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Massachusetts Institute of Technology
6.042J/18.062J, Spring " 11: Mathematics for Computer Science April 4
Prof. Albert R Meyer revised Friday 1% April, 2011, 05:54

In-Class Problems Week 9, Mon.

Problem 1.
You’ve seen this neat trick for evaluating a geometric sum:

S=1l+z+z2+4... 42"
1S =z b2 b

L [
1 7::1+1

Use the same approach to find a closed-form expression for this sum:

T=1z+4+222+323+...+nz"

Problem 2.

An explorer is trying to reach the Holy Grail, which she believes is located in a desert shrine d days walk
from the nearest oasis. In the desert heat, the explorer must drink continuously. She can carry at most |
gallon of water, which is enough for 1 day. However, she is free to make multiple trips carrying up to a
gallon each time to create water caches out in the desert.

For example, if the shrine were 2/3 of a day’s walk into the desert, then she could recover the Holy Grail
after two days using the following strategy. She leaves the oasis with 1 gallon of water, travels 1/3 day into
the desert, caches 1/3 gallon, and then walks back to the oasis—arriving just as her water supply runs out.
Then she picks up another gallon of water at the oasis, walks 1/3 day into the desert, tops off her water
supply by taking the 1/3 gallon in her cache, walks the remaining 1/3 day to the shrine, grabs the Holy
Grail, and then walks for 2/3 of a day back to the oasis—again arriving with no water to spare.

But what if the shrine were located farther away?

(a) What is the most distant point that the explorer can reach and then return to the oasis if she takes a total
of only 1 gallon from the oasis?

(b) What is the most distant point the explorer can reach and still return to the oasis if she takes a total of
only 2 gallons from the oasis? No proof is required; just do the best you can.

(¢) The explorer will travel using a recursive strategy to go far into the desert and back drawing a total of n
gallons of water from the oasis. Her strategy is to build up a cache of n — 1 gallons, plus enough to get home,
a certain fraction of a day’s distance into the desert. On the last delivery to the cache, instead of returning
home, she proceeds recursively with her 7 — 1 gallon strategy to go farther into the desert and return to the
cache. At this point, the cache has just enough water left to get her home.

Prove that with n gallons of water, this strategy will get her H, /2 days into the desert and back, where H,,

is the nth.Harmonic number: I | , i
Hyit=—+-4+-+-+ -
" 1 o 2 e 3 " i n

Conclude that she can reach the shrine, however far it is from the oasis.

Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .




In-Class Problems Week 9, Mon.

(g

(d) Suppose that the shrine is ¢ = 10 days walk into the desert. Use the asymptotic approximation
Hy, ~ Inn to show that it will take more than a million years for the explorer to recover the Holy Grail.

Problem 3.
There is a number @ such that Y 72, i ? converges iff p < a. What is the value of a? Prove it.

Problem 4.
Suppose f, g : Nt — Nt and / ~ g.

(a) Prove that 2f ~ 2g.
(b) Prove that f2 ~ g2.

(¢) Give examples of f and g such that 27 £ 28,




I Ty

l( \/\/E ‘ML bogy «}n‘@k 1@
[

- 2.7,
T = (9492 %)7% + . +m%h
Tf\/ 2L

2T= 2%y 22° ’er?q o e g™
- a

/ Qvauﬂ}/\j qlo. 44




Ok T S00 H i &)G, [gff%mfvé k/ (gomeh;c e/
Hﬂ(l/m CL()$@d éof/’l 1Lo L(,W - (

A ;I"Q Chn 70
HA: J.l‘ #'& +%+_»~. TY\L
% (o B Ho dogs inbo P e
i

J} 6““”’5& 52\/‘}/\0 ;9 JV{O leiyé \mﬁ ({esp/*

E/SQ, | OLS‘rrﬂﬂ)lﬂth qMoX Hn e f,\ [4/ «h 51'\01,./
T owyll erk Mot ey & gl s

\«/Q/H Miles  Spnse - }7/(, OLLUH‘JW
7”5t“0«,“{( Cavh é(/‘] ==l

ML o Mo uf}
Tk cade a5 gag)s

) VP b N Gallen

39’” S %
9o l[L/leﬂr OML



0

J

¥

e pobia | gept o by dae b proe i

Cﬂ |
=  f Converggs £ p(Q

\‘:_l
VL "
—|

q:j Vb)f (0(3‘\/ Ang

5*\ 6 @ (f’xf’&x)

'{or‘ P#.__\ N Pt

WLQH{ S X\

pL-| b | Pt
o MU A
O)Ef‘i/"*t ml(i’@’w 1(% QO

XN
o I
HWQ Sum ba”“’lﬂé ((VM. GUlOOVQ = 48,‘\/21} 1[96 %};H/
(e bt < it /

mJ

iﬂm

it (onverj@

14 p7 -l ﬁQ/L W—l?@ o m Xftle e
5 Jwergy ks



Fj—-’ /‘/\&Qz{ rfﬂ+t I‘S Q% ?<, vL\ZCk 0125,0 q/)f)/h,’”)
AR g KRN, & an%j%

C
e Gy N 9
6\' F(Q‘/Q 2(“23

$o h‘\{b Il; (] W]Utos'

1[(\’5 V’“(cm) ._E__ f\"l

0

EI‘M _‘E(?‘) :__,(
X2 9y

b a4

w7, <1

Yo L 6

S Candes
b £



¢
() G'lJQ 7/ (/Ou’\"@( €m»\plfj G 'Lh
(AR
"ijr o ot allowed M huise
4
bt what @l o fe g Couater “txanpl

Our \ourd

) 2
3

) 2
C) )For Tl QT‘W'M/ %5 b@pos;f N -] gq//m)

at 4 IM“H’D/\/ w\ly n ﬂq//my/ he  ovppd
Bomde 0oV by bl f )

gd?}h MH"f H@me,/ eacky  tryf ol

l’DEL &»15 0&9 (‘OWLCI '\[f/)
O ——
2N dﬁws ' lvna /) - ot

D@\moﬁ h\tj (1 ng@l Do fusk Caly %M;;

}/\m n-l gt 5\'9* 42_"2&(1 has A= 4F ?L_
n-|



r\u
| S
: i
Zo A 7 A
- '%()f+é+%+ f‘%/
= _’]Z_Hq
&B ij'éﬂn
Cl: [OQJi Ar
N=p 20 _
e -(@L’LQEQ szﬁ:— }(7F{
:\/Qf\( bl BRGE

3 {rae % /HD (orverges (f P L]

=

C%@ { ﬁ07;}

Tea  fin

p> o

= = X Fofﬁf\( H



@JZ(
i P i M hemong Surles

l

Vo) L T oy T,

S s f( ) ﬂ%
f’k ﬁ(/"
P el
/See hou Tt 5 Vel ]
& %Mfml/m b Jetal] as '0”\3@5 9/"//40

gO tf 'Y[n /g/f’l f@qﬂ

fry 5 42 ﬁ;w o) = 1<

(/) i 0% V\I')/ l’lﬁl ﬁ(m ﬂlﬁ = 2 Zq -
L 2



Massachusetts Institute of Technology
6.042J/18.062J, Spring "11: Mathematics for Computer Science April 4
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Solutions to In-Class Problems Week 9, Mon.

