6.813/6.831 : http://stellar.mit.edw/S/course/6/sp12/6.813/courseMaterial/topics/to...

6.813/6.831 User Interface Design
General Information

6.813/6.831 introduces the principles of user interface development, focusing on the following areas:

Design.

We will look at how to design good user interfaces, covering important design principles (consistency, visibility, simplicity, efficiency,
and graphic design) and the human capabilities that motivate them (including perception, motor skills, color vision, attention, and
human error).

Implementation.

We will see techniques for building user interfaces, including low-fidelity prototyping, input, output, model-view-controller, and
layout.

Evaluation.

We will learn techniques for evaluating and measuring interface usability, including heuristic evaluation, predictive evaluation, and
user testing,

Research (6.831 only).
We will learn how to conduct empirical research involving novel user interfaces.

Course material will include lecture notes and assigned readings from the Web.

Web Site
The course web site is on Stellar. Jump to it quickly by Googling for 6.831.

Staff

Contact information for the teaching staff is found on the web site.

Credit

3-0-9 = 12 units (U credit for 6.813, graduate H credit for 6.831)

6 Engineering Design Points

For EECS undergraduates, 6.813 can satisfy either the Advanced Undergraduate Subject requirement or the department software lab
requirement,

For EECS PhD students, 6.831 satisfies the TQE requirement in either Systems or Al, but only as a second subject, not as the sole subject in the
area.

Prerequisites
6.005 or equivalent undergraduate software engineering experience,

Grading

The largest contribution to your grade will be the course project (42%), in which you will work in small groups to design, implement, and
evaluate a user interface, through an iterative design process with a series of graded milestones (GR1-GR6). Students from 6.813 and 6.831
may work in the same group.

Five problem sets (HW, PS/RS) will be assigned, which you must complete individually, not in a group. HW1-2 (*homeworks") are assigned to
both courses; P51-3 ("programming”) are assigned only to the undergraduate course 6.813; and RS1-3 ("research”) are assigned only to the
graduate course 6.831. These five assignments will constitute 30% of your grade.

Every lecture will begin with a "nanoquiz,” which covers the content of the previous lecture or two. There will be approximately 30 nanoquizzes,
which altogether count for 24% of your grade. If you miss class, no makeup quiz is offered. However, we will automatically drop your lowest 6
quiz grades, so that you have flexibility to miss class when necessary. We also offer a way to make up low nanoquiz grades; see Stellar for a
link to the nanoquiz makeup submission form.

There will be no other in-class quizzes, no midterm, and no final exam.

Participation in lecture, online forums, in-class activities, and project group meetings with course staff will also be a factor in your grade (4%).

Course project (GR1-6) | 42%

| Problem sets (HW, PS/RS) | 30% |

Nanoquizzes 24%

/| Class participation | 4%

Collaboration
You may discuss assignments with other people, but you are expected to be intellectually honest and give credit where credit is due. In
particular, for all individual assignments (HW, PS, RS):

= you should write your solutions entirely on your own;

1 of3 1/29/2012 2:28 PM

6.813/6.831 : http://stellar.mit.edwS/course/6/sp12/6.813/courseMaterial/topics/to...

= you should not share written materials or code with anyone else;
« you should not view any written materials or code created by anyone else for the assignment; and

* you should list all your collaborators (everyone you discussed the assignment with) on your handin.

Failure to adhere to these policies may result in serious penalties, up to and including automatic failure in the course and reference to the
Committee on Discipline.

Lateness and Extensions

To give you some flexibility for periods of heavy workload, minor illness, absence from campus, and other unusual circumstances, you may
request limited extensions on problem set deadlines, called slack days. Each slack day is a 24-hour extension on the deadline. You have a
budget of 5 slack days for the entire semester, which you may apply to any combination of individual assignments (HW1-2, PS1-3, or RS1-3).
You can use at most 3 slack days for a given assignment. Assignments more than three days late will not be accepted.

You must request your extension before the problem set is due, by using the Slack Day Request System. The system keeps track of your
slack days and informs you how many you have left.

Slack days apply only to individual problem sets, not to group work (GR1-GR6). For group assignments, we will grade whatever you have on
your wiki at handin time.

If you have used up your slack days, or exceeded the 3-day limit for a single assignment, you will need a lecturer's permission and support from
an SA3 dean for more extension.

Differences between 6.813 and 6.831

Students must choose between the undergraduate course 6.813 and the graduate course 6.831. Each version satisfies different requirements in
the various EECS degree programs; see your degree program for more details. This section summarizes the main differences between the two
courses.

In general, the graduate version is a strict superset of the undergraduate version.

Course content. Students in the graduate course are responsible for all the material in the undergraduate course (lectures on design,
implementation, and evaluation), p/us additional material (lectures on research methods). Some nanoquizzes will include extra questions only
for the graduate course.

Assignments. The undergraduate problem sets PS1-PS3 cover implementation techniques. The graduate course's RS1-RS3 cover research
methods. Both courses share the same HW1 and HW2.

Group project. Both courses have the same group project, and students from either course may freely work together in the same group.

Since the two courses have substantial overlap, MIT will allow you to get credit for only one of them during your MIT career. Keep this in mind
when deciding which course is right for you. You can change your mind and switch to the other course any time before Add Date (by dropping
one number and adding the other), but not thereafter. In any case, you are responsible for all the requirements of the course you finally
register for,

Textbooks
There is no required textbook.

Recommended books:

= Norman, The Design of Everyday Things , 1990.

This little book is a classic work on usability, not just of computer interfaces but also of physical objects like doors, showers, and
stoves. Full of great anecdotes, plus theory about how users form models in their heads and how users make errors. Belongs on
every engineer's shelf,

Nielsen, Usability Engineering , Academic Press, 1993.

Somewhat dated but still useful handbook for discount usability engineering, covering many of the evaluation techniques we'll be
learning in this class.

Mullet & Sano, Designing Visual Interfaces , Prentice Hall, 1995.

A terrific guide to graphic design, chock full of examples, essential principles, and practical guidelines. Many programmers have a
fear of graphic design. This book won't teach you everything—it still pays to hire a designer!—but it helps get over that fear and do
a competent job of it yourself,

Good references:

= Baecker, et. al., Readings in Human-Computer Interaction: Toward the Year 2000 , Morgan Kaufmann, 1995.

* Shneiderman, Designing the User Interface: Strategies for Effective Human-Computer Interaction , 4th ed., Addison-Wesley,
2004.

« Dix et al, Human-Computer Interaction , 2nd ed., Prentice-Hall, 1998.

* Olsen, Developing User Interfaces , Morgan Kaufmann, 1998.
Other books we like:

» Tufte, The Visual Display of Quantitative Information , Graphics Press, 1983.

20f3 1/29/2012 2:28 PM

6.813/6.831 :

http://stellar.mit.edw/S/course/6/sp12/6.813/courseMaterial/topics/to...

* Raskin, The Humane Interface , ACM Press, 2000.
= Johnson, GUI Bloopers: Don'ts and Do's for Software Developers and Web Designers , Morgan Kaufman, 2000.
= Card, Moran, & Newell, The Psychology of Human-Computer Interaction , Lawrence Erlbaum, 1983.

Books about statistics and experiment design:

= Gonick, Cartoon Guide to Statistics , Harper, 1994,

= Box, Hunter, & Hunter. Statistics for Experimenters: An Introduction to Design, Data Analysis, and Model Building , Wiley,
1978.

= Miller, Beyond Anova: Basics of Applied Statistics , Wiley, 1986.

1/29/2012 2:28 PM

Michael E Plasmeier

From: Rob Miller <rem@MIT.EDU>

Sent: Monday, January 30, 2012 11:20 PM

To: Robert C Miller

Subject: 6.813/6.831 announcement: 6.813/6.831: mandatory first-day attendance and 6.005

prerequisite

Note: This mail was sent to all students in the stellar class User Interface Design

6.813/6.831: mandatory first-day attendance and 6.005 prerequisite

You're getting this message because you preregistered for 6.813/6.831 User Interface Design and
Implementation for the spring semester. We're looking forward to a fun class this semester, but there are a few
things you need to know.

1. Attendance is required at the first lecturc on Wed Feb 8 (1-2 pm in 34-101). If you're not there, you won't be
able to take the course.

2. Laptops will be required for lectures -- including the first. If you don't have a functioning laptop, IS&T has a
loaner program (http://ist.mit.edu/services/hardware/lcp). but you should act now to get one.

3. The course has a prerequisite: 6.005 or equivalent software engineering experience. In particular, we expect
you to have all of the following:

(a) experience developing software in a group of 3-5 people:
(b) proficiency in a software-engineering language. such as Java, C++, C#, or Objective C;

(¢c) experience implementing at least one graphical user interface in one of these languages.

Note that programming experience limited to [H'TML, Javascript, or Python does NOT satisfy the prerequisite
for this course, and you will not be able to enroll.

When you fill out the signup form at the first lecture. you will have to explain how you satisfy the prerequisite.

That's it for now. See you next week!

This announcement was made in Stellar on 2012 January 30 by Rob Miller

The announcement is also posted on the class website:
https://stellar.mit.edu/S/course/6/sp12/6.813/

OB ledue

“-—-_..—_______

[k v el oa T o)
GM ob Combe | abs
pfo€ &)L WUC’/

el ok sy et

Vbl
/P(opef{‘»l 0(a UI
HU:\:L M j0‘1 L‘DJVD of ﬂ‘\mﬁb

(et UC Ml of Shae

-

L““"ﬂ }\(’/lp hes

Sofo(l hat B looks llk Pﬁ(ﬂm’r\ﬂ oVl (1ﬂtﬂ7(
BLA' T gfol‘mg ‘Oﬁfwe@« ce/fs "M !\
~hon Sinded

—A;saeﬁ Sﬁlf(/ﬁ'm
*l\m& 7‘0 se@

- mea;l»}l}lo
) Ugﬂ%\%’l 9

23

e
O/QWK% "’MY Jig{alﬁ*] %

Terd b D ks gy st
D%{@A‘l' [eP/E’,Sf’w)"ﬁ r(ﬂ/lé @f ‘HML
CM«g ﬂkl(»Mes 4o dof

(e
Lmﬂwbwlﬁy)Ofob/&/"\
HW £ “l(/u;)To QCW\

9&7} L]L MW“{ mwl,\% clL 62

g/f\(e, /lg,gd b Move. &w[Y\ 470w 7l‘//"”‘3{

:EZ \or t‘il a]fcz Wl@m YWny (5 O{Jm - HL (JZCL%'@M\S MMUW”)
LM@ 156/ -anl@ V{/‘”’vg%

Brﬂls mﬂ 7[0 u%ﬂf’@/\ ‘S_ﬁ ik o ol
3 gk of vsihl
M Emas o

TMMM G olch
L@aeq 0ne 4065 me NOv

Bt vor boe b b () 4 6 Thoe Loy bowd Ghodat

0

Dlé\@loﬁ bgm (0/s]L'iﬂl 1 soach |
1 il 5o con pdiF dod ol bor b g
\'10’][N0 \/vm/u /W‘} wa ﬂ%m T/{ w)ﬁw
Uipp J ’
/tr\:w) 80%]/ ;W]L%‘Hm ’WLWL N ho Yyou e ’h% Pﬁ:gfcfvb
e it e manva

Q(ﬁ l\ﬁ 'm }PWPI{S

s
USC@ ae mﬂL 70\/{ b0 m{* ng ypu
el /’Jl oves 1o Poyans (55 ~agt Wl o,
w‘)mﬁ ;5 “ﬂl dxlwup nv; P/OUW\ (0457 Tios [’QW’ZL Sy mﬁ

Vs are b abs Al o] okt By o
H%kpm M,E@M

h #: GOOQ(Q (65./”)

Y

K= e il vt e g ! o

Z.LQG[A&UU;+7 o= 15 ‘tf em\[Jro)ea//l:
e E\C{ELG*L?* Onte Hg)w//gkl} s I Cast o 052
"’éftﬂfzf ~Gr efs fo. + (el

e
E/W(U - COmgc'fJD *Caﬂiae
A&H@ﬁ(j - J’a,ﬁ‘»;,'(dd }m, l’\app‘w«at‘[Plu(//e

(le\ %\Uﬁ%f }07 7Leoﬁaj
Lt jet o 6ty shjuck

TWPO(}@MQ Of QCE(/[’L FM/\(@/ (ifpf’/'/(éé a applt‘(a,“oq

\JS”QJ“\[Y {g M‘l @i (S?ec)L of « S\/bft’ﬂ

~fondioal: by ot
- PQK(OMW@
\(09*1

— oM

- \\/l 0 pWL‘M: L]

M/ I“ fw\& dn Wlfﬂdm PO*LHOL ¢(a Ms CLLGJ

0

Wtka a}aw\(\/;*LI‘JW of o (onk lod‘\

6004 ant c(/\u/\ge [o«fvlb o ('t acc‘JMl Cé«a
RN %Wﬂj S wl frggﬁ

L@a{aﬂh\tml
~ fedds l’nﬁlfwf}M5
=0 Ty ogll Wil
= PfeﬂY (onsisten|

@ [)/oméj

= ']?,@c(, }D u,\pu/ Olﬂf/{(
COWWL':Mé

*KM{J)L feahre o
’§MU gt shows
ke

~peed fo lean @WW *
He

~Cald ke il)
etlh‘,r 0N

N &%Mk WHC[A 0

“S(ov 1Lo pr/l
(% goad for 56&#”1)

“heed ﬁ) Cesht J{‘
M‘Q Mftof‘d/({/

B WK\@L VV\QmO(jf:

el

“hoy {e&&M
% \
_..COJL QML é‘oo ﬁh {QAL‘Z/}

’m‘tﬂtfr red piha 51[(}4

)VO f@lﬂolt
‘”ﬂf{,(L ’{’D ﬁ//r\ @f{f/
\DU\Iv\""*j 0° ov é,L

Mt 301 s
- desgn pingle
- cl,ﬁa ‘Lﬁm T e/c\mi{v@\
" i lostabi hdvlua,
T des 5 eseadh el

[\):M@%JLZ%@ onliee i (s ok fing

L1: Usability

Spring 2012 6.813/6.831 User Interface Design and Implementation

Today’s Topics

Ul Hall of Fame and Shame
Why Ul design is hard
Usability defined

* Course overview

Spring 2012 6.813/6.831 User Interface Design and Implementation

User Interface Hall of Shame

g,éﬁ%%ﬁﬁﬁr

Pl e g

s
Rt rtar-rN

CERTIFICATE OF ACHIE

Source: Interface Hall of Shame

Spring 2012 6.813/6.831 User Interface Design and Implementation 3

Usability is about creating effective user interfaces (Uls). Slapping a pretty window interface on a program
does not automatically confer usability on it. This example shows why. This dialog box, which appeared in a
program that prints custom award certificates, presents the task of selecting a template for the certificate.

This interface is clearly graphical. It’s mouse-driven — no memorizing or typing complicated commands. It’s
even what-you-see-is-what-you-get (WYSIWY G) — the user gets a preview of the award that will be created.
So why isn’t it usable?

The first clue that there might be a problem here is the long help message on the left side. Why so much help
for a simple selection task? Because the interface is bizarre! The scrollbar is used to select an award template.
Each position on the scrollbar represents a template, and moving the scrollbar back and forth changes the
template shown.

This is a cute but bad use of a scrollbar. Notice that the scrollbar doesn’t have any marks on it. How many
templates are there? How are they sorted? How far do you have to move the scrollbar to select the next one?
You can’t even guess from this interface.

User Interface Hall of Shame

ect an award sigle..

CUSTOMER SERVyey

Fising i 34 by Lo it
.

Source: Interface Hall of Shame

Spring 2012 6.813/6.831 User Interface Design and Implementation 4

Normally, a horizontal scrollbar underneath an image (or document, or some other content) is designed for
scrolling the content horizontally. A new or infrequent user looking at the window sees the scrollbar, assumes it
serves that function, and ignores it. Inconsistency with prior experience and other applications tends to trip up
new or infrequent users.

Another way to put it is that the horizontal scrollbar is an affordance for continuous scrolling, not for discrete
selection. We see affordances out in the real world, too; a door knob says “turn me”, a handle says “pull me”.
We’ve all seen those apparently-pullable door handles with a little sign that says “Push”; and many of us have
had the embarrassing experience of trying to pull on the door before we notice the sign. The help text on this
dialog box is filling the same role here.

But the dialog doesn’t get any better for frequent users, either. If a frequent user wants a template they’ve used
before, how can they find it? Surely they’ll remember that it’s 56% of the way along the scrollbar? This
interface provides no shortcuts for frequent users. In fact, this interface takes what should be a random access
process and transforms it into a linear process. Every user has to look through all the choices, even if they
already know which one they want. The computer scientist in you should cringe at that algorithm.

Even the help text has usability problems. “Press OKAY”? Where is that? And why does the message have a
ragged left margin? You don’t see ragged left too often in newspapers and magazine layout, and there’s a good
reason.

On the plus side, the designer of this dialog box at least recognized that there was a problem — hence the help
message. But the help message is indicative of a flawed approach to usability. Usability can’t be left until the
end of software development, like package artwork or an installer. It can’t be patched here and there with extra

messages or more documentation. It must be part of the process, so that usability bugs can be fixed, instead of
merely patched.

How could this dialog box be redesigned to solve some of these problems?

The Example, Redesigned

—

Source: Interface Hall of Shame

Spring 2012 6.813/6.831 User Interface Design and Implementation 5

Here’s one way it might be redesigned. The templates now fill a list box on the left; selecting a template shows
its preview on the right. This interface suffers from none of the problems of its predecessor: list boxes clearly
afford selection to new or infrequent users; random access is trivial for frequent users. And no help message is
needed.

—_—

More Ul Hall of Shame

1| Left Mouse Button: Change Minute
|1 Right Mouse Button: Change Hour

e e

Source: Interface Hall of Shame

Spring 2012 6.813/6.831 User Interface Design and Implementation 6

Here’s another bizarre interface, taken from a program that launches housekeeping tasks at scheduled intervals,
The date and time Jook like editable fields (affordance!), but you can’t edit them with the keyboard. Instead, if
you want to change the time, you have to click on the Set Time button to bring up a dialog box.

This dialog box displays time differently, using 12-hour time (7:17 pm) where the original dialog used 24-hour
time (consistency!). Just to increase the confusion, it also adds a third representation, an analog clock face.

So how is the time actually changed? By clicking mouse buttons: clicking the left mouse button increases the
minute by 1 (wrapping around from 59 to 0), and clicking the right mouse button increases the hour. Sound
familiar? This designer has managed to turn a sophisticated graphical user interface, full of windows, buttons,
and widgets, and controlled by a hundred-key keyboard and two-button mouse, into a clock radio!

Perhaps the worst part of this example is that it’s not a result of laziness. Somebody went to a lot of effort to
draw that clock face with hands. If only they’d spent some of that time thinking about usability instead.

Ul Hall of Fame or Shame?

doc argentoui jpg 1.

] rdge-argertout jpg 1.0 (RGB) 100% [e

Spring 2012 6.813/6.831 User Interface Design and Implementation 7

Gimp is an open-source image editing program, comparable to Adobe Photoshop. Gimp’s designers made a
strange choice for its menus. Gimp windows have no menu bar. Instead, all Gimp menus are accessed from a
context menu, which pops up on right-click.

This is certainly inconsistent with other applications, and new users are likely to stumble trying to find, for
example, the File menu, which never appears on a context menu in other applications. (I certainly stumbled as
a new user of Gimp.) But Gimp’s designers were probably thinking about expert users when they made this
decision. A context menu should be faster to invoke, since you don’t have to move the mouse up to the menu
bar. A context menu can be popped up anywhere. So it should be faster. Right?

Wrong. With Gimp’s design, as soon as the mouse hovers over a choice on the context menu (like File or
Edit), the submenu immediately pops up to the right. That means, if I want to reach an option on the File menu,
I have to move my mouse carefully to the right, staying within the File choice, until it reaches the File
submenu. If my mouse ever strays into the Edit item, the File menu I’'m aiming for vanishes, replaced by the
Edit menu. So if I want to select File/Quit, I can’t just drag my mouse in a straight line from File to Quit— I
have to drive into the File menu, turn 90 degrees and then drive down to Quit! Hierarchical submenus are
actually slower to use than a menu bar.

Part of the problem here is the way GTK (the UI toolkit used by Gimp) implements submenus. Changing the
submenu immediately is probably a bad idea. Microsoft Windows does it a little better — you have to hover
over a choice for about half a second before the submenu appears, so if you veer off course briefly, you won’t
lose your target. But you still have to make that right-angle turn. Apple Macintosh does even better: when a
submenu opens, there’s a triangular zone, spreading from the mouse to the submenu, in which the mouse
pointer can move without losing the submenu. So you can drive diagonally toward Quit without losing the File
menu, or you can drive straight down to get to the Edit menu instead.

