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In-Class Problems Week 8, Fri.

Problem 1.
Figures 1-4 show different pictures of planar graphs.
b ¢ b
C
a (1 a 'd
figure 1 figure 2
b g b
o
a d a d
e e
figure 3 figure 4

(a) For each picture, describe its discrete faces (closed walks that define the region borders).

(b) Which of the pictured graphs are isomorphic? Which pictures represent the same planar embedding?—
that is, they have the same discrete faces.

planar embedding. For each application of a constructor rule, be sure to indicate the faces (cycles) to which
the rule was applied and the cycles which result from the application.

Problem 2.
Prove the following assertions by structural induction on the definition of planar embedding.

(a) In a planar embedding of a graph, each edge occurs exactly twice in the faces of the embedding.

(b) In a planar embedding of a connected graph with at least three vertices, each face is of length at least
three.
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Problem 3.
A simple graph is triangle-free when it has no cycle of length three.

(a) Prove for any connected triangle-free planar graph with v > 2 vertices and e edges,
e <2v—4. (1)

Hint: Similar to the proof that e < 3v — 6. Use Problem 2.
(b) Show that any connected triangle-free planar graph has at least one vertex of degree three or less.

(¢) Prove by induction on the number of vertices that any connected triangle-free planar graph is 4-
colorable.

Hint: use part (b).

Appendix

Definition. A planar embedding of a connected graph consists of a nonempty set of closed walks of the
graph called the discrete faces of the embedding. Planar embeddings are defined recursively as follows:

Base case: If G is a graph consisting of a single vertex, v, then a planar embedding of G has one discrete
face, namely, the length zero closed walk, v.

Constructor case (split a face): Suppose G is a connected graph with a planar embedding, and suppose a
and b are distinct, nonadjacent vertices of G that appear on some discrete face, y, of the planar embedding.
That is, y is a closed walk of the form

a”p
where @ is a walk from @ to b and B is a walk from b to a.' Then the graph obtained by adding the edge
(a—b) to the edges of G has a planar embedding with the same discrete faces as G, except that face y is
replaced by the two discrete faces”

a” (b (b—a) a) and (a (a—b) b)"B
as illustrated in Figure 1.

Constructor case (add a bridge): Suppose G and H are connected graphs with planar embeddings and
disjoint sets of vertices. Let y be a discrete face of the embedding of G and suppose that y begins and ends
at vertex a.

Similarly, let § be a discrete face of the embedding of H that begins and ends at vertex b.

Then the graph obtained by connecting G and H with a new edge, (a—b), has a planar embedding whose
discrete faces are the union of the discrete faces of G and H, except that faces y and § are replaced by one
new face

¥y " (a {a—b) b)"§" (b (b—a) a).
This is illustrated in Figure 2, where the vertex sequences of the faces of G and H are:
G :{axyza, axya, ayza} H :{btuvwb, btvwb, tuvt},
and after adding the bridge (a—»5), there is a single connected graph whose faces have the vertex sequences

{axyzabtuvwba, axya, ayza, btvwb, tuvt}.

! If a walk f ends with a vertex, v, and a walk r starts with the same vertex, v, their merge, £7r. is the walk that starts with f and
continues with r. Two walks can only be merged if the first ends with the same vertex, v, that the second one starts with.

2There is a minor exception to this definition of embedding in the special case when G is a line graph beginning with a and
ending with . In this case the cycles into which y splits are actually the same. That’s because adding edge (a—b) creates a
cycle that divides the plane into “inner” and “outer” continuous faces that are both bordered by this cycle. In order to maintain the
correspondence between continuous faces and discrete faces in this case, we define the two discrete faces of the embedding to be
two “copies” of this same cycle.
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a

¥ b
Figure 1 The “split a face” case: awxbyza splits into awxyba and aby:za.

!

Figure 2 The “add a bridge” case.

Theorem 3.1 (Euler’s Formula). If a connected graph has a planar embedding, then
v—e+ f=2
where v is the number of vertices, e is the number of edges, and [ is the number of faces.
Corollary 3.2. Suppose a connected planar graph has v = 3 vertices and e edges. Then
e <3v—6.