Problem 1.

An explorer is trying to reach the Holy Grail, which she believes is located in a desert shrine d days walk
from the nearest oasis. In the desert heat, the explorer must drink continuously. She can carry at most 1
gallon of water, which is enough for 1 day. However, she is free to make multiple trips carrying up to a
gallon each time to create water caches out in the desert.

For example, if the shrine were 2/3 of a day’s walk into the desert, then she could recover the Holy Grail
after two days using the following strategy. She leaves the oasis with 1 gallon of water, travels 1/3 day into
the desert, caches 1/3 gallon, and then walks back to the oasis—arriving just as her water supply runs out.
Then she picks up another gallon of water at the oasis, walks 1/3 day into the desert, tops off her water
supply by taking the 1/3 gallon in her cache, walks the remaining 1/3 day to the shrine, grabs the Holy
Grail, and then walks for 2/3 of a day back to the oasis—again arriving with no water to spare.-

But what if the shrine were located farther away?

(a) What is the most distant point that die explorer can reach and then return to the oasis if she takes a total
of only 1 gallon from the oasis?

Solution. At best she can walk 1/2 day into the desert and then walk back. |

(b) What is the most distant point the explorer can reach and still return to the oasis if she takes a total of
only 2 gallons from the oasis? No proof is required; just do the best you can.

Solution. The explorer walks 1/4 day into the desert, drops 1/2 gallon, then walks home. Next, she walks
1/4 day into the desert, picks up 1/4 gallon from her cache, walks an additional 1/2 day out and back, then
picks up another 1/4 gallon from her cache and walks home. Thus, her maximum distance from the oasis is
3/4 of a day’s walk. O

(c) The explorer will travel using a recursive strategy to go far into the desert and back drawing a total of n
gallons of water from the oasis. Her strategy is to build up a cache of n — 1 gallons, plus enough to get home,
a certain fraction of a day’s distance into the desert. On the last delivery to the cache, instead of returning
home, she proceeds recursively with her n — 1 gallon strategy to go farther into the desert and return to the
cache. At this point, the cache has just enough water left to get her home.

Prove that with n gallons of water, this strategy will get her H, /2 days into the desert and back, where H,,

is the nth Harmonic number: " | , ;
He e obes L e,
pAm= g e

Conclude that she can reach the shrine, however far it is from the oasis.

Solution. To build up the first cache of n — 1 gallons, she should make n trips 1/(2n) days into the desert,
dropping off (n —1)/n gallons each time. Before she leaves the cache for the last time, she has n — 1 gallons
plus enough for the walk home. Then she applies her (n — 1)-day strategy. So letting D,, be her maximum
distance into the desert and back, we have

1

D, = ﬂ g b UL

Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .



2 Solutions to In-Class Problems Week 9, Mon.

So
Dn:i-_}_ ! + ! +...+L+L
2n " 2(n—1)  2(n-2) B Dad
& P 1 1 k!
_E(E-I_(n—l)+(n—2)+m+5+3)
._.T.

(d) Suppose that the shrine is d = 10 days walk into the desert. Use the asymptotic approximation
H, ~ Inn to show that it will take more than a million years for the explorer to recover the Holy Grail.

Solution. She obtains the Grail when:
H, Inn
— =~ — >10.
2 2

* This requires n > ¢2° — 4.8 . 108 days > 1.329M vyears.

O
Problem 2.
There is a number a such that Z;’il i? converges iff p < a. What is the value of a? Prove it.
Solution. a = —1.
For p = —1, the sum is the harmonic series which we know does not converge. Since the term i is
increasing in p fori > 1, the sum will be larger, and hence also diverge for p > —1.
For p < —1 there exists an € > 0 such that p = —(1 + €). By the integral method,
o o0
30+ <14 f e g,
i=1 :
=il geh—e ! limo~"
ax—0c0
=14+¢!
< 00
Hence the sum is bounded above, and since it is increasing, it has a finite limit, that is, it converges. i
Problem 3.
Suppose f,g : Nt — Nt and f ~ g.
(a) Prove that 2f ~ 2g.
Solution.
-2.—f._ e i "I ‘\\"\
28 g 5 i\\ l

so they have the same limit as n — oo.



Solutions to In-Class Problems Week 9, Mon.

(b) Prove that f2 ~ g2.

Solution.

lim

(c) Give examples of f and g such that 2/ £ 28.

Solution.

fn)z=n+1
g(n)=n.

Then f ~ g since lim(n + 1)/n = 1,but 2/ =27+1 = 2.2 =2.28 50

_2f
hm-z?:fl# 1.

Problem 4. \/‘J&‘D /Br \

You’ve seen this neat trick for evaluating a geometric sum:

S=14+z+4+224...+2"
zS=z+4+22+...4+ 2" 4 z"Fl
S—z8§=1-z"1
1__zn+l
T . M
l1—=z

Use the same approach to find a closed-form expression for this sum:
T=1z+2z2+32° +... +nz"

Solution.

2T =122 4223 + 324 + ... + nz"H

T—zT =z+22+23+ ...+ 2" —pz"tl
l_zn+1

e o e e n
S e— 1 —nz

1 -zl 1 4 pzrtl
T (1—2)2 1—z

+1

R @) fa) . fe) . f()
e G )E o g(n) ()  nrso g(n) mereo g(n)

1-

1 =

1.
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Massachusetts Institute of Technology
6.042J/18.062], Spring *11: Mathematics for Computer Science April 6
Prof. Albert R Meyer revised Sunday 3 April, 2011, 12:58

In-Class Problems Week 9, Wed.

Problem 1.
Recall that for functions f, g on N, f = O(g) iff

dceNInge NV >ng c-g@) = |f(n)]. (1)

For each pair of functions below, determine whether f = O(g) and whether g = O(f). In cases where
one function is O() of the other, indicate the smallest nonegative integer, ¢, and for that smallest ¢, the
smallest corresponding nonegative integer ng ensuring that condition (1) applies.