Gimp’s designers made a choice without fully considering how it interacted with human capabilities. We’ll see
that there are some techniques and principles that we can use to predict how decisions like this will affect a
user interface — and we’ll also see how we can measure and evaluate the actual effects.

Ul Hall of Fame or Shame?

= breige argreled py- L (WG5) 100%

Spring 2012 6.813/6.831 User Interface Design and Implementation 8

There’s another interesting design feature in Gimp’s menus --- well-intentioned and clever, but problematic in
practice. Suppose my mouse is halfway down the File menu when I notice that the Quit command actually has
a keyboard shortcut: Ctrl-Q. Great! So I press it.

But it doesn’t invoke the Quit command. Instead, it changes the shortcut of whatever command my mouse is
hovering over --- in this case, Save --- to Ctrl-Q. This is a mode: a state of the system in which a user action
has a different meaning than it does in other states. Modes may be inevitable in user interfaces, but mode
errors — using the action in the wrong mode, so it does something you don’t intend — do not have to be
inevitable.

Worse, it’s not an easy error to undo. (Pressing Ctrl-Z, the conventional undo shortcut, only makes it worse!) 1
have to reassign the old shortcut to the Save command --- if T can remember the original shortcut. Then I have
find the command whose original shortcut was Ctrl-Q, and restore that one as well. This error wasn’t easily
recoverable.

Gimp’s designers had a terrific idea here — making it easy to assign keyboard shortcuts by just pointing at the
menu item you want to change and pressing the shortcut. That’s simple and elegant, in fact far simpler than
most customization interfaces. But they’ve given us too much rope, and it’s easy to hang ourselves. This
interface isn’t safe to use.

Ul Hall of Fame or Shame?

X Mainjava - XEmacs

‘Fle Edt Vew Cmds Tods Optons Buffers

NEEEEEREE]

Main.java [
public class Main { :l
public static Debug debug = Debug.QUIET: =l

static Config config:

atatic Hashtable threadFrogress = new Hashtable();
// maps Thread to Basacprog:essﬁene:utcr

stacic BasicProgressGenerator defaultProgress =

new SasicPrcgressGeneracor(™™);
. - 4 - " ree i

| — ca: Main.java (JDE S/p Isearch A.':nhmv)--sc
I-search: bas

Spring 2012 6.813/6.831 User Interface Design and Implementation 9

In Emacs, Ctrl-S starts an incremental search. This is a well-designed feature.
= it’s highly responsive: updates as fast as the user can type
* it’s easily and obviously reversible: press Backspace if you made a mistake
« it provides immediate feedback about what it’s doing
» successful searches may even achieve early success: only 3 letters was enough to find
BasicProgressGenerator, and I could instantly tell that it was enough
« user gets early feedback about typos and failed searches

What’s the downside? All its controls are invisible. How do you start the incremental search? How do you
search again? How do you go backwards? How do you do a case-sensitive search?

Once learned, however, these commands are simple. Ctrl-S starts the search. Pressing Ctrl-S again looks for a
later match. (But now there is the possibility of mode error!) Pressing Ctrl-R looks backwards for a previous
match. (What does Backspace do?) Using any capitalized letters in your query forces a case-sensitive search.
(But how do I search for an all-lowercase string case-sensitively?)

Ul Hall of Fame or Shame?

% Main_java - XEmacs

0

‘Matn, ja Sexchio
public ¢ =
publi

stat
stat
/fm

scat

{|Hashtable () :
(=]
rogress =

new BasicProgressGenerator(™"):

mmemio Mi—oa s -

~oo-XPmaca: Main. {ODE S/n Abbrev)=—5%--[227]—

Spring 2012 6.813/6.831 User Interface Design and Implementation 10

XEmacs has menus (the original Emacs didn’t). Alas, XEmacs isn’t interested in helping users learn
incremental search. Instead, it pops up this conventional Find dialog, which scores great on visibility, but lacks
the responsiveness, easy reversibility, and fast performance of incremental search. Even worse, it covers up
the matches you’re trying to find unless you manhandle it out of the way!

Ul Hall of Fame or Shame?

1t looks ke you're
Writing a letter,

Clippy is sad.
Would you ke help?
T . Are you sure you want to
® Gethelp with kill off the Clippy?
writing the latter
® Justtype the -
latter without Yas
Faki Cbig
™ Don't show me
this tp again

Spring 2012 6.813/6.831 User Interface Design and Implementation

Finally, we have the much-reviled Microsoft Office Paperclip.

Clippy was a well-intentioned effort to solve a real usability problem. Users don’t read the manual, don’t use

the online help, and don’t know how to find the answers to their problems. Clippy tries to suggest answers to
the problem it thinks you’re having.

Unfortunately it’s often wrong, often intrusive, and often annoying. The subjective quality of your interface
matters too.

You Are Not the User

» Most software engineering - AL) oo,

T itbor joha 6oe dou. jhexample. coms

is about communicating with ~ us«=o

it tony balle o new Bulten “Wells, wor
PLlasdihctiontistener{ new BeLlsdtal ist

other programmers o e i il et i
. From Tioem @ oeu Frasw| “ells Satton”
...who are a lot like you Eﬁ E.:.l_.}:_..wn

» Ul is about communicating
with users
— Users are NOT LIKE YOU

+ The user is ALWAYS right
— Usability problems are the design’s fault

Spring 2012 6.813/6.831 User Interface Design and Implementation 12

Unfortunately, user interfaces are not easy to design. You (the developer) are not a typical user. You know far
more about your application than any user will. You can try to imagine being your mother, or your grandma,
but it doesn’t help much. It’s very hard to forget things you know.

This is how usability is different from everything else you learn about software engineering. Specifications,
assertions, and object models are all about communicating with other programmers, who are probably a lot
like us. Usability is about communicating with other users, who are probably not like us.

The user is always right. Don’t blame the user for what goes wrong. If users consistently make mistakes with
some part of your interface, take it as a sign that your interface is wrong, not that the users are dumb. This
lesson can be very hard for a software designer to swallow!

12

Don’t Expect Users to be Designers

» Telephone handset weight
— Users said: it's fine
— But they really wanted: lighter

» #of Google search resulfs ~ Results per page
— Users said: 30 results
— But they really wanted: 10

18 il k5] A0 50

= Command abbreviations

1s <P
— Users make 2x errors with their rm cat
own custom abbreviations My
Spring 2012 6.813/6.831 User Interface Design and Implementation 13

Unfortunately, the user is not always right. Users aren’t oracles. They don’t always know what they want, or
what would help them. In a study conducted in the 1950s, people were asked whether they would prefer lighter
telephone handsets, and on average, they said they were happy with the handsets they had (which at the time
were made rather heavy for durability). Yet an actual test of telephone handsets, identical except for weight,
revealed that people preferred the handsets that were about half the weight that was normal at the time.
(Klemmer, Ergonomics, Ablex, 1989, pp 197-201).

Another example: Google has discovered that when they survey users about how many search results they
want per page (10, 20, 30), users overwhelmingly say “30 results”. But when Google actually deploys 30-
result search pages (as part of an “A/B test”, which we’ll talk about in a later lecture), usage drops by 20%
relative to the conventional 10-result page. Why? Probably because the 30-result page takes a half second
longer to load. (http://perspectives.mvdirona.com/2009/10/31/TheCostOfLatency.aspx)

Users aren’t designers, either, and shouldn’t be forced to fill that role. It’s easy to say, “Yeah, the interface is
bad, but users can customize it however they want it.” There are two problems with this statement: (1) most
users don’t, and (2) user customizations may be even worse! One study of command abbreviations found that
users made twice as many errors with their own command abbreviations than with a carefully-designed set

(Grudin & Barnard, “When does an abbreviation become a word?”, CHI ’85). So customization isn’t the silver
bullet.

13

Usability Defined

= Usability = how well users can use the system’s
functionality

a2t

» Dimensions of usability
— Learnability: is it easy to leamn?
— Efficiency: once learned, is it fasttouse? E
— Safety: are errors few and recoverable?

= Other dimensions are relevant too
— Ergonomics: comfort, fatigue
— Aesthetics: satisfaction, happiness, pleasure
— But we'll mostly focus on LES

Spring 2012 6.813/6.831 User Interface Design and Implementation 14

The property we’re concerned with here, usability, is more precise than just how “good” the system is. A
system can be good or bad in many ways. If important requirements are unsatisfied by the system, that’s
probably a deficiency in functionality, not in usability. If the system is very expensive or crashes frequently,
those problems certainly detract from the user’s experience, but we don’t need user testing to tell us that.

More narrowly defined, usability measures how well users can use the system’s functionality. Usability has
several dimensions: learnability, efficiency, and safety. These aren’t the only aspects of a user interface that
you might care about (for example, subjective feelings are important too, as is fatigue), but these are the
primary ones we’ll care about in this class.

Notice that we can quantify all these measures of usability. Just as we can say algorithm X is faster than
algorithm Y on some workload, we can say that interface X is more learnable, or more efficient, or more safe
than interface Y for some set of tasks and some class of users, by designing an experiment that measures the
two interfaces.

Usability Dimensions Vary In Importance

» Depends on the user
— Novice users need learnability
— Experts need efficiency
— But no user is tiniformly novice
or expert
* Depends on the task
— Missile launchers need safety
— Subway turnstiles need efficiency

Spring 2012 6.813/6.831 User Interface Design and Implementation 15

The usability dimensions are not uniformly important for all classes of users, or for all applications. That’s one
reason why it’s important to understand your users, so that you know what you should optimize for. A web site
used only once by millions of people — e.g., the national telephone do-not-call registry — has such a strong need
for ease of learning, in fact zero learning, that it far outweighs other concerns. A stock trading program used
on a daily basis by expert traders, for whom lost seconds translate to lost dollars, must put efficiency above all
else.

But users can’t be simply classified as novices or experts, either. For some applications (like stock trading),
your users may be domain experts, deeply knowledgeable about the stock market, and yet still be novices at
your particular application. Even users with long experience using an application may be novices or infrequent
users when it comes to some of its features.

15

Usability Is Only One Attribute of a
System

~1——*_Software designers have a lot to worry about

- Functionallty - Usability

— Performance =Size

— Cost — Reliability

— Security — Standards

— Dependability — Marketability

» Many design decisions involve tradeoffs
among different attributes

+ We'll take an extreme position in this class

Spring 2012 6.813/6.831 User Interface Design and Implementation 18

Usability doesn’t exist in isolation, of course, and it may not even be the most important property of some
systems. Astronauts may care more about reliability of their navigation computer than its usability; military
systems would rather be secure than easy to log into. Ideally these should be false dichotomies: we’d rather
have systems that are reliable, secure, and usable. But in the real world, development resources are finite, and
tradeoffs must be made.

In this class, we’ll take an extreme position: usability will be our primary goal.

16

Thinking about Usability

Play with this device’s Ul
Think about its usability
Talk about it with your neighbors
List its good and bad aspects on
each usability dimension:

— Learnability: is it easy to learn?

— Efficiency: once learned, is it fast to use?
— Safety: are errors few and recoverable?

Spring 2012 6.813/6.831 User Interface Design and Implementation 17

Here’s a familiar UI design. You’ve probably used it before, but probably without thinking much about its
usability. We’re handing some out for you to play with and think about.

17

What You’ll Learn in 6.813/6.831

Design principles

— learnability, visibility, errors, efficiency, ...
Design techniques

— task analysis, prototyping, user testing, ...
Implementation techniques

— MVC, output, input, layout, ...

Research methods (6.831G only)

— experiment design & analysis

Spring 2012 6.813/6.831 User Interface Design and Implementation 18

This course will be structured as four threads of lectures: design principles; design techniques; implementation
techniques; and research methods. You have to gain experience in the first three in order to do your group
project, which takes the entire semester, and the fourth is necessary for the 6.831 version of the course, which
introduces graduate students to research in HCI.

Each lecture will be accompanied by lecture notes available on the course web site.

18

What You’ll Get From 6.813/6.831

« A sense for usability
— some knowledge of human capabilities
— design principles and patterns for better usability
» A process for building usable interfaces
— cheap prototypes
— early and regular feedback from users
— iterative design
= Experience with GU| implementation
— HTMU/Javascript
(6.831G) Preparation for HCI research
— controlled experiments
— current HCI research topics

Spring 2012 6.813/6.831 User Interface Design and Implementation 19

Here are the key objectives of the course. This is what I hope you’ll take away from the class.

ik

Course Structure

» See course website for:
— Lecture notes
— Grading policy
— Calendar
— Group project
— Problem sets & homeworks
— Automatic extension policy
» Use Piazza to ask questions

+ Collaboration policy

Spring 2012 6.813/6.831 User Interface Design and Implementation

Administrivia can be found on the course web site.

20

Nanoquizzes

= Every lecture will start with a 3-minute quiz
— covers recent course material
— taken online <

— we'll discuss the answers right after

— your 6 lowest quiz grades will be discarded

— makeup options are available on Stellar

« Simulated question

1. Clippy is: (choose all answers that apply)
A. Annoying to many users
B. A paperclip
C. Aviolation of the usefulness dimension of usability
D. No longer in existence

Spring 2012 6.813/6.831 User Interface Design and Implementation

Bring
your
laptop!

21

21

Next Time: Learnability

=

Source: Interface Hall of Shame

Spring 2012 6.813/6.831 User Interface Design and Implementation

22

L3 /b

- nl o o
O we T Ful a Wﬂm« [y
HIX/LL @(' §|n0w1 g Rt

\H‘MI, Lo mak i e g J(@wg/z Ly
}Ju“\’ VQ[ﬂU{) = ol olj\?/ h’% M 1(@&1’![20”\/ / }’\O/ ,*é

Tl o mha e
lorge ondlibable ares
Up(ifk Jul g

“fow ottrg ¢ e mddl

Np - Wﬁﬂ‘t‘f@blff scoll bor

6%"' l‘tf‘?/ V‘O{'&j Qu]L wL()A ywivse (MU Corvr
L feedbalk ~ goo{
bt Program — hylp

N amo_ Qu\tz-
Wt b deood bt f, g

|
Quanfafin 1 obleive

l

(§ Vl0+ A UML”HZ &.%laq

A S} W)
@#((@'Lv7

éokﬂtz

QH((Q«OY HU‘}' (i m a SV‘W Zm g

Gafley s —vanl les MwW)
st gl

- e

Bﬁp@/‘# Vogrs "Iewblh'L{ /101‘ /’nz(ao//" g
ZO‘\S f’g“ 6/6{(’&5

Crror 1(/%

S e

(o iaifwe ~ leanabiliy 0 off
b & ht efficeacy ~ ol l il 1\”

hot saffe; ~ does wf Cae abot Papef + Touy

0

@pb Ml ks vy e 00wl oty -auay g

—_—

Hﬁw WL)eam U]:

IR b L
~ it ‘
_ Mm/ld/) 7 (n gt /
MJ(fm ning

O}Se/s hfwe & T /90“, |
S¢s Tl progaa M‘Lfﬁ] ﬁq({ rght foehre

W we b hue o Sleulic fablen
~% Seadh box s CJOOJ

—_—

Loﬁ £ ﬁvp}e Vie gooy(p
C(M Log ()009(01 Tms\an‘ wgﬂﬂﬁft‘dﬂ& 7L0 See
TLPI?@ Pfobf\%

(-cm 9@ (2 Vl/)!\lf/ £ {eam ﬂ/é&i ,103(7 L‘s b(Ce GA (9 Q{ﬂwq

O by wabhing ofler PQOPlf
m \§vb\wz]gafnf,]ﬂ\l@

\HOV &ﬁl b (eon Alt=Tad

Y
gdlm W/ i*o ../CLL (j@/({(,@
~ twn :V\ T\/ a/d

U]: m%% C@'Vtmu,-,ttm\’{, L\/ lf‘ge/lF L\OV 710 C!,O (i)L

Rﬁéagn“}m V5 @{O{/U

v
fe”“‘“‘"ﬂ “‘“l va)r fewﬁwlrf/
holp 73
fog% qu unis. - pant
Nan st0 vhat Pow Jstbilik 7
(ommands N
(Un Q9

()004/ Ut +€q"l~u
TNH‘IV - GO uibwb(fi
“ bt need o Comindyr A@L 'klﬂﬁ dnd @
~0c W lean whet Ty we 6
T < modibgl hen pebeets
(on 500 fu ol peopé we [wile

&fp\j LJHO/\ - p(& ills O Jenane ;rz fvecf Jox
G Ao

You o OMWI Jﬂ :ﬂj W/ Vlb('(% f;

I' t (J/&kﬂ ‘(o IJP(%0 7[”(&"]
//}Wf F:lt 4 ﬁﬂv@ Fb 7((“517
0

¢ ‘Lﬂ;@ ! Ul GIGW"%\

‘(O“vavb ('/\[evﬂ/bl@
Can Syg STaty 0C T Syshem

A"&o 5((0”506/ l‘ma@(u {(W/L(”(’,j

| A
60%1& S‘femt ‘/t‘@a/
&(0\3 WM({,]Lg P
sy whel §; 200
éMt Cb[éo zJuH‘ﬂ"‘j

Jfag FoAop sy
OJ\O\"& d‘w\t ‘lo Moyt d()wa 6#’4%

4

SL\OWS ns4es On Mo

Q{} WJFQ, Mg/
LW)](onl _Hpj
o
(ke ol Yvally (eves 2oL

—_—

Jeghoad ghotteh
— moat o st

p e C(?pjwl moJ@(

Wat e e {J‘tece,gf«
Haw \{a MZ Wi %096{’11?/

/3 lewls of Molg()

-_EYQLWL mﬂ(]{’(“’J’\ow J,b QML (/f/’
rir\ﬁﬂ(o&ﬂ MGM = L\aw ”‘ (roo\u

~ Ver modol < low T s Driskis

= W\WL,M bv;{
U C.St} .

L’f WUl L(;

Mo v dal chnguf

f\vwam optator
J

Jal e+ #8 #
J

BHE G4

U\Mﬁ«j Gy §tin (/My(f((
Copper it

J/ 5 i

PML@\L SW{MMJ

7
\m’ (6” ']WO
How Wi MM“Z Fl hag A (/Lu{«g@J GIJL Ol/l)

1z e\ﬁ(/lf/\tbuﬂz e pafy €l (aw;h@’}

Nt m\nlwtlf
Bk € B Tiak abof of

=

Bt 6 a bomest bh 4 yube o a Gelth

L2: Learnability

* no class on Monday

* HW1 (hall of fame & shame) out Mon, due next Sun

= start putting your project group together — use
Groups Wanted page on wiki

Spring 2012 6.813/6.831 User Interface Design and Implementation

Ul Hall of Fame or Shame?

-
Source: Interface Hall of Shame

Spring 2012 6.813/6.831 User Interface Design and Implementation 2

IBM’s RealCD is CD player software, which allows you to play an audio CD in your CD-ROM drive.

Why is it called “Real”? Because its designers based it on a real-world object: a plastic CD case. This
interface has a metaphor, an analogue in the real world. Metaphors are one way to make an interface more
learnable, since users can make guesses about how it will work based on what they already know about the
interface’s metaphor. Unfortunately, the designers’ careful adherence to this metaphor produced some
remarkable effects, none of them good.

Here’s how RealCD looks when it first starts up. Notice that the Ul is dominated by artwork, just like the
outside of a CD case is dominated by the cover art. That big RealCD logo is just that — static artwork.
Clicking on it does nothing.

There’s an obvious problem with the choice of metaphor, of course: a CD case doesn’t actually play CDs. The
designers had to find a place for the player controls — which, remember, serve the primary task of the interface
— so they arrayed them vertically along the case hinge. The metaphor is dictating control layout, against all
other considerations.

Slavish adherence to the metaphor also drove the designers to disregard all consistency with other desktop
applications. Where is this window’s close box? How do I shut it down? You might be able to guess, but is it
obvious? Learnability comes from more than just metaphor.

Ul Hall of Shame!

Source: Interface Hall of Shame

Spring 2012 6.813/6.831 User Interface Design and Implementation 3

But it gets worse. It turns out, like a CD case, this interface can also be opened. Oddly, the designers failed to
sensibly implement their metaphor here. Clicking on the cover art would be a perfectly sensible way to open
the case, and not hard to discover once you get frustrated and start clicking everywhere. Instead, it turns out
the only way to open the case is by a toggle button control (the button with two little gray squares on it).