Proof. By definition, a connected graph is planar iff it has a planar embedding. So suppose a connected
graph with v vertices and e edges has a planar embedding with f faces. By Problem 2.a, every edge is
traversed exactly twice by the face boundaries. So the sum of the lengths of the face boundaries is exactly
2e. Also by Problem 2.b, when v > 3, each face boundary is of length at least three, so this sum is at least
3f. This implies that

3f < 2e. (2)

But /' = e — v + 2 by Euler’s formula, and substituting into (2) gives
Je—v+2)<2e
e—3v+6<0

e<3v-—-06

Corollary 3.3. K5 is not planar.

Proof.
e=10>9=3v-—6.
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Solutions to In-Class Problems Week 8, Fri.

Problem 1.
Figures 1-4 show different pictures of planar graphs.
b ¢ b
c
a d a d
figure 1 figure 2
b ¢ b
c
a d a d
e - e
figure 3 figure 4

(a) For each picture, describe its discrete faces (closed walks that define the region borders).

Solution. Figs 1 & 2: abda, bedb, abeda. Fig 3: abcdea, adea,abda,bedb. Fig 4: abceda, abdea, bdcb,
adea. O

(b) Which of the pictured graphs are isomorphic? Which pictures represent the same planar embedding?—
that is, they have the same discrete faces.

Solution. Figs 1 & 2 have the same faces, so are different pictures of the same planar drawing. Figs 3 & 4

both have four faces, but they are different, for example, Fig 3 has a face with 5 edges, but the longest face
in Fig 4 has 4 edges. |

(¢) Describe a way to construct the embedding in Figure 4 according to the recursive Definition ?? of

planar embedding. For each application of a constructor rule, be sure to indicate the faces (cycles) to which
the rule was applied and the cycles which result from the application.

§ 5
Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .
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Solution. Here’s one way. (The constructor steps could actually be done in any order.)

recursive step faces
vertex a (base case) a
vertex b (base) b
(a—b) (bridge) aba
vertex ¢ (base) c
{(b—c) (bridge) abcba
vertex d (base) d
(c—d) (bridge) abcdcba
{a—d) (split) dabcd, dabcd
(b—d) (split) dabd, dbcd, abcda
vertex ¢ (base) e
(d—e) (bridge) dedabd, dbcd, abcda
(a—e) (splity  abdea, adea, dbcd, abcda

Problem 2.
Prove the following assertions by structural induction on the definition of planar embedding.

(a) In a planar embedding of a graph, each edge occurs exactly twice in the faces of the embedding.

Solution. Proof. The induction hypothesis is that if £ is a planar embedding of a graph, then each edge is
occurs exactly twice in the faces of £.

Base case: There is one vertex and no edges, so this case holds vacuously.

Constructor case (face-splitting): The only change is that one face of £ splits into two new faces, each
including the new edge once.

Constructor case (bridge between two connected graphs): The only change is that two faces merge into one
face that has two occurrences of the new bridging edge. So the occurrences of other edges are unchanged,
and the new edge occurs twice in the new face.

So in any case, all edges of £ are occur exactly twice. This completes the proof of the Constructor case. We
conclude by structural induction that for all planar embeddings, £, then each edge occurs exactly twice in
the faces of £.

(b) In a planar embedding of a connected graph with at least three vertices, each face is of length at least
three.

Solution. Proof. The induction hypothesis is that if £ is a planar embedding of a graph with at least three
vertices, then all faces in £ are of length at least three.

Base case: There is one vertex, so this case holds vacuously.

Constructor case: (face-splitting) An edge (a—»b) is added between nonadjacent vertices a, b on the same
face. This face is replaced by two new faces of the form abc ...a and abd ...a where ¢ # d are vertices
different from a and b. So both new faces are of length at least 3; no other faces change.

Constructor case: (bridge between two connected graphs)
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case 1: (both graphs have one vertex). Connecting these graphs with a bridge gives a graph with fewer than
three vertices, so this case holds vacuously.

case 2: (one graph has exactly two vertices and the other has at most two vertices). Connecting these graphs
with a bridge yields a line graph of length two or three whose unique embedding is a cycle of length four or
six going from one end of the graph to the other and back. In any case, the one face has length more than
three.

case 3: (one graph has at most two vertices and the other has at least three vertices). Connecting replaces
the face of the vertex graph with at most two vertices and a face of the other graph with a face of length at
least 2 + 3 = 5, and leaves all other faces unchanged. So all faces are indeed of length at least three.

case 4: (both graphs have at least three vertices). Connecting replaces two faces of length at least three by
a single face of length at least 2 4+ 3 4 3 = 8, and leaves all other faces unchanged. So all faces are indeed
of length at least three.