(@) f(n) =n? g(n) = 3n.

f=0() YES NO If YES, ¢ = ,no =

g=a(f) YES NO IEYES ici= slg =
b)) fM)=0Cn-=-T)/(n+4),gn) =4

f=0(@) YES NO If YBS, ¢ = g =

g =0(f) YES NO If YES, ¢ = o =
(¢) f(n) =1+ (nsin(nm/2))?, g(n) = 3n

f=0(g) YES NO If yes, ¢ = ng =
g = 0(f) YES NO If yes, ¢ = #ig=
Problem 2.

False Claim.
2" = O(1). 2)

Explain why the claim is false. Then identify and explain the mistake in the following bogus proof.

Bogus proof. The proof by induction on n where the induction hypothesis, P(n), is the assertion (2).
base case: P(0) holds trivially.
inductive step: We may assume P(n), so there is a constant ¢ > 0 such that 2" < ¢ - 1. Therefore,

2!1+1 — 2.211 E (2(,')' I,

which implies that 2! = O(1). Thatis, P(n + 1) holds, which completes the proof of the inductive step.
We conclude by induction that 2" = O(1) for all n. That is, the exponential function is bounded by a

constant.
|

Problem 3.

(a) Define a function f(n) such that f = ©(n?) and NOT(f ~ n?).
(b) Define a function g(n) such that g = O(n?), g # ©(n?) and g # o(n?).

Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .



2 ‘ In-Class Problems Week 9, Wed.

Asymptotic Notations
Let f, g be functions from R to R.
e f is asymptotically equal to g:  f(x) ~ g(x) iff limy_eo f(x)/g(x) = 1.
o [ is asymptotically smaller than g:  f(x) = o(g(x)) iff limy_ o f(x)/g(x) =0.

o for f, g nonnegative, f = O(g) iff limsup,_, o f(x)/g(x) < oo, where
limsupy_, o0 1(X) i:=limy 00 luby s f1(y).

An alternative, equivalent, definition is

f=0(g) iff 3c,xo e RTVx > xp. f(x) <cg(x).

e Finally, f = ©(g) iff f = O(g) ANDg = O(f).




LU T (s Fld /6
LTty o W ool
Jc €N I, €N Vn zp,
(- gln) 2 [£()]

FO” Qach rai/ Jetonin wheter £ 0 [g)
9=0 (1)

In (A6¢ fylyre o £ OU ¢ f 0T
M&(cdfﬂ Smallest  pan g iph ( and Smalles

(ompoad}@ nonreg it flo for pat ¢

0) {fy) <2 () < 39
£+ 0(y)

v O@j{ mews, £ u o aglly
%fo(g) mows € e mch las B g

| - |
o b s D LA s W 10
on ¥ .
| 3 = A



W e fln
T By (e 3Rk 7|
opaiast <
[ pos
\mdf’ﬁ 5m4//ggf C W'Lf
m‘/p%- ))Q r’\onm8 ‘[mL : 1 1/5 ﬁ@‘( 4
0(4:

s
|+ Bl 27 thoe s Lo €= ()]

- Wiy, -
¥ ke e L oo N9 0) need 1o
f@v{/ge_

n<
OL\“Tmﬁk -]: 'FlnabT ﬂ”\

H Q‘m ﬁ‘% HghetFera e
g no @ ® M0
L, 2y
c/ 1

Vﬁﬁ <}‘ e



Mfljr A C - WﬂW{Q {Dr\ Ny 1N /{ﬁ M’Z/
%Q )“%Q/n Doq Eiud  n

(<]

n::, )L‘Q 6&,

Doec,n% IWL( nggﬂg}p

OL\ i (Fo/@ojr d/]u \/4] mL f’ImL



Massachusetts Institute of Technology
6.042]/18.062J, Spring *11: Mathematics for Computer Science April 6
Prof. Albert R Meyer revised Tuesday 5% April, 2011, 18:01

Solutions to In-Class Problems Week 9, Wed.

Problem 1.
Recall that for functions f,g on N, f = O(g) iff

dceNIngeNVn=ny c-gn)=|f(n). ¢))

For each pair of functions below, determine whether f = O(g) and whether g = O(f). In cases where
one function is O() of the other, indicate the smallest nonegative integer, ¢, and for that smallest ¢, the
smallest corresponding nonegative integer ng ensuring that condition (1) applies.

@ f(n) =n?g(n) =3n.

f=0(g) YES NO IFYES. =" ™ .#g=
Solution. NO. m
g = 0(f) YES NO BYES e uilh=
Solution. YES, with ¢ = 1, ng = 3, which works because 32 = 9,3-3 = 9. =

) f(n) = Gn—"7/(+4),g(n) =4

f=0() YES NO If YES, ¢ = ,Np =
Solution. YES, with ¢ = 1,n9 = 0 (because | f(n)| < 3). O
g = 0(f) YES NO If YES, ¢ = g =

Solution. YES, with¢c = 2,n9 = 15.

Since limp 00 f(n) = 3, the smallest possible ¢ is 2. For ¢ = 2, the smallest possible ng = 15 which
follows from the requirement that 2 f(ng) > 4. o

(¢) f(n) =1+ (nsin(nw/2))* g(n) = 3n

J=0() YES NO If yes, ¢ = ng =

Solution. NO, because f(2n) = 1, which rules out g = O(f) since g = O(n). |
g = 0(f) YES NO Ifyes,c = no =

Solution. NO, because f(2n + 1) = n? + 1 # O(n) which rules out f = O(g). =]
Problem 2.

Creative Commons

289 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .



2 Solutions to In-Class Problems Week 9, Wed.

False Claim.
2 =i0(d): 2)

Explain why the claim is false. Then identify and explain the mistake in the following bogus proof.

Bogus proof. The proof by induction on n where the induction hypothesis, P (n), is the assertion (2).
base case: P(0) holds trivially.
inductive step: We may assume P (n), so there is a constant ¢ > 0 such that 2" < ¢ - 1. Therefore,

o+l = 9.9% < (20) - 1,

which implies that 21 = O(1). That s, P(n + 1) holds, which completes the proof of the inductive step.
We conclude by induction that 2" = O(1) for all n. That is, the exponential function is bounded by a

constant.
O

Solution. A function is O(1) iff it is bounded by a constant, and since the function 2" grows unboundedly
with #, it is not O(1).

The mistake in the bogus proof is in its misinterpretation of the expression 2" in assertion (2). The
intended interpretation of (2) is

Let f be the function defined by the rule f(n) ::=2". Then f = O(1). 3
But the bogus proof treats (2) as an assertion, P (n), about n. Namely, it misinterprets (2) as meaning:

Let f, be the constant function equal to 2. That is, f,(k) ::= 2" for all k € N. Then
Jn=0Q). 4

Now (4) is true since every constant function is O(1), and the bogus proof is an unnecessarily complicated,
but correct, proof that that for each n, the constant function f, is O(1). But in the last line, the bogus proof
switches from the misinterpretation (4) and claims to have proved (3).

