14




- Carnival Dice

So on average expect to win:

=INOT fairl=

A : .
——m~ 8cents

[ Albert R Meysr, April 29,2011 . lec 127,43

[ s [olr]
B
DoE -

~ Carnival Dice
You can "expect” fo lose 8 cents
per play. But you never actually

lose 8 cents on any single play,
this is just your average loss.

i Expected Value

The expected value of
random variable R is
the average value of R
--with values weighted
by their probabilities

:'a‘o"'-" * Abert R Mayer, Apni 29, 2011 e 2F 14

& Expected Value
The expected value of
random variable R is

E[R]::= >v-Pr{R = v}
177

so E[$win in Carnival] = 216

sl Expected Value
An equivalent definition

E[R]= ¥ R(®)-Pr{w}

weS

both forms are useful

ol Abert & Meyer, April 29,2011 hec 12F 36

Bt Expected Value

also called _

mean value, mean, or
expectation

[ 50 | Albert A Meyer, Aprii 29, 2011 : fec 12F.20




IIQH

od -l Indicator Variables
The indicator variable for event A:

T 1-;. if A occurs,
A |0 if Adoesnot occur.

e

‘Olucs Alrt R Meyer, April 29, 200 lec 12F 21

uﬂ
an-
0!

“uHE

Ekpec?ed #Heads

n independent flips of a
coin with bias p for Heads.
How many Heads expected?

. E[Bmp] o= ik . Pr'{k Heads}
(e

AbertBMeper.  Apri 29,2011 i< 1223

-' Law of Total Expectation
Def: conditional expectation

E[R|Al:=> v -pr{R=v | A}
E[R] E[R | A Pr'{A}

+E[R|[A]- Pr‘{A}

good for reasoning by cases

Abart R Meyer, Apeil 29, 2011 Jec 12721

% Expectation of indicator I,

E[Tall= 1-Pr{T,=1} +
0- Pr‘{IA—O}

— PRl i}

= Pr{A}

Albert & Meyer, Aprd 29,2011 iec 12F .22

&8 Expected #Heads

Binomial thm & differentiating
gives a closed formula, but
simpler approach is coming

g, |+ - Y'k-Pr{k Heads]
_ku( e

k=0

=) 0] Albert R Meyer, Aped 29, 200 ioc 127,26

T Expected #Heads
Let e(n) ::= expected #H's in n flips.
" =1+e(n-1) if 1stflipH
= e(n-1) if 1st ﬂip T
by Total Expectation:
e(n)=[1+e(n-1)]p+ e(n-1)- -q
e(n) = e(n-1)+p = e(n-2)+2p -

Abert & Meyer, Apri 29, 2011 tee 12£.32
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~ application: if space station Mir
has 1/150,000 chance of
exploding in any given hour,

- after how may hours do
we expect it to explode?

150,000 hours ~ 17 years

Albart R Meyer, Apeil 29, 2011 lec 2P AL

ih Expected #Heads

HH's=H +H +..+H

where H. is indicator
for Head on ith flip

Albert R Merer, Apri 29, 2011 loc 12F 46

Expected #hats returned

n men each check their hat.
Hats get scrambled so

pr{man #i gets own hat back}

—17n

How many men do we expect
will get their hat back?

(=) O Abert R Meyer, Apeil 29,2011 lec 12F 48

ggﬁs Linearity of Expectation

'R,S random variables, a,b
constants

E[aR + bS] =
aE[R] + bE[S]

_even if R,S are dependent

050 Albert & Mayer, Aprid 29, 2011 lec 12F.44

=

Cdg Expected #Heads .
E[#H‘s] = E[H, +H, +"""HJ

S0 by lineari . _
“Elt Bl

el

Abert R Meper, Aped 29, 2011 e 12FAT

Expec'red #hats returned

Let R, be indicator for man #i
getting his own hat back.
‘Rjand R;are not independent!

IS 055 Abert R Meyer, Apri 29, 2011 iec 12F A3
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Massachusetts Institute of Technology
6.042J/18.062], Spring *11: Mathematics for Computer Science April 29
Prof. Albert R Meyer revised Thursday 28" April, 2011, 15:26

In-Class Problems Week 12, Fri.

Problem 1.
Let’s see what it takes to make Carnival Dice fair. Here’s the game with payoff parameter k: make three
independent rolls of a fair die. If you roll a six

e no times, then you lose 1 dollar.

e exactly once, then you win 1 dollar.

e exactly twice, then you win two dollars.
e all three times, then you win k dollars.

For what value of k is this game fair?

Problem 2.
A classroom has sixteen desks in a 4 x 4 arrangement as shown below.

If there is a girl in front, behind, to the left, or to the right of a boy, then the two of them flirs. One student may
be in multiple flirting couples; for example, a student in a corner of the classroom can flirt with up to two
others, while a student in the center can flirt with as many as four others. Suppose that desks are occupied by
boys and girls with equal probability and mutually independently. What is the expected number of flirting
couples? Hint: Linearity.

Problem 3. (a) Suppose we flip a fair coin and let N7t be the number of flips until the first time two Tails
in a row appear. What is Ex[N1z]?

Hint: Let D be the tree diagram for this process. Explain why

D=H-D+T-(H-D+T).

OO

Creative Commons K 201 1, Eric Lehman, F Tom Leighton, Albert R Meyer .




2 In-Class Problems Week 12, Fri.

Use the Law of Total Expectation: Let R be a random variable and A, A5, ..., be a partition of the sample
space. Then

Ex[R] = ) Ex[R | A;] Pr[4;].

(b) Suppose we flip a fair coin until a Tail immediately followed by a Head come up. What is the expecta-
tion of the number Nty of flips we perform?