Opening the case reveals some important controls, including the list of tracks on the CD, a volume control, and
buttons for random or looping play. Evidently the metaphor dictated that the track list belongs on the “back”
of the case. But why is the cover art more important than these controls? A task analysis would clearly show
that adjusting the volume or picking a particular track matters more than viewing the cover art.

And again, the designers ignore consistency with other desktop applications. It turns out that not all the tracks
on the CD are visible in the list. Could you tell right away? Where is its scrollbar?

Ul Hall of Shame

Spring 2012 6.813/6.831 User Interface Design and Implementation 4

We’re not done yet. Where is the online help for this interface?
First, the CD case must be open. You had to figure out how to do that yourself, without help.

With the case open, if you move the mouse over the lower right corner of the cover art, around the IBM logo,
you’ll see some feedback. The comner of the page will seem to peel back. Clicking on that corner will open the
Help Browser.

The aspect of the metaphor in play here is the /iner notes included in a CD case. Removing the liner notes
booklet from a physical CD case is indeed a fiddly operation, and alas, the designers of RealCD have managed
to replicate that part of the experience pretty accurately. But in a physical CD case, the liner notes usually
contain lyrics or credits or goofy pictures of the band, which aren’t at all important to the primary task of
playing the music. RealCD puts the help in this invisible, nearly unreachable, and probably undiscoverable
booklet.

This example has several lessons: first, that interface metaphors can be horribly misused; and second, that the
presence of a metaphor does not at all guarantee an “intuitive”, or easy-to-learn, user interface. (There’s a third
lesson too, unrelated to metaphor — that beautiful graphic design doesn’t equal usability, and that graphic
designers can be just as blind to usability problems as programmers can.)

Fortunately, metaphor is not the only way to achieve learnability. In fact, it’s probably the hardest way, fraught
with the most pitfalls for the designer. In this lecture, we’ll look at some other ways.

Today’s Topics

Learning approaches
Interaction styles
Conceptual models of Uls
Consistency

Spring 2012 6.813/6.831 User Interface Design and Implementation

LEARNING APPROACHES

Spring 2012 6.813/6.831 User Interface Design and Implementation

How We Learn a New User Interface

Not by reading a manual* Not by taking a class™

Help Log Off

Not by reading the help first* ! .
* Standard caveat: “it depends’

Spring 2012 6.813/6.831 User Interface Design and Implementation 9

When computers first appeared in the world, there were some assumptions about how people would learn how
to use the software. Programmers assumed that users would read the manual first — obviously not true.
Companies assumed that their employees would take a class first — not always true. Even now that we have
online help built into virtually every desktop application, and web page help often just a search engine query
away, users don’t go to the help first or read overviews.

All these statements have to be caveated, because in some circumstances — some applications, some tasks,
some users — these might very well be the way the user learns. Very complex, professional-level tools might
well be encountered in a formal training situation — that’s how pilots learn how to use in-cockpit software, for
example. And some users (very few of them) *do* read manuals.

Nearly all the general statements we make in this class should be interpreted as “It Depends.” There will be
contexts and situations in which they’re not true, and that’s one of the complexities of UI design.

Learning by Doing

» User already has a goal to achieve
— “Get rid of the redeye from my photo.”

* User explores interface to find comma
and features to satisfy the goal

Spring 2012 6.813/6.831 User Interface Design and Implementation 10

So users don’t try to learn first — instead, they typically try to do what they want to do, and explore the
interface to see if they can figure out how to do it. This practice is usually called learning by doing, and it
means that the user is starting out with a goal already in mind; they are more interested in achieving that goal
than in learning the user interface (so any learning that happens will be secondary); and the burden is on the
user interface to clearly communicate how to use it and help the user achieve their first goal at the same time.

10

Seeking Help

 User resorts to seeking help when they get
stuck

— So they already have a problem when they arrive,
and they're usually looking for concrete solutions

to it
| l 41 (reasserars |
= ogab |
PowerPoint Help :h; el v, et i
1 ® ot iy
| Welcome to PowerPaint b % :_‘:'::::“‘ !
Cet Started with PowerPoint ow wns |
if i
] Check for Updates b i |
Visit the Product Web Site 3 e
{ Send Feedback about PowerPoint | = &'
Spring 2012 6.813/6.831 User Interface Design and Implementation "

Only when they get stuck in their learning-by-doing will a typical user look for help. This affects the way help
systems should be designed, because it means most users (even first-timers) are arriving at help with a goal
already in mind and an obstacle they’ve encountered to achieving that goal. A help system that starts out with
a long text explaining The Philosophy of the System will not work. That philosophy will be ignored, because
the user will be seeking answers to their specific problem.

Modemn help systems understand this, and make it easy to ask for the user to ask the question up-front, rather
than wading through pages of explanation.

11

Try It:

Google Autosuggest to Find Learnability Problems

+ Look at the suggested queries for prefixes like:
— photoshop how to
—~ powerpoint how to
— iphone how to
— android how to
* What kinds of goals do you see?
» What kinds of goals don’t appear?
» What does it say about the leamability of the Ul for that task?

Google [isrenebowto
iphone how to
iphone how to take a screenshot
Search iphone how to move icons
iphone how to block a humber

Spring 2012 6.813/6.831 User Interface Design and Implementation 12

Search engines have become even more important than in-application help systems, however. And a
wonderful thing about search engines is that they show us query suggestions, so we can get some insight into
the goals of thousands of other users. What is it that they’re trying to do with their iPhone, but isn’t easily
learnable from the interface? (Adam Fourney, Richard Mann, and Michael Terry. “Characterizing the Usability
of Interactive Applications Through Query Log Analysis.” CHI 2011.)

12

Learning by Watching

How did you learmn Alt-Tab?

Spring 2012 6.813/6.831 User Interface Design and Implementation 13

One more way that we learn how to use user interfaces is by watching other people use them. That’s a major
way we navigate an unfamiliar subway system, for example. Unfortunately much of our software — whether
for desktops, laptops, tablets, or smartphones — is designed for one person, and you don’t often use it together
with other people, reducing the opportunities for learning by watching. Yet seeing somebody else do it may
well be the only way you can learn about some features that are otherwise invisible, like pinch-zooming or Alt-
Tab.

Social computing is changing this situation somewhat. We’ll look at Twitter in a moment, and see that you can
learn some things from other people even though they’re not sitting next to you.

INTERACTION STYLES

Spring 2012 6.813/6.831 User Interface Design and Implementation

14

14

Recognition vs. Recall

» Recognition: remembering with the help of a
visible cue

— aka “Knowledge in the world”
» Recall: remembering with no help
— aka “Knowledge in the head"”

» Recognition is much easier!

Spring 2012 6.813/6.831 User Interface Design and Implementation 15

It’s important to make a distinction between recognition (remembering with the help of a visible cue) and
recall (remembering something with no help from the outside world). Recognition is far, far easier than
uncued recall.

Psychology experiments have shown that the human memory system is almost unbelievably good at
recognition. In one study, people looked at 540 words for a brief time each, then took a test in which they had
to determine which of a pair of words they had seen on that 540-word list. The result? 88% accuracy on
average! Similarly, in a study with 612 short sentences, people achieved 89% correct recognition on average.

Note that since these recognition studies involve so many items, they are clearly going beyond working
memory, despite the absence of elaborative rehearsal. Other studies have demonstrated that by extending the
interval between the viewing and the testing. In one study, people looked briefly at 2,560 pictures, and then
were tested a year later — and they were still 63% accurate in judging which of two pictures they had seen
before, significantly better than chance. One more: people were asked to study an artificial language for 15
min, then tested on it two years later —and their performance in the test was better than chance.

L3

Command Language:

= User types in commands in an artificial language
— all knowledge in the head; low learnability

1ls -1 *.java
Unix shell

+6.831 site:mit.edu

search engine query

http://www.mit.edu/admissions/
URL

Spring 2012 6.813/6.831 User Interface Design and Implementation 16

The earliest computer interfaces were command languages: job control languages for early computers, which
later evolved into the Unix command line.

Although a command language is rarely the first choice of a user interface designer nowadays, they still have
their place — often as an advanced feature embedded inside another interaction style. For example, Google’s
query operators form a command language. Even the URL in a web browser is a command language, with
particular syntax and semantics.

Menus and Forms

* User is prompted to choose from menus and fill in forms
— all knowledge in the world: far more learnable

Attt e ah (e ey
ewpmg LT - oty My Eaeme- e L)

* deenl Bemenns Srm aet Mt |
S et e aem oa
* Brwen i Lierid Sonz * Neciinaten dnd 51
v mem L Yeard e oa b

¢ Lameato st dscaien: ¢ Refuivea
s S v ke ohamn e

* Limatn * Bbnd
oo 405 Colas Zommr: Cama S,

AN i S ey BEETSR b
* G * Sdsoon
Lt P Rt a0 s AT A

Spring 2012 6.813/6.831 User Interface Design and Implementation 17

A menu/form interface presents a series of menus or forms to the user. Traditional (Web 1.0) web sites behave
this way. Most graphical user interfaces have some kind of menw/forms interaction, such as a menubar (which
is essentially a tree of menus) and dialog boxes (which are essentially forms).

17

Example: Twitter’'s Tweet-Creation Ul

What aspects of this Ul use knowledge in the head?
What aspects use knowledge in the world?

Adam Marcus vy
SmROUR 06 _nosersen obakn oh...email readng
comprohonsion skils ane poor, 584, any videos?

4 I 1401y 1D AcH MrGus

Asron J Elmore <o S ah
FHPTS summanes of talks by Smarcua Saeanonin Hamnanco
(Jorge() Ssamrmadden and MOre: LSeNdL org/publicationerl...
=Swen DENCWI R OMGIMine

13 Fstwre e Wy

e Elsine .- ¢ 4= ey T Perase W Favcats « Cpan
‘ More on Gleldmperial MT Cemuihu: This is e paper that had n a
review of 2 play “to0 many foreigners in e cast” as ks main

compiamt

Seon Agnew . coxon 11m
I how 'nice’ of tham MT Siasstanpern WH to Announce
AL " for Retgious Orgar on Cor Aule
ADCR WS pIEV2L

Spring 2012 6.813/6.831 User Interface Design and Implementation 18

Let’s look at Twitter’s interface — specifically, let’s focus on the interface for creating a new tweet. What
aspects of this interface are knowledge-in-the-world, and what aspects require knowledge in the head? In what
way is Twitter a hybrid of a command language and a menu/form interface?

Twitter is actually an unusual kind of command interface in that examples of “commands” (formatted tweets
generated by other users) are constantly flowing at the user. So the user can do a lot of learning by watching
on Twitter. On the other hand, learning by doing is somewhat more embarrassing, because your followers can
all see your mistakes (the incorrect tweets you send out while you’re still figuring out how to use it).

18

Self-Disclosure

‘ '-.ia @J
7 sum | M)] =sum(arcy)

Average "p [SUMinumber1, inumber2, ..J |

Count Numbers

2
]
1l Max ;
g min £
% More Functions... &

| Eibieins ot
GOOSI@ Advanced Search

ITHOrou R i dOws " "opaeaing 1y stan” OR OB ~gade -washiog sitecmcron com

Find web pages that have ..
2 Bese warts

- i |

OSSO werr-vryopem oxfos

Butl oaT show pages that hawe...

I of e uearted wordy ek wachng

Mesd mors tovis?

Spring 2012 6.813/6.831 User Interface Design and Implementation 19

Self-disclosure is a technique for making a command language more visible, helping the user learn the
available commands and syntax. Self-disclosure is useful for interfaces that have both a traditional GUI (with
menus and forms and possibly direct manipulation) as well as a command language (for scripting). When the
user issues a command in the GUI part, the interface also displays the command in the command language that
corresponds to what they did. A primitive form of self-disclosure is the address bar in a web browser — when
you click on a hyperlink, the system displays to you the URL that you could have typed in order to visit the
page. A more sophisticated kind of self-disclosure happens in Excel: when you choose the sum function from
the toolbar, and drag out a range of cells to be summed, Excel shows you how you could have typed the
formula instead. (Notice that Excel also uses a tooltip, to make the syntax of the formula more visible.)

On the bottom is another example of self-disclosure: Google’s Advanced Search form, which allows the user to
specify search options by selecting them from menus, the results of which are also displayed as a command-
based query ("microsoft windows” "operating system" OR OS —glass —washing site:microsoft.com) which can

be entered on the main search page. (example by Geza Kovacs)

19

Direct Manipulation

» User interacts with visual representation of data
objects
— Continuous visual representation
— Physical actions or labeled button presses
— Rapid, incremental, reversible, immediately visible effects

o w8 B
:;«nnn— ol ceADD Severron.. e ﬁ 5
— |

& 8@ @_j fﬁ Scrollbar

wholfm., Llussbiti... L i2iser e,

5 9 o o Q—\E—f
Jauseroen.. Lhursofta.., Lo, 4icemebd...

53—

Files & folders on desktop
Selection handles

Spring 2012 6.813/8.831 User Interface Design and Implementation 20

Finally, we have direct manipulation: the preeminent interface style for graphical user interfaces. Direct
manipulation is defined by three principles [Shneiderman, Designing the User Interface, 2004]:

1. A continuous visual representation of the system’s data objects. Examples of this visual representation
include: icons representing files and folders on your desktop; graphical objects in a drawing editor; text in a
word processor; email messages in your inbox. The representation may be verbal (words) or iconic (pictures),
but it’s continuously displayed, not displayed on demand. Contrast that with the behavior of ed, a command-
language-style text editor: ed only displayed the text file you were editing when you gave it an explicit
command to do so.

2. The user interacts with the visual representation using physical actions or labeled button presses. Physical
actions might include clicking on an object to select it, dragging it to move it, or dragging a selection handle to
resize it. Physical actions are the most direct kind of actions in direct manipulation — you’re interacting with
the virtual objects in a way that feels like you’re pushing them around directly. But not every interface
function can be easily mapped to a physical action (e.g., converting text to boldface), so we also allow for
“command” actions triggered by pressing a button — but the button should be visually rendered in the interface,
so that pressing it is analogous to pressing a physical button.

3. The effects of actions should be rapid (visible as quickly as possible), incremental (you can drag the
scrollbar thumb a little or a lot, and you see each incremental change), reversible (you can undo your
operation — with physical actions this is usually as easy as moving your hand back to the original place, but
with labeled buttons you typically need an Undo command), and immediately visible (the user doesn’t have to
do anything to see the effects; by contrast, a command like “cp a.txt b.txt” has no immediately visible effect).

Why is direct manipulation so powerful? It exploits perceptual and motor skills of the human machine — and

depends less on linguistic skills than command or menu/form interfaces. So it’s more “natural” in a sense,
because we learned how to manipulate the physical world long before we learned how to talk, read, and write.

20

Try It: Direct Manipulation

» What parts of Google Street View satisfy the definition of DM?
— Continuous visual representation
—~ Physical actions or labeled button presses
— Rapid, incremental, reversible, immediately visible effects

Spring 2012 6.813/6.831 User Interface Design and Implementation 21

The Street View feature of Google Maps is a great example of direct manipulation in an interface. The
interface allows the user to either click or click-drag to change their perspective and location in Google Maps.
The interactive map gives the user a continuous visual representation of geographical data that responds
rapidly, visually, and incrementally to physical mouse movements. (suggested by Feng Wu)

Go to:
http://maps.google.com/maps?q=77+Mass+Ave,+Cambridge,+Massachusetts

+02139&layer=c&z=17&iwloc=A&sl1=42.359057,-71.093571&cbp=13,117.0,0,0,08&cbl1=42.359072,-71.093
612&hl=en&ved=0CA0Q2wU&sa=X&ei=NxU1T83BGYzcNY_KS8KIJ

shoutkey.com/beehive

21

CONCEPTUAL MODELS

Spring 2012 6.813/6.831 User Interface Design and Implementation

22

22

Models

* Model of a system = how it works

— its constituent parts and how they work together to
do what the system does

Follows Tweets

Spring 2012 6.813/6.831 User Interface Design and Implementation 23

Regardless of interaction style, learning a new system requires the user to build a mental model of how the
system works. Learnability can be strongly affected by difficulties in building that model.

A model of a system is a way of describing how the system works. A model specifies what the parts of the
system are, and how those parts interact to make the system do what it’s supposed to do.

For example, at a high level, the model of Twitter is that there are other users in the system, you have a list of
people that you follow and a list of people that follow you, and each user generates a stream of tweets that are
seen by their followers, mixed together into a feed. These are all the parts of the system. At a more detailed
level, tweets and people have attributes and data, and there are actions that you can do in the system (viewing
tweets, creating tweets, following or unfollowing, etc.). These data items and actions are also parts of the
model.

23

Three Models in Ul Design

User
model

Interface model should be:
+ Simple
» Appropriate (matching the task that needs to be done)
» Well-communicated

Spring 2012 6.813/6.831 User Interface Design and Implementation 24

There are actually several models you have to worry about in UT design:
*The system model (sometimes called implementation model) is how the system actually works.

*The interface model (or manifest model) is the model that the system presents to the user through its user
interface.

*The user model (or conceptual model) is how the user thinks the system works.

Note that we’re using model in a more general and abstract sense here than when we talk about the model-
view-controller pattern. In MVC, the model is a software component (like a class or group of classes) that
stores application data and implements the application behavior behind an interface. Here, a model is an
abstracted description of how a system works. The system model on this slide might describe the way an MVC
model class behaves (for example, storing text as a list of lines). The interface model might describe the way
an MVC view class presents that system model (e.g., allowing end-of-lines to be “deleted” just as if they were
characters). Finally, the user model isn’t software at all; it’s all in the user’s mind.

24

Example: Telephone

» Conversation model has not changed

— despite drastic changes in system model (copper
circuit = packet switching = cells)

 Interface model for dialing has evolved a lot
— human operator = dialtone+#H## = #HH#+Send

Spring 2012 6.813/6.831 User Interface Design and Implementation 25

The interface model might be quite different from the system model. A text editor whose system model is a list
of lines doesn’t have to present it that way through its interface. The interface could allow deleting line
endings as if they were characters, even though the actual effect on the system model is quite different.

Similarly, a cell phone presents the same simple interface model as a conventional wired phone, even though
its system model is quite a bit more complex. A cell phone conversation may be handed off from one cell
tower to another as the user moves around. This detail of the system model is hidden from the user.

As a software engineer, you should be quite familiar with this notion. A module interface offers a certain
model of operation to clients of the module, but its implementation may be significantly different. In software
engineering, this divergence between interface and implementation is valued as a way to manage complexity
and plan for change. In user interface design, we value it primarily for other reasons: the interface model
should be simpler and more closely reflect the user’s model of the actual task.

23

Example: Electricity as Water

System model
* AC current
* circuit k|
» electrons don'ttransfer . TN

Interface model
« power flowing like water

]

i

Spring 2012 6.813/6.831 User Interface Design and Implementation 26

The user’s model may be totally wrong without affecting the user’s ability to use the system. A popular
misconception about electricity holds that plugging in a power cable is like plugging in a water hose, with
electrons traveling from the power company through the cable into the appliance. The actual system model of
household AC current is of course completely different: the current changes direction many times a second,
and the actual electrons don’t move far, and there’s really a circuit in that cable, not just a one-way tube. But
the user model is simple, and the interface model supports it: plug in this tube, and power flows to the
appliance.

26

Example: Thermostat e 4
" Valve?

a3

Switch?

[y
System model Interface model J ‘@a
User model
Spring 2012 6.813/6.831 User Interface Design and Implementation 27

But a wrong user model can lead to problems, as well. Consider a household thermostat, which controls the
temperature of a room. If the room is too cold, what’s the fastest way to bring it up to the desired temperature?
Some people would say the room will heat faster if the thermostat is turned all the way up to maximum
temperature. This response is triggered by an incorrect mental model about how a thermostat works: either the
timer model, in which the thermostat controls the duty cycle of the furnace, i.e. what fraction of time the
furnace is running and what fraction it is off; or the valve model, in which the thermostat affects the amount of
heat coming from the furnace. In fact, a thermostat is just an on-off switch at the set temperature. When the
room is colder than the set temperature, the furnace runs full blast until the room warms up. A higher
thermostat setting will not make the room warm up any faster. (Norman, Design of Everyday Things, 1988)

These incorrect models shouldn’t simply be dismissed as “ignorant users.” (Remember, the user is always
right! If there’s a consistent problem in the interface, it’s probably the interface’s fault.) These user models for
heating are perfectly correct for other systems: a car heater and a stove burner both use the valve model. And
users have no problem understanding the model of a dimmer switch, which performs the analogous function
for light that a thermostat does for heat. When a room needs to be brighter, the user model says to set the
dimmer switch right at the desired brightness.

