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Design and Analysis of Algorithms Nov 16, 2012
Massachusetts Institute of Technology 6.046J/18.410J
Profs. Srini Devadas and Ronitt Rubinfeld Recitation 9

Recitation 9: Competitive analysis and amortized
analysis

1 Competitive analysis of online algorithms

An Online algorithm is an algorithm that can process inputs in a serial fashion without
knowing all the inputs in advance. Because online algorithms are forced to make decisions
solely based on the input they have received so far, it maybe impossible to achieve optimal
result.

Competitive analysis compares performance of an online algorithm with an offline algorithm
that knows all the inputs.

A deterministic online algorithm A has competitive ratio k if for all inputs the expected
cost from algorithm A is O(cost from optimal algorithm). In other words,

E[CA(0)] < a* Crin(6)

where « is a constant and d is any possible input. Note that we are focusing on the cost, or
the quality of the solution itself, not the running time or space requirement.
We will look at examples of online algorithms.

1.1 Ski rental

After finals week, suppose that you head to a ski resort. You have the entire vacation
as well as the Independent Activities Period to ski. Unfortunately, you know from past
experience that, at some point, the fun will come to a premature end when fate steps in and
breaks your leg. On each day until then, you have to make an important decision: should
you rent ski equipment for 1 dollar or buy your own for T" dollars? If you keep renting long
enough, you will eventually find that you have spent more than 7' dollars, so it would have
been cheaper to buy your own equipment at the beginning. However, if you buy your own,
then you might break your leg that very day, wasting T' — 1 dollars.

One idea would be to always buy on the first day. However, if you break your leg that
day, then you spent T' dollars while the optimum algorithm would have rented and spent
only 1 dollar, so this algorithm is only T — competitive. A better idea is to rent for T days
and then buy on day T + 1. To analyze this algorithm, suppose that you break your leg on
day d. If d < T, then we always rented, which was the optimal decision. If d > T', then we
will pay 27" . The optimal decision would have been to buy on the first day, which would
cost T dollars. But we only spent twice that, so this algorithm is 2-competitive.

1.2 Paging

Paging is an important problem in computer systems design. We model a machine’s
memory as consisting of two parts: an unlimited number of pages of slow memory, and a

l,



cache consisting of k pages of fast memory. On a page request, if the requested page is not
in the cache(cache miss or a fault), a page in the cache must be evicted to allow a space for
the requested page. A paging strategy specifies the choice of which page to evict on a cache
miss.

Some of the commonly used paging strategies are:

e LRU: evict the least recently used page.
e Random: evict a random page.
e FIFO: evict the earliest fetched page.

e Frequency counts: evict the least frequently used page.

We will show that LRU strategy is k — competitive. (LRU guarantees less than k times
minimal number of cache misses.)

First partition input sequences into phases. The first phase begins immediately after
LRU first faults. A phase ends immediately after LRU has faulted %k times since the start
of the phase, and the next phase begins at this point. In other words, a phase contains k&
faults.

Now by proving that an optimal algorithm(OPT') would fault at least once per phase, we
prove k — competitiveness.

Consider any phase such that LRU faults twice on some page p in this phase. We know
that at least k other distinct pages must have been requested in between the two requests
of p (because otherwise p would not have been evicted by LRU). Hence, there are at least
k+ 1 distinct pages requested in this phase, and thus OPT faults at least once in this phase.
On the other hand, consider any phase such that LRU faults on kdistinctpages in this phase.
Let p be the last fault of the previous phase. Note that even if p is one of the k faults in
this phase, at least k other distinct pages must have been requested in this phase (because
otherwise p4 would not have been evicted by LRU). Since p was in OPT’s cache at the start
of this phase, OPT faults at least once in this phase.

Therefore, LRU is k — competitive.

2 Amortized analysis: binary counter

We are dealing with three different flavors of amortized analysis in this class. We're going
to apply each of them to a simple algorithm of keeping binary counter to see how they work.

Consider a binary counter composed of b bits that represent an integer. We'll consider
one operation on the counter, which is Increment. The integer in the binary counter will
increase by one every time Increment is called. Find the amortized cost for Increment
operation given that switching one bit(0-to-1, 1-to-0) has cost of 1.

2.1 Aggregate analysis

In aggregate analysis, we show that for all n, a sequence of n operations takes worst-case
cost Cost(n) in total, leading to amortized cost of Cost(n)/n. All operations have same
amortized cost in aggregate analysis.



In the binary counter example, we make an observation that i-th bit from the right is
switched every 2°~! times. (Rightmost bit is switched on every call, 2nd bit is switched every
2 calls, 3rd bit is switched every 4 calls, and so on.)

When Increment is called n times, the total cost of bit flipping is as follows:

Cost(n) = |n/2" | + |n/227 2| + ... 4+ [n/2] + n < 2xn

Therefore the amortized cost is 2, O(1).

2.2 Accounting method

In accounting method, we assign amortized cost to different operations, which could be
more or less than actual costs. When an operation’s amortized cost exceeds its actual cost,
we assign the difference as credit associated with specific objects within the data structure.

In the binary counter example, since we start out with all 0s and 1-to-0 flip can happen
only when a bit is 1, it is guaranteed that a 1-to-0 flip should follow a 0-to-1 flip. We can
assign cost of 2 to each 0-to-1 flip and ’store’ the prepaid cost of 1 to be used for later 1-to-0
flips.

0-to-1 flips happen once per every Increment operation, so the amortized cost is 2.

2.3 Potential method

Potential method is similar to accounting method, but the prepaid work is called potential
and is associated with the data structure as a whole rather than with specific objects within
the data structure.

Potential function ® maps data structure after ¢th operation to its real number potential.

In the binary counter example, the potential method is very similar to the accounting
method in spirit in that you pay extra cost for 0-to-1 flips to account for 1-to-0 flips later.
Potential of the data structure(the bit counters) is defined as number of 1s among the bits.
The amortized cost is 2 again.
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In computational complexity theory, the potential method is a method used to analyze the amortized time and space complexity of a data structure, a measure of its
- ~ . e . fi 2
performance over sequences of operations that smooths out the cost of infrequent but expensive npcranons.[ 12l

Potential method

From Wikipedia, the free encyclopedia
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Definition of amortized time

In the potential method, a function @ is chosen that maps states of the data structure to non-negative numbers. If.S 1s a state of the data structure, {(S) may be thought of

: - . : 2 . . . " . . " "
intuitively as an amount of potential energy stored in that state; '] alternatively, (0(S) may be thought of as representing the amount of disorder in state S or its distance
from an ideal state. The potential value prior to the operation of initializing a data structure is defined to be zero. 1— /

Let o be any individual operation within a sequence of operations on some data structure, with Spefore denoting the state of the data structure prior to operation e and Safier
denoting its state after operation o has cnmplclcg icn-.Fnce 0 I{lns been chosen, the amortized time for operation o is defined to be
i

: \
T;uum ll.ﬂ(‘liu) = Tmlunl (U) +C- ((l'ib..\ﬁ-:x }A_O(ﬁ -‘—!’-hc}'nr-,-“~ ﬁ/ aml' 0% d(‘s (X(:le/

where C is a non-negative constant of proportionality (in units of time) that must remain fixed throughoutithe analysis. That is, the amortized time is defined to be the actual

. k. b . 2
time taken by the operation plus C times the difference m potential caused by the operuuon.“ 2]

Relation between amortized and actual time

Despite its artificial appearance, the total amortized time of a sequence of operations provides aalid upper bouidhgn the actual time for the same sequence of operations.

That is, for any sequence of operations ¢. Uy, . . ., the total amortized time S Fimortized (0) is always at least as large as the total actual time § Tocomar(90) 1n

more detail,

Z Innu.-ti.;r,-vl([)[} = Z (Iuhl.‘ii{”f) + C " (‘]‘( Sr’#—] J ‘EJ( -(—:"J } H = Z Ixr:uai(”i) '5'(—"((])( Siiz;:u]] *(D(Sgnir'm]) } 2 Z T.‘u‘\u.\l {”j )

i

where the sequence of potential function values forms a telescoping series in which all terms other than the initial and final potential function values cancel in pairs, and
where the final inequality arises from the assumptions that b Sy, ) 2 Dand & 555, ) = 0. Therefore, amortized time can be used to provide accurate predictions
about the actual time of sequences of operations, even though the amortized time for an individual operation may vary widely from its actual time.

Amortized analysis of worst-case inputs

Typically, amortized analysis is used in combination with a worst case assumption about the input sequence. With this assumption, if \"is a type of operation that may be
performed by the data structure, and » is an integer defining the size of the given data structure (for instance, the number of items that it contains), then the amortized time
for operations of type X" is defined to be the maximum, among all possible sequences of operations on data structures of size /2 and all operations o; of type X" within the
sequence, of the amortized time for operation o;.

With this definition, the time to perform a sequence of operations may be estimated by multiplying the amortized time for each type of operation in the sequence by the
number of operations of that type.

Example

A dynamic array is a data structure for maintaining an array of items, allowing both random access to positions within the array and the ability to increase the array size by
one, It is available in Java as the "ArrayList” type and in Python as the "list" type. A dynamic array may be implemented by a data structure consisting of an array A of
items, of some length N, together with a number n < N representing the positions within the array that have been used so far. With this structure, random accesses to the
dynamic array may be implemented by accessing the same cell of the internal array A, and when » < N an operation that increases the dynamic array size may be

lof2 11/18/2012 5:30 PM
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implemented simply by incrementing n. However, when n= N, it is necessary to resize A, and a common strategy for doing so is to double its size, replacing 4 by a new
array of length 2.1%)

This structure may be analyzed using a potential function ® = 2n — N. Since the resizing strategy always causes A to be at least half-full, this potential function is always
non-negative, as desired. When an increase-size operation does not lead to a resize operation, @ increases by 2, a constant. Therefore, the constant actual time of the
operation and the constant increase in potential combine to give a constant amortized time for an operation of this type. However, when an increase-size operation causes a
resize, the potential value of » prior to the resize decreases to zero after the resize. Allocating a new internal array 4 and copying all of the values from the old internal array
to the new one takes O(n) actual time, but (with an appropriate choice of the constant of proportionality C) this is entirely cancelled by the decrease of # in the potential
function, leaving again a constant total amortized time for the operation, The other operations of the data structure (reading and writing array cells without changing the
array size) do not cause the potential function to change and have the same constant amortized time as their actual time [2)

Therefore, with this choice of resizing strategy and potential function, the potential method shows that all dynamic array operations take constant amortized time.

Combining this with the inequality relating amortized time and actual time over sequences of operations, this shows that any sequence of n dynamic array operations takes
. . . - e~ . % . >

O(n) actual time in the worst case, despite the fact that some of the individual operations may themselves take a linear amount of time [*!

Applications

The potential function method is commonly used to analyze Fibonacci heaps, a form of priority queue in which removing an item takes logarithmic amortized time. and all
other operations take constant amortized time.[*] 1t may also be used to analyze splay trees, a self-adjusting form of binary search tree with logarithmic amortized time per
nr»erznion.ISJ
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Michael Plasmeier

From: Annie |-An Chen <anniecia@MIT.EDU>

Sent: Tuesday, November 20, 2012 9:33 AM

To: Michael Plasmeier

Cc: 6046-tas@mit.edu

Subject: Re: [6046-tas] Potential vs accounting method?
HI Michael,

Both methods seeks to use amortized costs to bound the total work on the sequence of operations. The
amortized cost is defined differently in each case.
TheGaccountingnethod keeps an account of work credits. The balance in the account is always kept
nonnegative (and therefore can be used as an_upper bound of the total work done). This is achieved by
"depositing" some work credit for certain operations (this is the amortized cost defined for these operations), so
they can be "withdrawn" and used for other operations later on (these "other operations" may have zero
amortized cosf). In other words, i@ for future operations.
On the other hand, the potential method uses a potential function to "balance out" the work done in each
w, in order to make the amortized cwe potential function only clg_n_egd_s_o_nih_e_@@
ructure;

Not sure if this helps. I think my best suggestion would actually be to go over the examples in CI.RS to see how
different methods solve the same problem (we also covered one example, incrementing a binary counter, in
recitation last week).

Best, L[’V% ﬂd{‘ me’/ C“)Wi/é[@é, Gk f@p[‘t @(\/\(/y

Annie

On Sun, Nov 18, 2012 at 5:36 PM, Michael Plasmeier <plaz@theplaz.com> wrote:

(I tried posting on Piazza but the class was inactive)

What are the differences between the potential and the accounting methods?

The book says "we associate the potential with the whole data structure rather than specific objects" Is this how
accounting works? Could you elaborate on this difference?

Thanks!

6046-tas mailing list
6046-tas(@lists.csail.mit.edu
https://lists.csail.mit.edu/mailman/listinfo/6046-tas
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Design and Analysis of Algorithms November 14, 2012

Massachusetts Institute of Technology 6.0461/18.410J
Profs. Srini Devadas and Ronitt Rubinfeld Handout 14
Problem Set 5

This problem set is due at 11:59pm on Tuesday, November 27, 2012.

Both exercises and problems should be solved, but only the problems should be turned in.
Exercises are intended to help you master the course material. Even though you should not turn in
the exercise solutions, you are responsible for material covered by the exercises.

Mark the top of each sheet with your name, the course number, the problem number, your
recitation section, the date and the names of any students with whom you collaborated.

Each problem must be turned in separately to stellar.

You will often be called upon to “give an algorithm” to solve a certain problem. Your write-up
should take the form of a short essay. A topic paragraph should summarize the problem you are
solving and what your results are. The body of the essay should provide the following:

1. A description of the algorithm in English and, if helpful, pseudo-code.
2. A proof (or indication) of the correctness of the algorithm.
3. An analysis of the running time of the algorithm.

Remember, your goal is to communicate. Full credit will be given only to correct solutions
which are described clearly. Convoluted and obtuse descriptions will receive low marks.

Exercise 5-1. Do Exercise 11.3-6 in CLRS on page 269.
Exercise 5-2. Do Exercise 11.5-1 in CLRS on page 282.
Exercise 5-3. Do Exercise 35.1-4 in CLRS on page 1111.
Exercise 5-4. Do Exercise 35.2-2 in CLRS on page 1116.
Exercise 5-5. Do Exercise 17.1-3 in CLRS on page 456.
Exercise 5-6. Do Exercise 17.2-2 in CLRS on page 459.