So you could say that the exact place where the proof goes wrong is in its first line, where it defines
P (n) based on misinterpretation (4). Alternatively, you could say that the proof was a correct proof (of the
misinterpretation), and its first mistake was in its last line, when it switches from the misinterpretation to the
proper interpretation (3). O

Problem 3.

(a) Define a function f(n) such that f = ©(n?) and NOT(f ~ n?).
Solution. Let f(n) ::= 2n2. |
(b) Define a function g(n) such that g = O(n?), g # ©(n?) and g # o(n?).

Solution. Let g(n) ::= (n sin(n/2))* + n (cos(nm/2))>.

For odd n, we have g(n) = n?, which implies that g # o(n?). For even n, we have g(n) = n, which
implies n? # O(g) and hence g # ©(n?).
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Problem Set 7
Due: April 8

Reading: Chapter 11.7-11.11.3, Coloring, Connectedness, & Trees; Chapter 12, Planar Graphs; Chapter 14,
Sums and Asymptotics.

Skip the following sections which will not be covered this term: Chapter 11.11.4, Minimum Weight Span-
ning Trees, Chapter 13, State Machines, Chapter 14.6, Double Sums, & Chapter 14.7.5, Omega notation.

Problem 1. (a) Give an example of a simple graph that has two vertices ¥ # v and two distinct paths
between u and v, but no cycle including either u or v.

Hint: There is an example with 5 vertices.

(b) Prove that if there are different paths between two vertices in a simple graph, then the graph has a cycle.

Problem 2.
The entire field of graph theory began when Euler asked whether the seven bridges of Kdnigsberg could all
be crossed exactly once. Abstractly, we can represent the parts of the city separated by rivers as vertices and
the bridges as edges between the vertices. Then Euler’s question asks whether there is a closed walk through
the graph that includes every edge in a graph exactly once. In his honor, such a walk is called an Euler tour.
So how do you tell in general whether a graph has an Euler tour? At first glance this may seem like a
daunting problem. The similar sounding problem of finding a cycle that touches every vertex exactly once
is one of those Millenium Prize NP-complete problems known as the Traveling Salesman Problem). But it
turns out to be easy to characterize which graphs have Euler tours.

Theorem. A connected graph has an Euler tour if and only if every vertex has even degree.

(a) Show that if a graph has an Euler tour, then the degree of each of its vertices is even.

In the remaining parts, we’ll work out the converse: if the degree of every vertex of a connected finite
graph is even, then it has an Euler tour. To do this, let’s define an Euler walk to be a walk that includes each
edge at most once.

————

(b) Suppose that an Euler walk in a connected graph does not include every edge. Explain why there must
be an unincluded edge that is incident to a vertex on the walk.

In the remaining parts, let w be the longest Euler walk in some finite, connected graph.
(¢) Show that if w is a closed walk, then it must be an Euler tour.

Hint: part (b)
(d) Explain why all the edges incident to the end of w must already be in w.

(e) Show that if the end of w was not equal to the start of w, then the degree of the end would be odd.
Hint: part (d)

(f) Conclude that if every vertex of a finite, connected graph has even degree, then it has an Euler tour.

Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .



2 Problem Set 7

Problem 3.

False Claim. Let G be a graph whose vertex degrees are all < k. If G has a vertex of degree strictly less
than k, then G is k-colorable.

(a) Give a counterexample to the False Claim when k = 2.

(b) Underline the exact sentence or part of a sentence that is the first unjustified step in the following bogus
proof of the False Claim.

Bogus proof. Proof by induction on the number n of vertices:
Induction hypothesis:

P(n)::= “Let G be an n-vertex graph whose vertex degrees are all < k. If G also has a vertex of degree
strictly less than k, then G is k-colorable.”

Base case: (n = 1) G has one vertex, the degree of which is 0. Since G is 1-colorable, P(1) holds.

Inductive step:

We may assume P(n). To prove P(n + 1), let G,+1 be a graph with n ++ 1 vertices whose vertex degrees
are all k£ or less. Also, suppose G,41 has a vertex, v, of degree strictly less than k. Now we only need to
prove that G, is k-colorable.

To do this, first remove the vertex v to produce a graph, G,, with n vertices. Let u be a vertex that is adjacent
to v in Gp+1. Removing v reduces the degree of u by 1. So in G, vertex u has degree strictly less than
k. Since no edges were added, the vertex degrees of G, remain < k. So G, satisfies the conditions of the
induction hypothesis, P(n), and so we conclude that G, is k-colorable.

Now a k-coloring of G, gives a coloring of all the vertices of G,1, except for v. Since v has degree less
than &, there will be fewer than k colors assigned to the nodes adjacent to v. So among the k possible colors,
there will be a color not used to color these adjacent nodes, and this color can be assigned to v to form a
k-coloring of G +1.- O

(c) With a slightly strengthened condition, the preceding proof of the False Claim could be revised into a
sound proof of the following Claim:

Claim. Let G be a graph whose vertex degrees are all < k. If (statement inserted from below) has a vertex
of degree strictly less than k, then G is k-colorable.

Circle each of the statements below that could be inserted to make the Claim true.

e ( is cannected and

G has no jvertex of degree zero and

G does not contain a complete graph on k vertices and

e every connected component of G

some connected component of G

Problem 4.
Use integration to find upper and lower bounds that differ by at most 0.1 for the following sum. (You may
need to add the first few terms explicitly and then use integrals to bound the sum of the remaining terms.)

= 1
N e
= 2i +1)



Problem Set 7 3

Problem 5.
Determine which of these choices

An), Om2logn), O@®?), 1), ©O2"), O@2"™"), none of these

describes each function’s asymptotic behavior. Full proofs are not required, but briefly explain your answers.

(a)
n+Inn + (Inn)?

(b)
n2+2n-3
n?z—7
(c) ;
Zz2i+1
i=0
(d)
In(n?1)
(e)

5 (1-4)

k=1
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Massachusetts Institute of Technology Solutions cover sheet
6.042]/18.062J, Spring ’11: Mathematics for Computer Science March 30
Prof. Albert R Meyer

Student’s Solutions to Problem Set 7

Your name: M‘((,]/{@ {j/ P{i‘ﬂ‘*"‘ﬂa/

Due date:  April 8
(; / /_..
Submission date: [ / 5 .
Circle your TA/LA: Al Nick Oscar G;sharp Table number ,/ 2

Collaboration statement: Circle one of the two choices and provide all pertinent info.
1. I worked alone and only with course materials. lﬂ/ /_/ o
et fo las
2. I collaborated on this assignment with: Or(dr / ! 4 ny
got help from:! /W) ]
and referred to:~ l/\“ ‘“Pp&} f ) , ,Jn/ () l
Wiyon @(’,’ -";{, 5 o { L0 (4> 00/'}

/ 4

DO NOT WRITE BELOW THIS LINE

Problem | Score

1 ||U
2

3

4

5
Total

&) . .
Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .
'People other than course staff.
2Give citations to texts and material other than the Spring ’11 course materials.
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Massachusetts Institute of Technology
6.0427/18.0621, Spring ’11: Mathematics for Computer Science April 8
Prof. Albert R Meyer revised Friday 8 April, 2011, 19:20

Solutions to Problem Set 7

Reading: Chapter ??-??, Coloring, Connectedness, & Trees; Chapter 22, Planar Graphs; Chapter ??, Sums
and Asymptotics.

