albert R Meyer  March 4,2011 lec 5F.2

Euler ¢ function

d(n) ::i= # k € [O,n) s.t.

k rel. prime to n
o) =60 1123456
o(12) =4

01,2,3,45,67,89,10,11

=) OS50 Alert R Meyer  March 4, 2011 lec 5F.3

s Calculating (l)

If p prime, everything in
[1,p) is rel. prime to p, so

.......

Euler & function
®O)? 0123456,7,8

k rel. prime to 9 iff
k rel. prime to 3
3 divides every 3rd number

so, (9) = 9-(9/3)=6

one Alert R Meyer  March 4,2011 lec 5F4

Qoo
el

&8 Calculating (I)(pk)
@1opl 2 ph iptel
p divides every pth number

p*/p of these numbers
are not rel. prime to pX

Albert R Meyer March 4, 2011 lec 5F.5

() D& Albert R Meyer  March 4, 2011 lec 5F.6




Calculating (I)(pk)

e e e o

i OS5 AbertR Meyer  March 4, 2011 lec 5F.8

Calcula‘hng (1)(0 b)

For' a, b relahvely prvme

o(a b) = ¢(a) o(b)

......................................................

pf. Class prob. Ano'rher
way later by "counting.”

Alert R Meyer  March 4,201 lec 5F.9

[=]
e}

§§n Calculating (l)(a'b)
o(12) = ¢(3-4)
=6(3) ¢(4)

= (3 - 1)-(22- 22
—2.(4-2)=4

« Q08
2m:  Euler's Theorem

For k relatively
pr'lme to n,

'@ OED Alert R Meyer March 4, 2011 lec 5F 10

« Q00!
s Fermat's “Little” Theorem

special case:
kp-1 =1 (mod p)
for prime p

[E055 AbertR Meyer  March 4, 2011 lec 5F.12

Albert R Meyer  March 4, 2011 lec 5F.11

+ 300
25 Proof of Euler's Theorem

nEi:=

{me[1,n)| m rel prime to n}

Note: m,k € n* implies
rem(mk,n) € n*

Albert R Meyer March 4, 2011 lec 5F 14




5 Proof of Euler's Theorem

nk =

{me[1,n)| m rel prime to n}
lemma:

 mult by ken*, permutes n* |

iR permuting (mod 9)
$(9) = 32-3=6

98= 112457 8
2 20 dn8iin 5 7

Proof of Euler's Thm

say n*= {m;,m,,..,my}, ken*
hone of mk, mk, ..., mk

= (mod n) because k cancels
so each mk = m; (mod n)
for a unique m;

(S O85 Albert R Meyer  Morch 4, 2011 lec 5F.21

permuting (mod 9)
®(9)=32-3=6
9= 112 45 7.8

AlberT R Meyer  March 4, 2011 lec 5£.17

permuting (mod 9)
d>(9)=32-3=6

9i= 1 24578
282 A8 191
7 7biBa>

' Proof of Euler's Thm

in par"rlcular'
iy i -

= (mik): (moK)~(migk) (mod n)
now cancel the m;'s

AlbertR Meyer  March 4,201 lee 5F.22
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