(c) Suppose we now play a game: flip a fair coin until either TT or TH first occurs. You win if TT comes
up first, lose if TH comes up first. Since TT takes 50% longer on average to turn up, your opponent agrees
that he has the advantage. So you tell him you’re willing to play if you pay him $5 when he wins, but he
merely pays you a 20% premium, that is, $6, when you win.

If you do this, you’re sneakily taking advantage of your opponent’s untrained intuition, since you’ve gotten
him to agree to unfair odds. What is your expected profit per game?

Problem 4.
Justify each line of the following proof that if Ry and R; are independent, then

Ex[R] - R2] = Ex[R1] - Ex[R3].
Proof.

EX[R] y Rz]

- > rePiR Ry =r]
rerange(R-R3)

= Z rira- Pl‘[Rl =rn and R2 = 1'2]

ri€range(R;)

Z Z ryra - pl‘[Rl =T and Rz = I‘z]

ri €range(R ) ro€range(R2)

= Z E riro . PI‘[R] = 1'1] i Pl‘[Rz b J"2]

ri €range(R ) ra €range(R3)

= Z ri Pr[Ry = 1] - Z r2 Pr[Ry = 13]

ri€range(R)) ra€range(R2)
— Z r1 Pr[Ry = r1] - Ex[R;]

ri€range(R))

=Ex[Rz]- ).  nPiR =n]
ri€range(R))

= EX[RQ} . EX[R]].




E Clase (7 F/fl L{/Zﬂ
L mk (anval 1(olm
[Zl;)r whal  vale of kb (f fuir
=I5 I[E )28 (Hy
/[93\/0, ’y[o.f‘ 1’\

7. Dede

Hud - e o St

K grd ol gomfiz” ey
e W caples o

J, r
7 g‘)fOb Bxﬁ /561/ Gﬁ i(f? fZW %

4o /2



O b oporeid -0
4

VA Vo
l:z (p {a/(/ Coiq wee Gx\o\@\ Yells Qo
(b\i— nﬂ'l\t v}‘ﬁ Y\‘Q—lh\l,‘if\
— \ c_, at
NJT - # Fll/05 valil 0 s A ), Ol
—/
A \ E
o C’"OL” 1954

hat s 'EM/rJ
n%»/ /QC, (0 {7’% O[j’-“ﬁ@"]

&
_H/\T1 < )
a8
(Cpaut
0 oo
V)
D=H-0+ T[40 +1)
; C T
6““( (A A vin
Wt

Ui M
EL=>elalkTe[ay



@
})) NOW A/TH

' V2
2y

(%o / \
S

Win, (efnl
T oo 0 y\,] !

C) Tl il TT o f 14
TT c\ﬂ‘!’q
T H~os
S0 1Tty Sfl) longe 4 dhae f
{ : @4«“1 l:?
i < 48
Logs~ —4
Uhat s ELP”J{@C
YQV }\a,q sdds S‘L%M " Yo W@f‘w



F: /\ZE*J‘{EW}J:(
—
q"’[’z'%)-f{
LiE =
\[(i: Liq \,\/[0/\9 Clb h%}
| [ af
E = ) Cant T(# (] }
0o 1 ‘L JK‘!L /\8@{ 4@ X EZ ﬁﬁfaf ﬂ(ﬁ)
g
Eoer | goffgg,%(%.,“éj
E:JZ__EwL %/eq_\,z
ET]EJV‘,&
TrE;; E[

COM (WL v{o 'hma/f',[



Q ‘300\6 P = J :
N ) ::/LQ( ;
1c 77
&1
]4 ﬁ”@fi) ﬁlz

& wyy G=4 54Tt
Coles G=T+7
5T <7
T =Y
5:Tﬂ~z
= 6



g
e E-4(rr) 4 (D24 [m)

SE 11

<4
L\ﬁf@j\le TMTLﬁ s a f/ (‘ !
9}( ;DB ot Lok o] C(W](V”y‘,

&

C
<

Win ﬂWb 'fﬂ &‘Lg €t0{€ S

TR Hhy NIRY inrmplelt
[W gﬂL el of (7
o} Obing!

M. wb b by dof
QDL/PL C‘l.\ TLFfﬂLS Ofc

Th!ﬁ 7 jvﬁf A mm/mv (Aa;ﬂ,/



WW{.\L\ a,hwf M C@ﬂylfi(i:cb(o«; f é/) 1%/



Massachusetts Institute of Technology
6.042]/18.062J, Spring ’11: Mathematics for Computer Science April 29
Prof. Albert R Meyer revised Wednesday 27% April, 2011, 01:05

Solutions to In-Class Problems Week 12, Fri.

Problem 1.

Let’s see what it takes to make Carnival Dice fair. Here’s the game with payoff parameter k: make three
independent rolls of a fair die. If you roll a six

no times, then you lose 1 dollar.

exactly once, then you win 1 dollar.

exactly twice, then you win two dollars.

all three times, then you win k dollars.
For what value of k is this game fair?

Solution. Let the random variable P be your payoff. Then we can compute Ex[P] as follows:

Ex[P] = —1 - Pr[0 sixes] + 1 - Pr[1 six] + 2 - Pr[2 sixes] + k - Pr[3 sixes]

5\3 I\ 75%2 1\2/5 1\3
e sa-ft (8 2.3( 2 ) kst 2
: (5) e 3(6) (6) o 3(6) (5)+ (6)
1254 754+30+k
- 216

The game is fair when Ex[P] = 0. This happens when k = 20. O

Problem 2.
A classroom has sixteen desks arranged as shown below.

Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .




2 Solutions to In-Class Problems Week 12, Fri.

If there is a girl in front, behind, to the left, or to the right of a boy, then the two of them flirt. One student may
be in multiple flirting couples; for example, a student in a corner of the classroom can flirt with up to two
others, while a student in the center can flirt with as many as four others. Suppose that desks are occupied by
boys and girls with equal probability and mutually independently. What is the expected number of flirting
couples? Hint: Linearity.

Solution. First, let’s count the number of pairs of adjacent desks. There are three in each row and three in
each column. Since there are four rows and four columns, there are 3 -4 + 3 -4 = 24 pairs of adjacent desks.

Number these pairs of adjacent desks from 1 to 24. Let F; be an indicator for the event that occupants of
the desks in the i-th pair are flirting. The probability we want is then:

24 24
Ex[) | F] =) Ex[F] (linearity of Ex[-])
i=1 i=1
24
s ZPr[F,- =1] (F; is an indicator)

i=1
The occupants of adjacent desks are flirting iff they are of opposite sexes, which happens with probability
1/2, that is, Pr[F; = 1] = 1/2. Plugging this into the previous expression gives:

24 24 1
T S 1 ()
l Ay Thougm v ' o
'U“ A Jg/ 1-}!

Problem 3. (a) Suppose we flip a fair coin and let Nt be the number of flips until the first time two Tails
in a row appear. What is Ex[Ny1]?

Hint: Let D be the tree diagram for this process. Explain why
D=H-D+T-(H-D+T).

Use the Law of Total Expectation: Let R be a random variable and A, A, ..., be a partition of the sample
space. Then

Ex[R] = ) "Ex[R | 4;]Pr{A;].

Solution.
EX[NTT] = 6.

Let Hy, be the event that the first Head appears on the kth flip. From D and Total Expectation:




Solutions to In-Class Problems Week 12, Fri. 3

Ex[Nr1]
= Ex[Nrr | Hy]-Pr[H,] + Ex[Nyr | Hy] - Pr{Hi]

= L+ BN -5

+ (Bx{Vsx | Hal e[y | ) + (Bx(Ves | T 0 TR) Pe [ | ) -5

= (+ExVe) - 5 + (@ + BxfNer) - 5 +2:3) -5

1  Ex[N 1 1
—E+M+(2+EX[NII])‘Z+E
_ 3 BEX[NTT]
=2t T4
So
Ex[Nz1] o
4 2

(b) Suppose we flip a fair coin until a Tail immediately followed by a Head come up. What is the expecta-
tion of the number Nry of flips we perform?

Solution.
Ex [NTH] =4,

This time the tree diagram is C ::= H - C + T - B where the subtree B := H + T - B.
So i q
Ex[N1s] = (1 4+ Ex[Nzx]) - 5t (1 +Ex[Ng]) - 5

where Np is the expected number of flips in the B subtree. But

1
Ex[Ng]=1- 3 + (1 + Ex[Ng]) -
That is, Ex[Ng] = 2. Hence,
1 EX[NTH] 1
Ex[N7y|l = = -
X[Nry] > + 5 3

which implies Ex[Nry] = 4. =]

L2
2

(c) Suppose we now play a game: flip a fair coin until either TT or TH first occurs. You win if TT comes
up first, lose if TH comes up first. Since TT takes 50% longer on average to turn up, your opponent agrees
that he has the advantage. So you tell him you’re willing to play if you pay him $5 when he wins, but he
merely pays you a 20% premium, that is, $6, when you win.

If you do this, you’re sneakily taking advantage of your opponent’s untrained intuition, since you’ve gotten
him to agree to unfair odds. What is your expected profit per game?

Solution. It’s easy to see that both TT and TH are equally likely to show up first. (Every game play consists
of a sequence of H’s followed by a T, after which the game ends with a T or an H, with equal probability.)

So your expected profit is
1 1
Y S e S (I
5 o A=)

dollars, that is 50 cents per game. So leap to play. (]




4 Solutions to In-Class Problems Week 12, Fri.

Problem 4.
Justify each line of the following proof that if R} and R; are independent, then

EX[R1 . R2] = EX[Rl] . EX[R;].
Proof.
Ex[R; - R2]

= > rPR-Ry=7]
rerange(R1-R2)

= Z rlrz'PI'[Rl =r and RZ :r2]
ri€range(R;)

= Z: Z rir2 -Pr[R; = r; and Ry = ]

ri€range(R 1) ra€range(R2)

Z Z rirz 'PI‘[Rl = rl] 'PT[RZ e ?‘2]

r1 €range(R) r2€range(R2)

= Z r PRy = r]- Z r2 Pr[Ray = 7]

ri €range(R)) ra€range(R2)
— E r PI'[RI = r1] : EX[Rz]
ry €range(R})

=Ex[Rz]- Y. nPrRi=r]

ry €range(Ry)

= EX[Rz] = EX[R]].

Solution. Note that the event [Ry - Ro = r] is the disjoint union of events [R; = r; AND Ry = r3] such

that r; € range(R;) fori = 1,2and ryry = r.




Solutions to In-Class Problems Week 12, Fri.

Proof.

Ex [Rl . Rz]

t= Z r-Pr[Ry- Ry =]
rerange(R)-R2)

- ¥

ryra - PI‘[R] =r1 AND R2 = ?’2]

ri €range(R;)

- ¥

Z ryra - Pr[R1 =r; AND R = r2]

ri€range(R)) r2€range(R2)

- ¥

E rira - Pr[Ry “—_T1]'Pr[R2:r2]

ri€range(R) r2€range(R2)

- ¥

]‘1Pr[R1 =!’1]' Z FzPr[R2=?’2]

r1€range(R)) ra2€range(R2)

- ¥

r1 Pr[Ry = r1]- Ex[R2]

ry€range(R)

= Ex[Ry] -

= Ex[Rz] -

Z r1 Pr[Ry = r{]

ry€range(R))

EX[R]].