Skip the following sections which will not be covered this term: Chapter ??, Minimum Weight Spanning
Trees, Chapter ??, State Machines, Chapter ??, Double Sums, & Chapter ??, Omega notation.

Problem 1. (a) Give an example of a simple graph that has two vertices u # v and two distinct paths
between u and v, but no cycle including either u or v.

Hint: There is an example with 5 vertices.

Solution. Define

Vi={u,v,a,b,c},
E = {{u—a), (a—b), (b—<), (c—a), (c—v)}.

Two paths from from u to v are
u (u—a)a (a—c)c (c—v)v
and
u (u—a) a {a—b) b (b—=) ¢ {c—v) v.

(b) Prove that if there are different paths between two vertices in a simple graph, then the graph has a cycle.

Solution. Proof. Call a two vertices u 7# v different-path-pair (dpp) if there are different paths paths be-
tween them. Suppose u, v is a dpp whose distance is minimum among all dpp’s, and let p be a shortest path
between u and v. By definition of dpp, there must be another path q # p between u and v.

We claim that, other than u and v, there cannot be a vertex that appears in both paths p and q. This implies
that q " reverse(p) is a cycle.

So we just have to prove the claim: suppose to the contrary there was such a vertex, w, appearing in both p
and q. This means that

P=p1Up:
and

I=qiq
for some walks p1, q that start at ¥ and end at w, and walks p3, qa that start at w and end at v. But since
P # q, either p; # qq or p2 # q2, which implies that either u, w is a dpp or w, v is a dpp, and this dpp will
be have a shorter path between them than u, v. This contradicts the fact that among all dpp’s, u, v have a
shortest length path between them. So the claim must be true.

O

Another proof can be given that is very similar to the proof of Theorem ?2.22.

e
Creative Commons @l 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .
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Problem 2.
The entire field of graph theory began when Euler asked whether the seven bridges of Kénigsberg could all
be crossed exactly once. Abstractly, we can represent the parts of the city separated by rivers as vertices and
the bridges as edges between the vertices. Then Euler’s question asks whether there is a closed walk through
the graph that includes every edge in a graph exactly once. In his honor, such a walk is called an Euler tour.
So how do you tell in general whether a graph has an Euler tour? At first glance this may seem like a
daunting problem. The similar sounding problem of finding a cycle that touches every vertex exactly once
is one of those Millenium Prize NP-complete problems known as the Traveling Salesman Problem). But it
turns out to be easy to characterize which graphs have Euler tours.

Theorem. A connected graph has an Euler tour if and only if every vertex has even degree.

(a) Show that if a graph has an Euler tour, then the degree of each of its vertices is even.

Solution. Let tour C ::= vy, v2,..., vy, v; be an Euler tour. Consider any vertex v. Then every time v
occurs in C, there is a vertex a which comes immediately before v and a vertex b which comes immediately
after v. Note that this holds for v = v; as well since C is a tour. Moreover, (a, v) and (v, b) must be distinct
edges of G since C is an Euler tour. It follows that if v occurs s times in C, then it has degree 2s since every
edge incident to v occurs in C exactly once. Thus, v has even degree. |

In the remaining parts, we’ll work out the converse: if the degree of every vertex of a connected finite
graph is even, then it has an Euler tour. To do this, let’s define an Euler walk to be a walk that includes each
edge at most once.

(b) Suppose that an Euler walk in a connected graph does not include every edge. Explain why there must
be an unincluded edge that is incident to a vertex on the walk.

Solution. If either end of the unincluded edge is on the Euler walk, that already is the desired edge. So
suppose there’s an unincluded edge, e, both of whose endpoints are not on the Euler walk. Since the graph
is connected, there must be a shortest walk, p, from an endpoint of e to a vertex on the Euler walk. Then
none of the edges on p can be on p or p could be shortened. So the last edge on p will be the desired
edge. |

In the remaining parts, let w be the longest Euler walk in some finite, connected graph.
(¢) Show that if w is a closed walk, then it must be an Euler tour.

Hint: part (b)

Solution. Suppose an edge was in w. By part (b), there must be a vertex on w incident to an edge not in w.
Starting at this vertex, go around w back to that vertex, and then the follow the edge. This makes a longer
Euler walk, contradicting the maximality of w. So no edge can be missing from w. O

(d) Explain why all the edges incident to the end of w must already be in w.

Solution. Otherwise we could extend w to a longer Euler walk with any edge from the end not already in
W. O

(e) Show that if the end of w was not equal to the start of w, then the degree of the end would be odd.
Hint: part (d)
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Solution. Let v be the end vertex of w. Given that v is not the start of w, it follows that at any occurrence
of v in w other than at the end, w would enter and leave that occurrence of v with a pair of edges. Since w
is an Euler walk, all the edges in all these pairs are distinct. In addition, the final edge in w as it ends at v
is distinct from all the paired edges. Altogether, this imples that there are an odd number of edges in w that
are incident to v. But by part (d), these are all the edges incident to v, proving that v has odd degree. O

(f) Conclude that if every vertex of a finite, connected graph has even degree, then it has an Euler tour.

Solution. If all vertices in G have even degree, then by part (e), the only possibility is that the end of w
equals the start, that is, w is closed. So by part (c), w is an Euler tour. |

Problem 3.

False Claim. Let G be a graph whose vertex degrees are all < k. If G has a vertex of degree strictly less
than k, then G is k-colorable.

(a) Give a counterexample to the False Claim when k = 2.

Solution. One node by itself, and a separate triangle (K3). The graph has max degree 2, and a node of
degree zero, but is not 2-colorable. O

(b) Underline the exact sentence or part of a sentence that is the first unjustified step in the following bogus
proof of the False Claim.

Bogus proof. Proof by induction on the number n of vertices:
Induction hypothesis:

P(n)::= “Let G be an n-vertex graph whose vertex degrees are all < k. If G also has a vertex of degree
strictly less than k, then G is k-colorable.”

Base case: (n = 1) G has one vertex, the degree of which is 0. Since G is 1-colorable, P(1) holds.