The problem here is that the thermostat isn’t effectively communicating its model to the user. In particular,
there isn’t enough feedback about what the furnace is doing for the user to form the right model.

27

Example: Back vs. Previous

mozilia en-Us. 1y v
24 powerpoint how to p
=F Free Online Course ¥
= Free Online Course ¥
TE{ MIT Admissians | M
1 M - Massachusens

O Kew Tab
© Show Full History 4 Goooovoovooovooglew
Provious 12345678 910112 Next
Spring 2012 6.813/6.831 User Interface Design and Implementation 28

Here’s an example drawn directly from graphical user interfaces: the Back button in a web browser. What is
the model for the behavior of Back? Specifically: how does the user think it behaves (the mental model), and
how does it actually behave (the system model)?

The system model is that Back goes back to the last page the user was viewing, in a temporal history sequence.

But on a web site that has pages in some kind of linear sequence of their own -- such as the result pages of a
search engine (shown here) or multiple pages of a news article — then the user’s mental model might easily
confuse these two sequences, thinking that Back will go to the previous page in the web site’s sequence. In
other words, that Back is the same as Previous! (The fact that the “back™ and “previous” are close synonyms,
and that the arrow icons are almost identical, strongly encourages this belief.)

Most of the time, this erroneous mental model of Back will behave just the same as the true system model. But
it will deviate if the user mixes the Previous link with the Back button — after pressing Previous, the Back
button will behave like Next!

A nice article with other examples of tricky mental model/system model mismatch problems is “Mental and
conceptual models, and the problem of contingency™ by Charles Hannon, interactions, November 2008. http:/
portal.acm.org/citation.cfm?doid=1390085.1390099

28

Example: Graphical Editing
Edit tﬁis text

]

' CEditthis tex{ -

Structured graphics model Pixel model with layers

(e.g. ustrator, PowerPoint) (e.g. Photoshop)
Spring 2012 6.813/6.831 User Interface Design and Implementation

Pixel model, no layers
(e.g. MS Paint)

Consider image editing software. Programs like Photoshop and Gimp use a pixel editing model, in which an
image is represented by an array of pixels (plus a stack of layers). Programs like PowerPoint and Illustrator, on
the other hand, use a structured graphics model, in which an image is represented by a collection of graphical
objects, like lines, rectangles, circles, and text. In this case, the choice of model strongly constrains the kinds
of operations available to a user. You can easily tweak individual pixels in Microsoft Paint, but you can’t

easily move an object once you’ve drawn it into the picture.

29

Example: Text Editing

e hkiikh'&ki"'i':d'."i'-'lé
Lorem ipsum dolor]

sit omet, consectetur |
cdipiscing elit. 1

Typewriter: Text editor:
2D grid of characters 1D string with linebreak characters
Spring 2012 6.813/6.831 User Interface Design and Implementation 30

Similarly, most modern text editors model a text file as a single string, in which line endings are just like other
characters. But it doesn’t have to be this way. Some editors represent a text file as a list of lines instead.
When this implementation model is exposed in the user interface, as in old Unix text editors like ed, line
endings can’t be deleted in the same way as other characters. ed has a special join command for deleting line

endings.
text editor: one-dimensional sequence of characters; cursor is an insertion point

typewriter: two-dimensional page; cursor is a rectangle on the page

different effects of space, return, backspace

30

Try It: Design a New Thermostat

+ Design a thermostat that communicates its
true model (switch) effectively to a new user
— Work with your neighbors
— Sketch your designs
— Come up with more than one

» Things to think about

— Would it work to print an explanation on the thermostat? If
s0, what exactly would it say?

— Think about a sink faucet: why is it easy to tell whether it's a
valve or a switch?

Spring 2012 6.813/6.831 User Interface Design and Implementation 3

31

CONSISTENCY

Spring 2012 6.813/6.831 User Interface Design and Implementation

32

32

Consistency

» Similar things should look and act the same
» Different things should look different

— also called the principle of “least surprise”

» Consistency allows the user to transfer their
existing knowledge easily to a new Ul

Spring 2012 6.813/6.831 User Interface Design and Implementation 33

There’s a general principle of learnability: consistency. This rule is often given the hifalutin’ name the
Principle of Least Surprise, which basically means that you shouldn’t surprise the user with the way a
command or interface object works. Similar things should look, and act, in similar ways. Conversely,
different things should be visibly different.

33

Kinds of Consistency
Cmail Gmail
Maii - Contacts -
| cowom QN mon ot |
b = Wy Coraces (278)
Stared AP
SR e
AN Mt o (32
“o ey
Internal: External: Metaphorical:
with itself with other Uls or the with the chosen
real world interface metaphor
Spring 2012 6.813/6.831 User Interface Design and Implementation 34

There are three kinds of consistency you need to worry about: internal consistency within your application;
external consistency with other applications on the same platform; and metaphorical consistency with your
interface metaphor or similar real-world objects.

The RealCD interface has problems with both metaphorical consistency (CD jewel cases don’t play; you don’t
open them by pressing a button on the spine; and they don’t open as shown), and with external consistency (the
player controls aren’t arranged horizontally as they’re usually seen; and the track list doesn’t use the same
scrollbar that other applications do).

34

Metaphors

2.2 2.8
* Advantages B2338

— Highly learnable when appropriate .2 23 % 2

— Hooks into user’s existing mental Desktop metaphor
models very easily

- Dangers ﬂ
— Often hard for designers to find Trashcan metaphor
— May be deceptive
— May be constraining

— Metaphor always breaks down ﬁ
¢ ’ e —

Typewriter metaphor

Spring 2012 6.813/6.831 User Interface Design and Implementation 35

Metaphors are one way you can bring the real world into your interface. We started out by talking about
RealCD, an example of an interface that uses a strong metaphor in its interface. A well-chosen, well-executed
metaphor can be quite effective and appealing, but be aware that metaphors can also mislead. A computer
interface must deviate from the metaphor at some point -- otherwise, why aren’t you just using the physical
object instead? At those deviation points, the metaphor may do more harm than good. For example, it’s easy
to say “a word processor is like a typewriter,” but you shouldn’t really use it like a typewriter. Pressing Enter
every time the cursor gets close to the right margin, as a typewriter demands, would wreak havoc with the
word processor’s automatic word-wrapping.

The advantage of metaphor is that you’re borrowing a conceptual model that the user already has experience
with. A metaphor can convey a lot of knowledge about the interface model all at once. It’s a notebook. It’s a
CD case. It’s a desktop. 1t’s a trashcan. Each of these metaphors carries along with it a lot of knowledge
about the parts, their purposes, and their interactions, which the user can draw on to make guesses about how
the interface will work.

Some interface metaphors are famous and largely successful. The desktop metaphor — documents, folders, and
overlapping paper-like windows on a desk-like surface — is widely used and copied. The trashcan, a place for
discarding things but also for digging around and bringing them back, is another effective metaphor — so much
so that Apple defended its trashcan with a lawsuit, and imitators are forced to use a different look. (Recycle
Bin, anyone?)

The basic rule for metaphors is: use it if you have one, but don’t stretch for one if you don’t. Appropriate
metaphors can be very hard to find, particularly with real-world objects. The designers of RealCD stretched

hard to use their CD-case metaphor (since in the real world, CD cases don’t even play CDs), and it didn’t work
well.

Metaphors can also be deceptive, leading users to infer behavior that your interface doesn’t provide. Sure, it
looks like a book, but can I write in the margin? Can I rip out a page?

Metaphors can also be constraining. Strict adherence to the desktop metaphor wouldn’t scale, because
documents would always be full-size like they are in the real world, and folders wouldn’t be able to have

35

Natural Mapping: Consistency of Layout

« When possible, the physical arrangement of controls
should match arrangement of function

* Best mapping is direct, but natural mappings don‘t
have to be direct if they have an easy mental model

BE | e

Direct mapping Bad mapping Bad mapping Natural
mapping

Spring 2012 6.813/6.831 User Interface Design and Implementation 36

Another important principle of interface communication is natural mapping of functions to controls.

Consider the spatial arrangement of a light switch panel. How does each switch correspond to the light it
controls? If the switches are arranged in the same fashion as the lights themselves, it is much easier to learn
which switch controls which light.

Direct mappings are not always easy to achieve, since a control may be oriented differently from the function it
controls. Light switches are mounted vertically, on a wall; the lights themselves are mounted horizontally, on a
ceiling. So the switch arrangement may not correspond directly to a light arrangement.

Other good examples of mapping include:

*Stove burners. Many stoves have four burners arranged in a square, and four control knobs arranged in a row.
Which knobs control which burners? Most stoves don’t make any attempt to provide a natural mapping.

+Car turn signals. The turn signal switch in most cars is a stalk that moves up and down, but the function it
controls is a signal for left or right turn. So the mapping is not direct, but it is nevertheless natural. Why?

*An audio mixer for DJs (proposed by Max Van Kleek for the Hall of Fame) has two sets of identical controls,
one for each turntable being mixed. The mixer is designed to sit in between the turntables, so that the left
controls affect the turntable to the left of the mixer, and the right controls affect the turntable to the right. The
mapping here is direct.

The controls on the RealCD interface don’t have a natural mapping. Why not?

Here’s a quick exercise. Consider the lights in this classroom, and design a panel of light switches to
control the room's lights, for installation next to one of the entrance doors. Devise a natural mapping
between your switch panel and the lights it controls, so that a user can easily learn and remember
how to use it. Don't stop with just one design, but sketch out a few.

A few things to think about: (1) It may not make sense to control every light individually. How
should the lights be grouped? (2) Think about consistency. Will your panel be recognizable as light

36

Internal Consistency in Wording

Course VI Underground Guide Evaluations

vera | Sewcn | Teacher |

Published UG reviews | Underground Guide Review

Lecturer's Comments

Brgurse of Sarch thiough past subinthed waatong |

Browse published evaluations

e Frlad'e SO

Spring 2012 6.813/6.831 User Interface Design and Implementation 37

Another important kind of consistency, often overlooked, is in wording. Use the same terms throughout your
user interface. If your interface says “share price” in one place, “stock price” in another, and “stock quote™ in a
third, users will wonder whether these are three different things you’re talking about. Don’t get creative when
you’re writing text for a user interface; keep it simple and uniform, just like all technical writing.

Here are some examples from the Course VI Underground Guide web site — confusion about what’s a “review”
and what’s an “evaluation™.

37

External Consistency in Wording:
Speak the User's Language

= Use common words, not techie jargon
— But use domain-specific terms where appropriate

» Allow aliases/synonyms in command languages

This Really Happened... B3

Source: Interface Hall of Shame

Spring 2012 6.813/6.831 User Interface Design and Implementation 38

External consistency in wording is important too — in other words, speak the user’s language as much as
possible, rather than forcing them to learn a new one. If the user speaks English, then the interface should also
speak English, not Geekish. Technical jargon should be avoided. Use of jargon reflects aspects of the system
model creeping up into the interface model, unnecessarily. How might a user interpret the dialog box shown
here? One poor user actually read fype as a verb, and dutifully typed M-I-S-M-A-T-C-H every time this dialog
appeared. The user’s reaction makes perfect sense when you remember that most computer users do just that,
type, all day. But most programmers wouldn’t even think of reading the message that way. Yet another
example showing that you are not the user.

Technical jargon should only be used when it is specific to the application domain and the expected users are
domain experts. An interface designed for doctors shouldn’t dumb down medical terms.

When designing an interface that requires the user to type in commands or search keywords, support as many
aliases or synonyms as you can. Different users rarely agree on the same name for an object or command. One
study found that the probability that two users would mention the same name was only 7-18%. (Furnas et al,
“The vocabulary problem in human-system communication,” CACM v30 nl1, Nov. 1987).

Incidentally, there seems to be a contradiction between these guidelines. Speaking the User’s Language argues
for synonyms and aliases, so a command language should include not only delete but erase and remove too.
But Consistency in Wording argued for only one command name, lest the user wonder whether these are three
different commands that do different things. One way around the impasse is to look at the context in which
you’re applying the heuristic. When the user is talking, the interface should make a maximum effort to
understand the user, allowing synonyms and aliases. When the interface is speaking, it should be consistent,
always using the same name to describe the same command or object. What if the interface is smart enough to
adapt to the user — should it then favor matching its output to the user’s vocabulary (and possibly the user’s
inconsistency) rather than enforcing its own consistency? Perhaps, but adaptive interfaces are still an active
area of research, and not much is known.

38

Summary

Learning approaches

— learn by doing, seeking help, over-the-shoulder
learning

Interaction styles

— commands, menus & forms, direct manipulation
Conceptual models

— system vs. interface vs. user models

» Consistency

— internal, external, metaphorical

L]

Spring 2012 6.813/6.831 User Interface Design and Implementation

39

39

Next Time: Ul Hall of Fame or Shame?

WARNING [X]

Cookie:rambo amadeus(@microsoft.com is a Cookiell Are you sure you

want to delete 7 |

Source: Interface Hall of Shame

Spring 2012 6.813/6.831 User Interface Design and Implementation

40

40

W, Lemwb;'l;h

(jo cliss)
[1“‘” Ouxrléve, SVV,

fn hups Jof m”ﬂbh"t i @M)
" ikl wp(;&‘o
e akln | g
HIL“ ap wtomﬁ /5)(\11/\0

“MOMA - Oalia ey bt
b o T fequennts
O gr!L ol o
l
'—fO“[aS M one M\@g o A (’MY
" Ml | of pud JF de
_ ‘ 4
pt i doeon} €eol e
N ‘@})\V“’&/""l /\‘\(\Ul/nl‘ MML }D(Jgﬂl(’_](o QWL (%f Jo
h‘tr’ Sefzpen(ﬂp”;Ovﬁ o]:g(gvﬁ/f
%% { 6;:“]0{6 [(/\{7/ b

fgte

(
le WP rh'an ‘t pJLa/ﬂ(M

ﬁ_m S(/o”)0(/(‘ ;rbuf L& A d/ll/&/fk ru‘m;wbﬂm Of h{’ V‘lﬂt/iwy
X, v fos (low [qwl m@)
- la(oae,f fd,\ék :5 :’\/ML ();/ﬂc{‘ Mdn}/vwbﬂ

(wwoh Cleer “W)
(onii ety phat ') rnfsaetf)

é?/[{ Jl(s(]ﬂwe = e (mm (l(rwv: /rn w/H J bw!ﬂ“/\ £~ IW‘{/O{

/_V_@L fQC&H)’ o Gysten (s Prp o5l o v

e bty wlos ~cant gl
Ol g e}

M{ o 0 57@“"1 D M/ e harks

>]/\flw m V)U(B (0! \h 'hfj(}/m/

U-E 6k0l/ldl (;OMAVn|(C@]L€ rh/\lb /MJ(}/(@f t\ﬂw h(
gberm Wor bs

Emwk] Bk vs P>
/Q o \WHOA /L(ML P“‘JB/UKL hmd# zf.s c[n Lfobvéef }125%97

I Wvwser

Pf s boffon ¢ &WULQ ;6005 h @f@/t'o/ﬁ (feaf

64%%«\153 ‘H&T qn f‘o h‘(gq%
b g bl

— it o b Py L0

= D hib prevy o gf 9
)O)‘i/(\\
Bk g%} I\

Pews® gas 1y, 9

e

% \
Fl\l\l’lﬂ l* (NWI’J be Quern moe (Om/(f’ﬁ

6]“3:(_'1: G/C{Ph\ttw\ E\lh‘;ﬂ

— é‘l‘/c(,h/ﬂ(,{ m‘é P0w€/’0{‘,tl / I”Vbl'/w{\a[
- p'\m\ W/}(_Q, },1 twe/ﬁ){LQ [M{J(J{Q :n Phgbélzsp
o S]megh]l‘ W,ﬁ‘lxe{ made| it N5 Paiat

fﬂrﬂﬂde«(\%i ,ﬂgu/\u,/‘uj bay
T{X'F CUr%or @

Te#r ot “has [ine breas puto (wo/d mp)

E,\-}/Q/ i épcue, % J et ;n wer L «Jﬂa(esé:ﬂj
Than }w]oq, Wi e

i , \ \
Ufld?/llrwj o1 We et ﬁfmj wd s@res g0, /{m(

Mrmbm’r e ie
— (OovAd

~ (Whatey e mmﬂ wa
~ ot mady art M”— o lher

(.d“ N/ m 4& b@H(/ :

gﬁl(vs & WLaaw "W“
b 1 AL (9/0«3{
oyt e i fed pal bl

q
insheu (//pi(()f/’\

Heat ol A-L Fo 0
|

T4k
da hoﬁom

/ﬂ\[, 0/ ‘{‘O Yﬂll(f’

@—QLD € {'\MJ/IE o et on
ot TT_ /d Mmio /ﬁ(mq{‘c‘“[“

Ackaly peab oh

6

" Optn Db g el Tonp
,—C‘M‘l—/rﬂlﬁ \(\Q“A’/&’&l W‘iH'l W
0 have G Juents

[g
~ Yy djg
(dut Gy u/vc{@fsﬁmd)

e i b
b (A ¥ .
{N 004 000000 Wrat il lghts

— 1

N
fwa?/f

B]/\M\L 0n MMW l\‘dh/\t
AE 0
éz) ((NM/ 'I/WL dﬂh 1 %WC’;; o pr OH
ol s Pyl %VDL b/%lm&(, Inafles ©
Pﬁ‘&ptf, ol fil ds an abghation
~ o dign dify o b mich Wl g

-l JQ@%; evtn good

L]
Unhafpy gt

b

~ e « [MJF (‘%h} hotsn
T 0r on/0 /Jll

~ heat ok g4
’NJF hoolsed, v/

~—

%inb to vhv
~prekead iy ot bl s ok ket o G

™ Proges ot vkl Wit dedad Yo
._bl' Mnljf Cmmvn\lubt'@ (a,f’e s rot dxﬂf!{/h\j
- S‘)\M/ })Qﬁ}h + @JT’ms " Crw

- ‘mbhm\' ?!Qu}w

S\lm\’vﬁ - ol igle. Cealbu,

V\JQW qu{u()r* N@t}f m%}m
" \"\(X&)‘“llt & \W:Mﬂ h\wvn@é}
1t Jowns Yaur pﬂﬂcfa of aofiuv"f;
- Jf@u> v hov [ong fo cpf pouk

Y

qu waJu, N)(eo)‘ H/‘
S & itk e 05

//\%i Yo GoF v 5(ffMt'fJ :j\/b'/L / {fdw

(O/\S'tml?/\cz

(90 6“&@5 for éfm:cw]
Casy way b goF enashibly | opy s

Lo Copristy
Dﬂfl lﬁl “),‘9 YLQQ h Vh(,c[f(

! Be Cnaghtnl w/ ofoll
7(Bﬁ (| W/ dt‘f@/ UIS % ced M({/

3 (t vv/ Chogn Mgh@lﬂ{}p (d A e
Mo

(un &}Q th}V]UVMHQ
b vl b dun b om @o\mrk _
My b Cms(m'nlﬁ

Ctluvab

Gl
0 R
% B 0
T |wives ?\U’

Ton gul ohal
\'doeg V\O{‘ Jmlh Vb\qP
— bt Fe@ls nutu
e w padeol

bl
Voo (ontien oms

valuatbon = coags

Pat Wik vae dat vods

\

1
e Youe bvf;lutry 'hao

L3: Learnability (continued)

+ HW1 (hall of fame & shame) due Sun

« form your project group and start thinking about
your project

Spring 2012 6.813/6.831 User Interface Design and Implementation

Ul Hall of Fame or Shame?

Y momarworkspherrs - Mezills

BB 0m One ol oo

R mE NE
. L T R :‘tr*"“‘..'.“'!_'r“'_“_-ﬂ‘nf;'

MoMA

;
'{
|

Suggested by Vishy Venugopalan

Spring 2011 6.813/6.831 User Interface Design and Implementation 2

This Flash-driven web site is the Museum of Modern Art’s Workspheres exhibition (http://www.moma.org/
exhibitions/2001/workspheres/), a collection of objects related to the modermn workplace. This is its main
menu: an array of identical icons. Mousing over any icon makes its label appear (the yellow note shown), and
clicking brings up a picture of the object.

Clearly there’s a metaphor in play here: the interface represents a wall covered with Post-it notes, and you can
zoom in on any one of them.

We can praise this site for at least one reason: incredible simplicity. The designer of this site was clearly
striving for aesthetic appeal. Nothing unnecessary was included. Note the use of whitespace to group the list
of categories on the right, and the simple heading highlight that gives a clue to the function of the list (clicking
on a category name highlights all the icons in that category).