(by definition)
(remarked above)
(ordering terms in the sum)

(independence of R1, R2)

(factor out rq Pr[Ry = r1])
(def of Ex[Ra])

(factor out Ex[R3])

(def of Ex[R;])
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B  Mathematics for Computer Science
MIT 6.0427/18.0627

Deviation from
the Mean

=) TR Albart & Meyer, My 2, 2011 lec 13041

- aog

& IQ Higher than 300?

neo

If more than 1/3 have
IQ > 300, then

avg > (1/3)-300 > 100 !
--a contradiction

i) OO Abert R Meyer, Moy 7, 2011 lec 1336

e e

“8 Example: IQ

IQ measure was constructed so

that | '
‘average IQ = 100.

What fraction of the people

can possibly have an IQ > 3002

..at most 1/3

Ploze Albert R Mayer, My 2, 2011 e T3ATS

BE IQ Higher than x?

Besides mean = 100,
we used only one fact about
the distribution of IQ:

IQ is always nonnegative

QLo Abert R Meyer, May 2, 2011 lec 1320

IQ Higher than x?

In general,

Pr{IQ > x} < %)-

(SO0 Albert R Meyer, Moy 2, 2011 les 13M19

o
Markov Bound
If R is nonnegative, then

Pr{R > x} < E[XR]

forx >0

(055 Abert R Meyer, ey 22011 jec 1121

52



Markov Bound

. Weak. :
- Obvious
-Useful anyway

oleRs

Abert R Meyer, May 2,201 L lectimzs

« Qoo
[ ==}
o0 o

= TQ > 300, again

Pr{IQ>300} =

Pr{IQ -50> 300 -50}
_100-50 _1
~ 0050 -

[ D58 Abere & Meyer. Moy 2, 2081 lec 13M 26

: Chebyshev Bound

Pr{IR M|>X} Va;E‘R]d
Var[R]:=E[R- 1]

= Var[R]

Abert R Meyer, My 2,201 lec 13431

IQ > 300, again

Suppose we are given that

IQ is always > 50?

Get a betfter bound using
(IQ - 50)

since this is now > 0.

el

mma Improving the Markov Bound

Pr{|R-y| > x}
= Pr{(R-1)? > x%}

by Markov:
< EIR- u)zl

variance of R

Do,

Albert B Meyer. Moy 2, 2011 lec 13M.29

el
B Standard Deviation

2

Pr{]R-ule}g%

R probably not many o's from p:

further than ¢ Pr<1
20 Pr<i1/4
36 Pr<1/9

40 Pr<1/16

Albert R sheyer. May 2. 2011 Jnc 13435




| Variance of an Indicator
: I an mdlca‘l'or' wn?h E[T]=p:
VGP[I] =E[(T- p)z:l
= E[Iz] 2pE [I] +p?
= E[I]—Zp-p+ p
=p-2p°+p’=pg

Calculating Variance
PaII"WISG Independent AdleIVI'I'y

Var[R +R, +---+R ]
=Var[R ]+ Var[R,]+---+Var[R ]

providing Ry R,,...,R, are
pairwise independent

* again, a simple proof applying
~linearity of E[] to the def of Var[]

Albert & Meyer, oy 2,200 lec 13046

HEE
:Fd  Jacob D. Bernoulli (1659—1705)

It certainly remains to be inquired whether
after the number of observations has been
increased, the probability...of obtaining the
true ratio...finally exceeds any given degree
of certainty; or whether the problem has, so
to speak, its own asymptote —that is, whether
some degree of certainty is given which one
can never exceed.

Abert & Meyer, May 2. 2011 lec 13143

_______________________________________________

Var[R]=E[R"]- (E[R])z |

okl ——

simple proofs applying linearity
- of E[] to the def of Var[] ‘

Abert B Meyer. My 2, 2011 lec LIMIY

.Tacob D. Ber'noulll (1659-1705)

Even the stupidest man —by some instinct of
nature per se and by no previous instruction
(this is truly amazing) —knows for sure that
the more observations ...that are taken, the
less the danger will be of straying from the
_mark.
—Ars Conjecland: (The Art of Guessing), 1713*

= -
e Repeated Trials

Random var R with mean
n independent observations

th...' R

n

S Abert B eyer, ey 2208 ke 13M57




Repeated Trials
Take average:
CRR bR,
Ay n
- Bernoulli queS”rion: is it
probably close fo p if n is big

Pr{‘An—'ul 55} =

Abart & Meyer, May 2, 2018 Jec 13A54

Weak Law of Large Numbers

lim Pr{|A, - u|38} =1
N—>o0

_______ n -——

Albert 8 Meyer, Moy 2. 2011 Jec 13461

Abert R Meyer. May 2, 2011 lec 1IM63

- Qoa
{2 =]

a3
E  Jacob D. Bernoulli (1659 - 1705)

~ Therefore, this is the problem which I
now set forth and make known after I
have pondered over it for twenty years.
Both its novelty and its very great
usefulness, coupled with its just as
great difficulty, can exceed in
weight and value all the remaining

- chapters of this thesis.