Exercise 5-7. Do Exercise 17.3-2 in CLRS on page 462.



2 Handout 14: Problem Set 5

Problem 5-1. Task Scheduling Approximation

There are n tasks t;, to, .. ., t,, each of which has an associated cost ¢; € R, such that
O0<eg <1

A task £; consumes c; fraction of the resources when run on a “standard” computer. A set of tasks
T can be run on the same computer simultaneously only if

3 gl

i€T
i.e. there are enough resources to run all tasks in 7.

You would like to run all tasks simultaneously on identical “standard” computers. Multiple tasks
can run on a single computer if the constraint given above is satisfied. Each task must be run on
a single computer, i.e. you cannot run task ¢; partially on different computers. Since computers
cost money, you would like to use the minimum number of computers to run all tasks. Sadly, it
turns out that finding the minimum number of computers you need to run all tasks is an NP-hard
problem.

In desperation, you decide to pursue the greedy approach. You iterate over the tasks and for each
task, you assign the task to run on the first computer that can accommodate the task. If there is
no computer on which you can run the task, you add a computer and assign the task to run on the
added computer. You keep the computers in the order they were added.

Prove that the greedy approach yields a 2-approximation.

Problem 5-2. Queue
We would like to implement a FIFO (first in, first out) queue that supports the following operations:
eENQUEUE(item): appends the item to the back of the queue. The operation must always
succeed.

eDEQUEUE(k): k must be a positive integer. The operation pops and returns k elements from
the front of the queue. If the total number of the elements in the queue is less than k, then the
operation returns all items in the queue. If the queue is empty, it returns NONE.

Suppose that to implement the queue you can use two LIFO (last in, first out) stacks, each of which
supports the following operations:
ePUSH(item): pushes/inserts the item to the stack. The operation always succeeds.
¢ POP(): removes and returns the most recently pushed item in the stack. If the stack is empty,
it returns NONE.
Assume that for a stack, each operation costs 1 unit in the running time.

Give an implementation of the queue using two stacks such that both operations ENQUEUE and
DEQUEUE have an amortized cost of O(1). The amortized cost of DEQUEUE should be O(1)
regardless of the input k.
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Problem 5-3. Distributed Median

Alice has a list of n numbers and Bob has another list of n numbers. Jointly, they have 2n numbers
that are distinct from each other. They would like to know the median element of their combined
arrays. Since 2n is even, let the median be the nth smallest number.

They have limited communication bandwidth and would like to minimize the communication cost.
They can send each other messages and each message can contain one of the following: an integer
in range [0, n], one of the numbers they have, or an English word that contains no more than five
letters.

(a) Give a deterministic algorithm where the number of messages used is O(logn) and
the running time is O(n logn). Alice and Bob can follow different protocols.

(b) Modify your algorithm to have the running time of O(n) while keeping the number of
messages to be O(log n). The resulting algorithm should also be deterministic.
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Design and Analysis of Algorithms November 27, 2012
Massachusetts Institute of Technology 6.046J/18.410J

Profs. Srini Devadas and Ronitt Rubinfeld Handout 15

Problem Set 5 Solutions

This problem set is due at 11:59pm on Tuesday, November 27, 2012.

Exercise 5-1. Do Exercise 11.3-6 in CLRS on page 269.
Exercise 5-2. Do Exercise 11.5-1 in CLRS on page 282.
Exercise 5-3. Do Exercise 35.1-4 in CLRS on page 1111.
Exercise 5-4. Do Exercise 35.2-2 in CLRS on page 1116.
Exercise 5-5. Do Exercise 17.1-3 in CLRS on page 456.
Exercise 5-6. Do Exercise 17.2-2 in CLRS on page 459.
Exercise 5-7. Do Exercise 17.3-2 in CLRS on page 462.
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Problem 5-1. Task Scheduling Approximation

There are n tasks ti, to, . . . , tn, €ach of which has an associated cost ¢; € IR, such that
O0<g <l

A task t; consumes ¢; fraction of the resources when run on a “standard” computer. A set of tasks
T can be run on the same computer simultaneously only if

Sest
ieT
i.e. there are enough resources to run all tasks in 7.

You would like to run all tasks simultaneously on identical “standard” computers. Multiple tasks
can run on a single computer if the constraint given above is satisfied. Each task must be run on
a single computer, i.e. you cannot run task ¢; partially on different computers. Since computers
cost money, you would like to use the minimum number of computers to run all tasks. Sadly, it
turns out that finding the minimum number of computers you need to run all tasks is an NP-hard
problem.

In desperation, you decide to pursue the greedy approach. You iterate over the tasks and for each
task, you assign the task to run on the first computer that can accommodate the task. If there is
no computer on which you can run the task, you add a computer and assign the task to run on the
added computer. You keep the computers in the order they were added.

Prove that the greedy approach yields a 2-approximation.

Solution:
Let

Since each computer has the limit of 1, the optimal number of computers m* is at least [S].

Let m be the number of computers obtained by the greedy approach. It’s clear that m > m*
because m”* is the minimum possible number of computers. Let’s show that m < 2m”*.

In the greedy solution, let T} denote the set of tasks run on the computer j and let a; denote the
total load on the computer 7, i.e.

There can be at most one j such that a; < .5. We can prove by contradiction. Suppose there are
J1 < jz2 such that a;, < .5and a;, < .5. Notice that

g, +aj2 0 |



Handout 15: Problem Set 5 Solutions 3

This means that we would have scheduled tasks in T}, to run on j; (or some other computer)
because the computer j; could actually accommodate the tasks and there was no need to add the
computer jo. This contradicts the greedy approach solution.

Since there can be at most one j such that a; < .5, we have at least m — 1 computers where the
total load is at least .5. Therefore,

S=Zaj>.5*(m-l)

=1

This yields 25 + 1 > m. Since m is integer, m < [2S5]. Finally, we can show that

m < [29] < 2[8] < 2m"

This completes the proof that the greedy approach yields a 2-approximation.

Problem 5-2. Queue
We would like to implement a FIFO (first in, first out) queue that supports the following operations:
eENQUEUE(item): appends the item to the back of the queue. The operation must always
succeed.

eDEQUEUE(k): k must be a positive integer. The operation pops and returns £ elements from
the front of the queue. If the total number of the elements in the queue is less than k, then the
operation returns all items in the queue. If the queue is empty, it returns NONE.

Suppose that to implement the queue you can use two LIFO (last in, first out) stacks, each of which
supports the following operations:
ePUSH(item): pushes/inserts the item to the stack. The operation always succeeds.
ePOP(): removes and returns the most recently pushed item in the stack. If the stack is empty,
it returns NONE.
Assume that for a stack, each operation costs 1 unit in the running time.

Give an implementation of the queue using two stacks such that both operations ENQUEUE and
DEQUEUE have an amortized cost of O(1). The amortized cost of DEQUEUE should be O(1)
regardless of the input k.

Solution: Consider the following implementation of the queue using stacks S and S.

eENQUEUE(item): takes the item and pushes the item to the first stack Sj.



4 Handout 15: Problem Set 5 Solutions

eDEQUEUE(k): first, it starts popping items from S. If it successfully pops £ items, then
it returns those items. If the stack S, becomes empty, then we “dump” the contents of Sy
into S, by popping an element from S; and immediately pushing it into Sy until 5; becomes
empty. Now pop the remaining items from S, until S, is empty or the total of £ items were
popped out. Return NON E if no elements were found, otherwise return all popped items.

The correctness follows from the fact that when we “dump” S into S», the item order gets reversed
and the oldest item now is at the top of the stack S. When both S, and S) are not empty, stack Sy
contains the oldest items in the correct order to be popped out and .S; contains the newest items in
LIFO order.

We can use the accounting method to prove O(1) amortized cost. Let’s charge 3 for DEQUEUE
operations and 5 for ENQUEUE operations. The actual cost of ENQUEUE is 1, thus each item
in Sy has a surplus of 4. Existing elements in S» were popped from S; and pushed into S, thus
elements in Sy have surplus of 2. This surplus can be used to remove the element from S, when
doing DEQUEUE. 1 unit can be used to pop and another unit for the additional computations
DEQUEUE does when removing elements in a batch.

3 units in DEQUEUE can be used to pay for pop operations that result in NONE when doing
DEQUEUE. There are three possible NON Es when popping: one NON E comes from reaching
the bottom when doing initial popping from Sy; the second NONE comes when reaching the
bottom of S upon dumping; and the last NON E comes from possibly reaching the bottom of S,
when popping after dumping.

The accounting method shows that both operations have an amortized cost of O(1) and the amor-
tized cost of DEQUEUE doesn’t depend on k.

Problem 5-3. Distributed Median

Alice has a list of n numbers and Bob has another list of n numbers. Jointly, they have 2n numbers
that are distinct from each other. They would like to know the median element of their combined
arrays. Since 2n is even, let the median be the nth smallest number.

They have limited communication bandwidth and would like to minimize the communication cost.
They can send each other messages and each message can contain one of the following: an integer

in range [0, n], one of the numbers they have, or an English word that contains no more than five
letters.

(a) Give a deterministic algorithm where the number of messages used is O(logn) and
the running time is O(n logn). Alice and Bob can follow different protocols.

Solution: Let Alice and Bob sort their numbers using an O(nlogn) sorting algo-
rithm. Suppose that Alice has numbers A[1], A[2],..., A[n] and Bob has numbers
B[1],..., B[n] sorted in the increasing order.
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(b)

For now, assume that Alice has the median number. Notice that A[i] is median if and
only if
Bln—1i] < Ali{) < B[n —i+1]

because all numbers are distinct and the median is the nth smallest number.

Alice does binary search on her own sorted list. Alice chooses ¢ to be the middle
of the remaining numbers and asks Bob to send her B[n — i] and B[n — ¢ + 1]. If
A[i] < B[n — 1], then A[7] is too small and she recurses into the top half of the current
range. If B[n — i] < A[i] < B[n — i + 1], then A[4] is the median and she sends the
success message to Bob and let’s him know what the median is. If A[{] > B[n—i+1],
then A[i] is too big and she recurses into the bottom half of the current range.

If Alice starts from the range [1, 7], then each time she will cut the size of the range
in half. If she doesn’t have the median, she will have no range to recurse on and will
terminate in O(logn) steps. If she has the median, then she is guaranteed to find the
median in O(log n) steps.

If Alice fails to find the median, let Alice and Bob switch their roles. Since Alice
doesn’t have the median, Bob must have the median and he is guaranteed to succeed
in O(log n) steps. The total number of messages is still O(logn). The running time is
dominated by sorting, which is O(nlogn).

Modify your algorithm to have the running time of O(n) while keeping the number of
messages to be O(logn). The resulting algorithm should also be deterministic.

Solution:

Instead of sorting, let both Alice and Bob use the linear order statistic algorithm when-
ever they need to find a certain element. Each time the recursion is done, both Alice
and Bob can reduce the number of elements they need to consider by half. If the range
has size m, then the order statistic takes O(m) time to complete because some order
information is already known from the previous steps. Thus the running time becomes

T(n) =T([n/2]) + O(n)

This solves to O(n) running time.
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Design and Analysis of Algorithms Nov 30, 2012
Massachusetts Institute of Technology 6.046J/18.410J
Profs. Srini Devadas and Ronitt Rubinfeld Recitation 10

Recitation 10: Cryptography

1 Merkle Trees

In cryptography, Merkle trees or hash trees are a type of data structure that
contains a tree summary information about a larger piece of data and used
to verify its contents. Such trees are combination of hash lists and hash
chaining. A Merkle tree can be used to verify (authenticate) n elements as
follows. Construct a binary tree where

e the leaves of the tree are hashes of elements
e the inner nodes are the hashes of their children

e the root is the top hash that is used to verify the integrity of all elements

MQ(IZJQ {YGE




To verify a leaf, need to know the leaf and its ancestors and their siblings.
Merkle trees are nice because a branch can be verified without having the
whole tree. To guarantee the integrity, we need to use a hash function that
is collision resistant. One can show that if an adversary manages to break
the integrity, then a collision has been found.

In general, can use non-binary authentication tree, e.g. integrity of files in
nested file directories.

2 Chor-Rivest Knapsack Cryptosystem

In class, we saw Merkle-Hellman’s knapsack cryptosystem. There have
been many attempts to utilize the NP-completeness of the knapsack problem
to achieve a secure encryption, but most of the schemes were broken over
time. The common feature among these schemes is that the decryption
involves finding a subset of weights that sum to the target number.

The Chor-Rivest public key encryption scheme is also based on the knap-
sack problem. No feasible attack is known if the parameters are chosen well.
It’s also the only one that doesn’t use some form of modular multiplication
to disguise an easy subset sum problem.

Key generation

To generate a pair of public and secret keys, one should follow the following
steps:

1. Select a prime p and integer h < p, such that p* — 1 has only small
factors.

Example: p= "7, h = 4, then ¢ = 2401 and p* — 1 = 2400 = 25.3 . 52

2. Select a random monic irreducible polynomial f(z) of degree h over Z,,.

Example: Select the irreducible polynomial f(z) = z*+3x3+52%+6z+2
of degree 4 over Z;.

It turns out that if we consider a finite field that consists of polynomials
in Zy[z] of degree less than h, then it’s size will be ¢ = p". Denote

2



this finite field F,. Consider the multiplication of these polynomials
performed modulo f(z), then the discrete logarithm problem is feasible
if p and h were chosen as described in step 1 [Pohlig-Hellman algorithm].

Example: The elements of the finite field Fb4p; are represented as poly-

nomials in Zz[z] of degree less than 4 with multiplication performed
modulo f(z).

3. Select a random primitive element (i.e. a generator of the multiplicative
group) g(z) of the field F.

Example: g(z) = 3z* + 32 + 6. We can do discrete logarithm with
base g(z) because it’s a primitive element.

4. For each element ¢ € Z,, find the discrete logarithm
a; = log gy (z + 1)

of the field element (z + 7) to the base g(z).

Example:
ap = logyy(z) =1028
] = logg(m)(ﬂ: < 1) = 1935
g = logg(:c) (m + 2) = 2054
az = 1ogg(x)(:t: =+ 3) = 1008
as = logyy(z+4) =379
as = log,)(z +5) = 1780
ag = logy,(z +6) =223
5. Select a random permutation 7 on the set of integers {0,1,...,p — 1}.