So in any case, all faces of connected planar embedding of graphs with at least three vertices are indeed of
length at least three. This completes the proof of the Constructor case and the structural induction.

O
Problem 3.
A simple graph is triangle-free when it has no cycle of length three.
(a) Prove for any connected triangle-free planar graph with v > 2 vertices and e edges,
e <2v—4. (1)

Hint: Similar to the proof that e < 3v — 6. Use Problem 2.

Solution. The proof that e < 2v — 4 for any connected triangle-free planar graph G with more than two
vertices is identical to the proof of the same inequality for bipartite graph planar graphs:

Proof. By Problem 2.b, every face is of length at least 3. But in a triangle-free graph there are no faces of
size 3, so all must be of length at least 4.

Each edge is occurs exactly twice in the faces, so

2= Z length(f) > Z 4 =4f 2
f € faces S € faces
By Euler’s formula, f = e — v + 2, so substituting for f in (2), yields
2e = 4(e —v + 2),

which simplifies to (1).

(b) Show that any connected triangle-free planar graph has at least one vertex of degree three or less.

Solution. If v < 4, all vertices have degree at most three, so the claim is immediate for v < 4.

Also, by the Handshaking Lemma, the sum of degrees is 2e so the average degree is 2e/v. By part (a),

2e/v < (4v —8)/v < 4 for v > 2. But the average degree can be less than 4 only if at least one vertex has
degree less than 4.

It follows that for all v > 0, there is a vertex of degree three or less. |
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(¢) Prove by induction on the number of vertices that any connected triangle-free planar graph is 4-
colorable.

Hint: use part (b).
Solution.

Proof. By strong induction on the number of vertices with the induction hypothesis that if a graph is con-
nected, planar and triangle-free then it is 4-colorable.

base case: A planar graph with a single vertex is trivially connected, triangle-free and 1-colorable.

inductive step: Any connected triangle-free planar graph G with 2 or more vertices has a vertex of degree 3
or less. Removing this vertex and any incident edges results in a graph H whose connected components are
subgraphs of a planar graph and therefore planar. They are also triangle-free since removing vertices/edges
from a graph with no triangles cannot create triangles. Since the components have strictly fewer vertices than
G, the induction hypothesis implies each connected component is 4-colorable and thus H is 4-colorable.

A 4-coloring of G is then given by a 4-coloring of H where the removed vertex is colored with a color not
used for the (at most 3) adjacent vertices. B

Appendix

Definition. A planar embedding of a connected graph consists of a nonempty set of closed walks of the
graph called the discrete faces of the embedding. Planar embeddings are defined recursively as follows:

Base case: If G is a graph consisting of a single vertex, v, then a planar embedding of G has one discrete
face, namely, the length zero closed walk, v.

Constructor case (split a face): Suppose G is a connected graph with a planar embedding, and suppose a
and b are distinct, nonadjacent vertices of G that appear on some discrete face, y, of the planar embedding.
That is, y is a closed walk of the form

a”p
where « is a walk from @ to b and B is a walk from b to a.! Then the graph obtained by adding the edge

(a—>b) to the edges of G has a planar embedding with the same discrete faces as G, except that face y is
replaced by the two discrete faces®

a” (b (b—a) a) and (a (a—b) b)"B

as illustrated in Figure 1.

Constructor case (add a bridge): Suppose G and H are connected graphs with planar embeddings and
disjoint sets of vertices. Let y be a discrete face of the embedding of G and suppose that y begins and ends
at vertex a.

Similarly, let § be a discrete face of the embedding of H that begins and ends at vertex b.

! If a walk f ends with a vertex, v, and a walk r starts with the same vertex, v, their merge, 1, is the walk that starts with f and
continues with r. Two walks can only be merged if the first ends with the same vertex, v, that the second one starts with.

2There is a minor exception to this definition of embedding in the special case when G is a line graph beginning with a and
ending with b. In this case the cycles into which y splits are actually the same. That’s because adding edge (a—b) creates a
cycle that divides the plane into “inner” and “outer” continuous faces that are both bordered by this cycle. In order to maintain the
correspondence between continuous faces and discrete faces in this case, we define the two discrete faces of the embedding to be
two “copies” of this same cycle.
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y b

Figure 1 The “split a face” case: awxbyza splits into awxyba and abyza.