Abert & Meyer My 2, 2011 e 13ME0

EEEB Weak Law of Large Numbers

will follow easily by Chebyshev
& variance properties

ilim Pr‘{tAn-u|>6} =
' N—oo -

Weak Law of Large Numbers

So by Chebyshev
Var'[An}
Pr‘{'An - u| ol =

need only show
Var[A,] -0 as n —+ o

Qs AbertRMeyer. Moy 2,201 o 1IMEA




=:8  Repeated Trials
| (R1+Rz+'”+Rn)

nnnnnnn

lec 1366

Analysis of the Proof
proof only used that R;
- same mean
* same variance
-&variances add
— which follows from
pairwise independence

gggg Pairwise Independent Sampling
Theorem:
Let R;,... R, be pairwise independent
 random vars with the same finite
mean y and variance o?. Let

ﬁl-f._(pt"'Rz "'"""R,,)/n- Then

Abert R Meyer. Moy 2, 2011

..... R, have

hec 1IMET

- agnl

Pairwise Independent Sampling
The punchline: '
we now know how big a sample is

“needed to estimate the mean of
any* random variable within
any™ desired tolerance with
any™ desired probability
*variance < oo, folerance > 0,

i 2 ':

é lifc|=

; Pr{‘A -p,‘>8} £ ===

| n\8)
""""""""" o e e
ggg Birthday Pairs

D ::= # pairs with matching
b'days among n people
in a d-day year

D= 2 Mi i
I<i<j<n
M;; ::= indicator that ith & jth
birthdays match

May 2,201

Abart R Meyer, lec 13M70

probability < 1

Moy 22011

loc 1IME9

]
Birthday Pairs

so by linearity of E[]

w1 3 €)= )

hec 1IMTL
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Massachusetts Institute of Technology
6.042J/18.062], Spring *11: Mathematics for Computer Science May 2
Prof. Albert R Meyer revised Sunday 1** May, 2011, 22:42

In-Class Problems Week 13, Mon.

Problem 1.

A herd of cows is stricken by an outbreak of cold cow disease. The disease lowers the normal body tem-
perature of a cow, and a cow will die if its temperature goes below 90 degrees F. The disease epidemic is so
intense that it lowered the average temperature of the herd tmees. Body temperatures as low as 70
degrees, but no lower, were actually found in the herd.

(a) Prove that at most 3/4 of the cows could have survived.

Hint: Let T be the temperature of a random cow. Make use of Markov’s bound.

(b) Suppose there are 400 cows in the herd. Show that the bound of part (a) is best possible by giving an
example set of temperatures for the cows so that the average herd temperature is 85, and with probability
3/4, a randomly chosen cow will have a high enough temperature to survive.

Problem 2.

A gambler plays 120 hands of draw poker, 60 hands of black jack, and 20 hands of stud poker per day. He
wins a hand of draw poker with probability 1/6, a hand of black jack with probability 1/2, and a hand of stud
poker with probability 1/5.

(a) What is the expected number of hands the gambler wins in a day?

(b) What would the Markov bound be on the probability that the gambler will win at least 108 hands on a
given day? ,;

(¢) Assume the outcomes of the card games are pairwise independent. What is the variance in the number
of hands won per day?

(d) What would the Chebyshev bound be on the probability that the gambler will win at least 108 hands on
a given day? You may answer with a numerical expression that is not completely evaluated.

Problem 3.
The proof of the Pairwise Independent Sampling Theorem 18.5.1 was given for a sequence Ry, Ra,... of
pairwise independent random variables with the same mean and variance.

The theorem generalizes straighforwardly to sequences of pairwise independent random variables, possi-
bly with different distributions, as long as all their variances are bounded by some constant.

Theorem (Generalized Pairwise Independent Sampling). Let X1, X».... be a sequence of pairwise inde-
pendent random variables such that Var[X;] < b for some b > 0 and all i > 1. Let

ok e ek e

Ay =

n
i = Ex[A,].

Then for every € > 0,
b 1
PF[[A,,—,LL,I|>€]S—2'—- M
€4 n

Creative Commons (@] 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .




2 In-Class Problems Week 13, Mon.

(a) Prove the Generalized Pairwise Independent Sampling Theorem.

(b) Conclude that the following holds:
Corollary (Generalized Weak Law of Large Numbers). For every € > 0,

Hli)rr;oPrHA,, —Un| <€l =1.

Problem 4.

For any random variable, R, with mean, j, and standard deviation, o, the Chebyshev Bound says that for
any real number x > 0,

iRl = 4 = (2)".

Show that for any real number, j, and real numbers x > ¢ > 0, there is an R for which the Chebyshev
Bound is tight, that is,

Pr{|R| > x] = (%)2 )

Hint: First assume j¢ = 0 and let R only take values 0, —x, and x.




In-Class Problems Week 13, Mon. 3

Pairwise Independent Sampling
Let R be a random variable, and @ a constant. Then

Var[aR] = a® Var[R]. (3)
Theorem (Pairwise Independent Sampling). Let Gq,..., Gy be pairwise independent variables with the

same mean, |, and deviation, o. Define
n

i=1

Then

Proof.

Ex Fﬂ] = Ex [Zi‘—qi] ' (def of S,,)

n n

*_ Ex[G;
— M (linearity of expectation)
n

= D i=g M

n

n
n
S L
Var | e Var[S,] (by (3))
1 n
i=1
l n
=— Z Var[G;] (pairwise independent additivity)
n
i=1
1 2
=— ot =L 4
n n

This is enough to apply Chebyshev’s Theorem and conclude:

- [S
Pr ﬁ —pl=x =< L;/”] (Chebyshev’s bound)
n X
2
o</n
e (by (4))
X

1 2
=--(3)"
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Massachusetts Institute of Technology
6.042J/18.062], Spring ’11: Mathematics for Computer Science May 2
Prof. Albert R Meyer revised Monday 2™ May, 2011, 23:39

Solutions to In-Class Problems Week 13, Mon.

Problem 1.

A herd of cows is stricken by an outbreak of cold cow disease. The disease lowers the normal body tem-
perature of a cow, and a cow will die if its temperature goes below 90 degrees F. The disease epidemic is so
intense that it lowered the average temperature of the herd to 85 degrees. Body temperatures as low as 70
degrees, but no lower, were actually found in the herd.