Example: Consider the permutation (6,4,0,2,1,5,3), i.e. 7(0) = 6,
m(1) = 4, etc.

6. Select a random integer d, such that 0 < d < p" — 2.
Example: d = 1702.

7. For each i € {0,1,...,p — 1}, compute
¢; = (axG) +d) mod (g —1)

3



Example: ¢ — 1 = 2400 and d = 1702, thus

co = (ag+d) mod 2400 = 1925
¢1 = (ag +d) mod 2400 = 2081

c2 = (ag+d) mod 2400 = 330
c3 = (a2 +d) mod 2400 = 1356
ca= (a1 +d) mod 2400 = 1237
¢s = (a5 +d) mod 2400 = 1082

ce = (ag +d) mod 2400 = 310

8. The public key and secret keys are
PK = ((Cﬂa Cly .- 1(‘11—1)1131 h‘)

SK = (f(z), g(z),m,d)

Encryption

Given the public key PK = ((co,c¢1,...,¢-1),p, k) and a binary message m

of length |lg (?)], do the following:

1. Consider m as an integer in the binary form. Transform m into a
binary vector M = (My, My, ..., M, of length p having exactly h 1’s

as follows:

(i) Set I+ h
(ii) For ¢ from 1 to p do the following:

If m > (°7"), then set My « 1, m « m— (*7%), 1 « I — L

Otherwise, set M;_; + 0.

Example: |lg ()] = |lg(})] = 5. Consider a binary message 10110,

then m = 22 and the loop values are:
i=1Li=4. M= 0My=1

i=21=3m="7M =0
i=3,1=3m="7M=1

4



i=4,1=2,m=3 M =1
i=51=1m=0M =0
i=6l=1m=0M=0
i=T1l=1m=0M=1

for n > 0, and (?) = 0 for I > 1. Thus, we get

Note that (3) = 1
1,1,0,0,1).

M=(1,0,1,
2. Compute ciphertext ¢ as

-1

c=Y M:c; mod (p"—1)

b~

-
I
o

Example:
c= (C[) +cp+ce3+ C(j) mod 2400 = 1521

Decryption

To recover the message m from ¢, do the following:

1. Compute
r=(c—hd) mod (p" — 1)
Example:
r = (1521 —4-1702) mod 2400 = 1913
2. Compute
u(z) = g(z)" mod f(z)
Example:

u(z) = (3z34+32+6)""  mod (z*+32°+52°+62+2) = 2°+32”+22+5

3. Compute s(z) = u(z) + f(z), a monic polynomial of degree h over Z,

Example:
s(z) =u(z) + f(z) =z + 42 + 2* + 2



4. Factor s(z) into linear factors over Z,:
h
s()= H(a: +t;)
j=1

where t; € Zp.
Example: Try all Z, to find the roots of s(z).

s(z) = z(z + 2)(z + 3)(z + 6)
tl = O,tg = 2,t3 =3,t4 =6

5. Computer a binary vector M = (Mo, M;,..., M,_;) as follows. The
components of M that are 1 have indices 77'(¢;), 1 < j < h. The
remaining components are 0.

Example:

Thus, we get that
M =(1,0,1,1,0,0,1)

6. The message m from M is recovered as follows:

(i) Set m+ 0,1+ h
(ii) For i from 1 to p do the following: _
If M;_y =1, then set m <~ m+ (*') and [ + { — 1.

The final value of m is the integer message m. Example: The values in
the loop:
i=1lm=0,l=¢4,My=1

i=2,m=151=3 M =0
i=3,m=151=3 My =1
i=4dm=19,1=2 M; =1

6



i=5m=221=1M =0

1=6m=221=1,M;=0

P=m=99 =1 M=1
=22 [=1{)

We get that m = 22 or 10110 in the binary form.

Notes

The correctness of Chor-Rivest encryption system can be proved using
some algebra. In practice, the recommended size of the parameters are p ~
200 and h = 25 (e.g. p =197, h = 24).

The density of the knapsack set cg,c1,...,¢cp-1) is p/lg(maz(c;)), which
is large enough to thwart the low-density attacks on the general subset sum
problem.

The major drawbacks of the Chor-Rivest scheme is that the public key is
fairly large, namely, about (ph - lgp) bits. (For the suggested parameters,
this is about 36000 bits).

References

For more details about the Chor-Rivest encryption scheme, check out the
Handbook of Applied Cryptography [section 8.6.2, p.302] at
http://cacr.uwaterloo.ca/hac/about/chap8.pdf
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Today’s goal

e Motivation and models
Lecture 22: Sub-linear Time e Classical approximation problems
Algo rithms — Diameter of a point set

e Property testing: approximation for -
decision problems
— “Sortedness” of a list
— Connectedness of a graph

How can we understand? Vast data

e Impossible to access all of it

e Potentially accessible data is too
enormous to be viewed by a single
individual

e Once accessed, data can change



Does earth have the connected

Connected world phenomenon
world property?

e How can we know?
— data collection problem is immense

e each “node” is a person

e “edge’” between people
that know each other

— unknown groups of people found on earth
— births/deaths

e |s the underlying graph
connected?

What can we hope to do without

The Gold S in 6.
e Gold Standard in 6.046 viewing most of the data?

o Lj i i I ’ “ n “ ”
Linear time algorithms! e Can’t answer “for all” or “exactly” type

statements:

— Exactly how many individuals on earth are left-
handed?

— Are all individuals connected?

e Are they adequate?

e Maybe can answer?

— approximately how many individuals on earth are left-
handed?

— is there a large group of connected individuals?



What can we hope to do without
viewing most of the data?

Change our goals?

— for most interesting problems: algorithm must give
approximate answer

e we know we can answer some questions...

— e.g., sampling to approximate average, median
values

|. Classical Approximation
Problems

What types of approximation?

e “Classical” approximation for optimization

problems:
output is number that is close to value of the optimal

solution for given input.
(not enough time to construct a solution)

e Property testing for decision problems:
output is correct answer for given input, or at least
for some other input “close” to it.

First:

e A very simple example —
— Deterministic
— Approximate answer
— And (of course).... Sub-linear time!



Approximate the diameter of a point set Algorithm

e Given: m points, described by a distance matrix e Algorithm:

D, s.t. — Pick k arbitrarily

— Dj is the distance from i to /. — Pick / to maximize Dy,

— D satisfies triangle inequality and symmetry. — Output D,

(note: input size n=m?) e Why does it work?

e Leti, j be indices that maximize D; then Dj is the Dy < Dy + Dy (triangle inequality)

diameter. < Dy, + Dy, (choice of | + symmetry of D)
e Output: k! such that D, >D;/2 < 2Dy

e Running time? O(m) = 0(n?)

Main Goal:

1. Prope rty testing * Quickly distinguish inputs that have specific
property from those that are far from having

the property




Property Testing

e Properties of any object, e.g.,
— Functions
— Graphs
— Strings
— Matrices
— Codewords

e Model must specify
— representation of object and allowable queries

— notion of close/far, e.g.,
e number of bits/words that need to be changed
e edit distance

A simple property tester

Sortedness of a sequence Sortedness of a sequence

e Given:list y,¥,... ¥, e Given:list y,y,... ¥,
e Question: is the list sorted?
e Question: can we quickly test if the list close to

e Clearly requires n steps — must look at each y; sorted?



What do we mean by "quick”?

e query complexity measured in terms of list
sizen

e Our goal (if possible):

— Very small compared to n, will go for clog n

Requirements for algorithm:

e Pass sorted lists What if list not sorted

but not far’?
e Fail lists that are e-far. S

— Equivalently: if list likely to pass test, can change at
most € fraction of list to make it sorted

Probability of success > %

(can boost it arbitrarily high by repeating several times and
outputting “fail” if ever see a “fail”, “pass” otherwise)

e Cantestin O(1/€ log n) time

(and can’t do any better!)

What do we mean by “close”

Definition: a list of size n is g-close to sorted if can
delete at most en values to make it sorted.
Otherwise, g-far.

(¢ is given as input, e.g., e=1/10)

Sorted: 1 2 45 7 11 14 19 20 21 23 38 39 45
Close: 1 4 25 7 11 14 19 20 39 23 21 38 45
14 5 7111419 20 23 38 45

Far: 453923 138 4 5 212019 2 711 14
1 4 5 7 11 14

An attempt:

e Proposed algorithm:
— Pick random i and test that y<y;,;

e Bad input type:
=1.2345 08 12,004, 1,2:.008; 1,2 .:,0/4
— Difficult for this algorithm to find “breakpoint”
— But other tests work well...

Yi




A second attempt:
A minor simplification:

* Proposed algorithm:

— Pick random i<j and test that y <y,
* Bad input type:
— n/4 groups of 4 decreasing elements

e Assume list is distinct (i.e. x; #x;)

4,3,2,1,8,7,6,512,11,10,9...,4k, 4k-1,4k-2,4k-3,... e Claim: this is not really easier
— Largest monotone sequence is n/4 - Why?
— must pick i,j in same group to see problem Can “virtually” append j to each x;
— need Q(n¥2) samples Ky Mooy, L . (1) (52,0 f5,500)
Vi e.g., 1,1,2,6,6 ! (1,1),(1,2),(2,3),(6,4),(6,5)
% ° Breaks ties without changing order
1
A test that works Behavior of the test:
e The test: e Define index i to be good if binary search for y,
successful
Test O(1/€) times: e O(1/€ log n) time test (restated):
* Pick random i — pick O(1/€) i’'s and pass if they are all good
. Look‘at value of N S —
* Do binary search for y; — If list is sorted, then all i’s are good (uses distinctness)
 Does the binary search find any inconsistencies? If yes, * So test always passes
FAIL — If list likely to pass test,
* Do we end up at location i? If not FAIL « Then at least (1-€)n i's are good.

= Main observation: good elements form increasing sequence
— Proof: for i<j both good need to show y; <y,
e let k = least common ancestor of i,j
: : . e Search for i went left of k and search for j went right of k >
e Running time: O(g* log n) time Vi< Vi<
& Why does this work? « Thus list is €-close to monotone (delete < gn bad elements)

— Pass if never failed



Testing connectedness of a
graph
e Given graph G

— n vertices
— Max degree d
— Adjacency list representation

e |s G connected?

Close to connected

e Def: Gis e—close to connected if can add
< edn edges and transform it to connected
— Today: ok to violate max deg d requirement

52% o

o§

Connected world phenomenon

e |s the underlying graph
close to connected?

Property tester:

e Input: e and G
e Qutput:
— If G connected, output “PASS”

— If G not e-close to connected, output “FAIL”
with probability = 3 /4

— (note: if G not connected, but is close, then ok
to output either “PASS” or “FAIL")



|dea: Algorithm:

e If G far from connected, lots of nodes must e Do O(E_ti_) times:

be in small components!
P — Pick random node s, and run BFS from s until:

e More specifically...

P
° > =7 distinct nodes seen
— Will show that if G far from connected €

. . 2 .
¢ OR see that s is component of size < =t nodes, in
which case output “FAIL” and halt

e If reach this point, output “PASS”

— Then must have many connected components
— So many components must be small

— And there must be many nodes in small )
components Runtime: O (é) loops, each does O(E) steps of BFS, using
0(d) time per step — total is 0(&

Behavior Behavior
e Lemma 1: If G e-far from connected, then has = edn
components e Putting it together: If G e-far from connected, then
e Lemma 2: If > edn components then = edn/2 > ed /2 fraction of nodes cause algorithm to fail!
components of size < EZE — So Prob[tester fails in one of;% loops] is
y . 2 2¢
e Observation: If > edn/2 components of size < athen >1— (1 _Ez_d){zed} >1— e > 3/4 (for big enough c)

. . 2
> edn/2 nodes in components of size < -




Lemma 1l Lemma 2

If G e-far from connected, then has = edn If > edn components then = edn/2 components of
. 2

Components size < E

Proof: if <edn components, can add <edn (see notes for proof)

edges to connect

Observation:

If > edn/2 components of size < é then

, . 2
> edn/2 nodes in components of size < =

Why? Each small component has at least
one node.
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Massachusetts Institute of Technology 6.046]/18.410J
Profs. Srini Devadas and Ronitt Rubinfeld Handout 16
Problem Set 6

This problem set is due at 11:59pm on Thursday, December 06, 2012.

Both exercises and problems should be solved, but only the problems should be turned in.
Exercises are intended to help you master the course material. Even though you should not turn in
the exercise solutions, you are responsible for material covered by the exercises.

Mark the top of each sheet with your name, the course number, the problem number, your
recitation section, the date and the names of any students with whom you collaborated.

Each problem must be turned in separately to Stellar.

You will often be called upon to “give an algorithm” to solve a certain problem. Your write-up
should take the form of a short essay. A topic paragraph should summarize the problem you are
solving and what your results are. The body of the essay should provide the following:

1. A description of the algorithm in English and, if helpful, pseudo-code.
2. A proof (or indication) of the correctness of the algorithm.
3. An analysis of the running time of the algorithm.

Remember, your goal is to communicate. Full credit will be given only to correct solutions
which are described clearly. Convoluted and obtuse descriptions will receive low marks.

Exercise 5-1. Do Exercise 31.7-1 in CLRS on page 964.
Exercise 5-2. Do Exercise 31.7-3 in CLRS on page 965.

Exercise 5-3. Do Exercise 27.2-3 in CLRS on page 796.



2 Handout 16: Problem Set 6

Problem 5-1. One-way functions

Circle the functions that are likely to be one-way. Explain why or why not. State your assumptions
clearly.

Lf(z; y) = z@y.
2.f(p; q) = pq where p and q are prime.

3.f(z) = log,(z) mod p, where p is a fixed prime and g is a fixed generator of Z,. gisa
generator of Z if the order of g od p is p— 1. The least positive = such that a* = 1 (mod p)
is called the order of a, mod p.

Problem 5-2. RSA: finding d

For the RSA cryptosystem, suppose the modulus is n = 55. If the encryption exponente = 7,
what is the decryption exponent d? Show your work.



Handout 16: Problem Set 6 3

Problem 5-3. RSA: walkthrough

For this problem you will determine public and private keys for the RSA cryptosystem and encrypt
and decrypt a message according to RSA. You can use Wolfram Alpha web resource for compu-
tational help (http://www.wolframalpha.com/). You should write down all the computational steps
required in each of the parts below.

Entity A chooses the primes p = 2357, ¢ = 2551, and chooses e = 3674911. Answer the following
questions.