Figure 2 The “add a bridge” case.

Then the graph obtained by connecting G and H with a new edge, (a—b), has a planar embedding whose
discrete faces are the union of the discrete faces of G and H, except that faces y and § are replaced by one
new face

vy (a {(a—b) b)"8 (b (b—a) a).

This is illustrated in Figure 2, where the vertex sequences of the faces of G and H are:
G :{axyza, axya, ayza} H : {btuvwb, btvwb, tuvt},
and after adding the bridge (a—b), there is a single connected graph whose faces have the vertex sequences

{axyzabtuvwba, axya, ayza, btvwb, tuvt}.

Theorem 3.1 (Euler’s Formula). If a connected graph has a planar embedding, then
v—e+ f=2
where v is the number of vertices, e is the number of edges, and f is the number of faces.
Corollary 3.2. Suppose a connected planar graph has v > 3 vertices and e edges. Then
e <3v—6.

Proof. By definition, a connected graph is planar iff it has a planar embedding. So suppose a connected
graph with v vertices and e edges has a planar embedding with f faces. By Problem 2.a, every edge is
traversed exactly twice by the face boundaries. So the sum of the lengths of the face boundaries is exactly
2e. Also by Problem 2.b, when v > 3, each face boundary is of length at least three, so this sum is at least
3f. This implies that

B =% 3
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But f = e — v 4+ 2 by Euler’s formula, and substituting into (3) gives

3e—v+2) <2e
e—=3v+6<0

e<3v—6

Corollary 3.3. Ks is not planar.

Proof.
e=10>9=3v-6.
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In-Class Problems Week 9, Mon.

Problem 1.
You've seen this neat trick for evaluating a geometric sum:

S=fdzkasd, A
g8 =z fag®i . P el
§—z5=1-—z"1
1—2”+1

|-z

Use the same approach to find a closed-form expression for this sum:

T=1z+2z24+323+... +nz"

Problem 2.

An explorer is trying to reach the Holy Grail, which she believes is located in a desert shrine d days walk
from the nearest oasis. In the desert heat, the explorer must drink continuously. She can carry at most 1
gallon of water, which is enough for 1 day. However, she is free to make multiple trips carrying up to a
gallon each time to create water caches out in the desert.

For example, if the shrine were 2/3 of a day’s walk into the desert, then she could recover the Holy Grail
after two days using the following strategy. She leaves the oasis with | gallon of water, travels 1/3 day into
the desert, caches 1/3 gallon, and then walks back to the oasis—arriving just as her water supply runs out.
Then she picks up another gallon of water at the oasis, walks 1/3 day into the desert, tops off her water
supply by taking the 1/3 gallon in her cache, walks the remaining 1/3 day to the shrine, grabs the Holy
Grail, and then walks for 2 /3 of a day back to the oasis—again arriving with no water to spare.

But what if the shrine were located farther away?

(a) What is the most distant point that the explorer can reach and then return to the oasis if she takes a total
of only 1 gallon from the oasis?

(b) What is the most distant point the explorer can reach and still return to the oasis if she takes a total of
only 2 gallons from the oasis? No proof is required; just do the best you can.

(¢) The explorer will travel using a recursive strategy to go far into the desert and back drawing a total of n
gallons of water from the oasis. Her strategy is to build up a cache of n — | gallons, plus enough to get home,
a certain fraction of a day’s distance into the desert. On the last delivery to the cache, instead of returning
home, she proceeds recursively with her n — 1 gallon strategy to go farther into the desert and return to the
cache. At this point, the cache has just enough water left to get her home.

Prove that with n gallons of water, this strategy will get her H, /2 days into the desert and back, where H,
is the nth. Harmonic number:

1 1 1 1
Hyt=—4-4+-4-4 -
" 1 2 3 & g n
Conclude that she can reach the shrine, however far it is from the oasis.

Creative Commons 2288 201 1, Eric Lehman, F Tom Leighton, Albert R Meyer .
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(d) Suppose that the shrine is d = 10 days walk into the desert. Use the asymptotic approximation
H, ~ Inn to show that it will take more than a million years for the explorer to recover the Holy Grail.

Problem 3.

There is a number a such that } 72

;=1 17 converges iff p < a. What is the value of a? Prove it.

Problem 4.
Suppose f,g: Nt - N*tand f ~ g.
(a) Provethat 2f ~ 2g.

(b) Prove that f2 ~ g2.