(a) Prove that at most 3/4 of the cows could have survived.

Hint: Let T be the temperature of a random cow. Make use of Markov’s bound.

Solution. Let 7" be the temperature of a random cow. Then the fraction of cows that survive is the proba-
bility that T > 90, and Ex[T'] is the average temperature of the herd.

Applying Markov’s Bound to T':
Ex[T].,.. 85 .17

Pr[T = 90] =< % T
But 17/18 > 3/4, so this bound is not good enough.
Instead, we apply Markov’s Bound to T — 70:
Ex[T — 70]

Pr[T > 90] = Pr[T — 70 > 20] < = (85—70)/20 = 3/4.

20
-]

(b) Suppose there are 400 cows in the herd. Show that the bound of part (a) is best possible by giving an
example set of temperatures for the cows so that the average herd temperature is 85, and with probability
3/4, a randomly chosen cow will have a high enough temperature to survive.

Solution. Let 100 cows have temperature 70 degrees and 300 have 90 degrees. So the probability that a
random cow has a high enough temperature to survive is exactly 3/4. Also, the mean temperature is

(1/4)70 + (3/4)90 = 85.

So this distribution of temperatures satisfies the conditions under which the Markov bound implies that the
probability of having a high enough temperature to survive cannot be larger than 3/4. |

Problem 2.

A gambler plays 120 hands of draw poker, 60 hands of black jack, and 20 hands of stud poker per day. He
wins a hand of draw poker with probability 1/6, a hand of black jack with probability 1/2, and a hand of stud
poker with probability 1/5.

(a) What is the expected number of hands the gambler wins in a day?

Solution. 120(1/6) + 60(1/2) 4+ 20(1/5) = 54. |

Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .




2 Solutions to In-Class Problems Week 13, Mon.

(b) What would the Markov bound be on the probability that the gambler will win at least 108 hands on a
given day?

Solution. The expected number of games won is 54, so by Markov, Pr[R > 108] < 54/108 = 1/2. 3|

(c) Assume the outcomes of the card games are pairwise independent. What is the variance in the number
of hands won per day?

Solution. The variance can also be calculated using linearity of variance. For an individual hand the vari-
ance is p(1 — p) where p is the probability of winning. Therefore the variance is

120(1/6)(5/6) + 60(1/2)(1/2) + 20(1/5)(4/5) = 523/15 = 34 13.
o

(d) What would the Chebyshev bound be on the probability that the gambler will win at least 108 hands on
a given day? You may answer with a numerical expression that is not completely evaluated.
Solution.

Var[R] 523
542 7 15(54)2

Pr[R > 108] = Pr{R — 54 > 54] < Pr[|R — 54| > 54] < ~ 0.01196.

Problem 3.
The proof of the Pairwise Independent Sampling Theorem 18.5.1 was given for a sequence Ry, R, ... of
pairwise independent random variables with the same mean and variance.

The theorem generalizes straighforwardly to sequences of pairwise independent random variables, possi-
bly with different distributions, as long as all their variances are bounded by some constant.

Theorem (Generalized Pairwise Independent Sampling). Letr X, X2, ... be a sequence of pairwise inde-
pendent random variables such that Var[X;] < b forsomeb > 0and all i > 1. Let

X1+ Xo 4+ Xy
> ;

Ap

Un = Ex[Ap].
Then for every € > 0,
M

b 1
Pr|An — ptnl > €] < — - —
€ n

(a) Prove the Generalized Pairwise Independent Sampling Theorem.

Solution. Essentially identical to the proof of Theorem 18.5.1 in the text, except that G gets replaced by X
and Var[G;] by b, with the equality where the b is first used becoming <. O

(b) Conclude that the following holds:
Corollary (Generalized Weak Law of Large Numbers). For every € > 0,

n]_i)n;oPrHA,, —in| <€]l=1.




Solutions to In-Class Problems Week 13, Mon. 3

Solution.
Pr{|An — pn| < €] =1 —Pr|Ap — pn| > €]
>1—b/(ne® (by (1)),
and for any fixed e, this last term approaches 1 as n approaches infinity. |
Problem 4.

For any random variable, R, with mean, j, and standard deviation, o, the Chebyshev Bound says that for
any real number x > 0,

Pr|R — | > x] < (;)2.

Show that for any real number, p, and real numbers x > ¢ > 0, there is an R for which the Chebyshev
Bound is tight, that is,

agy\2
PRI = x] = (2) . @)
X
Hint: First assume & = 0 and let R only take values 0, —x, and x.

Solution. From the hint, we aim to find an R with Ex[R] = 0 and Var[R] = ¢ that satisfies equation (2).
Using the further hint that R takes only values 0, —x, x, we have

0 = Ex[R] = xPr[R = x] — xPr[R = —x] = x (Pr[R = x] — Pr[R = —x])

SO
Pr[R = x] = Pr[R = —x], 3

since x > 0. Also,
02 = Ex[R?] = x?Pr[R = —x] 4+ x?Pr[R = x] = 2x?Pr[R = x],

SO

2
o
P R =X = —
| x| 5oz
This implies
o2
Pr{R = 0] = 1 —2Pr[R = x] =1_(;) ,

which completely determines the distribution of R. Moreover,
o\ 2
Pr{|R| > x] = Pr[R = —x] + Pr[R = x] = 2Pt[R = x| = (;)
which confirms (2).