1.What is A’s public key?

2.What is A’s private key?

3.What is the ciphertext corresponding to m = 5234673?

4.Show the steps in decrypting the ciphertext generated in Part 3 above to obtain m.

Problem 5-4. Parallel merging

Design a parallel algorithm that uses 2n processors to merge two sorted lists, each of length n,
in O(logn) parallel steps. Assume there is a common shared memory such that any number of
processors can access any location in memory on a read at the same time. Assume also that all the
elements in the lists are all distinct.

Note: a parallel algorithm that uses 2n processors to merge two sorted lists, each of length n, in
O(log®n) parallel steps is given in Chapter 27.3 of CLRS. The model of CLRS is more restrictive
since more than one processor may not access the same memory location in the same parallel step.
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958 Chapter 31 Number-Theoretic Algorithms

Maintenance: Let ¢’ and d’ denote the values of ¢ and d at the end of an iteration
of the for loop, and thus the values prior to the next iteration. Each iteration
updates ¢’ = 2¢ (if b; = Q) orc¢’ = 2¢ 41 (if b; = 1), so that ¢ will be correct
prior to the next iteration. 1If b; = 0, then d' = d* mod n = (¢)> mod n =

a* mod n =a“ modn. If b; = 1, then d’ = d%a mod n = (a)%a mod n =

a**' modn = a“ mod n. In either case, d = a“ mod n prior to the next
iteration.

Termination: At termination, i = —1. Thus, ¢ = b, since ¢ has the value of the
prefix (hx.bg—1,....bg) of b’s binary representation. Hence d = a¢ mod n =
a® mod n.

If the inputs @, b, and n are f-bit numbers, then the total number of arith-
metic operations required is O(f) and the total number of bit operations required

is (B},

Exercises

31.6-1
Draw a table showing the order of every element in Z7,. Pick the smallest primitive
root g and compute a table giving indy ¢ (x) for all x € Z7,.

31.6-2
Give a modular exponentiation algorithm that examines the bits of » from right to
left instead of left to right.

31.6-3

Assuming that you know ¢ (n), explain how to compute a~
using the procedure MODULAR-EXPONENTIATION.

"'mod n forany a € Z

31.7 The RSA public-key cryptosystem

With a public-key cryptosystem, we can encrypt messages sent between two com-
municating parties so that an eavesdropper who overhears the encrypted messages
will not be able to decode them. A public-key cryptosystem also enables a party
to append an unforgeable “digital signature”™ to the end of an electronic message.
Such a signature is the eléctronic version of a handwritten signature on a paper doc-
ument. It can be easily checked by anyone, forged by no one, yet loses its validity
if any bit of the message is altered. [t therefore provides authentication of both the
identity of the signer and the contents of 1he_§ig£___dmesmﬁhc perfect tool
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for electronically signed business contracts, electronic checks, electronic purchase
orders, and other electronic communications that parties wish to authenticate.

The RSA public-key cryptosystem relies on the dramatic difference between the
casc of finding large prime numbers and the difficulty of factoring the product of
two large prime numbers. Section 31.8 describes an efficient procedure for finding
large prime numbers, and Section 31.9 discusses the problem of factoring large
integers.

Public-key cryptosystems

In a public-key cryptosystem, cach participant has both a and @l)

key. Each key is a piece of information. For example, in the RSA cryptosystem,
each key consists of a pair of integers. The participants “Alice™ and “Bob™ are
traditionally used in cryptography examples; we denote their public and secret
keys as P4, S4 for Alice and Pp. Sg for Bob.

Each participant creates his or her own public and secret keys. Secret keys are
kept secret, but public keys can be 1'evealem1 published. In fact,
it is often convenient to assume that everyone’s public key is available in a pub-
lic directory, so that any participant can easily obtain the public key of any other

T T
participant.
The public and secret keys specify functions that can be applied to any message.
denote the set of permissible messages. For example, D might be the set of
all Tinite-length Bit sequences. In the simplest, and original, formulation of public-
key cryptography, we require that the public and secret keys specity one-to-one
functions from D to itsell. We denote the function corresponding (o Alice's public
key P4 by P4() and the function corresponding to her secret key Sy by S4(). The
functions £,4() and S, () are thus permutations of . We assume that the functions
P4() and S, () are efficiently computable given the corresponding key P4 or Sy.

The public and secret keys for any participant are a “matched pair” in that they
specify functions that are inverses of each other. That is,

M = S,(Ps(M)), l)fml (31.35)
M = PuSy(M) war'\ (31.36)
for any message M € D. Translorming M with the two keys P, and S, succes-
sively, in either order, yields the message M back.

In a public-key cryptosystem, we require that no one but Alice be able to com-
pute the function S4() in any practical amount of time. This assumption is crucial
to keeping encrypted mail sent to Alice private and to knowing that Alice’s digi-
tal signatures are authentic. Alice must keep Sy secret; if she does not, she loses

her uniqueness and the cryptosystem cannot provide her with unique capabilities.
The assumption that only Alice can compute S, () must hold even though everyone
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Bob Alice
communication channel
encrypt decrypt
C = Py(M)
M > Py C\\ > Sy > M

eavesdropper [
{ o
R

Figure 31.5  Encryption in a public key system. Bob encrypts the message M using Alice’s public
key P4 and transmits the resulting ciphertext C = P4(M) over a communication channel to Al-
ice. An eavesdropper who captures the transmitted ciphertext gains no information about M. Alice
receives C and decrypts it using her secret key to obtain the original message M = S4(C).

knows P4 and can compute P,4(), the inverse function to S, (), efficiently. In order
to design a workable public-key cryptosystem, we must figure out how 1o create
a system in which we can reveal a transformation P4() without thereby revealing
how to compute the corresponding inverse transformation S,(). This task appears
formidable, but we shall see how to accomplish it.

In a public-key cryptosystem, encryption works as shown in Figure 31.5. Sup-
pose Bob wishes to send Alice a message M encrypted so that it will look like
unintelligible gibberish to an eavesdropper. The scenario for sending the message
goes as follows.

* DBob obtains Alice’s public key P4 (from a public directory or directly from
Alice). ——
* Bob computes the ciphertext C = P4(M) corresponding to the message M

and sends C to Alice. e

*  When Alice receives the ciphertext C, she applies her secret key S, to retrieve
the original message: S4(C) = Sy(Py(M)) = M.

Because S4() and P4() almcan compute M from C. Be-

cause only Alice is able to compute S4(), Alice is the only one who can compute M
from C. Because Bob encrypts M using P4(). only Alice can understand the trans-
mitted message.

We can just as easily implement digital signatures within our formulation of a
public-key cryptosystem. (There are other ways of approaching the problem of
constructing digital signatures, but we shall not go into them here.) Suppose now
that Alice wishes to send Bob a digitally signed response M'. Figure 31.6 shows
how the digital-signature scenario proceeds.

* Alice computes her digital signature o for the message M’ using her secret
key S, and the equation o = S, (M").
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Alice Bob
sign verify
S_,;k a=84M"
accept
M \ (M’ a)

communication channel

Figure 31.6  Digital signatures in a public-key system. Alice signs the message M’ by appending
her digital signature o = S4(M’) to it. She transmits the message/signature pair (M’. o) to Bob,
who verifies it by checking the equation M’ = P4(a). If the equation holds. he accepts (M’.a) as
a message that Alice has signed.

*  Alice sends the message/signature pair (M', o) to Bob.

*  When Bob receives (M’, ), he can verify that it originated from Alice by us-
ing Alice’s public key to verify the equation M’ = P,(0). (Presumably, A1’
contains Alice’s name, so Bob knows whose public key to usc.) If the equation
holds, then Bob concludes that the message M’ was actually signed by Alice.
If the equation fails to hold, Bob concludes either that the message M’ or the
digital signature o was corrupted by transmission errors or that the pair (M'. o)
is an attempted forgery.

Because a digital signature provides both authentication of the signer’s identity and
authentication of the contents of the signed message, it is analogous to a handwrit-
ten signature at the end of a written document.

A digital signature must be verifiable by anyone who has access to the si ener’s
public key. A signed message can be verified by one party and then passed on to
other parties who can also verify the signature. For example, the message might
be an electronic check from Alice to Bob. After Bob verifies Alice’s signature on
the check, he can give the check to his bank, who can then also verify the signature
and effect the appropriate funds transfer.

A signed message is not necessarily encrypted; the message can be “in the clear”
and not protected from disclosure. By composing the above protocols for encryp-
tion and for signatures, we can create messages that are both signed and encrypted.
The signer first appends his or her digital signature to the message and then en-
crypts the resulting message/signature pair with the public key of the intended re-
cipient. The recipient decrypts the received message with his or her secret key to
obtain both the original message and its digital si gnature. The recipient can then
verify the signature using the public key of the signer. The corresponding com-
bined process using paper-based systems would be to sign the paper document and
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then seal the document inside a paper envelope that is opened only by the intended
recipient.

The RSA cryptosystem

In the RSA public-key cryptosystem, a participant creates his or her public and
secret keys with the following procedure:

1. Select at random two large prime numbers p and ¢ such that p # ¢. The primes
. . e ————
p and g might be, say, 1024 bits each.

12

Compute n = pq.

(98]

Sclect a small odd integer e that is relatively prime to ¢(n), which, by cqua-
tion (31.20), equals (p — 1)(g — 1).

4. Compute d as the multiplicative inverse of ¢, modulo ¢ (n). (Corollary 31.26
. T % . -~
guarantees that ¢ exists and is uniquely defined. We can use the technique of

Section 31.4 to compute d, given e and ¢ (7).
___—.__-_‘—‘—H—‘—‘——
5. Publish the pair P = (e.n) as the participant’s RSA public key.

6. Keep secret the pair S = (d,n) as the participant’s RSA secret key.

For this scheme, the domain D is the set Z,. To transform a message M asso-
ciated with a public key P = (e.n), compute

P(M)= M modn . (31.37)
To transform a ciphertext C associated with a secret key § = (d,n), compute
S(C)y=C%modn . (31.38)

These equations apply to both encryption and signatures. To create a signature, the
signer applies his or her secret key to the message to be signed, rather than to a
ciphertext. To verify a signature, the public key of the signer is applied to it, rather
than to a message to be encrypted.

We can implement the public-key and secret-key operations using the procedure
MODULAR-EXPONENTIATION described in Section 31.6. To analyze the running
time of these operations, assume that the public key (e.n) and secret key (d, n)
satisfy lge = O(1).lgd < 8, and Ign < fB. Then, applying a public key requires
O(1) modular multiplications and uses O(f?) bit operations. Applying a secret
key requires O(8) modular multiplications, using O(8*) bit operations.

Theorem 31.36 (Correctness of RSA)
The RSA equations (31.37) and (31.38) define inverse transformations of Z,, satis-
fying equations (31.35) and (31.36).
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Proof rom equations (31.37) and (31.38). we have that for any M € Z,,,
P(S(M)) = S(P(M)) = M*! (mod n) .

Since e and ¢ are multiplicative inverses modulo p(n) =(p—1)(g—1),
ed =1+kip—1(g—1)

for some integer k. But then, if M # 0 (mod p), we have

M = M(MP1y e (mod p)
M((M mod p)?~"*e=1 (mod p)
= M(1)He-D (mod p) (by Theorem 31.31)
= M (mod p) .

Also. M* = M (mod p)if M =0 (mod p). Thus,

M =M (mod p)

for all M. Similarly,

M =M (mod q)

for all M. Thus, by Corollary 31.29 to the Chinese remainder theorem,

M =M (mod i)

for all M. m

The security of the RSA cryptosystem rests in large part on the difficulty of fac-
toring large integers. If an adversary can factor the modulus n in a public key, then
the adversary can derive the secret key {rom the public key, using the knowledge
of the factors p and ¢ in the same way that the creator of the public key used them.
Therefore, if factoring large integers is easy, then breaking the RSA cryptosystem
is easy. The converse statement, that if factoring large integers is hard, then break-
ing RSA is hard, is unproven. After two decades of research, however. no easier
method has been found to break the RSA public-key cryptosystem than to factor
the modulus 7. And as we shall see in Section 31.9, factoring large integers is sur-
prisingly difficult. By randomly selecting and multiplying together two 1024-bit
primes, we can create a public key that cannot be “broken” in any feasible amount
of time with current technology. In the absence of a fundamental breakthrou gh in
the design of number-theoretic algorithms, and when implemented with care fol-
lowing recommended standards, the RSA cryptosystem is capable of providing a
high degree of security in applications.

In order to achieve security with the RSA cryptosystem, however, we should
use integers that are quite long—hundreds or even more than one thousand bits
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long—to resist possible advances in the art of factoring. At the time of this
writing (2009). RSA moduli were commonly in the range of 768 to 2048 bits.
To create moduli of such sizes, we must be able to find large primes efficiently.
Section 31.8 addresses this problem.

For efficiency, RSA is often used in a “hybrid” or “key-management” mode
with fast non-public-key cryptosystems. With such a system, the encryption and
decryption keys are identical. If Alice wishes to send a long message M to Bob
privately, she selects a random key K for the fast non-public-key cryptosystem and
encrypts M using K, obtaining ciphertext C. Here. C is as long as M, but K
is quite short. Then, she encrypts K using Bob's public RSA key. Since K is
short, computing P (K) is fast (much faster than computing Pg(M)). She then
transmits (C, Pz (K)) to Bob, who decrypts Pz(K) to obtain K and then uses K
to decrypt C, obtaining M .

We can use a similar hybrid approach to make digital signatures efficiently.
This approach combines RSA with a public collision-resistant hash function h—a
function that is easy to compute but [or which it is computationally infeasible to
find two messages M and M’ such that /(M) = h(M’). The value h(M) is
a short (say, 256-bit) “fingerprint” of the message M. If Alice wishes to sign a
message M, she first applies i to M to obtain the fingerprint /1(M), which she
then encrypts with her secret key. She sends (M, S,;(h(M))) to Bob as her signed
version of M. Bob can verify the signature by computing /(M) and verifying
that £, applied to S4(h(M)) as received equals (M ). Because no one can create
two messages with the same fingerprint, it is computationally infeasible to alter a
signed message and preserve the validity of the signature.