(¢) Give examples of f and g such that 2/ £ 28,
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Solutions to In-Class Problems Week 9, Mon.

Problem 1.

An explorer is trying to reach the Holy Grail, which she believes is located in a desert shrine d days walk
from the nearest oasis. In the desert heat, the explorer must drink continuously. She can carry at most 1
gallon of water, which is enough for 1 day. However, she is free to make multiple trips carrying up to a
gallon each time to create water caches out in the desert.

For example, if the shrine were 2/3 of a day’s walk into the desert, then she could recover the Holy Grail
after two days using the following strategy. She leaves the oasis with 1 gallon of water, travels 1/3 day into
the desert, caches 1/3 gallon, and then walks back to the oasis—arriving just as her water supply runs out.
Then she picks up another gallon of water at the oasis, walks 1/3 day into the desert, tops off her water
supply by taking the 1/3 gallon in her cache, walks the remaining 1/3 day to the shrine, grabs the Holy
Grail, and then walks for 2/3 of a day back to the oasis—again arriving with no water to snare.-

But what if the shrine were located farther away?

(a) What is the most distant point that dre explorer can reach and then return to the oasis if she takes a total
of only 1 gallon from the oasis?

Solution. At best she can walk 1/2 day into the desert and then walk back. O

(b) What is the most distant point the explorer can reach and still return to the oasis if she takes a total of
only 2 gallons from the oasis? No proof is required; just do the best you can.

Solution. The explorer walks 1/4 day into the desert, drops 1/2 gallon, then walks home. Next, she walks
1/4 day into the desert, picks up 1/4 gallon from her cache, walks an additional 1/2 day out and back, then
picks up another 1/4 gallon from her cache and walks home. Thus, her maximum distance from the oasis is
3/4 of a day’s walk. |

(c) The explorer will travel using a recursive strategy to go far into the desert and back drawing a total of n
gallons of water from the oasis. Her strategy is to build up a cache of n — 1 gallons, plus enough to get home,
a certain fraction of a day’s distance into the desert. On the last delivery to the cache, instead of returning
home, she proceeds recursively with her n — 1 gallon strategy to go farther into the desert and return to the
cache. At this point, the cache has just enough water left to get her home.

Prove that with n gallons of water, this strategy will get her H, /2 days into the desert and back, where H,

is the nth Harmonic number: { 1 i i
Hyi=—4+—-+—-+--+ -
n 1 + 3 + 3 + + .

Conclude that she can reach the shrine, however far it is from the oasis.

Solution. To build up the first cache of n — 1 gallons, she should make n trips 1/(2n) days into the desert,
dropping off (n —1)/n gallons each time. Before she leaves the cache for the last time, she has n — 1 gallons
plus enough for the walk home. Then she applies her (n — 1)-day strategy. So letting D, be her maximum
distance into the desert and back, we have

1
Dn = .2—.'1 + Dn—]-

Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .
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2n 2(n—=1) 2(n-2) 2.2 2.1
1/1 1 1 1 1
=5(E+(n—1)+(n—2)+"'+3+7)
==

(d) Suppose that the shrine is d = 10 days walk into the desert. Use the asymptotic approximation
Hp ~ Inn to show that it will take more than a million years for the explorer to recover the Holy Grail.

Solution. She obtains the Grail when:
H, Inn
— =~ — > 10.
2 2

This requires n > e?® = 4.8 - 10® days > 1.329M years.

T |
Problem 2.
There is a number a such that } s, i? converges iff p < a. What is the value of a? Prove it.
Solution. a = —1.
For p = —1, the sum is the harmonic series which we know does not converge. Since the term i is
increasing in p for i > 1, the sum will be larger, and hence also diverge for p > —1.
For p < —1 there exists an € > 0 such that p = —(1 + €). By the integral method,
ot fos}
Y it <14 f ey
i=1 :
=1+e'—€! lim ¢
a—>00
=1+¢!
< 00
Hence the sum is bounded above, and since it is increasing, it has a finite limit, that is, it converges. ]
Problem 3.
Suppose f,g : Nt — N+t and f ~ g.
(a) Provethat2f ~ 2g.
Solution.
o L
28 o2

so they have the same limit as n — co.
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(b) Prove that f? ~ g2.

Solution.

foR _ S0 fe) L S

lim

lim

(c) Give examples of f and g such that 2/ £ 28,

Solution.

fm)yz=n+1
g(n)si=n.