Inductive step:

We may assume P(n). To prove P(n + 1), let G, be a graph with n + 1 vertices whose vertex degrees
are all k or less. Also, suppose G4 has a vertex, v, of degree strictly less than k. Now we only need to
prove that G4 is k-colorable.

To do this, first remove the vertex v to produce a graph, G, with n vertices. Let u be a vertex that is adjacent
to v in Gp41. Removing v reduces the degree of u by 1. So in G,, vertex u has degree strictly less than
k. Since no edges were added, the vertex degrees of G, remain < k. So G, satisfies the conditions of the
induction hypothesis, P(n), and so we conclude that G, is k-colorable.

Now a k-coloring of G, gives a coloring of all the vertices of G, 41, except for v. Since v has degree less
than k, there will be fewer than & colors assigned to the nodes adjacent to v. So among the k possible colors,
there will be a color not used to color these adjacent nodes, and this color can be assigned to v to form a
k-coloring of G, 41. O

Solution. The flaw is that if v has degree 0, then no such u exists. In such a case, removing v will not

reduce the degree of any vertex, and so there may not be any vertex of degree less than k in G, as in the
counterexample of part (a).

So the mistaken sentence is “Let u be a vertex that is adjacent to v in G,
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Alternatively, you could say that it’s OK to reason about a nonexistent u, and the only mistake is the claim
that u exists. This claim is hidden in the phrase “So G, satisfies the conditions of the induction hypothesis,
P(n)”. O

(c) With a slightly strengthened condition, the preceding proof of the False Claim could be revised into a
sound proof of the following Claim:

Claim. Let G be a graph whose vertex degrees are all < k. If (statement inserted from below) has a vertex
of degree strictly less than k, then G is k-colorable.

Circle each of the statements below that could be inserted to make the Claim true.

e G is connected and

e G has no vertex of degree zero and

e G does not contain a complete graph on k vertices and
e every connected component of G

e some connected component of G

Solution. Either the first statement “G is connected and” or the fourth statement “every connected compo-
nent of G” will work. O

Problem 4.

Use integration to find upper and lower bounds that differ by at most 0.1 for the following sum. (You may
need to add the first few terms explicitly and then use integrals to bound the sum of the remaining terms.)

SR |

ey

e (2i +1)
Solution. Let’s first try standard bounds:

oe 1 i 1 o5 1
—d < —_— < —d
fo xR = ;(2f+1)2 - fo e

Evaluating the integrals gives:

1
2(2x + 3)

©0

= T E e
6 :Zzl (2i +1)2 2(2x + 1)

o0

0

1 i 1 1
LRI e RN
6y i=1(21+1)2 2

These bounds are too far apart, so let’s sum the first couple terms explicitly and bound the rest with integrals.

]+l+f°0 e i ] < L+l+fm;dx
TR, @+ T L@rn: T ETRT ), @ty

Integration now gives:
(o0}
2 )

| | 1 &= ” i 1 ;. 1+1+( 1
5 szl TR DM ) A T ST L SR T 2(2x + 1)

1 1 1

o0
1 L, |
iy i J— < —_— - e
2Tt = ;(2:’4—1)2 =952

+§+E

Now we have bounds that differ by 1/10 — 1/14 < 1/10 = 0.1. H
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Problem 5.
Determine which of these choices

O(m), Om%logn), O®?), ©(1), ©2"), ©O2"""), none of these

describes each function’s asymptotic behavior. Full proofs are not required, but briefly explain your answers.

(@)
n + Inn + (Inn)?

Solution. Both n > Inn and n > (Inn)? hold for all sufficiently large n. Thus, for all sufficiently large n:

n<n+hnn+nn)? <n+n+n

Son +Inn + (Inn)? = O(n).

| |
(b)
n24+2n-3
n2—17
Solution. Observe that:
. n?4+2n-3
lim ——— =1

n—co n2—7

This means that, for all sufficiently large n, the fraction lies, for example, between 0.99 and 1.01 and is
therefore ®(1). |

()

n

Z 22f+]

i=0

Solution. Geometric sums are dominated by their largest term, which is 22#+! = 2. 4", This is ©(4"),
which does not appear in the list provided. O

(d)

In(n?1)

Solution. By Stirling’s formula:
2

2\ 1
n2! ~ v/27n2 (n_)

e
Taking logarithms gives:

23\ "
In(n?!) ~ In(v27n2 (n?) )
n2 n?
= In(v27n?) +In (?)

1 g il
= —=In27 4+ Inn + n*In(—)
2 e

1 :
— 5]n27r +Inn +n2Qlnn —1)
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It is then easy to see that this expression and n? Inn are big-O of each other by looking at limits as 7 goes
to oo, so we conclude that In(n?!) = ©(n?Inn).

O
(e) i
1

>k(1-3)
k=1
Solution. The expression in parentheses is always at least 1/2 and at most 1. Thus, we have the bounds:

1 n n 1 n

EZJCE Zk(1—2—k) ok

k=1 k=1 k=1

Since the first expression and the last are both @(n?), so is the one in the middle. |
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Mathematics for Computer Science
MIT 6.0427/18.0627

Counting

Albert R Meyer, Aprii 8, 2011

Counting in Gambling

What fraction of poker hands
are “a pair of Jacks?"

et

Pat

y H
QN :-

(probability of a pair of Jacks)

April B, 2011

Albert R Meyer,

lec 5F 2

Counting in Algorithms

*# ops to update a data
structure (# comparisons
needed to sort n items)

*# steps in a computation (#
multiplies tfo compute dn)

Albert R Meyer, April 8, 2011

lec 9F.5

Counting in Cryptography

# possible passwords

# possible keys

Sum Rule .
I
]
I
I
I
I
I

disjoint, then
|A B|=[A]+[B]

Albert R Meyer,

April 8, 2011

lec GF.8

Albert R Meyer, Apeil 8, 2011

lec 9F 8

E5 The Sum. Rule

* Class has 43 women, 54 men so
total enrollment = 43 + 54 = 97

+ 26 lower case letters, 26 upper
case letters, and 10 digits, so

# characters = 26+26+10 = 62

AlberT R Meyer, April 8,201

lec 979




The Product Rule

If there are 4 boys and 3
girls, there are

4.3 =12
different boy/girl couples

lec 9F.10

Product Rule: Counting Strings
# length-4 binary strings
= |B x B x B x B
= |B4| where B ::= {0,1}
=22 2 2:=2"

Example: Counting Passwords

oom

Password conditions:

+ characters are digits & letters
* between 6 & 8 characters long
* starts with a letter

* case sensitive

J’ﬁ Product Rule
If |A| = mand |B| = n, then
|A x Bl =m'n

A=lla b cid) S Ri={l 23]