Finally, we note that the use of certificates makes distributing public keys much
easier. For example, assume there is a “trusted authority™ 7" whose public key
is known by everyone. Alice can obtain from 7 a signed message (her certificate)
stating that “Alice’s public key is P,.” This certificate is “self-authenticating™ since
everyone knows Pr. Alice can include her certificate with her signed messages,
so that the recipient has Alice’s public key immediately available in order to verify
her signature. Because her key was signed by 7'. the recipient knows that Alice’s
key is really Alice’s.

Exercises

31.7-1
Consider an RSA key set with p = 11, ¢ = 29, n = 319, and ¢ = 3. What

value of d should be used in the secret key? What is the encryption of the message
M = 1007
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31.7-2

Prove that if Alice’s public exponent e is 3 and an adversary obtains Alice’s secret
exponent d, where 0 < d < ¢(n), then the adversary can factor Alice’s modulus n
in time polynomial in the number of bits in 7. (Although you are not asked to prove
it, you may be interested to know that this result remains true even if the condition
e = 3 isremoved. See Miller [255].)

31.7-3 *
Prove that RSA is multiplicative in the sense that

Py(My)Py(My) = Py(MyM;) (mod n) .

Use this fact to prove that if an adversary had a procedure that could efficiently
decrypt I percent of messages [rom Z, encrypted with Py, then he could employ
a probabilistic algorithm to decrypt every message encrypted with P4 with high
probability.

*x 31.8 Primality testing

In this section, we consider the problem of finding large primes. We begin with a
discussion of the density of primes, proceed to examine a plausible, but incomplete,
approach to primality testing, and then present an cffective randomized primality
test due to Miller and Rabin.

The density of prime numbers

For many applications, such as cryptography, we need to find large “random”
primes. Fortunately, large primes are not too rare, so that it is feasible to test
random integers of the appropriate size until we find a prime. The prime distribu-
tion function 7 (n) specifies the number of primes that are less than or equal to n.
For example, 7 (10) = 4, since there are 4 prime numbers less than or equal to 10,
namely, 2, 3, 5, and 7. The prime number theorem gives a useful approximation
to r(n).

Theorem 31.37 (Prime number theorem)

; w(n)
lm —— = 1. i
n—con/lInn

The approximation n/Inn gives reasonably accurate estimates of m(n) even
for small n. For example. it is off by less than 6% at n = 10°, where 7(n) =
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Design and Analysis of Algorithms November 27, 2012
Massachusetts Institute of Technology 6.046J/18.410]
Profs. Srini Devadas and Ronitt Rubinfeld Handout 17

Problem Set 6 Solutions

This problem set is due at 11:59pm on Thursday, December 06, 2012.

Exercise 5-1. Do Exercise 31.7-1 in CLRS on page 964.
Exercise 5-2. Do Exercise 31.7-3 in CLRS on page 965.
Exercise 5-3. Do Exercise 27.2-3 in CLRS on page 796.
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Problem 5-1. One-way functions

Circle the functions that are likely to be one-way. Explain why or why not. State your assumptions
clearly.

Lf(z; 9) = z@y.
2.f(p; q) = pq where p and q are prime.

3.f(z) = logy(xz) mod p, where p is a fixed prime and g is a fixed generator of Z;. g is a
generator of Z7 if the order of g mod p is p— 1. The least positive z such that o® = 1 (mod p)
is called the order of a, mod p.

Solution:
The first function is not one-way because, given z = f(z; y) it is easy to generate a y, for any
xo such that f(zo; yo) = 2. The second function is hard to invert under the assumption that

integer factorization is hard, as long as it is only defined over prime numbers. The third function
is not one-way because it is easy to exponentiate modulo p. Note: the inverse of exponentiation,
computing discrete logarithms, is hard.

Problem 5-2. RSA: finding d

For the RSA cryptosystem, suppose the modulus is n = 55. If the encryption exponente = 7,
what is the decryption exponent d? Show your work.

Solution: n = 5-11,s0 ¢(n) = 4-10 = 40. Thend = e~ = 23 mod ¢(n),because 7 - 23 =
161 = 1 mod 40.



Handout 17: Problem Set 6 Solutions 3

Problem 5-3. RSA: walkthrough

For this problem you will determine public and private keys for the RSA cryptosystem and encrypt
and decrypt a message according to RSA. You can use Wolfram Alpha web resource for compu-
tational help (http://www.wolframalpha.com/). You should write down all the computational steps
required in each of the parts below.

Entity A chooses the primes p = 2357, ¢ = 2551, and chooses e = 3674911. Answer the following
questions.

1.What is A’s public key?

2.What is A’s private key?

3.What is the ciphertext corresponding to m = 52346737

4.Show the steps in decrypting the ciphertext generated in Part 3 above to obtain m.

Solution:

A computes n = pq = 6012707 and ¢ = (p — 1)(qg — 1) = 6007800. A choose e = 3674911 and,
using the Extended Euclidean algorithm, finds d = 422191 such that ed = 1 mod ¢). A’s public
key is the pair (n = 6012707, e = 3674911), while A’s private key is d = 422191.

Encryption: To encrypt message m = 5234673, B uses an algorithm for modular exponentiation
to compute
¢ =m® mod n = 5234673%9!! mod 6012707 = 3650502

and sends this to A.

Decryption: To decrypt ¢, A computes

¢ mod n = 3650502*%2'%! mod 6012707 = 5234673

Problem 5-4. Parallel merging

Design a parallel algorithm that uses 2n processors to merge two sorted lists, each of length n,
in O(logn) parallel steps. Assume there is a common shared memory such that any number of
processors can access any location in memory on a read at the same time. Assume also that all the
elements in the lists are all distinct.

Note: a parallel algorithm that uses 2n processors to merge two sorted lists, each of length n, in
O(log2 n) parallel steps is given in Chapter 27.3 of CLRS. The model of CLRS is more restrictive
since more than one processor may not access the same memory location in the same parallel step.

Solution: Let’s call the two input lists list A and list B, and output list C.
Have a processor consider one element in list A. A processor that gets assigned A[i] will do a
binary search on list B to find index j such that B[j]<A[i]<B[j+1]. A[i] has i-1 numbers in list A
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and j numbers in list B that are smaller than itself. The rank of A[i] in the merged list is i+j and all
numbers are distinct, so A[i] can be placed in C[i+j]. This process has O(log n) complexity.

Now assign 2n processors to each work on one of 2n elements in A and B. Since multiple proces-
sors can read from shared memory simultaneously, the 2n processors can all work in parallel and
finish the merging process in O(logn) time.



L) G,

~ L
\U% (m @ﬁ%v
oot hwals 1 hgh [ bgw
-8LE M, Lo W, Wh}
Z/@%)r CM{J/Wm
_ {m«ﬁg%/ MW[@/mvb(fL
~ Maiafaly a Gl
)@]oon Cilles

Pty hgh feal igboddin
bse\%

—n gt (bl PW]
L@‘ooy

= (an} gv{‘ il b 'acwk
= 5

67@/ﬁw cand Tl e diffooe



Y,
Mo o be oo J)’@ b
69 mﬂL it 35 2y J@ mn[’p/[%e *P@%)
B ok Dt i om

[N 0] 10 -

C“ ‘L (Omd(ess {Wr M- Io)L f),L/ 7[ cm%@
ol oy [ 1) bif ohis

B — @io gy
/\Wr W 1 I l lmppmj
QM z 6*16@5 ‘

W@ H me(Cj pO{,@L M\

1@031' o b able b (s e/l s%zr@

Ao ZUB "W ]M\ m g ae Campgli
Mtﬂ “C@ff@%bie, & bl S (g



3

p\/JF b;, o s Emg?;&h 5;7(1145 LA
0) | e [Wgﬁf 5%95 {‘0 Qr\ui}@ m”!

, by : )
o @@ﬁ—‘?ﬂf@?ﬁmgh o o7 W/MW

/QWI ”LB«@W E{Lﬂt}}ﬂj

OU0000 LIl 00011 000090000 ¢

% Q}OS/ 2&15, 2)05/2:«)&/ QsOS
S0 shoe 613/3/2/9’

X&C\ !\Wf\\% ({o 6\145(3 pﬂm [0% s ()WL 0}
ko et L Tpg Shathe
Bfr u// iy 5)\(# s MOy cwﬁ/@”y e {2/3 6’4}%

Hvl% M (p&lﬂﬂ

A 5
b M&L froe.

C 2
Jé/—_a\’) & [m{ﬂL (mmwl/ 56 Jw/)‘

W



)

(m‘u»wﬂ

Lenpd v
Ve pc]mHé b F@V;% /OKW@ Wi
QMM é\/’%lL/Ew

i (108) <ty must 20 i, fon
\[awﬂm L0

QOOJ whon Ms ot bl (epations ), €lo

Jmllb N /wyL 0n @M[

C{Dmp/(ﬁbinﬂ e (Fiphs
Oﬂ?«\ oftes are 6Em|0(r/r
st A Tk
% Sae Carenl | nghsbe
and ot chayg T 4G
(ol st Gl igh $o s offa




s
- &{ HH-

thl

st shiy ot it L L
ol otfsots

Yoo soull it
I/mg@ / Moes ol

O/qo H@k oy FM(’W ot yoals
Do lkduble  idf

Lossl Conpredr ;5}0@ 4

i t%’m\j }afo 5]0»@ Voo &om
doeen %L Wf Yo



g(aﬁ’l RHU) :iﬁiﬁpﬁt}gﬁp M{g

Y@WLW‘M /‘4‘9 g r) P%ﬂ%@
b S= (%, . Xad K

V7 I\W@ Q}Wﬁ(/ (ﬁé( \/\/}WC/ é (
66“&’\ (M mé}t

MSW#O@ (/VUJ\ &'O/o )Qm Mg"{t N
R

éét/@;e@ CQ

D, mewbughy
T

ste énw) SPW@

€ N Aas
lofhw&f) }\@L\ éﬂ
by A o legh [{]

‘ L
A ( L{\ :’e 6 500‘“/(




Y
MD 0 by ey i
);/ e O(D) /&IH Q.o[/-,

oo gilh
Wik k6 m gl ole

CAJf Jo W#{% 75\6(*4 l‘W W/ [aﬁz@ ml[p
o rd bt b



®

(o oo o befle?

t Gt b any ghsthof D
M O ot needs sep Wd/(y

@ B nd 0] g
Tl Aor 10 pdilhe

Ui b any whott of 6 N

(@U s o ol N

(J‘%L)hé (l?\]) lowtr kol
Neol  at le@% log ot Tag ik My bl

) DD bifs
%tk OPcmW ot

M7 A

(G o posd et bo Bk b o 4



W{r & ve aloe o gmal Fabe poille soky)

qnm N% ooy éufoﬁe‘f bl @ 50 @wdf?

W ae w [O’HV L]

@ oy b ol mebalues anser YES
i Yy ls ﬂf‘&tln 441, (/Mﬂ? aasvt

bt might mess 9 (fule paitly) + lasts W”J
b at mdt 0% o Doy

Why Bl ensoud )ef
Cd/“ he Plog/am iM\ fo[@ \ov a//ambdc
Pl
b= v alloud passwards ([‘Q M;W)
Chods o pugvod & v} L ¢
il wlm ay dultiy vals ot ol
B g m%b pusod 1.

Bt w0 bluadllled o gif S



Ly hov o Ty wall”
Lhat 15 6l ey (OF Vo{aj olgghn

(MMJ«)
Ty | hwh

lo & fuke pailes, ve sk 1 Tisg
b Al hat ke o ke you werf

Glﬂo}ﬂ DHQ@
Ub@ Lk hash L[M I/l’ _quk mﬂ/)p(t,qj
D b (1)

— 1y of  m bl iblled s O

Tt Tuh ¥ for calh mék
é@nL hi (%) o

(osy %e5 G Ok \/gu )| L ki

s oot Ny

=/



i)

Vea ffing 130
Onl\[ I 0 = l

Cﬁ\'lb 7 M’“‘I clow -~T el uaght 0(/)

QM twﬁ X6C Do G&[W% oat- Yo

¢ 5(5{74 o pght e Yos
Uttt s Glye il

ko e [on]
Youle
[ 00900000 00900 VIOV }
st Xy

o l‘LM I/"L[X:) Ll’é(X,)

/ 507 hae ok does not
| need A@
0T 00906 000514 n oikes

LVLHAV b

R fa(t4)
k) \LMULM(*I)M/ lf\'};;:)

[O-OL@(M\MLH(M)







&

B (e G €l

YB \(’\ /X(
‘ T
0109 10070005 Lioolpos) o |

el gl
(N

What & b fuke e b

lr A&M{ (UV\ L;/V]
(9od - boand o0 B o ()
5 il 1 il
o (e £ Dk e By ]
). %%‘\ {uirctlong {Jef‘l(fic/ﬂ/y (o
Not hulggonible ok a Aspptios



M

| Ao all
‘ 1o gwl ZWM (n
’&‘05 W‘ tf‘ w/l s “LWﬂfuL OW ’

es.
‘O - ‘P/‘Ob a1 Lt o bbon ile
¢ ohll O

e e o i o
Ll d e Canden Wf@

43

Slvue {or L(;Xe ik
1‘[‘” ﬂ/” L( hash G/L)

L

il datty gl
€Ifm% M?&é




0

f
o

by

i,

Wi
i
Cerdt 5/L
0
1

W
h
+
o
& #
i
1 ¢ f
(s
e
ha

L.
Joff

¢
(mp}
7 |
QVL:
;cf\—’
z ’:Z
EM%\O:ZCWE
Z%Mx;wfwf
/ M(\m
W . W/
- :
:Smub/
:{ l '5:/0
c ﬁi&
fé,’f
by
()

Elp
>
o

()Ph;(

/(ols AZ I
‘I;CJ]
) OCO
{l'mw
wtid 9

uelhl'(
|



b

| o b Cole g’
}) \/\/M s Z)b mﬁ'f j(upoz L&)
Pob [V 5 i fole N
'FP[@“ )\C\/] Md g "1
= (] /Lk
A (1
=l
o (\ “¢ A"’J

PR M‘"‘ ﬁmﬂL /O 15 Wy (/(ﬂ% b [)
VU/ }”ﬁh pmb

o vt oo s ghe.