Then f ~ g since lim(n + 1)/n = 1,but2f =27+l =2.2" =2.28 5o

2
11m2—g:27é1.

Problem 4.
You’ve seen this neat trick for evaluating a geometric sum:

S=14+z+2z2+...+2"
zS=z+z2+ ...+ 2" + "1
S—z8S=1-—z"1

T zn+l

S =

11—z

Use the same approach to find a closed-form expression for this sum:
T =1z+22 432> +... +nz"

Solution.

zT =122 4223 + 3z + ... + nz**1

T—zT =z+z%+23 ... + 2" —pz"t!
I—Z"+1

zﬁ—l—nz"

e i s
T (1-2)2 11—z

+1

T

f)
noo g(n)2  n—oo g(n) g(n)  n-—oo g(n) n—oo g(n)

1-

1=
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Mini-Quiz Apr. 6

"’.-‘4(.,[ 6J(O_E.Qf3(

Your name: H(( hU /

Circle the name of your TA and write your table number:

)
Ali Nick Oscar Table number ( (

e This quiz is closed book. Total time is 30 minutes.

e Write your solutions in the space provided. If you need more space, write on the back of the sheet
containing the problem. Please keep your entire answer to a problem on that problem’s page.

e GOOD LUCK!

DO NOT WRITE BELOW THIS LINE

Problem | Points | Grade | Grader
1 6 f’) O3S

2 | 3 @ U3
3 3|2 |om

4 5 250 Alc

5 3 % e B
Total 20 f! g

Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .
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Problem 1 (6 points). (a) A simple graph has 8 vertices and 24 edges. What is the average degree per
vertex?

v \HC{”AG}‘]C{[{ b _Z O]% ) 2) lE}
Feavg < 2.7y
Uy

Avg = L Q/

2 Your name:

Mini-Quiz Apr. 6

(b) A connected planar simple graph has 5 more edges than it has vertices. How many faces does it have?

Folod e -2
v | = =2

T 1f 59
1/

(¢) A connected simple graph has one more vertex than it has edges. Is it necessarily planar?
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(d) If your answer to the previous part was yes, then how many faces can such a graph have? If your answer
was no, then give an example of a nonplanar connected simple graph whose vertices outnumber its edges by

U,’eﬂ(*?

1 he\ds 0 WC:(:Z_”\[ te
VI W VRS A

one.

_ K |
vhen V7L (-7-910  f<2-Ar3 (=1

'
( ( \ (e) Consider the graph shown in Figure 1. How many distinct isomorphisms exist between this graph and
4 itself? (Include the identity isomorphism.) E—
~—— /
( \ ! ! a

c
Figure 1
Jost ] wlion K
% L LL/ (-/‘?{/ﬂ(f/ﬁ/f /Q
— C',/?{’(‘- I/ (;(fl \1 }"-f\l(:]‘:;(j 1'{{ L’/ f f(’ i"’/ '-i:?"’ > :;f ‘1
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Problem 2 (3 points).

/ The n-dimensional hypercube, Hy, is a simple graph whose vertices are the binary strings of length n. Two

vertices are adjacent if and only if they differ in exactly one bit. Consider for example H3, shown in Fig-

ure 2. (Here, vertices 111 and 011 are adjacent because they differ only in the first bit, while vertices 101

and 011 are not adjacent because they differ in both the first and second bits.) [ : d } dacd
% \fﬁ’lm‘fﬁ.@} N (&5

Explain‘why it is impossible to find two spanning trees of H3 that have no edges in common.
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Problem 3 (3 points).

Consider the graph shown in Figure 3. Determine a valid coloring of the graph, using as few colors as
possible. (Simply write your proposed color for each vertex next to that vertex. You may use R for red, G

for green, etc.) \/\/ [ (\ /90 Hj’w

ey

Figure 3
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Problem 4 (5 points). (a) Consider the bipartite graph G in Figure 4. Is it possible to find a matching
that covers L(G)? If yes, explain what property of the graph guarantees the existence of such a matching.
(Show that the graph @(llilgj_gst_lm._l)_{openy and what this implies. Full credit will not be given for merely
identifying a matching.) If no, identiments a matching.