Unfortunately, too much that was necessary was left out. Without any visible differentiation between the icons,
finding something requires a lot of mouse waving. “Mystery navigation™ was the term used by Vishy
Venugopalan, who nominated this candidate for the UI Hall of Shame several years ago. It’s hard enough to
skim the display for interesting objects to look at. But imagine trying to find an object you’ve seen before. It’s
like that old card game Concentration, demanding too much recall from the user, rather than offering easy
opportunities to recognize what you’re looking for.

Frankly, if real Post-it notes were arranged on a wall like this, you’d probably have just as much trouble
navigating it. So the choice of metaphor may be the essence of the problem.

(Click on a few of the Post-its and note two more issues: First, how do you get back from there to the main
menu? Is it internally consistent? Second, does the interface make visible which Post-its you’ve already
clicked on?)

Today’s Topics

Conceptual models of Uls
Consistency

Affordances

Feedback

Information scent

Spring 2012 6.813/6.831 User Interface Design and Implementation

CONCEPTUAL MODELS

Spring 2012 6.813/6.831 User Interface Design and Implementation

Models

* Model of a system = how it works

— its constituent parts and how they work together to
do what the system does

Follows Tweets

 p -
BT s

Spring 2012 6.813/6.831 User Interface Design and Implementation 7

Regardless of interaction style, learning a new system requires the user to build a mental model of how the
system works. Learnability can be strongly affected by difficulties in building that model.

A model of a system is a way of describing how the system works. A model specifies what the parts of the
system are, and how those parts interact to make the system do what it’s supposed to do.

For example, at a high level, the model of Twitter is that there are other users in the system, you have a list of
people that you follow and a list of people that follow you, and each user generates a stream of tweets that are
seen by their followers, mixed together into a feed. These are all the parts of the system. At a more detailed
level, tweets and people have attributes and data, and there are actions that you can do in the system (viewing
tweets, creating tweets, following or unfollowing, etc.). These data items and actions are also parts of the
model.

Three Models in Ul Design

User
model

Interface model should be:
« Simple
+ Appropriate (matching the task that needs to be done)
+ Well-communicated

Spring 2012 6.813/6.831 User Interface Design and Implementation 8

There are actually several models you have to worry about in UI design:
*The system model (sometimes called implementation model) is how the system actually works.

*The interface model (or manifest model) is the model that the system presents to the user through its user
interface.

*The user model (or conceptual model) is how the user thinks the system works.

Note that we’re using model in a more general and abstract sense here than when we talk about the model-
view-controller pattern. In MVC, the model is a software component (like a class or group of classes) that
stores application data and implements the application behavior behind an interface. Here, a model is an
abstracted description of how a system works. The system model on this slide might describe the way an MVC
model class behaves (for example, storing text as a list of lines). The interface model might describe the way
an MVC view class presents that system model (e.g., allowing end-of-lines to be “deleted” just as if they were
characters). Finally, the user model isn’t software at all; it’s all in the user’s mind.

Example: Back vs. Previous

4 powerpoint how to pr
T Free Dnline Course ¥
= Free Online Course ¥
Fiii MIT Admissions | MIT

I M - Massachusetts

©) New Tab
® Show Flt sy 4 Goooovoovoovoovoogle »
Previous 12345678 9101112 Next
Spring 2012 6.813/6.831 User Interface Design and Implementation 9

Here’s an example drawn directly from graphical user interfaces: the Back button in a web browser. What is
the model for the behavior of Back? Specifically: how does the user think it behaves (the mental model), and
how does it actually behave (the system model)?

The system model is that Back goes back to the last page the user was viewing, in a temporal history sequence.
But on a web site that has pages in some kind of linear sequence of their own -- such as the result pages of a
search engine (shown here) or multiple pages of a news article — then the user’s mental model might easily
confuse these two sequences, thinking that Back will go to the previous page in the web site’s sequence. In
other words, that Back is the same as Previous! (The fact that the “back™ and “previous™ are close synonyms,
and that the arrow icons are almost identical, strongly encourages this belief.)

Most of the time, this erroneous mental model of Back will behave just the same as the true system model. But
it will deviate if the user mixes the Previous link with the Back button — after pressing Previous, the Back
button will behave like Next!

A nice article with other examples of tricky mental model/system model mismatch problems is “Mental and
conceptual models, and the problem of contingency” by Charles Hannon, inferactions, November 2008. http://
portal.acm.org/citation.cfm?doid=1390085.1390099

Example: Graphical Editing

pmy ———

L ~ Edit thls text

e I TR S i
- cEditthis text ° Edit this text wditthis text
Structured graphics model Pixel model with layers Pixel model, no layers
(e.g. lllustrator, PowerPoint) (e.g. Photoshop) (e.g. MS Paint)
Spring 2012 6.813/6.831 User Interface Design and Implementation 10

Consider image editing software. Programs like Photoshop and Gimp use a pixel editing model, in which an
image is represented by an array of pixels (plus a stack of layers). Programs like PowerPoint and Illustrator, on
the other hand, use a structured graphics model, in which an image is represented by a collection of graphical
objects, like lines, rectangles, circles, and text. In this case, the choice of model strongly constrains the kinds
of operations available to a user. You can easily tweak individual pixels in Microsoft Paint, but you can’t
easily move an object once you’ve drawn it into the picture.

10

Example: Text Editing

T a [le untitledtext & L

| Lorem ipsum dolor [
sit amet, consectetur
adipiscing elit.

Typewriter: Text editor:
2D grid of characters 1D string with linebreak characters
Spring 2012 6.813/6.831 User Interface Design and Implementation 11

Similarly, most modern text editors model a text file as a single string, in which line endings are just like other
characters. But it doesn’t have to be this way. Some editors represent a text file as a list of lines instead.
When this implementation model is exposed in the user interface, as in old Unix text editors like ed, line
endings can’t be deleted in the same way as other characters. ed has a special join command for deleting line
endings.

text editor: one-dimensional sequence of characters; cursor is an insertion point

typewriter: two-dimensional page; cursor is a rectangle on the page

different effects of space, return, backspace

11

Example: Thermostat

i ey
System model Interface model { W 3
User model
Spring 2012 6.813/6.831 User Interface Design and Implementation 12

But a wrong user model can lead to problems, as well. Consider a household thermostat, which controls the
temperature of a room. If the room is too cold, what’s the fastest way to bring it up to the desired temperature?
Some people would say the room will heat faster if the thermostat is turned all the way up to maximum
temperature. This response is triggered by an incorrect mental model about how a thermostat works: either the
timer model, in which the thermostat controls the duty cycle of the furnace, i.e. what fraction of time the
furnace is running and what fraction it is off; or the valve model, in which the thermostat affects the amount of
heat coming from the furnace. In fact, a thermostat is just an on-off switch at the set temperature. When the
room is colder than the set temperature, the furnace runs full blast until the room warms up. A higher
thermostat setting will not make the room warm up any faster. (Norman, Design of Everyday Things, 1988)

These incorrect models shouldn’t simply be dismissed as “ignorant users.” (Remember, the user is always
right! If there’s a consistent problem in the interface, it’s probably the interface’s fault.) These user models for
heating are perfectly correct for other systems: a car heater and a stove burner both use the valve model. And
users have no problem understanding the model of a dimmer switch, which performs the analogous function
for light that a thermostat does for heat. When a room needs to be brighter, the user model says to set the
dimmer switch right at the desired brightness.

The problem here is that the thermostat isn’t effectively communicating its model to the user. In particular,
there isn’t enough feedback about what the furnace is doing for the user to form the right model.

12

Try It: Design a New Thermostat

» Design a thermostat that communicates its
true model (switch) effectively to a new user
— Work with your neighbors ;
— Sketch your designs
— Come up with more than one

* Things to think about

— Would it work to print an explanation on the thermostat? If
so, what exactly would it say?

— Think about a sink faucet: why is it easy to tell whether it's a
valve or a switch?

Spring 2012 6.813/6.831 User Interface Design and Implementation 13

13

One Possible Design

Spring 2012 6.813/6.831 User Interface Design and Implementation 14

Here are some possible design approaches:

- a light that shows the furnace is on, to communicate that the system model’s state has only one bit (on or off).
Will this work? How can it be misinterpreted?

- a display that shows the heating rate is “100%.” Plus some controls that let you apparently reduce the rate,
but actually lie, because they're disconnected.

- a display that estimates the time it will take to heat to the set temperature. (See the Nest thermostat shown
here, http://www.nest.com/).

14

CONSISTENCY

Spring 2012 6.813/6.831 User Interface Design and Implementation

15

15

Consistency

« Similar things should look and act the same
« Different things should look different

— also called the principle of “least surprise”

» Consistency allows the user to transfer their
existing knowledge easily to a new Ul

Spring 2012 6.813/6.831 User Interface Design and Implementation 16

There’s a general principle of learnability: consistency. This rule is often given the hifalutin’ name the
Principle of Least Surprise, which basically means that you shouldn’t surprise the user with the way a
command or interface object works. Similar things should look, and act, in similar ways. Conversely,
different things should be visibly different.

16

Kinds of Consistency
Cmazil Grazil
Mai - Contacls -
EEN ==
Intax = My Cormacss [276)
Stared ALPs {1}
Sert Mad Starved in Ardrod
e
w0 3%
Internal: External: Metaphorical:
with itself with other Uls or the with the chosen
real world interface metaphor
Spring 2012 6.813/6.831 User Interface Design and Implementation 17

There are three kinds of consistency you need to worry about: internal consistency within your application;
external consistency with other applications on the same platform; and metaphorical consistency with your
interface metaphor or similar real-world objects.

The RealCD interface has problems with both metaphorical consistency (CD jewel cases don’t play; you don’t
open them by pressing a button on the spine; and they don’t open as shown), and with external consistency (the

player controls aren’t arranged horizontally as they’re usually seen; and the track list doesn’t use the same
scrollbar that other applications do).

17

Metaphors

8 o ¥ =
.
plotea

« Advantages a2.288
— Highly learnable when appropriate 2. .2 4 2

— Hooks into user’s existing mental Desktop metaphor
models very easily

» Dangers E]
— Often hard for designers to find Trashcan metaphor
— May be deceptive
— May be constraining
— Metaphor always breaks down

ESRPT FT
Typewriter metaphor

Spring 2012 6.813/6.831 User Interface Design and Implementation 18

Metaphors are one way you can bring the real world into your interface. We started out by talking about RealCD, an example of an
interface that uses a strong metaphor in its interface. A well-chosen, well-executed metaphor can be quite effective and appealing,
but be aware that metaphors can also mislead. A computer interface must deviate from the metaphor at some point -- otherwise,
why aren’t you just using the physical object instead? At those deviation points, the metaphor may do more harm than good. For
example, it’s easy to say “a word processor is like a typewriter,” but you shouldn’t really use it like a typewriter. Pressing Enter
every time the cursor gets close to the right margin, as a typewriter demands, would wreak havoc with the word processor’s
automatic word-wrapping.

The advantage of metaphor is that you’re borrowing a conceptual model that the user already has experience with. A metaphor
can convey a lot of knowledge about the interface model all at once. It’s a notebook. It’s a CD case. It’s a desktop. 1t’s a trashcan.
Each of these metaphors carries along with it a lot of knowledge about the parts, their purposes, and their interactions, which the
user can draw on to make guesses about how the interface will work.

Some interface metaphors are famous and largely successful. The desktop metaphor — documents, folders, and overlapping paper-
like windows on a desk-like surface — is widely used and copied. The trashcan, a place for discarding things but also for digging
around and bringing them back, is another effective metaphor — so much so that Apple defended its trashcan with a lawsuit, and
imitators are forced to use a different look. (Recycle Bin, anyone?)

The basic rule for metaphors is: use it if you have one, but don’t stretch for one if you don’t. Appropriate metaphors can be very
hard to find, particularly with real-world objects. The designers of RealCD stretched hard to use their CD-case metaphor (since in
the real world, CD cases don’t even play CDs), and it didn’t work well.

Metaphors can also be deceptive, leading users to infer behavior that your interface doesn’t provide. Sure, it looks like a book, but
can I write in the margin? Can I rip out a page?

Metaphors can also be constraining. Strict adherence to the desktop metaphor wouldn’t scale, because documents would always
be full-size like they are in the real world, and folders wouldn’t be able to have arbitrarily deep nesting.

The biggest problem with metaphorical design is that your interface is presumably more capable than the real-world object, so at
some point you have to break the metaphor. Nobody would use a word processor if really behaved like a typewriter. Features like
automatic word-wrapping break the typewriter metaphor, by creating a distinction between hard carriage returns and soft returns.

Most of all, using a metaphor doesn’t save an interface that does a bad job communicating itself to the user. Although RealCD’s
model was metaphorical — it opened like a CD case, and it had a liner notes booklet inside the cover — these features had such poor
visibility and perceived affordances that they were ineffective.

18

Natural Mapping: Consistency of Layout

+ When possible, the physical arrangement of controls
should match arrangement of function

» Best mapping is direct, but natural mappings don‘t
have to be direct if they have an easy mental model

Direct mapping

Natural
mapping

Spring 2012 6.813/6.831 User Interface Design and Implementation 19

Another important principle of interface communication is natural mapping of functions to controls.

Consider the spatial arrangement of a light switch panel. How does each switch correspond to the light it controls? If the
switches are arranged in the same fashion as the lights themselves, it is much easier to learn which switch controls which

light.

Direct mappings are not always easy to achieve, since a control may be oriented differently from the function it controls.
Light switches are mounted vertically, on a wall; the lights themselves are mounted horizontally, on a ceiling. So the
switch arrangement may not correspond directly to a light arrangement.

Other good examples of mapping include:

*Stove burners. Many stoves have four burners arranged in a square, and four control knobs arranged in a row. Which
knobs control which burners? Most stoves don’t make any attempt to provide a natural mapping.

«Car turn signals. The turn signal switch in most cars is a stalk that moves up and down, but the function it controls is a
signal for left or right turn. So the mapping is not direct, but it is nevertheless natural. Why?

«An audio mixer for DJs (proposed by Max Van Kleek for the Hall of Fame) has two sets of identical controls, one for each
turntable being mixed. The mixer is designed to sit in between the turntables, so that the left controls affect the turntable to

the left of the mixer, and the right controls affect the turntable to the right. The mapping here is direct.
The controls on the RealCD interface don’t have a natural mapping. Why not?

Here’s a quick exercise. Consider the lights in this classroom, and design a panel of light switches to control the room's
lights, for installation next to one of the entrance doors. Devise a natural mapping between your switch panel and the lights
it controls, so that a user can easily learn and remember how to use it. Don't stop with just one design, but sketch out a few.

A few things to think about: (1) It may not make sense to control every light individually. How should the lights be
grouped? (2) Think about consistency. Will your panel be recognizable as light switches from across the room? On the
other hand, are there better choices than the standard North American flip switches (3) If you use flip switches, how should
they be oriented?

19

Internal Consistency in Wording

Course VI Underground Guide Evaluations

Hwo[MlTﬂd-ul

Erowss of Search the

Published UG reviews

h past pubished ealuations |

Lecturer's Comments

2028 our gamch page

Browse published evaluations

Frasaw a2t pou

| Underground Guide Review

Preview/Review:

Prircen yU

Spring 2012

£ 2007 peskatons will ba avaiaie 2008 02.29 - Busd Stud
| Read Underaroynd Gurds Bassew - Read

4 il wbout the slass
a Undargrourd Guide rirtes far

z
|

6.813/6.831 User Interface Design and Implementation

Another important kind of consistency, often overlooked, is in wording. Use the same terms throughout your
user interface. If your interface says “share price” in one place, “stock price” in another, and “stock quote” in a
third, users will wonder whether these are three different things you’re talking about. Don’t get creative when
you’re writing text for a user interface; keep it simple and uniform, just like all technical writing.

Here are some examples from the Course VI Underground Guide web site — confusion about what’s a “review”

and what’s an “evaluation”.

20

External Consistency in Wording:
Speak the User’'s Language

« Use common words, not techie jargon
— But use domain-specific terms where appropriate

« Allow aliases/synonyms in command languages
i This Really Happened...

:’:5 Type mismatch atc

1] ;

Source: Interface Hall of Shame

Spring 2012 6.813/6.831 User Interface Design and Implementation 21

External consistency in wording is important too — in other words, speak the user’s language as much as
possible, rather than forcing them to learn a new one. If the user speaks English, then the interface should also
speak English, not Geekish. Technical jargon should be avoided. Use of jargon reflects aspects of the system
model creeping up into the interface model, unnecessarily. How might a user interpret the dialog box shown
here? One poor user actually read type as a verb, and dutifully typed M-I-S-M-A-T-C-H every time this dialog
appeared. The user’s reaction makes perfect sense when you remember that most computer users do just that,
type, all day. But most programmers wouldn’t even think of reading the message that way. Yet another
example showing that you are not the user.

Technical jargon should only be used when it is specific to the application domain and the expected users are
domain experts. An interface designed for doctors shouldn’t dumb down medical terms.

When designing an interface that requires the user to type in commands or search keywords, support as many
aliases or synonyms as you can. Different users rarely agree on the same name for an object or command. One
study found that the probability that two users would mention the same name was only 7-18%. (Furnas et al,
“The vocabulary problem in human-system communication,” CACM v30 nl1, Nov. 1987).

Incidentally, there seems to be a contradiction between these guidelines. Speaking the User’s Language argues
for synonyms and aliases, so a command language should include not only delefe but erase and remove too.
But Consistency in Wording argued for only one command name, lest the user wonder whether these are three
different commands that do different things. One way around the impasse is to look at the context in which
you’re applying the heuristic. When the user is talking, the interface should make a maximum effort to
understand the user, allowing synonyms and aliases. When the interface is speaking, it should be consistent,
always using the same name to describe the same command or object. What if the interface is smart enough to
adapt to the user — should it then favor matching its output to the user’s vocabulary (and possibly the user’s
inconsistency) rather than enforcing its own consistency? Perhaps, but adaptive interfaces are still an active
area of research, and not much is known.

21

AFFORDANCES

Spring 2012 6.813/6.831 User Interface Design and Implementation

22

22

Affordances

» Perceived and actual properties of a thing
that determine how the thing could be used

Spring 2011 6.813/6.831 User Interface Design and Implementation 23

Affordance refers to “the perceived and actual properties of a thing”, primarily the properties that determine
how the thing could be operated. Chairs have properties that make them suitable for sitting; doorknobs are the
right size and shape for a hand to grasp and turn. A button’s properties say “push me with your finger.”
Scrollbars say that they continuously scroll or pan something that you can’t entirely see. Affordances are how
an interface communicates nonverbally, telling you how to operate it.

Affordances are rarely innate — they are learned from experience. We recognize properties suitable for sitting
on the basis of our long experience with chairs. We recognize that listboxes allow you to make a selection
because we’ve seen and used many listboxes, and that’s what they do.

Note that perceived affordance is not the same as actual affordance. A facsimile of a chair made of papier-
mache has a perceived affordance for sitting, but it doesn’t actually afford sitting: it collapses under your
weight. Conversely, a fire hydrant has no perceived affordance for sitting, since it lacks a flat, human-width
horizontal surface, but it actually does afford sitting, albeit uncomfortably.

Recall the textbox from our first lecture, whose perceived affordance (type a time here) disagrees with what it
can actually do (you can’t type, you have to push the Set Time button to change it). Or the door handle on the
right, whose nonverbal message (perceived affordance) clearly says “pull me” but whose label says

“push” (which is presumably what it actually affords). The parts of a user interface should agree in perceived
and actual affordances.

The original definition of affordance (from psychology) referred only to actual properties, but when it was
imported into human computer interaction, perceived properties became important too. Actual ability without
any perceivable ability is an undesirable situation. We wouldn't call that an affordance. Suppose you're in a
room with completely blank walls. No sign of any exit -- it's missing all the usual cues for a door, like an
upright rectangle at floor level, with a knob, and cracks around it, and hinges where it can pivot. Completely
blank walls. But there is actually an exit, cleverly hidden so that it's seamless with the wall, and if you press at
just the right spot it will pivot open. Does the room have an "affordance" for exiting? To a user interface
designer, no, it doesn't, because we care about how the room communicates what should be done with it. To a
psychologist (and perhaps an architect and a structural engineer), yes, it does, because the actual properties of
the room allow you to exit, if you know how.

23

Use Appropriate Affordances

. Advanozd Sgarch
Buttons & links Frafarsnces

Drop-down arrows <@ - ge.comig | v

Texture /| :l £ 4] lbeiine]

M 14O
ouse cursor v il R

Highlight on mouseover . 2N iy
| DRepeat ES C,._,gmﬂ,

Spring 2011 6.813/6.831 User Interface Design and Implementation 24

L]
Al
123

The first kind of visibility is for actions: what can the user do? (Or where can the user go, if we’re talking
about an information-rich web site?)