Moinited Gl ooy v calulss .
Wht iy ol (ubipgig hat Ty (M)

Hov ]lo P\u,[f\ (}\C
hge &
O Ml (v &
O dwenss # of 0 bib ey
% me |y 1, ot o Galse Poé&?b@/

Go e s Bl raleelf

WB Olw o

Mot mintale. fake postive v duntle

(:}4& n '% Ml WL ot fuke PMM
Vi ey

e k> [m)(n;,)w(ﬁﬁ/

9'\»@5 Vh P:Jz
L bl Lo bkt ()



)

Ty b of Gl paihe 1,

L 2\&

fob [Pk ) == (618) ™

o0 o v -:._;5)
e B
%n (i ol for m /m Tooms of
LJW\«/ [\ow YVMI/L More. (m(’e&ﬂdj

go (on&]%(/nL {w\Lo/ Mare 7%@4 /]

s g b |

M= () (n)
k=0())
Rw»ﬂv«& OCQ/ b ts ol

( peit O(M)
(507 ¢ cﬁﬂ((‘W/




J) n PWCJHG)

Fug B i 2 Jbiay

| J%jr Ui, of bl (HM)

Bk Qeletir - (onlieg 2o S
SW, (/u«‘t\ ~ Bfam\ Gz,

CM R ol chul_

Or e o) passnds

(a Spanl p gois b

Fud vhith db cade. | A




9
Lok ot wags & Gonglts
Toks aberkte o il opfles of ot
Vo el eanahibly € wrdmna,

Rolfing Compess 2192;/'/]



l_;c{'\ll‘!.ag s Cﬁﬂ?ession

. Intro
. Lo» less (omfmss'-on

- Seme

RLE, Hofhean , L2
= %l"t&)kf)
d LOS.:D <°Mf'=$61°"
- lf“"y’b, mvies, wsie o

- ma‘m{-a.'mitj
i lters

B\oov"

‘lbuuwﬂf‘lsu ¢hi‘3k ‘U&l Idms

see.
Shdeg

e Hhese ol

i



M&{nfuihim) a set

_‘-——-________\
<

Gien  S= kS Sl

@i 1 WO’D O&‘. 5“}br'm\c) )St
S0 M
Membership ~ queces
15 Y &%
ave SU’TQ:‘M
Des\\f"—
: S‘Ma.“ 5)00.(.{

. -?u&.’l‘ (jue,f{) fime

A’ golvtion
BT A o wa)% D)
0O 0% il
Space = [0l & hu(ﬁt"



Can Uov\ do & Her <

¥

R b
alo\ 50\0.‘2}5 ‘& D
each needs @ afe encafm;_

=2 o (™) - Wl bts ol
c& TEjui.re_d ) 59'" * F&ﬁh“es

1S;S m\oaﬁ'::)subsd'of-s‘lm A -
UEI\ subaks oF se K

(oY < ()

n

B possibilitie
=bip log lof) biFs  reqiced boot () prsies



0»”‘”“""3 205 Mmeams nof every ot

hWs b hawe o 5eFamk enu:dh:r?.
(M H'ws he,lp'g

tad

But:

What 1% small fulse POSI'HVE rale s 0k?

Wy e M
18 1'? UéSJ alwaas ansver  YES

ik 84 S,  pmswer o o mont
I W

b wigh - ansuer

(5&3 %,.‘- 1070 (Jc ‘3.153

M‘t) wold ke be feasonable <

EK‘W?'Q'L E D\' cHowories C B I°°“":)

’ }\UPM&HW\ of W°""1-.‘>

; 5 u,. x'll,f}
ems\j words . 90*7, S:Mf{g Nkbé{rn%}'hﬁ%\?ﬁﬁ |
i ble looku
havl  words 10%70 Hable loo Fi'g..(ifw s

6-}.““ &LM WO“'& n CmefCSSQJ wad

e word W' W do ek
‘ m bW
18 W‘&'s"} . B {able :’ooi’.tq)d-// ‘ﬁe,vﬁ‘:; ‘t,,b:j. L
"y apply  simple Vs (et
i "
Tﬂﬂlc,og{: L tosk ok extn fable Ioakvfs at

Vﬁ!, Sﬂ.‘fﬂ'ﬁs _(??\ %f.oﬁnb s.



BJOW‘\ A Hers

éo“'\ e ‘mﬂ‘ﬂlu‘ﬂ o N Sai S e E 7\ o S U*\Ae; hses !5 ¢ ?“e
\ { - “ Xn .‘ r
ey iI<s

e Off‘ﬁn 09 m )oi"S
ind‘lul{j DL” 0

-A‘i')ﬁfi.\"’\f‘\ .

Insect X -

OU\'FU\' s \O“’u
\f\,; LX.\ =



EX!»WE le

h ) o haly b >
b0~ 3 ;t&\km

IO\OQIOOO‘OO‘ b g0 80100
0

h tm\»ﬁy v}b
Ls;\
m;a’d‘ L?- in S

\3 ‘i’ be
Miahtbe nS
GR—,& prokie) HE hs(‘ﬂ'\ & e

n - H: CIQMM{'S

p‘Q 1’1&5‘\ ‘pJ'Y\.
0‘9 Bloo.n FL“Q"'

m= (‘a”\-a(
= Slze

L= & of huch fetns



Wht % folse Fasﬂw'wa e

ASsum. \) Kn & m
\/VJ

aoorlur biod pn dofdl # of bits sef
Do N elements with K

b 4
haseh fedns
2)  hesh fbs  are Fergcd-lj pasdon
(&- '\ndtfwww

Sorm CaICUlm{—iEns :

N e all S sk
a ?'obf. bt A BF s sl o]

- [( .—.\.\ ]Drob ho XrE
]ﬂtskgs ,{_ Ur\dér

?ro\o )(6'5 ﬂ [\

doe,br“ hn.‘bl\
o & Jnder h\j

"W’J

dtﬂ&\'“ lﬂ&,ﬁ —b

A under 3%0
A ~kn ' .
~op Im = P !O nofe i s a good f@mx +o E’ i

Ao BF S

I




2 ;
)Wkd' 15 f)’:-" R1??»\.«':[‘{1):%« ok O bite inBF

Dee 5 nserted T
p-17L, v %5 Al

») 0w,

. .
) Pk L ydsis fhbe posise]

5 ?r[ all h;(a\ls land 01 o "("}

= Q\"'63L D &
= (\-ﬁﬂ‘ﬁ‘ N ©
 (i-»° N



0 'wa shald v Pick 53

hagh  fdne gires o +rdeotf

= mdfe

by \dP:: bl a D Lon 34:5
number ot Obits  in areay

@ Olecm.sgs
@ mare llkﬁb 'h ﬁa{‘- M& fbsl'h#&

B ‘Y"Ml k 4o min‘\m]zc 'Prnb Of‘ 'pafse 'oas:'ch

Via der(\r atives

81\@5
: ; _y
prob [ False et = (5Y % (L)
}'\04& iy heed Calse Pos;hve. rote < 50 me
Constux ) Fhon m = O \S 5U‘Q’Rcien+ l
g = ol



How do we store big data?

Lecture 23: Compression

How do we represent data? How can we compress data?
e So far: * Bad news: In general, we can’t ... noteven
— So that it is easy to manipulate/process! by one bit:

— To represent every m-bit string with at most (m-1)
bits: each m-bit string should be represented by a
different (< m-1)-bit string

— There are 2™ m-bit strings,

— But there are only 2™-1 different (< m-1)-bit
strings!

« Another consideration:
—short




What if we know something more

ion: aradigms
s bl A Data compression: two p g
* Some examples: * Lossless:
— Can get back the original sequence perfectly
* Run-length encoding
* Huffman-coding
* Lempel-Ziv

— Frequency of characters, certain sequences differ

* E.g. Some English letters are uncommon, so use larger
strings to encode them

— Data represents certain type of object — take * Lossy:
advantage of characteristics of the object — Keep enough information for the task, but not
¢ Picture, movie, music everything
* Set * Pictures, video, music, ..... .jpg, .mpg, .mp3
* Graph * Wavelets

* Bloom filters

Lossless compression:
a few buzzwords
and very high level ideas

Lossless compression:
a few words



Run length encoding Huffman coding

« Given bits:  Variable length encoding —
00000011100011000000000 — Use shortest strings to encode most frequent
letters
» Encode by lengths of successive runs: « E.g. Use 3 bits to encode “a” and “e” , 4 bits for
6 0% 3 15,3 0's, 2 15,90 “£”/'s"”m” and 5 bits to encode “z”, “x”

— Need prefix-free property
 Badif a—> 00, b->111andz—>00111
Is “00111” decoded to “ab” or “z"?

(Actually, need only store vector 6,3,3,2,9)

Great for fax machines!
L. See CLRS Chapter 16.3 for more details!
Also used in jpeg

Lempel-Ziv Compressing graphs

* Adjacency matrix: n? bits

e Lempel Ziv * Adjacency list: mlogn bits

— Use pointers to previous places where saw the

substring * |In general, can’t do much better
* i.e., “copy the string starting at location 10 for the next - _
20 letters” --- works well if cheaper to represent — There are 2 { 2 } many graphs, eaZCh needing a
(10,20) than the values of 20 letters. distinct representation, so need n? bits
— Many variants (LZ77, LZ78, LZW...) — Can also give counting argument for graphs with

m edges



Compressing Web graphs Lossy compression

* Many nodes have similar links

— Can express u’s node as “copy V’s links and make the
following modifications”

* Destinations of links exhibit locality

— Can use small integers to express destinations relative
to source of link

— e.g. grid graph + short edges:
* nodes are pairs (x,y)
* (x,y) connectedto (x + 1,y + 1)

* (x,y) also connected to (x+d,y+e) for constant d,e — can
represent edge by log d + log e bits instead of 2 log n bits.

Images/Movies/...

* Store via Fourier representation )
— Do we really care about the “high order Fourier LOSS\/ e RTESSIDA:
coefficients”? storing sets
— Drop undetectable information....




Bloom filters

e Data structure for representing a set to
support membership queries
(+) Save lots of space
(-) false positives

A nice property:

 union of two sets represented by Bloom filters
of size m (same hash functions)

— Take “or” of the bits

Bloom filter

* Goal: MaintainsetS = {xq, x5, ... x,} of n elements

e Bloom filter:
— array of m bits

— Given k independent hash functions hq, ..., by mapping
xjsto{1,..,m}
— Storage Algorithm:
* initially all m bits are O
* Foreachx; €S, foreachl < j <k, setbit hj(x;) to 1
— Onqueryy:
* Foreachl < j <k, checkif bit h;(x;)is1
« If yes for allj, output “in S,
else output “notin 8"

Other features?

e Deletions?
e Counting?



Applications of Bloom Filters:
Dictionaries

* Unix spell-checker:
— Store dictionary in BF

— While spell-checking, look up each work in BF
* False positive causes you to ignore misspelled word

* Unsuitable passwords:
— Store dictionary + words of edit distance 1 in BF

— Don’t allow passwords that seem to be in BF
* Might not allow you to use a perfectly good password

Compression

* Lot’s more!
— Ways to compress
— Applications
* Better storage
* Cheaper communication
* Maybe surprisingly:
— Connected to learnability, randomness

Other applications:

Databases: speed up semi-join

Distributed caching: find which (if any) of
cooperating caches holds a web page

P2P networks: locate objects
Network routing

And many many many more...
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Profs. Srini Devadas and Ronitt Rubinfeld Recitation 11

Recitation 11: Graph Diameter Testing
and Bloom Filters

1 Graph Diameter Testing

1.1 Definitions

Diameter: The diameter D of an undirected, unweighted graph G = (V, E) is the max
shortest distance between 2 vertices.

e-close to diameter D: A graph G = (V, E) is e-close to having diameter D if adding
or removing up to en? edges can transform it into a graph G’ that has diameter D.

C-neighborhood: The C-neighborhood of a vertex v is the set of all vertices u that
can be reached from v in at most C' hops. We call {v} U v’s neighborhood a ball and call
v the center. A vertex v’ is in the C-boundary of a ball if it is at a distance of at most
C from any vertex in the ball. This also means the distance of u’ to the center v is at most 2C..

1.2 Theorem

We wish to check if a graph G = (V,FE) has diameter at most D with boundary
B(D) = 4D + 2. That is, we wish to accept all graphs G that have diameter D and wish to
reject graphs that are e-far from having diameter 5(D) with probability at least 2/3. Graphs
are e-near to having diameter (D) but with diameter greater than D may be accepted or
rejected.

1.3 Algorithm

1. Select S vertices
2. For each vertex, perform BFS, terminating the search when:

(a) k vertices have been reached. If so, go on to next vertex.

(b) all vertices in the D-neighborhood have been reached. If so, reject.
3. Accept if all vertices have a D-neighborhood of at least k.

Where S = :—:; and k = 22, We can assume that m > n — 1 since otherwise the graph is

em’”

disconnected and has an undefined diameter and may be rejected without testing.

1



1.4 Proof

To help prove this algorithm upholds the theorem statement, we first prove two lemmas.

1.4.1 Lemma 1

If the C-neighborhood of each vertex in G contains at least k vertices, then the graph
G can be transformed into a graph G’ with diameter at most 4C 4 2 by adding at most
edges.

1.4.2 Proof of Lemma 1

Cover the graph G in disjoint balls of size C. This can be done by:

1. Pick a vertex v and find its C-neighborhood.
2. Repeat by only picking v that are not in the C-boundary of any existing ball.

3. Stop when you can no longer pick any vertex.

There are at most 7 balls as each ball has at least & vertices. Connect the center of all
balls to the first ball created. This adds at most % — 1 edges.

Each vertex u is in the C-boundary of some vertex v. This means that it is at most 2C
from a center v. Let u; and u, be the two vertices that have the max shortest path. The
longest this path can be is 2C' from two centers v; and vo. The two centers are at most 2 hops
away in the modified graph because all centers are connected to the first center. Therefore,
this path is at most 4C + 2.

1.4.3 Lemma 2

If the C-neighborhood of at least (1 — {)n vertices contain at least k vertices, then the
graph can be transformed into a graph with diameter 4C + 2 by adding at most 27” edges.

1.4.4 Proof of Lemma 2

This follows closely from Lemma 1, but don’t take any centers if there are fewer than k
vertices in the C'—neighborhood. There are at most % balls. There are at most % vertices that
are not in any ball or C'—~boundary of any center (the ones that don’t have a C-neighborhood
of size at least k).

Connect the center of all balls to the first ball’s center as in Lemma 1. Connect all
vertices not in any ball or C-boundary to the first ball’s center as well. This adds at most
%{1 — 1 edges to the graph. Similarly to above, the transformed graph’s diameter is 4C' + 2.