£ 7 B
/a vy

— L(G) R(G) ~~

MO{{LM{/Q _ ((,{ g Figure} o

(QW‘S - C\f 1/0/7'::‘9.5 ffm'f (P”f(*‘lf)
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(b) Consider the bipartite graph H in Figure 5. Is it possible to find a matching that covers L(H)? If
yes, explain what property of the graph guarantees the existence of such a matching. (Show that the graph
exhibits this property and what this implies. Full credit will not be given for merely identifying a matching.)
If no, identify a bottleneck that prevents a matching.

(oo dll dehce it
‘/2!__-(7 A JO (s (AW F R

R(H) ~~

\1 pg | ‘L’i ': | — | Figurei H.
‘*’f) f } 't[(?f a f'é ’[ €L

. | ~ M«v Constrap @
? Ns  M0on K L . ————

‘ " 1 ’ L = -.‘ ’ ,"f f /1) \]
j';r M'flf[p Fa WNETY .1 " ah | \mdl (/)VO{,J

R \ IVTIT ‘U-MFI: ! L_LH\ . J
lof ,
Gea def m Pouns  pagg
Jl“



8 Your name: P‘O W V! Mini-Quiz Apr. 6

Problem 5 (3 points).
In the Mating Ritual, suppose Tiger is one of the boys and Elin is one of the girls. Which of the following

) are preserved invariants in general?

1. Tiger is Elin’s only suitor.

/2. On Tiger’s current list, the girl whom he prefers to all the others is his optimal wife!.

(
“3. Elin’s name has been crossed off by Tiger and by everyone whom she prefers to him.
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"His optimal wife in the usual sense: Given some particular instance of the Stable Marriage Problem, consider all possible stable ;
perfect matchings, including that which is generated by the Mating Ritual. In each of these, Tiger has a wife. Of these “possible f
wives,” he prefers one to all othe ﬁ{gtrl to whom he is married in one of the-matchifigs But not necessanly all of them, is i}
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Solutions to Mini-Quiz Apr. 6

Problem 1 (6 points). (a) A simple graph has 8 vertices and 24 edges. What is the average degree per
vertex?

Solution. By the Handshaking Lemma, the sum of the degrees of the vertices in any graph is equal to twice
the number of edges. So in this case, the sum of the degrees of the vertices is 2 x 24 = 48. With 8 vertices,
the average degree per vertex is % = 6. | |

(b) A connected planar simple graph has 5 more edges than it has vertices. How many faces does it have?

Solution. Denoting the number of vertices by v, the number of edges by e, and the number of faces by £,
Euler’s Formula states that v — e + f = 2. But here, e = v + 5. Substituting givesv — (v +5) + f =2
and hence f = 7. O

(c) A connected simple graph has one more vertex than it has edges. Is it necessarily planar?

Solution. Let G denote any such graph. Now, any graph with v vertices but fewer than v — 1 edges cannot
possibly be connected. So every edge in G is a cut edge, and therefore G is acyclic. So G is a tree and must
be planar. B

(d) If your answer to the previous part was yes, then how many faces can such a graph have? If your answer
was no, then give an example of a nonplanar connected simple graph whose vertices outnumber its edges by
one.

Solution. Since the graph is connected and acyclic, it only has one face. |

(e) Consider the graph shown in Figure 1. How many distinct isomorphisms exist between this graph and
itself? (Include the identity isomorphism.)

Solution. Only vertex f has degree 1, so in any self-isomorphism, f must map to itself. b is the only vertex
to be adjacent to a degree-1 vertex, so b must also map to itself. @ and ¢ are both degree-3 vertices, and d
and e are both degree-2 vertices. It is clear from examining the graph that @ can be mapped to ¢ and ¢ to a,
or each of @ and ¢ can be mapped to itself. Independently, and similarly, d can be mapped to e and e to d,
or each of d and e can be mapped to itself. The only possible isomorphisms, then, are obtained by choosing
one of the two possible mappings for @ and ¢ and, independently, one of the two possible mappings for d
and e. The result is 2 x 2 = 4 possible isomorphisms. |

Problem 2 (3 points).

The n-dimensional hypercube, Hy, is a simple graph whose vertices are the binary strings of length n. Two
vertices are adjacent if and only if they differ in exactly one bit. Consider for example H3, shown in Fig-
ure 2. (Here, vertices 111 and 011 are adjacent because they differ only in the first bit, while vertices 101
and 011 are not adjacent because they differ in both the first and second bits.)

Explain why it is impossible to find two spanning trees of H3 that have no edges in common.