We’ve already talked about affordances, which are the actual and perceived properties of an object that
indicate how it should be operated. Note the word perceived — if the user can’t perceive affordances, then they
won’t effectively communicate. We had an example in lecture 1 of a text box that showed a selection but didn't
allow editing. So it appeared to afford editing (perceived affordance), but it didn't actually afford editing (no
actual affordance).

Here are some more examples of commonly-seen affordances in graphical user interfaces. Buttons and
hyperlinks are the simplest form of affordance for actions. Buttons are typically metaphorical of real-world
buttons, but the underlined hyperlink has become an affordance all on its own, without reference to any
physical metaphor.

Downward-pointing arrows, for example, indicate that you can see more choices if you click on the arrow. The
arrow actually does double-duty — it makes visible the fact that more choices are available, and it serves as a
hotspot for clicking to actually make it happen.

Texture suggests that something can be clicked and dragged — relying on the physical metaphor, that physical
switches and handles often have a ridged or bumpy surface for fingers to more easily grasp or push.

Mouse cursor changes are another kind of affordance — a visible property of a graphical object that suggests
how you operate it. When you move the mouse over a hyperlink, for example, you get a finger cursor. When
you move over the corner of a window, you often get a resize cursor; when you move over a textbox, you geta
text cursor (the “I-bar™).

Finally, the visible highlighting that you get when you move the mouse over a menu item or a button is another

kind of affordance. Because the object visibly responds to the presence of the mouse, it suggests that you can
interact with it by clicking.

24

Spring 2011

What Can You Do With This Page?

 Complete Daity Schodules

 Pioase note: The CPW 2011 schedule i

- Coming s0on wili De an events search

- feature to help you plan your weekend

Below it a list of the CPW Featured Events,
_ Fora complete Int of events per day, pleme

© click on the Complete Daily Schedules finis

CLICK THE DATE BELOW TO VIEW COMPLETE DAILY SCHEDILES:

Erday, Apritd
Saturday, Aoy
Sunday, Apit 4G

Suggested by Dina Betser
6.813/6.831 User Interface Design and Implementation

25

If the user is trying to view all the events at once on the CPW website, the user may end up clicking through all
the days individually. It turns out that the graphic in the center page is actually a link to a nifty search interface
that lets the user look at all the event listings in addition to other cool functionalities, but the graphic doesn’t

have strong affordances for interaction. It’s mostly a big logo, so what does a typical user do? Glance at it and
then ignore it, scanning the page instead for things that look like actions, such as the clearly marked hyperlinks

at the bottom. The "click here to search" text in the logo doesn’t work.

It is very easy to miss the search interface altogether because of the poor visibility of the search feature and the
lack of affordances that the graphic is a link. (example and explanation due to Dina Betser)

25

Try It: Playing with Affordances

L
| P p———

* Use Javascript to obscure
all the text on a page

= Visit several pages, e.g.:

— MIT's home page
— 6.813/6.831 home page
» What do the affordances tell R —
you nonverbally? s |
» Where do the affordances lie? L
Spring 2012 6.813/6.831 User Interface Design and Implementation 26

Here’s the Javascript code:

var result = document.evaluate("//text()", document.body, null,
XPathResult.UNORDERED_NODE_SNAPSHOT_TYPE, null) ;for (var i = 8; i < result.snapshotLength; ++i) {var
node = result.snapshotItem(i);if ((node.textContent+"").match(/\w/)&&node.parentNode.nodeName !=
"STYLE") {node.textContent = node.textContent.replace(/[A-Z0-9]/g, "X").replace(/[a-z]/g, "x");}}void
2]

One way to use it is to open your browser’s Javascript console and just paste the code in; it will change the
current page. Another way to use it is to create a new bookmark in your browser, and use as the URL
javascript: followed by the code given above. Clicking on this bookmark will run the Javascript on the current
page. (This is called a bookmarklet, and it’s an one way to modify web pages you don’t own.)

26

FEEDBACK

Spring 2012 6.813/6.831 User Interface Design and Implementation

27

27

Feedback:
Actions Should Have Immediately Visible Effects

» Low-level feedback
— e.g. push button

| Se%h | I?Ser:é’chi] Se%h]

» High-level feedback
— model state changes
— new web page starts loading

Spring 2011 6.813/6.831 User Interface Design and Implementation 28

The third and final aspect of visibility is feedback: how the system changes when you perform an action.

When the user invokes a part of the interface, it should appear to respond. Push buttons should depress and
release. Scrollbar thumbs and dragged objects should move with the mouse cursor. Pressing a key should
make a character appear in a textbox.

Low-level feedback is provided by a view object itself, like push-button feedback. This kind of feedback
shows that the interface at least took notice of the user’s input, and is responding to it. (It also distinguishes
between disabled widgets, which don’t respond at all.)

High-level feedback is the actual result of the user’s action, like changing the state of the model.

28

Perceptual Fusion

» Two stimuli within the same perceptual cycle
(T, ~ 100ms [50-200 ms]) appear fused
« Consequences

- 1/ T, frames/sec is enough to perceive a moving
picture (10 fps OK, 20 fps smooth)

— Computer response < T, feels instantaneous
— Causality is strongly influenced by fusion

Spring 2011 6.813/6.831 User Interface Design and Implementation 29

One interesting effect of human perceptual system is perceptual fusion. Here’s an intuition for how fusion
works. Our “perceptual processor” runs at a certain frame rate, grabbing one frame (or picture) every cycle,
where each cycle takes T seconds. Two events occurring less than the cycle time apart are likely to appear in
the same frame. If the events are similar — e.g., Mickey Mouse appearing in one position, and then a short time
later in another position — then the events tend to fuse into a single perceived event — a single Mickey Mouse,
in motion.

The cycle time of the perceptual processor can be derived from a variety of psychological experiments over
decades of research (summarized in Card, Moran, Newell, The Psychology of Human-Computer Interaction,
Lawrence Erlbaum Associates, 1983). 100 milliseconds is a typical value which is useful for a rule of thumb.
But it can range from 50 ms to 200 ms, depending on the individual (some people are faster than others) and
on the stimulus (for example, brighter stimuli are easier to perceive, so the processor runs faster).

Perceptual fusion is responsible for the way we perceive a sequence of movie frames as a moving picture, so
the parameters of the perceptual processor give us a lower bound on the frame rate for believable animation.

10 frames per second is good enough for a typical case, but 20 frames per second is better for most users and
most conditions.

Perceptual fusion also gives an upper bound on good computer response time. If a computer responds to a
user’s action within T, time, its response feels instantaneous with the action itself. Systems with that kind of
response time tend to feel like extensions of the user’s body. If you used a text editor that took longer than T,
response time to display each keystroke, you would notice.

Fusion also strongly affects our perception of causality. If one event is closely followed by another — e.g.,

pressing a key and seeing a change in the screen — and the interval separating the events is less than T, then
we are more inclined to believe that the first event caused the second.

29

Response Time

< 0.1 s: seems instantaneous

0.1-1 s: user notices the delay

at
-

1-5 s: display busy indicator g

>1-5 s: display progress bar g 187% |

Spring 2011 6.813/6.831 User Interface Design and Implementation 30

Perceptual fusion provides us with some rules of thumb for responsive feedback.

If the system can perform a command in less than 100 milliseconds, then it will seem instantaneous, or near
enough. As long as the result of the command itself is clearly visible — e.g., in the user’s locus of attention —
then no additional feedback is required.

If it takes longer than the perceptual fusion interval, then the user will notice the delay — it won’t seem
instantaneous anymore. Something should change, visibly, within 100 ms, or perceptual fusion will be
disrupted. Normally, however, ordinary low-level feedback is enough to satisfy this requirement, such as a
push-button popping back, or a menu disappearing.

One second is a typical turn-taking delay in human conversation — the maximum comfortable pause before you
feel the need to fill the gap with something, even if it’s just “uh” or “um”. If the system’s response will take
longer than a second, then it should display additional feedback. For short delays, the hourglass cursor (or
spinning cursor, or throbber icon shown here) is a common design pattern. For longer delays, show a progress
bar, and give the user the ability to cancel the command.

Note that progress bars don’t necessarily have to be accurate. (This one is actually preposterous — who cares
about 3 significant figures of progress?) An effective progress bar has to show that progress is being made,
and allow the user to estimate completion time at least within an order of magnitude — a minute? 10 minutes?
an hour? a day?

30

Useless Feedback vs. Useful Feedback

Press View Result to view resulting documenation.

[Vewhead |

Source: Interface Hall of Shame

Spring 2011 6.813/6.831 User Interface Design and Implementation 31

Feedback is important, but don’t overdo it. This dialog box demands a click from the user. Why? Does the
interface need a pat on the back for finishing the conversion? It would be better to just skip on and show the
resulting documentation.

31

Try It: Unix shell

« Open a command prompt and run:

£

% echo hello > a.txt
% cp a.txt newfolder
% ls newfolder
newfolder

% ed a.txt

6

e Think about:
— affordances
— feedback

Spring 2011 6.813/6.831 User Interface Design and Implementation 32

Let’s summarize with a case study of weak learnability: the Unix command line. Unix may be beautiful for
many reasons, but learnability is not one of them.

The actions available to the user are completely invisible; the user must recall a command name from memory,
along with the syntax for its arguments.

The state of the underlying system is likewise mostly hidden. Many users customize their prompts to make
some state visible, such as the current directory or the hostname. The contents of the current directory are not
visible, even though many commands operate on files.

The feedback from a command is minimal — in fact, one Unix design principle is that commands should say
nothing when they succeed. But that’s not a good thing. It’s true that a generic feedback message like
“command completed successfully” would indeed be useless; the subsequent appearance of a command
prompt is sufficient feedback that the command has completed. So what kind of visible feedback would be
useful?

32

INFORMATION SCENT

Spring 2012 6.813/6.831 User Interface Design and Implementation

33

Information Scent

« Information foraging theory

— Humans gathering information can be modeled
like animals gathering food

— Constantly evaluating and making decisions to
maximize information collected against cost of
obtaining it

» Information scent

— Cues on a link that indicate how profitable it will be
to follow the link to its destination

Spring 2011 6.813/6.831 User Interface Design and implementation 34

Users depend on visible cues to figure out how to achieve their goals with the least effort. For information
gathering tasks, like searching for information on the web, it turns out that this behavior can be modeled much
like animals foraging for food. An animal feeding in a natural environment asks questions like: Where should
I feed? What should I try to eat (the big rabbit that’s hard to catch, or the little rabbit that’s less filling)? Has
this location been exhausted of food that’s easy to obtain, and should I try to move on to a more profitable
location? Information foraging theory claims that we ask similar questions when we’re collecting
information: Where should I search? Which articles or paragraphs are worth reading? Have I exhausted this
source, should I move on to the next search result or a different search? (Pirolli & Card, “Information Foraging
in Information Access Environments,” CHI ‘95.)

An important part of information foraging is the decision about whether a hyperlink is worth following —i.e.,
does this smell good enough to eat? Users make this decision with relatively little information — sometimes
only the words in the hyperlink itself, sometimes with some context around it (e.g., a Google search result also
includes a snippet of text from the page, the site’s domain name, the length of the page, etc.) These cues are
information scent — the visible properties of a link that indicate how profitable it will be to follow the link.
(Chi et al, “Using Information Scent to Model User Information Needs and Actions on the Web”, CHI 2001.)

34

Give Good Information Scent

* A link should smell like the content it leads to
Pick a category
{@wmmnm—s

pa.
G etwork and Interpet Conections
L]

w@ Add or Remave Progranms

3 fy Sasnds, Sprech, and Audio Devices

"'@ Performance and Hantenance

Spring 2011 6.813/6.831 User Interface Design and Implementation 35

Hyperlinks in your interface — or in general, any kind of navigation, commands that go somewhere else —
should provide good, appropriate information scent.

Examples of bad scent include misleading terms, incomprehensible jargon (like “Set Program Access and
Defaults” on the Windows XP Start menu), too-general labels (“Tools”), and overlapping categories
(“Customize” and “Options” found in old versions of Microsoft Word).

Examples of good scent can be seen in the (XP-style) Windows Control Panel on the left, which was carefully
designed. Look, for example, at “Printers and Other Hardware.” Why do you think printers were singled out?
Presumably because task analysis (and collected data) indicated that printer configuration was a very common
reason for visiting the Control Panel. Including it in the label improves the scent of that link for users looking
for printers. (Look also at the icon — what does that add to the scent of Printers & Other Hardware?)

Date, Time, Language, and Regional Options is another example. It might be tempting to find a single word to
describe this category — say, Localization — but its scent for a user trying to reset the time would be much
worse.

Notice that the quality of information scent depends on the user’s particular goal. A design with good scent for
one set of goals might fail for another set. For example, if a shopping site has categories for Music and
Movies, then where would you look for a movie soundtrack? One solution to this is to put it in both
categories, or to provide “See Also” links in each category that direct the user sideways in the hierarchy.

35

Learnabilicy.

Good & Bad Information Scent

» To learn more about this site, click here
= Learn more about this site here

= Learn more about this site

= Link to this site’s about page.

IAP 2012 6.470 IAP Web Programming Compelition

Here are some examples from the web. Poor information scent is on the left; much better is on the right.

The first example shows an unfortunately common pathology in web design: the “click here” link. Hyperlinks
tend to be highly visible, highly salient, easy to pick out at a glance from the web page — so they should convey
specific scent about the action that the link will perform. “Click here” says nothing. Your users won’t read the
page, they’ll scan it.

Notice that the quality of information scent depends on the user’s particular goal. A design with good scent for
one set of goals might fail for another set. For example, if a shopping site has categories for Music and
Movies, then where would you look for a movie soundtrack? One solution to this is to put it in both
categories, or to provide “See Also” links in each category that direct the user sideways in the hierarchy.

36

Lots of scent but hard to scan

Search listings, by MIT students, for MIT students

Many of these listings are unoffical, but they can help guide you towards places with
upcoming vacandes. Other listings may be posted by the MIT Off-campus Housing Office.

Advertise an off-campus vacancy or sublet

Want to announce a vazancy of a summaer sublet? Manage the listings and residence
profiles you've edited on this site. For on-campus iottery and sublets, please visit the
graduate housing website.

See what others have said about a residence

Check if other MIT students have wntten about a particular residence. Look at the rent
history of a residence to see how much you should be paying.

Browse where other students are living
Look at where other MIT students are living to guide where you may want to live.

@ 2008 GSC HCA, MIT Housing, Robart Wang

Spring 2011 6.813/6.831 User Interface Design and Implementation 37

http://rentmonkey.mit.edu/account/home

Hierarchy of Exploration

Quick glance

— short salient words & icons
Closer look

— description, lists of keywords
Probing with the mouse

— cursor change, highlight, tooltip
Clicking through

Trying out

°

Spring 2011 6.813/6.831 User Interface Design and Implementation 38

Tooltips are another nice design pattern for providing a more descriptive label of a small control, and also a
place for making other shortcuts visible.

38

Summary

Conceptual models

— system vs. interface vs. user models

Consistency

— internal, external, metaphorical

Spring 2012

Affordances
Feedback
Information scent

6.813/6.831 User Interface Design and Implementation

39

39

w0 LY Lol i

g

V[hall off)}w@fu /stl& \w TL‘?W@%CM{/{/M ew/l, Ee ol ,M&
No ”\(c‘; fo Prh“
bad eficer,

bvf Y e Fo P\“ Lw éaﬁwz V/ouxw

(ald dzb/)[/w whole loF o Choees a
/ol box W/ Chudimgr o

-

T —

W'N‘“‘"‘U’l% % modols —aft ot G hae i [—Q;(!/ /w(/

—-———__-_._—F

(90* L/r’ang)
hot fypes ol wour P/@fi(e)
Vobel iy ~hdad gt of cofes
ié (QV\&{«"{'@\“' f/uv/ M O’p(){d/ﬂmm
[Shoe exul -l . lma)

——

\/6—/_L H tb]Lo

i) M\q.q Fadtors —m' lmlrf’m‘j mw&,{/ﬂ)
a,/ﬁ)/c@/e/t

Dake b,

T —eff] oy japortu

@

M@w ity et e oy

1@% (CO’\)“)
AF&)@W% ~ow e Jam B ut comfliny

ot &)cwpwﬁ‘lb of olaJ\OoF W
&Wm’l’@ hoo T fhy @ o vstd

(i

looks mlurfff

quL surfue

ised b good lwl for a'#?ng
(" eﬁf?vwbl% A CL{%{/

I

ol 476
bound - 400! fo Fu7
(. fords ﬂ‘/”\’ﬁ
&(Mﬂ/
Cub oc hadle

e

W& o ealsh Go how door OfES

fL]LWﬁ(e 6}1‘1 M]L tl& no)L (ﬂﬂf/«{a 2/‘5905
holl b cngighent u/ ot gy Tt 0 Sl

~ |k funy chars (ol Gt

— dre Cuﬁwa’
= (e ghat 10gh long] L o101

Q\(\'Jgﬁ {0?} DA 5(,[0“ })qr - M?l 50 YU]CW’A s Can
BJH% loM«ﬁ 30 ~ fom (4] e

H\/pw ‘\mlmg ‘“Jﬂofw“y ;Mm%{
"’)al/e zs o&M«M (olir

~ Vndh males, g hyl o ced
f@}%‘tgvm hun bem L’.i[',\j: fg gcffz(é ﬂ(f}»

(/Vlovse Curgrs bdf\(ﬁnﬂe, /0&5&1 A what o howr g
H&@Hi@“ 0 Mage Gur

&

(,afge, Ferthoxey ‘S'ﬁgﬁﬁé muljrt(p)e/ Olldreses

7
b IT (AW puye —bud affodune

H@f LVZH' dn YXX fooobwvztw ﬁ«ﬂt f@’ﬂzm% fet \/v/ XY X

Y(Ju Wi { natlee l(vg %ﬁ%ﬂﬁﬂ/ﬁw{ikﬂu“f hox /(/z %Z%
B A

I;W{MH VZSGMQ Coudhal
—& bl dgesed shute

Vﬂeeig ‘\0 bf, L[OO W\$ {B GEHOW Lo ﬁ;
—Leuls 1), feod b
&ewnee, {iug
g LDO hs — e imsteans

10Vl

L[“| s — voir ol)y
[<9 sec = 5/324 wag b
75 fec Py ress by

vl 3[6&5

OOn{]l: cl((alo(aj a T dpe® Jiagly fox
E it cler vou g g

ecplon’s WD budey —cant ket dow eal

v

UAHLX 5!{@”

‘!é ?,\/(7/1{71114 OL\ 4 5(17 f\ﬂm
J 5 (
Vool net b pyp opoall T e
bok b nok Uear oF worleh

el - ol koot el o whon yov bt
(/b\lr@ Foxt Pff'w‘}w
Nou negd b sk d o whet o i i

I/\%\{)Fo Ww, M MDM :f\ Yﬂ\f M& TM whole, bmc,
0c N (o tal J[oa't/bcomp(dv

’QEF;WM7

L ’
V‘%{/‘JLNL? & AO} [@4/((”{ i (//’]\pc

Lobaation §ent

e

\Wﬂ h“t@b 'm UT o vy (an f\fn(t{, (va7 o(rmi

o oy W o tanals oy fo (ol

/
W 0@ (ongtaaly em(,mﬁn@ @ wohelfe —will of dasy

i ¥y qu oéfim

e Drinkes oud Ofe Hodare

~ hadrart. ehdes Prinfe [
< bt Peogle (omnl, “90 Codkml Ml fo Oriafto

©
Donlxt C(,{u YﬂJ 1'*/![\3 M(W// ma

‘hbtm(e (% 5Camfrj page. ~Gee nd/ i

(o T of Waschy of (o Tt O will d;

—

ey et

L4: Learnability (cont’d)

* HW1 (hall of fame & shame) due Sun
« GR1 (project proposal) out Mon, due next Sun

Spring 2012 6.813/6.831 User Interface Design and Implementation

Ul Hall of Fame or Shame?

Cookie:rambo anadem@mnsuftcom isa kaleli Are you sure you
want to delete it? . o

g ey

i_w_}:z*._ i

Source: Interface Hall of Shame

Spring 2012 6.813/6.831 User Interface Design and Implementation 2

This message used to appear when you tried to delete the contents of your Internet Explorer cache from inside
Windows Explorer (i.e., you browse to the cache directory, select a file containing one of IE’s browser cookies,
and delete it).

Put aside the fact that the message is almost tautological (“Cookie... is a Cookie™) and overexcited (“!!™).
Does it give the user enough information to make a decision?