A X B ={(a1),(a,2),a,3),
(b,1).(b,2).(b,3),
(c,1),(c,2),(c,3),
(d,1),(d,2),(d,3) }

Product Rule: Counting Strings

e Iéhgfh n é:rring”;s |
from an alphabet of |
size m is

D= {02 O]

P,::= length n words
starting w/letter

= el D)=




Counting Passwords

IL x (L

D)
= Dy
= |LI(IL| + Dy~

= 52-(52+10)

Bl Counting Passwords
set of passwords:

P S hE P6 P7 P8
|P| = |P6|+|P7|+|P3|
= B2:(625+620+627)
% 19:1014

Albert R Meyer, April 8, 2011 lec 9F.18

LL # 4-digit nums w/ > one 7

cases by lst occurrence of 7:

x: any digit o: any digit = 7

7XXX or 07 xx or 007X or 0007
103"+ 9102 +:9%410 + 93

= 3439

Albert R Meyer, April B, 2011 lec 9F.18

fc* Mapping Rule: Bijections
If f is a bijection from A to B

then |A| = |B|

Albert R Meyer, April 8, 2011 e SF

'@0@@ Albert R Meyer, April B, 2011 leg

SFAT

& at least one 7: another way

|4-digit nums w/ > one 7|
= |4-digit nums|

— |those w/ no 7|
= 10%— 94 = 3439

Counting Doughnut Selections
From 5 kinds of doughnuts
select a dozen.
let A ::= all selections of

12 doughnuts
00 @money OO0000 00 00
= - O N e

glazed plain

(ot
chocolate lenan sugar

Albert R Meyer, Apeil 8, 2011

(O]

e 97 24




tiEe Counting Doughnut Selections
B:i= 16-bit words with four 1's

00 1(none)1000000 100100

chocolate. T sugar glazed plnm

s.gs  Counting Doughnut Selections
B = 16-bit words with four 1's

001 1000000 1 00100
00 (none) 000000 00 00
- iy S el S el

Counting Doughnut Selections
B:i= 16-bit words with four 1's
0011000000100100
a bijection: |A| = ‘B‘
Qp (mone) 000000 00 00

chocolate i:n:;n sugar glazed plain

@m Albert R Meyer, April 8, 2011

— :
chocolate o sugar glazed plain
. Albert R Meyer, Apeil 8, 2011 lec 9F.2T

1% Team Problems
Problems
14
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Massachusetts Institute of Technology
6.042]/18.0627, Spring "11: Mathematics for Computer Science April 8
Prof. Albert R Meyer revised Friday 8% April, 2011, 00:47

Solutions to In-Class Problems Week 9, Fri.

Problem 1.
A license plate consists of either:

e 3 letters followed by 3 digits (standard plate)
e 5 letters (vanity plate)

e 2 characters—letters or numbers (big shot plate)

Let L be the set of all possible license plates.
(a) Express L in terms of

A={A,B,C,...,Z}
D=1{0,12,...,9

using unions (U) and set products (x).

Solution.
L=(43xD3>u A u(duD)y?

|
(b) Compute |L|, the number of different license plates, using the sum and product rules.
Solution.
|L] = |(4% x D) U A% U (4 U D)?|
= |(4% x D?)| + |A%] + |(A U D)?| Sum Rule
= |A?-|DP + |4 + |4 U DP? Product Rule
= |A]?-|D]® + |A] + (|4] + |D|)? Sum Rule
=26%-10% + 26° + 362 = 29458672
|
Problem 2.

An n-vertex numbered tree is a tree whose vertex set is {1,2,...,n} for some n > 2. We define the code

of the numbered tree to be a sequence of n — 2 integers from 1 to n obtained by the following recursive
1
process:

Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .
IThe necessarily unique node adjacent to a leaf is called its father.




2 Solutions to In-Class Problems Week 9, Fri.

If there are more than two vertices left, write down the father of the largest leaf, delete this leaf, and
continue this process on the resulting smaller tree.
If there are only two vertices left, then stop—the code is complete.

For example, the codes of a couple of numbered trees are shown in the Figure 1.

tree code

65622

1 2 3 4 <) 432

Figure 1
(a) Describe a procedure for reconstructing a numbered tree from its code.

Solution. The key observation is that, given a code of length n — 2, the numbers between 1 and n which do
not appear in the code are precisely the leaves of the tree. This follows because the vertices left at the end
of the process are both leaves. So the procedure must have changed all the nonleaf vertices into leaves, and
this implies that all the nonleaf vertices appear in the code.

Hence, the largest missing number is a leaf attached to the first number of the code. The rest of the tree
can now be reconstructed by deleting the first number in the code, henceforth ignoring the largest leaf, and
proceeding recursively on the rest of the code. (We're using the obvious fact that what’s left after deleting a
leaf from a tree is another tree.)

More precisely, the reconstruction procedure applies to any finite tree whose vertex set is totally ordered.
The procedure takes two parameters: the vertex set, V, and a length | V| —2 “code” sequence, S, of elements
in V. If [ is the largest element in V' which does not appear in S, and f is the first element of S, then
the reconstructed tree is obtained by adding edge (I, f) to the tree reconstructed by calling the procedure
recursively with first argument V' —{/} and second argument equal to the code obtained by erasing the initial
f from S. The procedure terminates when |V'| = 2, returning the edge between the two numbers in V.

(b) Conclude there is a bijection between the n-vertex numbered trees and {1, ..., n}*~2, and state how
many n-vertex numbered trees there are.

Solution. There are exactly as many n-vertex numbered trees as the number of possible code words, that is,
the number of length n — 2 sequences of integers between 1 and n. So there are n"~2 numbered trees.

The reason is that the map from trees to codes is a bijection. To see this, note that the tree reconstruction
procedure finds the only possible tree with that code. So there can’t be two trees with the same code, that is,
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the map from a tree to its code is an injection. But since the reconstruction procedure finds a tree for every
possible codeword, the map from trees to codes is also a surjection. |

Problem 3. (a) How many of the billion numbers in the range from 1 to 10 contain the digit 1? (Hint:
How many don’t?)

Solution. We can count up how many do not contain the digit 1 and subtract. So (total number) - (number
without 1’s) = 10° — (9% — 1) = 612,579, 512 (the —1 is for O which is not in our range). =

(b) There are 20 books arranged in a row on a shelf. Describe a bijection between ways of choosing 6 of
these books so that no two adjacent books are selected and 15-bit strings with exactly 6 ones.

Solution. A selection of six among twenty books on a shelf corresponds in an obvious way to a 20-bit string
with exactly six 1’s. For example, the 20-bit string with 1’s in exactly the 3rd, 4th, 5th, 10th, 19th and 20th
positions corresponds to selecting 3rd, 4th, 5th, 10th, 19th and 20th books on the shelf.