2



1.4.5 Final Proof

If the graph’s diameter is at most D, the algorithm will accept. What remains is that we
have to that graphs that are e-far from diameter (D) = 4D+ 2 are rejected with probability
at least 2/3.

We call the vertices that have D-neighborhoods of size less than k bad. If there are at
most % vertices, we can transform it into a graph with diameter 4D+ 2 by Lemma 2. Graphs
that are e-far from having diameter 3(D) or less have to have more than % bad vertices.

The chance that we only select good vertices when dealing with a graph that is e-far from
having diameter 3(D) is

1 1

1—-= S =] 2k -2 -
(- =Q-pPF<e?<
Therefore the chance of selecting at least one bad vertex is greater than 2/3, which means
the algorithm will reject with probability at least 2/3.

1.4.6 Analysis of Runtime

This algorithm picks S vertices and runs a BFS for k steps for a total time of O(Sk) =

O(S’;:z). Since m > n — 1, the runtime is equivalent to O(%).

2 Bloom Filters

2.1 Distributed Cache

There are two servers 1 and 2, each of which has a cache that can fit 100 files. There is a
third, larger server (server 3) that has all possible files. It costs 1 to send a packet between
server 1 and 2. It costs 2 to send a packet between servers 1 and 3 or between 2 and 3.

e It takes 1 packet to send a request for a file

e It takes 1 packet to receive a file.

o It takes 1 packet to send a request for a Bloom filter.
e It takes 1 packet to receive a Bloom filter.

Suppose every second, server 1 wants to request 10 files and that server 2 has 4 of them.

2.1.1 Scheme 1: Just query the server 3

This would take 2 packets per request and response for a total of 2 packets - 2 cost /
packet - 10 = 40.
2.1.2 Scheme 2: Query server 2, then server 3

It takes 10 packets to query whether each file is on server 2 and gets 4 packets back in
response for a total of 14 between server 1 and 2. It then queries server 3 for the remaining
6 files for a cost of 24. This has a total cost of 38.



2.1.3 Scheme 3: Use Bloom filters

Server 1 asks 2 for a Bloom filter and only queries server 2 for the necessary files. It takes
1 packet to request the Bloom filter and 1 packet to receive it for a total cost of 2. It then
requests and gets the 4 files from server 2 for a cost of 8. It then queries server 3 for 6 files,
which still costs 24 for a total cost of 34 cost.

2.1.4 Scheme 4: Continuous update

Rather than having to query for what files are on each server, server 1 and server 2
continuous send each other updates as to what files they have. If each server was to send
the entire list of files it had, it would cost 100 each time a server wished to update the other
if it send file names. If the server instead sent Bloom filters, it would only cost 1.

2.2 Bloom Filter as dictionary

We wish to augment the Bloom filter to provide the dictionary function. You have a set
S of n key-value paires (z;,v;) where v; € {0,1,2}, and support insertions an queries. Each
key z; appears at most once.

The query we wish to answer is given z, if z is a key of some pair in S, return its value
with probability 1 — 2¢. Otherwise, report anything.

We can do this using 3 Bloom filters, one for each of the v; values. That is, let By, By, Bs
be Bloom filters. B; will store the keys z; if the pair (z;, ) is in the set S.

If the value is only in one Bloom filter, we will return the right value. However, if z
appears in multiple Bloom filters, we randomly return one of the values.

If each Bloom filter is m = nlog(1/e), then each Bloom filter has a chance ¢ of returning
a false positive. If x is in fact a key in S, there is a 2¢ chance of it returning as a false
positive in a Bloom filter it is not actually inserted into since each of the other Bloom filters
has a ¢ chance of giving a false positive for z).

Thus, we have an augmented Bloom filter that takes O(nlog(1/e) bits and reports the
right value given that z is a key with probability 1 — 2e.

2.2.1 Modification

What happens if instead of using 3 Bloom filters, we only use two Bloom filters B; and
B,? If a key is not found in any Bloom filter, the data structure returns the value 0 instead.

The data structure will require less space. It will also return the correct value for keys
mapping to 1 or 2 with probability 1 — ¢ instead of 1 — 2¢, however, for keys mapping to 0,
the probability it returns the correct answer is still 1 — 2e.
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Complexity theory

Efficiently solvable: P BPP (randomized P)

Lecture 24: Interactive Proofs Efficiently verifiable: NP 277

and Zero Knowledge
Can randomness change what can (and how to)

efficiently verify?

Today: Randomness affects how we

@ lexity th ions: ;
entral complexity theory questions can efficiently verify proofs!

« P=NP? (whatever can be efficiently verified
is also efficiently solvable?) * Interactive proofs

» Zero-knowledge Interactive proofs

 P=BPP? (is randomness necessary for
efficient solvability?)



Example: nisa product of 2 primes

Bob: Verifier
(poly time)

Alice: Prover

(unbounded computation time)

P.q

If p,q prime and n=pq accept
else reject

Graph Isomorphism:
How difficult is it?

Not known to bein P

In NP (proof = correspondence)

Not known to be in Co-NP
— How would you prove there is NO isomorphism?

Not known to be NP-complete
— But we don’t think it is...

Example: G and G’ are isomorphic

1 "
%, 2
5 By 3
.\\l ? ST &
~ L
—@ 3 5

G and G’ isomorphic (denoted G = G") if there is
a correspondence (bijection) ¢: V = V’ such
that any edge (u, v) in G iff edge (@(u), @(v)) in
G’.
e.g., (1,4)inGand(1,4’)inG’

(1,3) not in G and (1',3’) not in G’

Proving that G and G’ are isomorphic

1)

3 ﬁ%’ i
-

2

o/,‘l :
W
4 \‘ 3

(5,.3 Correspondence ¢

ACCEPT, else REJECT



How do you prove that G and G” are
)7 . not isomorphic?
5 o | N 5

[

a—-*‘é 3 5

A quick detour...

* An important prehistorical note....

4

i ]

; e - )
A

Can’t try all ¢!
Shortest known classical proof is exponential in n

A
o
~J

The Pepsi challenge: (1975) The Pepsi challenge: (1975)

e Can you tell the difference?

* Can you tell the difference? _
* A way to prove it:

— We give you random samples of Coke and Pepsi

— If you get it right k times in a row, then we’ll
believe you
* Why?
— If you can tell the difference, you get it right every time

— If you can’t tell the difference, you get it right with
probability % each time, so probability you get it right k
times in a row is 1/2%

* i.e., if you get it right k times, you either know or you
are really lucky!




Proving that G, and G, are NOT

. : Interactive Proofs
isomorphic

Bob (verifier): Penpytation e Asin NP

— Flips coin c€ {0,1} picks random “shuffle” y
— Sends randomly shuffled version of G_ i.e.,

H=y oG_to Alice (prover) — the prover is “all powerful” (unbounded
Alice (prover): computation time)

(Note, if G, and G, are NOT isomorphic, then H is . . :
isomorphic to only one... so Alice can figure out which one ° Two new mgredlents'

was sent) — Randomness: verifier tosses coins, can err with
— If H isomorphic to G, then output b=0 small probability
Else output b=1

— The verifier is polynomial time

— Interaction: rather than “reading” proof, verifier

Bob (verifier): | interacts with prover
— If Prover gets it right each time “ACCEPT” else “REJECT”

Interactive Proofs

[Goldwasser Micali Rackoff 1985] Interactive Proofs
G

: (PV) is interactive proof system for set of theorems L if
Prover: a4 :
i 1. Completeness:

— Knows the proof < — If proposition x is true (i.e., x € L), prover can behave in
— No run time bounds g a way that convinces verifier to always accept (with
probability 1)

Verifier:
— Doesn’t know anything 2. Soundness:
— Probabilistic: can toss coins e — If proposition is false (i.e., x & L ), then, no matter what

— Polynomial time algorithm the prover does, verifier rejects with high probability

. . 1
— Accepts or rejects the proposition — i.e., probability of acceptis < -

« If repeat k times, probability of accept < ﬁ



Efficient interactive proofs are
MORE POWERFUL
than efficient classical proofs!

IP=PSPACE

» After Graph non-isomorphism, Non-SAT,
number of satisfying assignments,...

* Thm: IP=PSPACE

The complexity class IP

* Decision problems L such that L has an
interactive proof system

Complexity theory

Efficiently solvable: P BPP (randomized P)
Efficiently verifiable: NP IP = PSPACE

Can randomness change what can (and how to)
efficiently verify? WE THINK SO!



Remarks Interactive Proofs

* |f verifier can’t toss coins, then IP=NP * A third new ingredient

* |f prover must run in poly time, then — Zero Knowledge: verifier doesn’t learn anything
IP=probabilistic poly time except for the statement of the theorem

| will not tell you why
G and H are not
isomorphic, but | will
CONVINCE you that
they are not!

Zero Knowledge of Graph non-

. . Zero Knowledge Interactive Proofs
isomorphism

* Could Bob convince anyone else that the * After interaction, V “knows”
graphs are non-isomorphic? — Statement of theorem is true
— The next verifier would probably pick different — History of interaction

random shuffles...

» Zero-knowledge: V didn’t learn anything except
for truth of statement

— i.e., given truth of statement, V could generate
interactions on his own with same distribution

— A fascinating definition... take more crypto courses!



Back to previous example: G and G’
i are isomorphic

TN 2

"
’ %\i “9 ? V}. y » Zero Knowledge: verifier doesn’t learn
'

:‘::. 5 5 anything except for the statement of the

Interactive Proofs

4 ’
2 theorem
_;: Correspondence @
A ,‘\l}'
\ > } | will not give you the
- \ (4% correspondence, but |
s A will prove that | could

If correspondence good,
Accept, else reject

have if | had wanted
to!

Verifier learns G = G’ and correspondence

Very high level idea for
proving G = G':
* Alice: (knows a correspondence @ s.t.G = @ o G') ;

— Produces a THIRD graph G’ which is isomorphic to both ge —
G and H! (randomly permutes G via o) Random permute nodes of G to get

p— - 7
1. This means she can give correspondence from G to H (i.e. H=0 oG (=0 ° ¢ °G')
H=goG) Send H to Bob

2. And a correspondence from G’ toH (ie. H= g oo (') * Toss coin b and send
to Alice

Back to proving G=¢@ o G’

i) 7 '{Fﬁ\

A8

* Bob:
— randomly decides if Alice should demonstrate 1 or 2

* Since he only sees one of them, he doesn’t actually see the
correspondence between G and G’ e Check o or ( ° @)

If b=0, send o (map from G to H)
If b=1, send ¢ o ¢ (map from G’ to H)



Why does this work? Why zero knowledge?

« IfG =G’ * Bob can’t figure out ¢ fromooroe ¢
— Alice knows @ demonstrating G = G'

— Since Alice chose g, it is no problem to compute
H=0 o ¢p oG’ and to output corag o ¢

o IfG % G’
— H= G or H= G’ (or neither, but not both)

— With probability %, Alice cannot demonstrate an
isomorphism since there is none!

* But could figure out @ fromoand oo @
— So can’t repeat k times?
— Must pick new g each time!

Which theorems have interactive zero

Note: For proving graph isomorphism knowledge proofs?

* Verifier poly time
* Prover all powerful?
— Here, Prover only needs to know the * |f one-way functions exist then there exists a
correspondence!!! zero knowledge interactive proof for any IP
problem



Why interactive proofs, why zero-
y P Y True zero-knowledge:

knowledge?????
* A philosophical reason: * Quote from a colleague in 1988:
— Can efficiently prove statements that are not “I explained it [zero-knowledge] to my kids, and
efficiently provable with classical proofs they understood!
* A practical reason: — they know that they didn’t learn anything”

— Passwords and identification

* prove that “l am Ronitt Rubinfeld” so that no
eavesdropper can mimic me later

— Secure protocols
 prove that | am behaving honestly

6.046: some final words

* Let’s hope it wasn’t zero-knowledge!
— nor zero-fun!

e Take more theory classes!

— Lots of good choices — complexity, crypto, all kinds
of algorithms...

e GOOD LUCK ON THE EXAM!
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Zero-knowledge proof @Mg 1% @ |

From Wikipedia, the free encyclopedia

In cryptography, a zero-knowledge proof or zero-knowledge protocol is an interactive method for one
party to prove to another that a (usually mathematical) statement is true, without revealing anything other

than the veracity of the statement.
e
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Abstract example

There is a well-known story presenting some of the ideas of zero-knowledge
proofs, first published by Jean-Jacques Quisquater and others in their paper
"How to Explain Zero-Knowledge Protocols to Your Children".[" 1t is
common practice to label the two parties in a zero-knowledge proof as Peggy

(the prover of the statement) and Victor (the verifier of the statement).
PO fofhcs

In this story, Peggy has uncovered the secret word used to open a magic door
in a cave. The cave is shaped like a circle, with the entrance on one side and
the maw&mg the opposite side. Victor says he'll pay her for the
secret, but not until he's sure that she really knows it. Peggy says she'll tell him
the secret, but not until she receives the money. They devise a scheme by
which Peggy can prove that she knows the word without telling it to Victor.

Peggy randomly takes
either path A or B, while
Victor waits outside

First, Victor waits outside the cave as Peggy goes in. They label the left and
right paths from the entrance A and B. Peggy randomly takes either path A or
B. Then, Victor enters the cave and shouts the name of the path he wants her
to use to return, either A or B, chosen at random. Providing she really does
know the magic word, this is casmm door, if necessary, and returns
along the desired path. Note that Victor does not know which path she has
gone down.

Victor chooses an exit

path

However, suppose she did not know the word. Then, she would only be able to

T T 1 ,
return by the named path if Victor were to give the name of the same path that
e e s e T SRS SRR
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she had entered by. Since Victor would choose A or B at random, she would
have a 50% chance of guessing correctly. If they were to repeat this trick many

times, say Z0dmmes-tr-a1ow, her chance of successfully anticipating all of
Victor's requests would become vanishingly smatttabout one i 65 million).
Thus, if Peggy appears at the exit Victor names multiple times, he can conclude
that she is very likely to know the secret word.

\ ( g A/ Peggy reliably appears at
Definition Al t &lb&g [OL‘/()« ' l u the exit Victor names
Al — by, fi |
A zero-knowledge proof must satisfy three properties: Uﬂl (()'WWEV Ofn oy (4 LA s

1. Completeness: if the statement is true, the honest verifier (that is, one following the protocol
pW will be convinced of this fact by an honest prover.