Hall of Shame

rn-mm_—-—_-—-u. —— : al
g WARBNING : E3

e Cookie:rambo amadet.ls@rrmosoft.cocmsatouhaﬂ Are you sureyou

mi@ No]

Source: Interface Hall of Shame

Spring 2012 6.813/6.831 User Interface Design and Implementation 3

Suppose you selected all your cookie files and tried to delete them all in one go. You get one dialog for every
cookie you tried to delete! What button is missing from this dialog?

Hall of Fame or Shame?

Source: Interface Hall of Shame

Spring 2012 6.813/6.831 User Interface Design and Implementation 4

One way to fix the too-many-questions problem is Yes To All and No To All buttons, which short-circuit the
rest of the questions by giving a blanket answer. That’s a helpful shortcut, which improves efficiency, but this
example shows that it’s not a panacea.

This dialog is from Microsoft’s Web Publishing Wizard, which uploads local files to a remote web site. Since
the usual mode of operation in web publishing is to develop a complete copy of the web site locally, and then
upload it to the web server all at once, the wizard suggests deleting files on the host that don’t appear in the
local files, since they may be orphans in the new version of the web site.

But what if you know there’s a file on the host that you don’t want to delete? What would you have to do?

Hall of Fame

£+ Add to CVS Version Controt

: &enxrmmm“mmmmmummw
add them?

H

Bl

B 13} Aais for cjedujmit/csad fapis friews [SidebarPaneRegistry. Java
am e X

1] fapis forcfedufmit/csal Aapis] e View.java
B9) fapis fsrcjedu/mitcsaiflaps friews PatternSearchiiew java
B {7} fopis/srcjedujmticsalfaps friews LopisSidebarjava
ARA 131 Anrwaferc fack 1imit iceni Aans ineefrrenres] anisPraferencePane. iava .:I

 Selectal | Deselecta |

Spring 2012 6.813/6.831 User Interface Design and Implementation 5

If your interface has a potentially large number of related questions to ask the user, it’s much better to
aggregate them into a single dialog. Provide a list of the files, and ask the user to select which ones should be
deleted. Select All and Unselect All buttons would serve the role of Yes to All and No to AllL

Here’s an example of how to do it right, found in Eclipse. If there’s anything to criticize in Eclipse’s dialog
box, it might be the fact that it initially doesn’t show the filenames, just their count -— you have to press
Details to see the whole dialog box. Simply knowing the number of files not under CVS control is rarely
enough information to decide whether you want to say yes or no, so most users are likely to press Details

anyway.

Today’s Topics

» Affordances
* Feedback
» |Information scent

Spring 2012 6.813/6.831 User Interface Design and Implementation

AFFORDANCES

Spring 2012 6.813/6.831 User Interface Design and Implementation

Affordances

» Perceived and actual properties of a thing
that determine how the thing could be used

D S e et

[Cotioe d ibiark] 1
{Caticata o Acticvemens
|Cerae Yous O 2mard

ST B

Spring 2012 6.813/6.831 User Interface Design and Implementation 10

Affordance refers to “the perceived and actual properties of a thing”, primarily the properties that determine
how the thing could be operated. Chairs have properties that make them suitable for sitting; doorknobs are the
right size and shape for a hand to grasp and turn. A button’s properties say “push me with your finger.”
Scrollbars say that they continuously scroll or pan something that you can’t entirely see. Affordances are how
an interface communicates nonverbally, telling you how to operate it.

Affordances are rarely innate — they are learned from experience. We recognize properties suitable for sitting
on the basis of our long experience with chairs. We recognize that listboxes allow you to make a selection
because we’ve seen and used many listboxes, and that’s what they do.

Note that perceived affordance is not the same as actual affordance. A facsimile of a chair made of papier-
mache has a perceived affordance for sitting, but it doesn’t actually afford sitting: it collapses under your
weight. Conversely, a fire hydrant has no perceived affordance for sitting, since it lacks a flat, human-width
horizontal surface, but it actually does afford sitting, albeit uncomfortably.

Recall the textbox from our first lecture, whose perceived affordance (type a time here) disagrees with what it
can actually do (you can’t type, you have to push the Set Time button to change it). Or the door handle on the
right, whose nonverbal message (perceived affordance) clearly says “pull me” but whose label says

“push” (which is presumably what it actually affords). The parts of a user interface should agree in perceived
and actual affordances.

The original definition of affordance (from psychology) referred only to actual properties, but when it was
imported into human computer interaction, perceived properties became important too. Actual ability without
any perceivable ability is an undesirable situation. We wouldn't call that an affordance. Suppose you're in a
room with completely blank walls. No sign of any exit -- it's missing all the usual cues for a door, like an
upright rectangle at floor level, with a knob, and cracks around it, and hinges where it can pivot. Completely
blank walls. But there is actually an exit, cleverly hidden so that it's seamless with the wall, and if you press at
just the right spot it will pivot open. Does the room have an "affordance" for exiting? To a user interface
designer, no, it doesn't, because we care about how the room communicates what should be done with it. To a
psychologist (and perhaps an architect and a structural engineer), yes, it does, because the actual properties of
the room allow you to exit, if you know how.

10

Use Appropriate Affordances

s Agvanosd Saarch
Buttons & links Pt

Drop-down arrows <@ ~ gle.comjig v

Texture Wi iz LT

L]

Mouse cursor vb 2 T {"?

Highlight on mouseover ;.

Spring 2012 6.813/6.831 User Interface Design and Implementation 1

Here are some more examples of commonly-seen affordances in graphical user interfaces. Buttons and
hyperlinks are the simplest form of affordance for actions. Buttons are typically metaphorical of real-world
buttons, but the underlined hyperlink has become an affordance all on its own, without reference to any
physical metaphor.

Downward-pointing arrows, for example, indicate that you can see more choices if you click on the arrow. The
arrow actually does double-duty — it makes visible the fact that more choices are available, and it serves as a
hotspot for clicking to actually make it happen.

Texture suggests that something can be clicked and dragged — relying on the physical metaphor, that physical
switches and handles often have a ridged or bumpy surface for fingers to more easily grasp or push.

Mouse cursor changes are another kind of affordance — a visible property of a graphical object that suggests
how you operate it. When you move the mouse over a hyperlink, for example, you get a finger cursor. When
you move over the corner of a window, you often get a resize cursor; when you move over a textbox, you get a
text cursor (the “I-bar™).

Finally, the visible highlighting that you get when you move the mouse over a menu item or a button is another
kind of affordance. Because the object visibly responds to the presence of the mouse, it suggests that you can
interact with it by clicking.

11

Find the Affordances

4™ Send Later Discard
From { Rob Milier <rem@mitedu>]
To *6.831 Staff" <6831stati@csail mit edu>,
Add Cc Add Bee
ki SRS L e e
Attach a file Insert: Invitation Canned responses ~
() Boomerang this message | If | don't hear back In2duys -
B 7 U T--A-T-©@ Booi=iz B E CheckSpeling-

3 B = E T «PlainText

Draft autosaved at 10:53 PM (

|6.831 Staff" <6831staff@csail.mit.edu>,|

Add Cc
) 1

Spring 2012 6.813/6.831 User Interface Design and Implementation

12

Spring 2012

What Can You Do With This Page?

Complete Dally Schedules

CLICK THE DATE BELOW TO VIEW COMPLETE DAKY SCHECULES:

Trussday, Ao 7.
Hricay, Apnd B,
Saturday, AR 9.
Suncay, Ao 19 7
Suggested by Dina Betser
6.813/6.831 User Interface Design and Implementation

13

If the user is trying to view all the events at once on the CPW website, the user may end up clicking through all
the days individually. It turns out that the graphic in the center page is actually a link to a nifty search interface
that lets the user look at all the event listings in addition to other cool functionalities, but the graphic doesn’t

have strong affordances for interaction. It’s mostly a big logo, so what does a typical user do? Glance at it and
then ignore it, scanning the page instead for things that look like actions, such as the clearly marked hyperlinks
at the bottom. The "click here to search” text in the logo doesn’t work.

It is very easy to miss the search interface altogether because of the poor visibility of the search feature and the
lack of affordances that the graphic is a link. (example and explanation due to Dina Betser)

13

Try It: Playing with Affordances

« Use Javascript to obscure
all the text on a page

+ Visit several pages, e.g.: o T
— MIT's home page s
— 6.813/6.831 home page S o
+ What do the affordances tell B —
you nonverbally? P
= Are any of the affordances B

lying to you? p—

| mose oo | @

free
st | s oo

Spring 2012 6.813/6.831 User Interface Design and Implementation 14

Here’s the Javascript code:

var result = document.evaluate("//text()", document.body, null,
XPathResult.UNORDERED_NODE_SNAPSHOT_TYPE, null) ;for (var i = @; i < result.snapshotLength; ++i) {var

node = result.snapshotItem(i);if ((node.textContent+"").match(/\w/)&&node.parentNode.nodeName !=
"STYLE") {node.textContent = node.textContent.replace(/[A-Z8-9]/g, "X").replace(/[a-z]/g, "x");}}void
]

One way to use it is to open your browser’s Javascript console and just paste the code in; it will change the
current page. Another way to use it is to create a new bookmark in your browser, and use as the URL
javascript: followed by the code given above. Clicking on this bookmark will run the Javascript on the current
page. (This is called a bookmarklet, and it’s an one way to modify web pages you don’t own.)

14

FEEDBACK

Spring 2012 6.813/6.831 User Interface Design and Implementation

15

Actions Should Have Immediately Visible Effects

» Low-level feedback
— e.g. push button

] Se%h | |§SeE§ch§|| Seitgh |
§

« High-level feedback
— model state changes
— new web page starts loading

Spring 2012 6.813/6.831 User Interface Design and Implementation 16

Hand-in-hand with affordances is feedback: how the system changes visibly when you perform an action.

When the user invokes a part of the interface, it should appear to respond. Push buttons should depress and
release. Scrollbar thumbs and dragged objects should move with the mouse cursor. Pressing a key should
make a character appear in a textbox.

Low-level feedback is provided by a view object itself, like push-button feedback. This kind of feedback
shows that the interface at least took notice of the user’s input, and is responding to it. (It also distinguishes
between disabled widgets, which don’t respond at all.)

High-level feedback is the actual result of the user’s action, like changing the state of the model.

16

Perceptual Fusion

+ Two stimuli within the same perceptual cycle (T, ~
100ms [50-200 ms]) appear fused

= Consequences

- 1/T, frames/sec is enough to perceive a moving picture (10
fps OK, 20 fps smooth)

— Computer response < T, feels instantaneous
— Causality is strongly influenced by fusion

Spring 2012 6.813/6.831 User Interface Design and Implementation 17

One interesting effect of human perceptual system is perceptual fusion. Here’s an intuition for how fusion
works. Our “perceptual processor” runs at a certain frame rate, grabbing one frame (or picture) every cycle,
where each cycle takes T seconds. Two events occurring less than the cycle time apart are likely to appear in
the same frame. If the events are similar — e.g., Mickey Mouse appearing in one position, and then a short time
later in another position — then the events tend to fuse into a single perceived event — a single Mickey Mouse,
in motion.

The cycle time of the perceptual processor can be derived from a variety of psychological experiments over
decades of research (summarized in Card, Moran, Newell, The Psychology of Human-Computer Interaction,
Lawrence Erlbaum Associates, 1983). 100 milliseconds is a typical value which is useful for a rule of thumb.
But it can range from 50 ms to 200 ms, depending on the individual (some people are faster than others) and
on the stimulus (for example, brighter stimuli are easier to perceive, so the processor runs faster).

Perceptual fusion is responsible for the way we perceive a sequence of movie frames as a moving picture, so
the parameters of the perceptual processor give us a lower bound on the frame rate for believable animation.

10 frames per second is good enough for a typical case, but 20 frames per second is better for most users and
most conditions.

Perceptual fusion also gives an upper bound on good computer response time. Ifa computer responds to a
user’s action within T, time, its response feels instantaneous with the action itself. Systems with that kind of
response time tend to feel like extensions of the user’s body. If you used a text editor that took longer than T,
response time to display each keystroke, you would notice.

Fusion also strongly affects our perception of causality. If one event is closely followed by another —e.g.,
pressing a key and seeing a change in the screen — and the interval separating the events is less than T, then
we are more inclined to believe that the first event caused the second.

17

Response Time

< 0.1 s: seems instantaneous

0.1-1 s: user notices the delay

s
-

1-5 s: display busy indicator &%

> 1-5 s: display progress bar [y 132%

Spring 2012 6.813/6.831 User Interface Design and Implementation 18

Perceptual fusion provides us with some rules of thumb for responsive feedback.

If the system can perform a command in less than 100 milliseconds, then it will seem instantaneous, or near
enough. As long as the result of the command itself is clearly visible — e.g., in the user’s locus of attention —
then no additional feedback is required.

If it takes longer than the perceptual fusion interval, then the user will notice the delay — it won’t seem
instantaneous anymore. Something should change, visibly, within 100 ms, or perceptual fusion will be
disrupted. Normally, however, ordinary low-level feedback is enough to satisfy this requirement, such as a
push-button popping back, or a menu disappearing.

One second is a typical turn-taking delay in human conversation — the maximum comfortable pause before you
feel the need to fill the gap with something, even if it’s just “uh” or “um”. If the system’s response will take
longer than a second, then it should display additional feedback. For short delays, the hourglass cursor (or
spinning cursor, or throbber icon shown here) is a common design pattern. For longer delays, show a progress
bar, and give the user the ability to cancel the command.

Note that progress bars don’t necessarily have to be accurate. (This one is actually preposterous — who cares
about 3 significant figures of progress?) An effective progress bar has to show that progress is being made,
and allow the user to estimate completion time at least within an order of magnitude — a minute? 10 minutes?
an hour? a day?

18

Useless Feedback vs. Useful Feedback

Document Wizard Result

|V Fles

Source: Interface Hall of Shame

6.813/6.831 User Interface Design and Implementation 19

Spring 2012

Feedback is important, but don’t overdo it. This dialog box demands a click from the user. Why? Does the
interface need a pat on the back for finishing the conversion? It would be better to just skip on and show the

resulting documentation.

Example: Unix shell

» Open a command prompt and run:

% echo hello > a.txt
% cp a.txt newfolder
% ls newfolder
newfolder

% ed a.txt

6

¢ Think about:
— affordances
— feedback

Spring 2012 6.813/6.831 User Interface Design and Implementation 20

Let’s summarize with a case study of weak learnability: the Unix command line. Unix may be beautiful for
many reasons, but learnability is not one of them.

The actions available to the user are completely invisible; the user must recall a command name from memory,
along with the syntax for its arguments.

The state of the underlying system is likewise mostly hidden. Many users customize their prompts to make
some state visible, such as the current directory or the hostname. The contents of the current directory are not
visible, even though many commands operate on files.

The feedback from a command is minimal — in fact, one Unix design principle is that commands should say
nothing when they succeed. But that’s not a good thing. It’s true that a generic feedback message like
“command completed successfully” would indeed be useless; the subsequent appearance of a command

prompt is sufficient feedback that the command has completed. So what kind of visible feedback would be
useful?

20

INFORMATION SCENT

Spring 2012 6.813/6.831 User Interface Design and Implementation

21

21

Information Scent

* Information foraging theory

— Humans gathering information can be modeled
like animals gathering food

— Constantly evaluating and making decisions to
maximize information collected against cost of
obtaining it

 Information scent

— Cues on a link that indicate how profitable it will be
to follow the link to its destination

Spring 2012 6.813/6.831 User Interface Design and Implementation 22

Users depend on visible cues to figure out how to achieve their goals with the least effort. For information
gathering tasks, like searching for information on the web, it turns out that this behavior can be modeled much
like animals foraging for food. An animal feeding in a natural environment asks questions like: Where should
I feed? What should I try to eat (the big rabbit that’s hard to catch, or the little rabbit that’s less filling)? Has
this location been exhausted of food that’s easy to obtain, and should I try to move on to a more profitable
location? Information foraging theory claims that we ask similar questions when we’re collecting
information: Where should I search? Which articles or paragraphs are worth reading? Have I exhausted this
source, should I move on to the next search result or a different search? (Pirolli & Card, “Information Foraging
in Information Access Environments,” CHI ‘95.)

An important part of information foraging is the decision about whether a hyperlink is worth following —i.e.,
does this smell good enough to eat? Users make this decision with relatively little information — sometimes
only the words in the hyperlink itself, sometimes with some context around it (e.g., a Google search result also
includes a snippet of text from the page, the site’s domain name, the length of the page, etc.) These cues are
information scent — the visible properties of a link that indicate how profitable it will be to follow the link.
(Chi et al, “Using Information Scent to Model User Information Needs and Actions on the Web”, CHI 2001.)

22

Give Good Information Scent

* A link should smell like the content it leads to
Pick a category
% Appearsnce snd Thenes

o
D wetwerk an Intemet Comections
-

% Adsl er Remave Programs

'r_lfy Soundy, Speech, and Audis Devies (5

"""W Vetlormancy sad Mainteraace

Spring 2012 6.813/6.831 User Interface Design and Implementation 23

Hyperlinks in your interface — or in general, any kind of navigation, commands that go somewhere else —
should provide good, appropriate information scent.

Examples of bad scent include misleading terms, incomprehensible jargon (like “Set Program Access and
Defaults” on the Windows XP Start menu), too-general labels (“Tools”), and overlapping categories
(“Customize” and “Options” found in old versions of Microsoft Word).

Examples of good scent can be seen in the (XP-style) Windows Control Panel on the left, which was carefully
designed. Look, for example, at “Printers and Other Hardware.” Why do you think printers were singled out?
Presumably because task analysis (and collected data) indicated that printer configuration was a very common
reason for visiting the Control Panel. Including it in the label improves the scent of that link for users looking
for printers. (Look also at the icon — what does that add to the scent of Printers & Other Hardware?)

Date, Time, Language, and Regional Options is another example. It might be tempting to find a single word to
describe this category — say, Localization — but its scent for a user trying to reset the time would be much
worse.

Notice that the quality of information scent depends on the user’s particular goal. A design with good scent for
one set of goals might fail for another set. For example, if a shopping site has categories for Music and
Movies, then where would you look for a movie soundtrack? One solution to this is to put it in both
categories, or to provide “See Also” links in each category that direct the user sideways in the hierarchy.

23

Good & Bad Information Scent

= To learn more about this site, click here

= Learn more about this site here & Abolt
= Learn more about this site

= Link to this site’s about page.

Spring 2012 6.813/6.831 User Interface Design and Implementation 24

Here are some examples from the web. Poor information scent is on the left; much better is on the right.

The first example shows an unfortunately common pathology in web design: the “click here” link. Hyperlinks

tend to be highly visible, highly salient, easy to pick out at a glance from the web page — so they should convey
specific scent about the action that the link will perform. “Click here” says nothing. Your users won’t read the
page, they’ll scan it.

Notice that the quality of information scent depends on the user’s particular goal. A design with good scent for
one set of goals might fail for another set. For example, if a shopping site has categories for Music and
Movies, then where would you look for a movie soundtrack? One solution to this is to put it in both
categories, or to provide “See Also” links in each category that direct the user sideways in the hierarchy.

24

Lots of scent but hard to scan

: LY
Home | Search Listings | Manage Listings and Profiles |

Search listings, by MIT students, for MIT students

Many of these listings are uncffical, but they can help guide you towards places with Feedback
upcoming vacancies. Other fistings may be posted by the MIT Off-campus Housing DiMce. Disclaimer
Advertise an off-campus vacancy or sublet MIT Rental

Want to announce a vacancy or a summer sublet? Manage the listings and residence Guide
profiles you've edited on this site. For on-campus lottery and sublets, please visit the

GeoSapla
graduate housing website. Search

See what others have said about a residence Ask MIT

Check if cther MIT students have written about a particular residence. Look at the rent Housing
history of a residence to see how much you should be paying. About

Browse where other students are living
Look at where other MIT students are ving to guide where you may want o live.

More resouroes:
GSC HCA | MTT Houslng

% 2008 G5C HCA, MIT Housirg, Anbert Waryg

Spring 2012 6.813/6.831 User Interface Design and Implementation 25

http://rentmonkey.mit.edu/account/home

Hierarchy of Exploration Costs

+ Glance
— affordances, icons, short salient words

Read
— description, keywords
Hover or press

— cursor change, highlight, tooltip, submenu, preview

Click through

— target page, dialog box, or mode
Invoke

— feedback effect on the model state

Spring 2012 6.813/6.831 User Interface Design and Implementation

26

26

Summary

» Affordances
+ Feedback
¢ Information scent

Spring 2012

6.813/6.831 User Interface Design and Implementation

27

27

HW1: Ul Hall of Fame and Shame http://courses.csail.mit.edw/6.831/2012/handouts/hw 1-hall-of-fame-a...