So the problem reduces to finding a bijection between 20-bit strings with six nonadjacent 1’s and 15-bit
strings with six 1’s.

But in a string, s, with six nonadjacent 1’s, all but the last 1 must have a O to its right. So we can map s to a
string with six 1’s and five fewer 0’s by erasing the 0’s immediately to the right of each of the first five 1’s.
For example, erasing the underlined 0’s in the 20-bit string 00010100101000001010 yields the 15-bit
string 000110110000110.

This map is a bijection because given any 15-bit string with six 1’s, there is a unique 20-bit string with
nonadjacent 1°s that maps to it, namely, the string obtained by replacing each of the first five 1’s in the
15-bit string by a 10. |

Problem 4.

(a) Let S, x be the possible nonnegative integer solutions to the inequality

Xy +x3+ -+ x5 < n. (1)

That is
Snx ={(x1,X2,...,X) € Nk | (1) is true}.

Describe a bijection between Sy, ;. and the set of binary strings with n zeroes and k ones.
Solution. The notation 0* indicates a length x string of 0’s.
(x1,x2,...,x¢) «—— 0%110%21... 0% 10",
where 5 ::= Zle Xis m
(b) Let £, i be the length k weakly increasing sequences of nonnegative integers < n. That is
Lng:={00 Y2, ) €N | p1 < y2 < - <y <),

Describe a bijection between L, x and S, x.
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Solution. (y1,y2,...,Yk) <= (1, Y2—= Y1, Y3 —Y2s --+» Yk — Yk—1)-
In the other direction,

k
(15220005 %) < (X1, X1+ X2, X1 + X2+ X3, ..., Zx:')-

i=1
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‘Generalized
Counting Rules

Albert & Meyer, Apeit 11,2011 Jec 10M.1

EEEE Generalized Product Rule
|segs in S° with no repeats|
91 choices for 15 student,
90 choices for 2nd student,
89 choices for 3rd student,
88 choices for 4th student,
87 choices for 5th s’rude|m“

o1l
=91-90-89-88-87 e

Division Rule
#6.042 students =
#6.042 students’ fingers

10

Albert R Meyer, April 11, 2011 hec 10M 14

§§§ Generalized Product Rule

# lineups of 5 students in

...............................

lineups have no repeats:
|segs in S° with no repeats| ?

Alert R Meyer, Apest 11, 2001 lec J0M.TT

“n: Generalized Product Rule

Q a set of length-k sequences
if n, possible 15t elements,
n, possible 2" elements
(for each first entry),
n; possible 3 elements

(for each 15t & 2rdentry,..)

e v

it ~ Division Rule
if function from A to B
is k-to-1, then

|A] = k|B|

(generalized Bijection Rule)

Albert R Meyer, Apeil 11, 2011 Jec 10M 15




Counting Subsets _

How many size 4 subsets of {1,2,..,13}?

Let A::= permutations of {1,2,..,13}
B::= size 4 subsets

map [0, 83 0a..a1p 03 € A

to = {aia>, ag-, Qy} €B

Alert R Meyer, Apeil 11,2011 Jec 10M16

== Counting Subsets

131= |A]| = (4!-9D)|B]

so # of size 4 subsets is

13) _ 13l
4 | 49!

counting 2-pair poker hands

a 2-pair hand has

« 2 cards of some rank

» 2 cards of a second rank

» 1 card of still a third rank

Alvert R Meyer, Apeil 11, 2011 lec 10M.20

s Do
omon

:my Counting Subsets .
[G10:0:0]s..12 03 alS0 maps
to {a;, a,, a3, a.}

so does .01 03 02 04_.013 012 {15'

. 4lperms  9lperms
all ma[f fo same set

41-91-to-1 |

Alert R Meyer, Apeit 11, 2011 \ ez 2017

[\( 050 (4
b " gy
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A 7l

Counting Subsets
# m element subsets
of an n element set is

Albert R Meyer, April 11, 2011 Jec 10M19

counting 2-pair poker hands

a 2-pair hand:
Ké, KV, Ao, Ad, 3%




QF=1=1r)
omag
og  Q
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counting 2-pair poker hands

to count, choose :
* 1s* pair rank (13 ranks)

» 2nd pair rank (12 ranks left)
 last card rank (11 ranks left)

Alert R Meyer, Apeil 11, 2011 lec 10M 22

+ Q0R
omoo

i counting 2-pair poker hands
successively choosing:
K, A, 3,{v ¢} {¢, 8} &
specifies 2-pair hand:
Ke, K®, A¢, A 3%

Alert R Meyer, Apeil 11, 2011 Jec 10M 24

i counting 2-pair poker hands
this method counts 6-tuples

[1* card ranks]x[2" card ranks]
X [last card rank] x

[15* card suits] x [2M card suits]
X [last card suit]

correctly

* Q00
|_els}
TR
e

ey counting 2-pair poker hands
then choose:
- 15" pair suits [4] sets of

2) 2 suits
- 2nd pair suits 4] sets of
| 2] 2 suits
e last card suit (4 suits)

Albert R Meyer, Apeil 11, 2011 lec 10M 23

~ counting 2-pair poker hands
So # 2-pair hands is

13. [|4] 4
2

Albert R Meyer, Apeil 11, 2011 lec 10M 25

owon

ag:o couﬁfing 2-pair poker hands
but the correspondence to
2-pair hands is not a bijection:

-(KAS{VO}{O A}, &)
= l<¢ Ke, Ao AA 3%
(AK3{¢4}{v¢} &)

[E0ET Albert R Meyer, Apeil 11, 2011




counting 2-pair poker hands
o count, choos,g:,;;{ffhe bUg

________
- .

‘‘‘‘‘‘‘ :

(13 ranks)
(12 ranks left)

,,,,,,,,

- -
‘‘‘‘‘‘‘‘

Abert R Meyer,  Apeil 11,2018 Jec 10M 79
omon . .
B counting 2-pair poker hands

map from 6-tuples
(Kt A, 3r {v: ’}ai‘:‘}r *)
to 2-pair hands .~

K& K¥, Ae Ad 34
is 2-to-1

Jec JOM31

omoo

“: counting 2-pair poker hands
so # 2-pair hands is really

.

o
— 131211
Z

counting 2-pair poker hands

»»»»»»»
———————
- o

-
-~ -
e

'~
-~ -
e v

either pair might be 1st

f’o_ﬂ'-::’d-'_" Alber? R Meyer, April 11, 2011 lez 10M 30

counting 2-pair poker hands
so # 2-pair hands is

T

Albert R Meyer, Apel 11, 2011

Jec 10M 32

Team Problems

Problems
14

Albert R Meyer, Aprdlr 2o e oM 4
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