2. Soundness: if the statcmhmn@mtman convince the honest verifier that it is true.
except with some small probability.

3. Zero-knowledge: if the statement is true, no cheating verifier learns anything other than this fact.
This is formalized by showing that every cheating verifier has some simudator that, given only the
statement to be proven (and no access to the prover), can produce a transcript that "looks like" an
interaction between the honest prover and the cheating verifier.

The first two of these are properties of more gcncral prool systems. The third is what makes the Cr
proof zero-knowledge. L\‘/wt }Q’QJ@( { (/Uiﬂgf (1 V\]Llﬂﬂe‘/{\ oN P)Lf/

Zero-knowledge proofs are not proofs in the mathematical sense of the term because there is some small
probability, the soundness error, that a cheating prover will be able to convince the verifier of a false
statement. In other words, they are probabilistic rather than deterministic. However, there are techniques to
decrease the soundness error to negligibly small values.

A formal definition of zero-knowledge has to use some computational model. the most common one being
that of a Turing machine. Let 2.}, and S be turing machines. An interactive proof system with { /2, 1) for
a language [, is zero-knowledge if for any probabilistic polynomial time (PPT) verifier 1} there exists an
expected PPT simulator § such that

Vo e L,z € {0,1}°, Viewy: [P(x) & V(z, 2)] = S(z, 2)

The prover P is modeled as having unlimited computation power (in practice, P usually is a Probabilistic
Turing machine). Intuitively, the definition states that an interactive proof system ( /2, 1"} is zero-
knowledge if for any verifier 1"' there exists an efficient simulator &' that can reproduce the conversation
between J?and |~ on any given input. The auxiliary string z in the definition plays the role of “*prior
knowledge™. The definition implies that 1, cannot use any prior knowledge string = to mine information out
of its conversation with J? because we demand that if S is also given this prior knowledge then it can
reproduce the conversation between - and J? just as before.

The definition given is that of perfect zero-knowledge. Computational zero-knowledge is obtained by

requiring that the views of the verifier | - and the simulator are only computationally indistinguishable, given
the auxiliary string.
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Practical example

We can extend these ideas to a more realistic cryptography application. In this scenario, Peggy knows a
Hamiltonian cycle for a large graph, G. Victor knows G but not the cycle (e.g., Peggy has generated G and
revealed it to him.) Peggy will prove that she knows the cycle without revealing it. A Hamiltonian cycle in a
graph is just one way to implement a zero knowledge proof; in fact any NP-complete problem can be used,
as well as some other difficult problems such as facloring.m However, Peggy does not want to simply
reveal the Hamiltonian cycle or any other information to Victor; she wishes to keep the cycle secret
(perhaps Victor is interested in buying it but wants verification first, or maybe Peggy is the only one who
knows this information and is proving her identity to Victor).

To show that Peggy knows this Hamiltonian cycle, she and Victor play several rounds of a game.

= At the beginning of each round, Peggy creates /1, an isomorphic graph to G (i.e. H is just like G
except that all the vertices have different names). Since it is trivial to translate a Hamiltonian cycle
between isomorphic graphs with known isomorphism, if Peggy knows a Hamiltonian cycle for G she
also must know one for /1.

= Peggy commits to /7. She could do so by using a cryptographic commitment scheme. Alternatively,
she could number the vertices of 77, then for each edge of /1 write a small piece of paper containing
the two vertices of the edge and then put these pieces of paper upside down on a table. The purpose
of this commitment is that Peggy is not able to change 7/ while at the same time Victor has no
information about 7.

= Victor then randomly chooses one of two questions to ask Peggy. He can either ask her to show the
isomorphism between /7 and G (see graph isomorphism problem), or he can ask her to show a
Hamiltonian cycle in /1.

= [f Peggy is asked to show that the two graphs are isomorphic, she first uncovers all of H (e.g. by
turning all pieces of papers that she put on the table) and then provides the vertex translations that
map G to M. Victor can verify that they are indeed isomorphic.

= [f Peggy is asked to prove that she knows a Hamiltonian cycle in /1, she translates her Hamiltonian
cycle in G onto A and only uncovers the edges on the Hamiltonian cycle. This is enough for Victor to
check that H does indeed contain a Hamiltonian cycle.

Completeness

If Peggy is honest, she can easily satisfy Victor's demand for either a graph isomorphism (which she has) or
a Hamiltonian cycle (which she can construct by applying the isomorphism to the cycle in G).

Zero-Knowledge

Peggy's answers do not reveal the original Hamiltonian cycle in G. Each round, Victor will learn only H's
isomorphism to G or a Hamiltonian cycle in /7. He would need both answers for a single  to discover the
cycle in G, so the information remains unknown as long as Peggy can generate a distinct / every round. If
Peggy does not know of a Hamiltonian Cycle in (7, but somehow knew in advance what Victor would ask to
see each round then she could cheat. For example, if Peggy knew ahead of time that Victor would ask to see
the Hamiltonian Cycle in /7 then she could generate a Hamiltonian cycle for an unrelated graph. Similarly, if
Peggy knew in advance that Victor would ask to see the isomorphism then she could simply generate an
isomorphic graph H (in which she also does not know a Hamiltonian Cycle). Victor could simulate the
protocol by himself (without Peggy) because he knows what he will ask to see. Therefore, Victor gains no
information about the Hamiltonian cycle in G from the information revealed in each round.
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Soundness

[f Peggy does not know the information, she can guess which question Victor will ask and generate either a
graph isomorphic to G or a Hamiltonian cycle for an unrelated graph, but since she does not know a

Hamiltonian cycle for G she cannot do both. With this guesswork, her chance of fooling Victor is 2", where
n is the number of rounds. For all realistic purposes, it is infeasibly difficult to defeat a zero knowledge
proof with a reasonable number of rounds in this way.

Variants of zero-knowledge

Different variants of zero-knowledge can be defined by formalizing the intuitive concept of what is meant
by the output of the simulator "looking like" the execution of the real proof protocol in the following ways:

= We speak of perfect zero-knowledge if the distributions produced by the simulator and the proof
protocol are distributed exactly the same. This is for instance the case in the first example above.

» Statistical zero-knowledge means that the distributions are not necessarily exactly the same, but they
are statistically close, meaning that their statistical difference is a negligible function.

= We speak of computational zero-knowledge if no efficient algorithm can distinguish the two
distributions.

Applications

Research in zero-knowledge proofs has been motivated by authentication systems where one party wants to
prove its identity to a second party via some secret information (such as a password) but doesn't want the
second party to learn anything about this secret. This is called a "zero-knowledge proof of knowledge".
However, a password is typically too small or insufficiently random to be used in many schemes for
zero-knowledge proofs of knowledge. A zero-knowledge password proof is a special kind of
zero-knowledge proof of knowledge that addresses the limited size of passwords.

One of the most fascinating uses of zero-knowledge proofs within cryptographic protocols is to enforce
honest behavior while maintaining privacy. Roughly, the idea is to force a user to prove, using a
zero-knowledge proof, that its behavior is correct according to the protocol. Because of soundness, we
know that the user must really act honestly in order to be able to provide a valid proof. Because of zero
knowledge, we know that the user does not compromise the privacy of its secrets in the process of
providing the proof. This application of zero-knowledge proofs was first used in the ground-breaking paper
of Oded Goldreich, Silvio Micali, and Avi Wigderson on secure multiparty computation.

History and results

Zero-knowledge proofs were first conceived in 1985 by Shafi Goldwasser, Silvio Micali, and Charles
Rackoff in a draft of "The Knowledge Complexity of Interactive Proof—Syslmns".[3 I ' While this landmark
paper did not invent interactive proof systems, it did invent the IP hierarchy of interactive proof systems
(see interactive proof system) and conceived the concept of knowledge complexity, a measurement of the
amount of knowledge about the proof transferred from the prover to the verifier. They also gave the first
zero-knowledge proof for a concrete problem, that of deciding quadratic nonresidues mod m. In their own

4 of 7 12/13/2012 7:47 PM



Zero-knowledge proof - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Zero-knowledge proof

words:

Of particular interest is the case where this additional knowledge is essentially 0 and we show
that [it] is possible to interactively prove that a number is quadratic non residue mod m
releasing 0 additional knowledge. This is surprising as no efficient algorithm for deciding
quadratic residuosity mod m is known when m’s factorization is not given. Moreover, all known
NP proofs for this problem exhibit the prime factorization of m. This indicates that adding
interaction to the proving process, may decrease the amount of knowledge that must be
communicated in order to prove a theorem.

The quadratic nonresidue problem has both an NP and a co-NP algorithm, and so lies in the intersection of
NP and eo-NP. This was also true of several other problems for which zero-knowledge proofs were
subsequently discovered, such as an unpublished proof system by Oded Goldreich verifying that a
two-prime modulus is not a Blum intcgcr.w

Oded Goldreich, et al., took this one step further, showing that, assuming the existence of unbreakable
encryption, one can create a zero-knowledge proof system for the NP-complete graph coloring problem
with three colors. Since every problem in NP can be efficiently reduced to this problem, this means that,

under this assumption, all problems in NP have zero-knowledge proofs.[s] The reason for the assumption is
that, as in the above example, their protocols require encryption. A commonly cited sufficient condition for
the existence of unbreakable encryption is the existence of one-way functions, but it is conceivable that
some physical means might also achieve it.

On top of this, they also showed that the graph nonisomorphism problem, the complement of the graph
isomorphism problem, has a zero-knowledge proof. This problem is in co-NP, but is not currently known to
be in either NP or any practical class. More generally, Goldreich, Goldwasser et al. would go on to show
that, also assuming unbreakable encryption, there are zero-knowledge proofs for all problems in
IP=PSPACE, or in other words, anything that can be proved by an interactive proof system can be proved
with zero knowledge.[()]

Not liking to make unnecessary assumptions, many theorists sought a way to eliminate the necessity of one
way [unctions. One way this was done was with multi-prover interactive proof systems (see interactive
proof system), which have multiple independent provers instead of only one. allowing the verifier to "cross-
examine” the provers in isolation to avoid being misled. It can be shown that, without any intractability

assumptions, all languages in NP have zero-knowledge proofs in such a syslcm.l_"J

[t turns out that in an Internet-like setting, where multiple protocols may be executed concurrently, building
zero-knowledge proofs is more challenging. The line of research investigating concurrent zero-knowledge
proofs was initiated by the work of Dwork, Naor, and Sahai.l¥ One particular development along these
lines has been the development of witness-indistinguishable proof protocols. The property of witness-
indistinguishability is related to that of zero-knowledge. yet witness-indistinguishable protocols do not suffer
from the same problems of concurrent execution. !

Another variant of zero-knowledge proofs are non-interactive zero-knowledge proofs. Blum, Feldman, and
Micali showed that a common random string shared between the prover and the verifier is enough to

achieve computational zero-knowledge without requiring interaction./ %)
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See also

= Arrow information paradox
Cryptographic protocol
Feige—Fiat—Shamir identification scheme
Proof of knowledge

Topics in cryptography

Zero-knowledge password proof
Witness-indistinguishable proof
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External links

» Applied Kid Cryptography (http://www.wisdom.weizmann.ac.il/~naor/PUZZLES/waldo.html) — A
simple explanation of zero-knowledge proofs using Where's Waldo? as an example

= A gentle introduction to zero-knowledge proofs with applications to cryptography
(http://www.austinmohr.com/work/files/zkp.pdf)

= How to construct zero-knowledge proof systems for NP (http://www.wisdom.weizmann.ac.il/~oded
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Zero knowledge

Main article: Zero-knowledge proof

Not only can interactive proof systems solve problems not believed to be in NP_but under

assumptions about the existence of one-way Tunctions, a prover can convince the verifier of the
solution without ever giving the verifier information about the solution. This is important when
the verifier cannot be trusted with the full solution. At first it seems impossible that the verifier
could be convinced that there is a solution when the verifier has not seen a certificate, but such

proofs, known as zero-knowledge proofs are in fact believed to/exist I problemsi and
are valuable in cryptography. Zero-knowledge proofs were fir'st mentioned in The original 1985

paper on IP by Goldwasser, Micali and RackofT, but the ex{ent of their power was shown by
Oded Goldreich, Silvio Micali and Avi Wiederson.!

Whit & Y cotiflate
“adly agatn?



6.046]

1of2

I B BRI Mossachusetts Institute of Technology
il s -

0

(https:/iwikis jmibi#degrodebook-

wonee fCONTIUONGCE BUPPROMT@MITOUUY oo

STUDENT DETAIL /display
/GBMGuide

Michoel Plasmeier
Cumulgtive Grode: 230

' Filter...

Problem 1-1

Problem 1-2

Problem 1-3

Problem 1-4

Problem 2-3

Problem 2-1

Problem 2-2

Problem 2-4

Quiz1

Problem 3-1

Problem 3-2

Problem 3-3

Problem 3-4

Problem 4-1

Problem 4-2

Quiz 2-1

Quiz 2-2

Quiz 2-3

Quiz 2-4

Quiz 2-5

Problem 5-1

/Grodebook+Modul 2+ Overview)

Comment:

https://learning-modules.mit.edw/gradebook/?gb=STELLAR:/course/6...

DueDate

09-25-2012

09-25-2012

09-25-2012

09-25-2012

10-05-2012

10-05-2012

10-05-2012

10-05-2012

10-11-2012

10-25-2012

10-25-2012

10-25-2012

10-25-2012

11-06-2012

11-06-2012

11-14-2012

11-14-2012

11-14-2012

11-14-2012

11-14-2012

11-27-2012

Michael E Plasmeier
Student

Points

3.00

3.00

3.00

2.00

2.00

2.00

2.00

32.00

3.00

2.00

4.00

5.00

10.00

10.00

2.00

7.00

15.00

200

Max Points

80

20

20

25

20

6.046J

Weight

80

12/19/2012 9:55 PM



6.046]

20f2

Problem 5-2

Problem 5-3

Problem 6-1

Problem 6-2

Problem 6-3

Problem 6-4

Final Exam

https://learning-modules.mit.edw/gradebook/?gb=STELLAR:/course/6...

11-27-2012

11-27-2012
12-06-2012
12-06-2012
12-05‘*‘201‘2
12-06-2012

12-17-2012

2.00

1.00

3.00

3.00

3.00

3.00

103.00

150

12/19/2012 9:55 PM