Finally, given u, x, and o, if we let R’ ::= R + p, then R” will be the desired random variable for which
the Chebyshev Bound is tight. |




4 Solutions to In-Class Problems Week 13, Mon.

Pairwise Independent Sampling
Let R be a random variable, and a a constant. Then

Var[aR] = a? Var[R). e
Theorem (Pairwise Independent Sampling). Let Gy,..., G, be pairwise independent variables with the

same mean, |, and deviation, o. Define
n
Sy 1= Z Gi.

i=1

Then S 1 2
n ag
Pr|——u zx]s;(;) :
Proof.
Ex [ﬁ] :Ex[2i=l Gi] (def of Sp)
n n
n :
- 2i=lf‘x[G_'] (linearity of expectation)
N i i
n
np
n
5% 12
Var —_—== Var(Sy] (by ()

I n
= = Var [Z G{l (def of S,)

i=1

] n
= Z:Var[G,-] (pairwise independent additivity)
i=1
1 5y oo
=-zmot=—. &)

S Var [ S,
Pr|—=sLalsw=< s [xz"/ zl (Chebyshev’s bound)
o%/n
= (by (5))

-ier
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Massachusetts Institute of Technology

6.0421/18.062J. Spring " 11: Mathematics for Computer Science

Prof. Albert R Meyer

revised \Vcdnesday 4M May, 2011, 05:41

Mini-Quiz May 5

Your name:

m ; c(me.\ P (C”"'?;m?.n/

Circle the name of your TA and write your table number:

Ali Nick Oscar @mb
,./

e This quiz is closed book. Total time is 30 minutes.

e Write your solutions in the space provided. If you need more space, write on the back of the sheet

Table number

7
L=

containing the problem. Please keep your entire answer to a problem on that problem’s page.

e GOOD LUCK!

DO NOT WRITE BELOW THIS LINE

Problem | Points | Grade | Grader
1 6 | oS
7) 6 ‘(f Lﬂﬂ
3 4l | B
s |4 AK
Total 20 ! D

Creative Commons 28881 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .
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2 Your name: Mini-Quiz May 5
[ 2
Problem 1 (6 points). f .
Suppose there are 4 desks in a classroom, laid out in the corners of a square with corners 1 2 3 and 4.
Each desk is occupied by a male with probability p > 0 or a female with probability g ::=1—p > 0. A
male and a female flirt when they occupy desks in adjacent corners of the square. Let /12, I3, I34, 141 be

the indicator variables that there is a flirting couple at the indicated adjacent desks.
(a) Show that if p = ¢ then the events /12 = | and />3 = | are independent.

1", alh b}ai} ‘f/ 7)) ,-""?f l [lﬂ }rﬁ(mér\o/(_{ (\/‘Ld €[fndi7 W / P( )
o 1,7 ) < M=l w0 T, ) M
P

(b) Show rigorously that if the events /12 = | and /23 = | are independent then p = ¢. Hint: work from
the definition of independence, set up an equation and solve.
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(c) What is the expected number of flirting couples in terms of p and ¢?
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Mini-Quiz May 5 Your name:

Problem 2 (6 points).

Consider the following 2 player game. A coin is tossed repeatedly. Turns alternate between the two players.
The game stops after the first Heads come up. If the first time the coin came up Heads is during one of
player 1's t_ugluﬁwinsm other hand, if the first time the coin came up Heads is during one of

player 2’s turns then player 2 wins. O Gt ii P/ob /106{({5 g
(a) What is the expected number of turns N unul the game en i

e L f
5‘?’{*@;’*5) §
/(]W ffrf fo f«f’m’{w{ = ,,_L - A = 2

P

(b) What is the probability p; that player 1 wins? (Hint: draw an event tree)

-z | }i Pff
hadd“zrﬂ)
§e

| —_—
NS P

(c) What is Ex[N|1], the expected number N of rounds in the game given player 1 wins? You can assume
that the game ends with probability 1 and that Ex[N |2] = Ex[N[1] +-1. Hint: Law of total Expectation.
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Mini-Quiz May 5

Problem 3 (4 points). (a) Write the term of (x + y)*® which includes x3.

(M\/)W . ‘X‘I.ﬁj%f Y 1\/ LI

b thogh.

(b) Write the term of (x + y + z)*° which includes x3y?.
5 31

X

(c) Give a combinatorial proof that

y/q

()

e n
Z(:) =i e 1
=0 / ;(/ oy 'Il

Hint: Begin by finding a set whose cardinality is equal to the nghl hand side of the equation.
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v
Problem 4 (4 points). / {
We revisit Sauron,-Voldemort, and Bunny Foo Foo as in the class problem. As before, the guard is going to
release exaclly@/bf the three prisoners; he’s equally likely to release any set of two prisoners. The guard
offers to tell Voldemort the name of one of the prisoners to be released. The guards rule for which name he
chooses:
1. The guard will never say that Voldemort will be released.
2. If both Foo Foo and Sauron af‘e?g‘éffﬁé released, the guard will always give Foo Foos name.
Were interested in which characters are released, and in which character IWW be released.

(a) Draw a tree to represent the sample space. Indicate, in your drawing, which outcomes correspond to
the following events:
i. The guard tells Voldemort that Foo Foo will be released
ii. The guard tells Voldemort that Sauron will be released
iii. Voldemort is released

‘\
] —_—
Pl ===} v /
\M/
/\

4

\ VR ‘*B Y/ v

hho Ul To |d

(b) What is the probability that Voldemort is released, given that the guard says Foo-foo will be released?

fGalt) = plual)




6 Your name: @bbf\m !

(c) What is the probability Voldemort is releasegﬂl given that the guard says Sauron will be released?

(i ii) = e(uind) .
T

Mini-Quiz May 5

mlr—\ (S -
(f

(d) Use the above calculations, and the Law of Total Probability, to find the total probability that Voldemort
will be released.

(i) - p(:;'.};) R fl “JE(;,)

g2 4 | 5
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Solutions to Mini-Quiz May 4

Problem 1 (6 points).
Suppose there are 4 desks in a classroom, laid out in the corners of a square with corners 1 2 3 and 4.