——
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Figure 1

Solution. H3 has 8 vertices, so any spanning tree must have 8 — 1 = 7 edges. But H3 has only 12 edges,
so any two sets of 7 edges must overlap. |

Problem 3 (3 points).

Consider the graph shown in Figure 3. Determine a valid coloring of the graph, using as few colors as
possible. (Simply write your proposed color for each vertex next to that vertex. You may use R for red, G
for green, etc.)

Solution. There are odd-length cycles in the graph, so at least three colors will be needed. So assume that
three colors are sufficient. (If we encounter a contradiction under this assumption, we will need to use more
colors.) Start with the length-3 cycle abda. All of its vertices must be colored differently, so assign red
to a, blue to b, and green to d. The length-3 cycle bdhb now forces A to be colored red. f must now be
colored green and g must be colored blue. The coloring is valid so far. ¢ is adjacent to a blue vertex and a
green vertex, and no others, it must be colored red. Finally, e is not adjacent to any other vertices, so it can
be assigned any of the three colors. Choosing red for e, the result is shown in Figure 4. There is no pair of
like-colored adjacent vertices, so this coloring is valid. |

Problem 4 (5 points). (a) Consider the bipartite graph G in Figure 5. Is it possible to find a matching
that covers L(G)? If yes, explain what property of the graph guarantees the existence of such a matching.
(Show that the graph exhibits this property and what this implies. Full credit will not be given for merely
identifying a matching.) If no, identify a bottleneck that prevents a matching.

Solution. It is not possible. One bottleneck is § = {a, b, ¢, e}, since N(S) = {v, x, y} and hence |S| =
4 >3 = |N(S)|. (It is easy to see that there are no bottlenecks of size 1, 2, 3, or 5.) O

(b) Consider the bipartite graph H in Figure 6. Is it possible to find a matching that covers L(H)? If
yes, explain what property of the graph guarantees the existence of such a matching. (Show that the graph
exhibits this property and what this implies. Full credit will not be given for merely identifying a matching.)
If no, identify a bottleneck that prevents a matching.
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Figure2 Hj.

Solution. A matching is guaranteed to exist. Each vertex in L(H) has degree at least 3, while each vertex
in R(H) has degree at most 3. Consequently, the graph is degree-constrained. There are therefore no
bottlenecks and a matching must exist by Hall’s Theorem. [

Problem 5 (3 points).
In the Mating Ritual, suppose Tiger is one of the boys and Elin is one of the girls. Which of the following
are preserved invariants in general?

1. Tiger is Elin’s only suitor.

2. On Tiger’s current list, the girl whom he prefers to all the others is his optimal wife!.

3. Elin’s name has been crossed off by Tiger and by everyone whom she prefers to him.
Solution. The statements that are preserved invariants in general appear in boldface below:

1. Tiger is Elin’s only suitor. (This would certainly make Tiger Elin’s favorite that day, but one or more
of the boys who got rejected by another girl that day may visit Elin the following day.)

2. On Tiger’s current list, the girl whom he prefers to all the others is his optimal wife. (The Mating
Ritual gives each boy his optimal wife. Tiger must therefore ultimately marry his optimal wife, so
once she becomes the most preferred girl on his list — and thus the girl he is serenading — she must
remain the top girl on his list.)

3. Elin’s name has been crossed off by Tiger and by everyone whom she prefers to him. (Note that
this is a preserved invariant because it cannot ever be true. Were it true on some day, Tiger would
have crossed Elin’s name off his list, so he would end up marrying a woman he finds less desirable.

His optimal wife in the usual sense: Given some particular instance of the Stable Marriage Problem, consider all possible stable
perfect matchings, including that which is generated by the Mating Ritual. In each of these, Tiger has a wife. Of these “possible
wives,” he prefers one to all the others. This girl, to whom he is married in one of the matchings but not necessarily all of them, is
his optimal wife.
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h

Figure 3

She would also have removed from contention everyone she finds more desirable than Tiger. So she
would end up marrying someone she finds less desirable than Tiger. Consequently, Tiger and Elin
would constitute would a rogue couple. Another way to think about it is this: If Elin’s name was
crossed off by Tiger and all the boys Elin prefers to him, then she must have a current favorite whom
she prefers to all of them. But Tiger and his betters in Elin’s eyes are the top boys on her list: there is
no one she prefers to them.)
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Figure4 A valid coloring.
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