Each desk is occupied by a male with probability p > 0 or a female with probability g :==1—p > 0. A
male and a female flirt when they occupy desks in adjacent corners of the square. Let I3, [23, 134, I41 be
the indicator variables that there is a flirting couple at the indicated adjacent desks.

(a) Show that if p = g4 then the events /3> = 1 and I3 = 1 are independent.

Solution. If p = ¢ = 1/2 then Pr[I12 = 1] = Pr[/3 = 1] = 1/2 and Pr{l12 = 1& I23 = 1] can be
calculated from the fact that only F-M-F and M-F-M are possible when both couples are flirting. In that
case, we have Pr[/12 = 1& [23 = 1] =2/8 = 1/4 = Pr[l12 = 1] - Pr[[12 = 1]. |

(b) Show rigorously that if the events /32 = 1 and I3 = 1 are independent then p = g. Hint: work from
the definition of independence, set up an equation and solve.

Solution. We can again compare Pr[/j2 = 1& I23 = 1] and Pr[/12 = 1] - Pr[/23 = 1].

As in the previous part, /12 = 1& [23 = 1 only happen when we have a pattern of F-M-F or M-F-M
for students 1 2 and 3 respectively. These occur with total probablity p?q + pg?. On the other hand,
112 happens with probability 2 pq total, accouting for the two patterns possible, M-F and F-M. Hence, I,
and I3 are independent iff p%q + pg® = pq(p + q) = 4p>q>. By manipulating the expression we get
P+ q = 4pq. Recall p + g = 1. Hence, we are dealing with 1 = 4p — 4p2. The equation can be factored
into (2p — 1)? = 0, yielding p = 1/2. [ |

(c) What is the expected number of flirting couples in terms of p and g?

Solution. The expected number of couples is 8 pg by linearity of expectation. ||

Problem 2 (6 points).

Consider the following 2 player game. A coin is tossed repeatedly. Turns alternate between the two players.
The game stops after the first Heads come up. If the first time the coin came up Heads is during one of
player 1’s turns, player 1 wins. On the other hand, if the first time the coin came up Heads is during one of
player 2’s turns then player 2 wins.

(a) What is the expected number of turns N until the game ends?

Solution. This is just mean time to failure (a Head), so by Lemma 17.4.8, the expected number of steps is
Ex[N]1=1/(1/2) =2. ]

(b) What is the probability p; that player 1 wins? Hint: draw an event tree.

yale!
Creative Commons ©888 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .




2 Solutions to Mini-Quiz May 4

Solution. The tree can be described by A = H; + T1(H2 + T2 A). The probability of winning can be found
via the law of total probability.

pr=>1/2)-1+(1/2)(1/2-0+1/2- p1)
Hence (3/4)- p1 =1/2,s0 p1 =2/3
|

(c) What is Ex[N | 1], the expected number N of rounds in the game given player 1 wins? You can assume
that the game ends with probability 1 and that Ex[N | 2] = Ex[N | 1] 4 1. Hint: Law of total Expectation.

Solution. From the law of total expectation, we know Ex[N] = Ex[N | 1]p1 + Ex[N | 2]p2. Now we
know p; = 2/3, p» = 1/3 and Ex[N] = 2 and the hint.

We get (2/3 +1/3)Ex[N | 1] =2—-1/3s0Ex[N | 1] =5/3. 0

Problem 3 (4 points). (a) Write the term of (x + y)*® which includes x3.

40
( . )x3y37'

(b) Write the term of (x + y + z)*°® which includes x3y°.

40 3.5_32
(3,5,32)x =
s n
Z(-) =2"'
i=0 ;

Hint: Begin by finding a set whose cardinality is equal to the right hand side of the equation.

Solution.

Solution.

(c¢) Give a combinatorial proof that

Solution. Count the number of n-length bit strings. For the LHS, we consider the ith term of the sum to
represent the bit strings which have i zeros. |

Problem 4 (4 points).
We revisit Sauron, Voldemort, and Bunny Foo Foo as in the class problem. As before, the guard is going to
release exactly two of the three prisoners, and he’s equally likely to release any set of two prisoners.

The guard offers to tell Voldemort the name of one of the prisoners to be released. The guard’s rule for
which name he chooses:

1. The guard will never say that Voldemort will be released.

2. If both Foo Foo and Sauron are getting released, the guard will always give Foo Foo’s name.

We're interested in which characters are released, and in which character the guard says will be released.




Solutions to Mini-Quiz May 4 3

(a) Draw a tree to represent the sample space. Indicate, in your drawing, which outcomes correspond to
the following events:

i. The guard tells Voldemort that Foo Foo will be released
ii. The guard tells Voldemort that Sauron will be released

iii. Voldemort is released

1/3 X X
1
F.V 1/3
F. S F X
1/3
1/3 1
1 1/3 X X
released S
guard says prob. guard says  guard says  Voldemort
Solution. "Foo-foo”  ”Sauron” released

O
(b) What is the probability that Voldemort is released, given that the guard says Foo-foo will be released?

Solution. % |

(c) What is the probability Voldemort is released, given that the guard says Sauron will be released?

Solution. 1 |

(d) Use the above calculations, and the Law of Total Probability, to find the total probability that Voldemort
will be released.

Solution. Still 2/3, by law of total probability.

Pr[v released] =Pr[V released | says foofoo]-Pr[says foofoo]

+Pr[V released| says sauron]-Pr[says sauron]
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overall grades. Median:
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T

12.8, stdev: 4.2, N=94




Pr:%)lem 1 (Median: 2.0, Stdev: 2.0, N = 94) Pr:gné)lem 2 (Median: 4.0, SFev: 1.6, N =94)