6.813/6.831 o USER INTERFACE DESIGN AND IMPLEMENTATION
Spring 2012 Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science

HW1: Ul HALL oF FAME AND SHAME

Due at 11:59 pm on Sunday, February 19, 2012, by uploading to Stellar.

Help populate the Ul Hall of Fame and Shame! Find two examples of user interfaces, one that you consider a good
design and one that you consider a bad design. Note that the good design does not have to be uniformly good,
since you may discover problems with it on closer inspection. Likewise, the bad design does not have to be
uniformly bad. Probably the most interesting examples will be mixed.

Your interfaces might be desktop software, web applications, smartphone apps, consumer devices, car dashboards,

building entrances, traffic intersections, shower controls, etc. 64 ({ ' |
- {/bfY/‘ 0o ﬁ}(//d;d

For each interface, you should:

)
e describe the purpose of the interface and its intended users - M‘OZE F}ﬂflﬂld V‘f L"ﬁé 0_(
® analyze its good and bad points of usability with reference to all the dimensions of usability discussed in
lecture:

o learnability

o efficiency

o safety

O you may discuss other aspects of usability if you have space and consider them important
e ijllustrate your analysis with appropriate screenshots or photographs

Limit to one &gerif%ext (roughly 50 lines) for each interface, for a total of 2 pages (100 lines) for your entire
report. You can include as many images as are helpful; they don't count toward the page limit.

Grading

Your report will be judged on the following criteria.

e Completeness. Don't omit a dimension of usability, and don't overlook an obvious usability issue that even
the reader notices.

e Depth. "Efficiency is good, because it feels fast to use” is not deep analysis. "I've never made any errors
with it" is not deep analysis.

e Clarity. The reader should not struggle to understand what you're talking about.

Conciseness. This isn't a HASS class. Unnecessary verbosity will be judged severely.

e Usability of presentation. Your report is itself a user interface whose purpose is to convey ideas to a
reader. If your report isn't learnable, visible, efficient, and safe, then it will be harder for the reader to use,
and it will not demonstrate an ability to apply ideas of this class.

What to Hand In

Use Stellar to hand in your report as a single PDF file. If your word processor can't generate PDF, there is free
software for printing documents out to PDF.

Woll %t be god 4oy an aalle 06
“flmbH‘,M

] L
/ar hyh\\[(xg e(’ue, oy
1of1 (C'f‘lf‘ltm,tl Pf@rﬂ.@ﬁ 2/16/2012 1:59 AM

((&rv%/q
‘ _phl‘\‘“"l doviee

il
Wt an L dhays gy o
Lonwes g’
Vit & T ahes g
Fadeoi{ !
i ot el of angtiing el
Fos o0 T bask /6w:]t(/k e nys

WP

e P(J(W[P[onom,a(:

M tre ot /g GI%LZ wlmtm asked_ for-..
6‘* J{Wlu!, be 500\’

”Q)Ulmj @bﬂ"@ f’bewm(”
K\A' 16011%([‘fﬁwfak % [’l//l’('{mﬂ yf7/{w_‘

s
{
Wu,z, Copsed oaper ...

1z J%{%/@{ i

HW1: UI Hall of Fame and Shame

Michael Plasmeier

Android and WebOS differ in the way they show running applications and allow users to switch between
them. HP’s WebOS system presents running applications explicitly as “cards.” Google Android 2.3 does
not present the concept of running applications explicitly to the user. | will argue that the WebQOS model
makes it easier for users to control running applications and switch between them, while Android lack of
control over running applications confuses users. Therefore | believe that WebOS should be added to
the 6.813 Ul Hall of Fame; while Android should be added to the Hall of Shame. Both are smartphone
operating systems seeking a wide range of users.

HP WebOS

HP WebOS uses a card based metaphor to display running applications. Each
running application is represented by a card in the “card view.” The single,
main button on the device brings up “card view.” In “card view,” the
previously running application is minimized into a card that takes up ~80% of
the screen. From here a user can swipe left and right to see the other
applications that are currently running. If a user wishes to go back to that
running app, the user can either tap the card or flick it towards the bottom of
the screen. A user can close an app by flicking the card up and off the top of
the screen. An application can have multiple cards,
just like a Windows application can have multiple

S, Windows. For example, the email application launches
Figure 1 Card View a new card when the user taps the “new message”

button. This allows the user to move hetween the
compose card and the messages card to review a previously sent email while
composing a new email.

This effect is highly learnable. When the user firsts uses a WebOS phone, a short
video featuring a ball of light teaches users how to use their phone.! In addition,

the button to bring up card view is the main button on the :Zi;‘:;epi";“"m Video on
device. This leads users to try to click on the button to make

something happen. This button is in the same place as the iPhone, which is creates
consistency between phones. In card view, a little bit of the left and right of each card
is visible, letting users know they can scroll left and/or right to see the other cards. An

Sy, Tom Many Cavs

T vy

error message appears when a user has too many cards open, letting the user know

they can swipe a card upward to close applications. No applications are automatically

Figure2Too Many ¢|gsed.
Cards

" http://www.youtube.com/watch?v=KCjhgbVM-XY

The system is very efficient. It is very easy to switch between applications. For example, while a user is
writing an email, they can hit the center button, swipe left, and tap on their calendar to view it. They
can then do the reverse and be brought back to their email in progress. The compose card will stay
open, unless a user manually closes it. Each browser page is a multiple card — there is no tabbed
browsing. The downside is that a user will get an error message when they have too many cards open
and must manually close cards.

The system is safe. Cards remain open, unless a user chooses to close them. This allows a user to keep
something open to refer to later.

Google Android 2.3

Google Android 2.3, meanwhile, does not make the list of running applications explicit
to the user. In the stock version of Android 2.3 applications may be closed at any
time. Android primary expects users to reopen running application through the
normal methods — as though they were starting the application for the first time.
Android does have a recent application menu that shows the most recent 8
applications. This menu is accessible by pressing and holding the physical home key.
Applications are treated as a whole; only one entry is shown. For example, the
compose feature of an email application is not shown differently, and only one entry

", Tl for a browser is shown, requiring browser vendors to implement tabs inside the
Figure 4 Android's application.
Recent Items Menu

The most inconsistent and confusing Ul control on Android 2.3 devices is the hardware
back button. This button alternatively switches between going back in the application, going to a
different application, or closing the application. For example, if a user clicks on a link in the Twitter
application, the browser opens. When the user clicks the back button, the browser closes and the user
is taken back to the Twitter page. This behavior feels natural. However, when the user is in the email
application, and opens a message; clicking on the back key returns the user to the message list. This also
feels natural. However, these two features are inconsistent. This sometimes leads to problems. For
example, if a user leaves the email app open while looking at a message, open another app, then
reopens the email application, the email app goes straight to showing the email message that was last
opened. At that point the back key would close the email application, whereas the user might have
wanted to return to the message list; which was the previous behavior in the back button.

The learnability of Android is poor. The long press for home is not visible and is not described during
initial setup. Whereas, the back button on a device is highly visible, its behavior is inconsistent and thus
difficult to learn. It is not clear that certain apps are running or not or even that an app might remain
running when another app is opened. Android wants users not to worry about

this, however this creates side effects. The proliferation of Task Killers for e

Android shows that many users do not trust or rely on this feature.

x = . Figure 5 Advanced Task
The process is not efficient. Take for example, the task of a user wanting to & o
Killer has > 10 million

check their calendar while writing an email. Because the user likely does not installs

know about the recent apps page, the user must close the email app in order to get to the home
screen’s launcher. This causes the email to be saved in the drafts folder. The user then launches the
calendar app from the launcher. When the user is done using the calendar, they use the back button to
exit to the menu. They must then relaunch the email app, which may open directly with the saved draft.
These are a lot of steps and the user is tapping in many different areas on the screen.

This approach is not inherently safe. It requires the app to proactively save its state in case that it is
terminated. There is no notion of keeping apps open for a user to refer to later.

Based simply on how these two mobile OSes manage applications, HP WebOS should be placed in the
Hall of Fame while Android 2.3, should be remanded to the Ul Hall of Shame. There are also more things
that HP WebOS does well, such as notifications and contact management that can be explored in future

papers.

(U3 LS 2
L[/_ge/ (‘Mf%(f 0&5544

o ——

)” [a“ of Fave 6A4ne, Malﬁc{ ﬂ/@wﬁfﬁ

= (tmve |t fom fush bar

~ (On Al qnge ;m lLowh grodf>
~Can Clage whale taqdp af o1ce
”bﬁ Tlui \l@hl]t gcq,((’,
“Sllao% Cabs o op)% melhaphart
T Cags by ody of e Ol fap g

IS et i Juﬁ (lickd. o aney Caom posq
ngﬂ?/d/“/ q W// /Mb "JM
- (Cm v Hlon Jﬂ?bb ;n{o A [%f
L Relige
"D pon Ll fae oms O(% yesahle
L(%ﬁ/blﬂﬁ

“(an 4ls l[we 0 Seadh gad it Clles [4F
LURLYE € o fuw
= Wy [l B Ot

~ Vy { {ew o&{{oriwwes

_.(Odl i w o mqgniﬁng @(0&5

“URLr B i gwme Yy FFed
JBIML m FF N seqokes 6003(6
'—“\Ls On

L/” C{Oes prefiy Seqnh

Navwc(u\t&
W ey cliks
Jraggeld objub
Dy capheal {ta
~(olabed to ead foed bk dppess

—(elofed by ({dw, (afe of M
(150 spot) e < ometin)

ol

oy)auﬁ‘()r}
"‘“]l),vm)) 0“""5 Fach
Db fokal Jiaggn

= (o (e @ By geallhe
‘PGOPE (0n™ [q@m?gg |

~ Com w/ bt
—)
Tozi;@\‘ L b
Jose affode

g
TO\/CLLQ(/QQA
— Mo scfo“ [’JCI

bt e hall Vv
- \{,}3 Lov lmu VoV camn Wﬁcm{)

% lf@ppws for a léw Gecon s
£ e e
nglfi_ Ijrg/:ba, J\%iqu
User 1 TLabL a«wlrais
“why L T UT 6 @wod/;
"‘b/m\\ W dowt
OLSngn 0 Ng T (0829

D (ol Stk 4T b&v\h %

M\cﬂ(‘ ‘8&31%@: (/&U (¢ q,l ahof
Clas gy~

- \}SQf "(Q,n. 9 DQ‘::%/\

S

/’quj‘\w& defof“&fl

B EO(\\{ éou/} Oon Uty TL%QL)
"—(Of\g,]Lu/nl et/a,[/af :M

v

I‘}p/ afug D&s’tg /)

it 2

)VOJF watedg) NOJ f

@eccwem
Ry
A Lt o UBW
feed bk 4\\]
Coe

U I }‘eﬂfdf[\lm

Gers dq(,r at éﬁML Femi i Prff‘@hm@
L

U dalyn 1o ey o

"Q)ontjf [w'H wly

6@} Uses niolod uuln[0
VI ﬂq,w) d\uﬂgﬂ Q}eé}gm A /OYL

"_M‘aéy
= !0’ ’DF WG/!\
I@f@ 2 p(&bf%ﬂ

:EV alva fe 1 MP{C"\@L /
2

9
(o bill o tad (1o ikl pobl

'ON&Q/ mnuhvbo
~ $lefbus

= (ontr esling
L‘WP @”{1‘/ PM“ CMP o0 (an Il l [@
- an mylve. sl g e

- Or PQOpQ wan+ C@V‘L IM"'L\
— Ot s bl only e gl ol

tof

mp/f’mM Froloas

T\z oo C"‘Q{{Mf Vo Jro A/i/d (/f On cMﬂvl(ﬁr
‘Inl(ff&w /&/;’Mg/

"Bu%‘ Sﬂ” hod. fo Jn m EM,LQ/,A Cl/laﬂgao

Peotl dhe mie. Gogd o o P pap
~don 1 gt W‘ L o ok

5 Ty G yoo batte fodbalk
~ Othibe, 5 &now M

Yoo havt ff) gtho. Awgey My pape
& e o a0 VT poblge > Vol |ag it

L£4 {5(0\) (/GH"PT mce c[fa»e F(Lbf\ LOJ Of o

IﬁW5 Ol\mp‘lc m@bﬁ qSC SY—&(WV\

ok, of deration
Solatless 3 gud of 02
:§0M0ng‘[@{g{5 l[ftm A SC/((}HL
;“’Wf’l Simfaﬂ«j ﬁt bMZL&L({

E}/\éﬁr abot wt - En@](llélq SPMW 5

T\\m@hjr "

U ¥ g Cdoe

\/\how Y/Jur W
Pob rat Dle yov

~ A%L/ 66’\/({@// CU'LW/ [,Grmjv%'yﬂ
-~ Edv

- Mzblm([,\lw(;, W'@

- [%N'M(’r Cxpedy o
~ Melluation, o f1i04p
DQ('\M‘;'\ t ﬂpp prﬁ%f

V({Df\& \en«’ tsaal conbepl
g ewfon«s)\,pz w| ohe PQ()GIQ on Syofers

DW"{ St Usty /Q((J;/?wenl(}
LQQ Cm“bﬂt To what ml a(,MHZ w

[6 be . 41/()8 of (oles
B Pegl un by Chyasfiess

@/ D(«/j fb%ltm

o o5 Doy

{/\/]M Are 'n(U)Erﬁfi

(D\‘:s Sems MOrL l‘d@ 2(vov - AL 9‘”’% {mfg
< | (

" Ripse of ¢t

= Users
—Uhgt CMQ({ME:

_ (Oqu\ﬂ[Emgs Cv/ % Lom,du(g/s
- C’ff[l\ﬁ o dochore
~ bl (ﬁe;nﬂ

@ \\/\wo K JM wes |
é‘*{‘o &c.lm;f\b
Phocan o 55
Doctors
C{mhf QH%T
Wadss Crgms [paea

Regilat g
[l sl Dy Loty

—

Nanfahts ¥

Re S ors

ElMa«(L (ﬂb
\/Vl\o) la«LIJ((qﬂ @LJU’)‘L& Ofpf Mﬁ

L5: User-Centered Design

« GR1 (project proposal) out, due next Sun

Spring 2012 6.813/6.831 User Interface Design and Implementation

Ul Hall of Fame or Shame?

ano '-
§Q Home of the Mozilla Project

p:f fwww.mozilla.org/

Spring 2011 6.813/6.831 User Interface Design and Implementation 2

Today’s candidate for the User Interface Hall of Fame is tabbed browsing, a feature found in almost all web
browsers. With tabbed browsing, multiple browser windows are grouped into a single top-level window and
accessed by a row of tabs. You can open a hyperlink in a new tab by choosing that option from the right-click
menu.

Tabbed browsing neatly solves a scaling problem in the Windows taskbar. If you accumulate several top-level
windows, they cease to be separately clickable buttons in the taskbar and merge together into a single button
with a popup menu. So your browser windows become less visible and less efficient to reach.

Tabbed browsing solves that by creating effectively a separate task bar specialized to the web browser. But it’s
even better than that: you can open multiple top-level browser windows, each with its own set of tabs. Each
browser window can then be dedicated to a particular task, e.g. apartment hunting, airfare searching,
programming documentation, web surfing. It’s an easy and natural way for you to create task-specific
groupings of your browser windows. That’s what the Windows task bar tries to do when it groups windows
from the same application together into a single popup menu, but that simplistic approach doesn’t work at all
because the Web is such a general-purpose platform.

Another neat feature of tabbed browsing is that you can bookmark a set of tabs so you can recover them again
later — a nice shorteut for task-oriented users.

What are the downsides of tabbed browsing? For one thing, you can’t compare the contents of one tab with
another. External windows let you do this by resizing and repositioning the windows.

Hall of Shame

Spring 2011 6.813/6.831 User Interface Design and Implementation 3

Another problem is that tabs don’t really scale up either — you can’t have more than 5-10 without shrinking
their labels so much that they’re unreadable. Some designers have tried using multiple rows of tabs, but if you
stick slavishly to the tabbing metaphor, this turns out to be a horrible idea. Here’s the Microsoft Word 6 option
dialog. Clicking on a tab in a back row (like Spelling) has to move the whole row forward in order to maintain
the tabbing metaphor. This is disorienting for two reasons: first, because the tab you clicked on has leaped out
from under the mouse; and second, because other tabs you might have visited before are now in totally
different places. Some plausible solutions to these problems were proposed in class — e.g., color-coding each
row of tabs, or moving the front rows of tabs below the page. Animation might help too. All these ideas might
reduce disorientation, but they involve tradeoffs like added visual complexity, greater demands on screen real
estate, or having to move the page contents in addition to the tabs. And none of them prevent the tabs from
jumping around, which is a basic problem with the approach.

As a rule of thumb, only one row of tabs really works if you want the tabs to tie directly to the panel, and the
number of tabs you can fit in one row is constrained by the screen width and the tab label width. Most tabbing
controls can scroll the tabs left to right, but scrolling tabs is definitely slower than picking from a popup menu.

In fact, the Windows task bar actually scales better than tabbing does, because it doesn’t have to struggle to
maintain a metaphor. The Windows task bar is just a row of buttons. Expanding the task bar to show two rows
of buttons puts no strain on its usability, since the buttons don’t have to jump around.

Hall of Fame or Shame?

I;@W | [poadi.. | pors.. [IEREVRON, [s o)
‘,l i:sack.ace iz |
i
vimport game,Board; &M'-
import game,Pieca; 1) Fiesystem.java - ps1
. import game,chackers.Checker; EW&“-M
. import game,checkers.CheckerColor; fii‘““’ﬁ"’_”-m'l"“
) wordListjava - pso
import java.awc.3orderLayout: ,;J.Soa'dgava -ps2jgame
immart daws aur Canrainass gzaw:ﬁ\dcg'w!d.ma-psw
.‘:r,‘, E i \J} Board_isterer java - ps2icame
1] BoardienTester java - ps2is
{J) UrbouncrieSystem.java - psi

Spring 2011 6.813/6.831 User Interface Design and Implementation 4

Here’s how Eclipse tries to address the tab scaling problem: it shows a few tabs, and the rest are found in a
pulldown menu on the right end of the tab bar.

This menu has a couple of interesting features. First, it offers incremental search: typing into the first line of
the menu will narrow the menu to tabs with matching titles. If you have a very large number of tabs, this could
be a great shortcut. But it doesn’t communicate its presence very well. I used Eclipse for months, and didn’t
even notice this feature until I started carefully exploring the tab interface for this Hall of Fame & Shame
discussion.

Second, the menu tries to distinguish between the visible tabs and the hidden tabs using boldface. Quick,
before studying the names of the tabs carefully -- which do you think is which? Was that a good decision?

Picking an item from the menu will make it appear as a tab — replacing one of the tabs that’s currently showing.
Which tab will get replaced? It’s not immediately clear.

The key problem with this pulldown menu is that it completely disregards the natural, spatial mapping that
tabs provide. The menu’s order is unrelated to the order of the visible tabs; instead, the menu is alphabetical,
but the tabs themselves are listed in order of recent use. If you choose a hidden tab, it replaces the least
recently used visible tab. LRU is a great policy for caches. Is it appropriate for frequently-accessed menus?
Probably not, because it interferes with users’ spatial memory.

Today’s Topics

* lterative design
» User & task analysis
» Class project

Spring 2012 6.813/6.831 User Interface Design and Implementation

User-Centered Design

* |terative design
» Early focus on users and tasks
= Constant evaluation

Spring 2011 6.813/6.831 User Interface Design and Implementation 8

The standard approach to designing user interfaces is user-centered design, which has three components.
We’ll talk about the first two today; we’ll defer evaluation (testing with users) until a later lecture.

ITERATIVE DESIGN

Spring 2011 6.813/6.831 User Interface Design and Implementation

Iterative Design

* Rinse, lather, repeat!

Design

Evaluate Implement

N

Spring 2011 6.813/6.831 User Interface Design and Implementation

10

Traditional Software Engineering Process:
Waterfall Model

Spring 2011 6.813/6.831 User Interface Design and Implementation 1

Let’s contrast the iterative design process against another way. The waterfall model was one of the earliest
carefully-articulated design processes for software development. It models the design process as a sequence of
stages. Each stage results in a concrete product — a requirements document, a design, a set of coded modules —
that feeds into the next stage. Each stage also includes its own validation: the design is validated against the
requirements, the code is validated (unit-tested) against the design, etc.

The biggest improvement of the waterfall model over previous (chaotic) approaches to software development
is the discipline it puts on developers to think first, and code second. Requirements and designs generally
precede the first line of code.

If you've taken a software engineering course, you’ve experienced this process yourself. The course staff
probably handed you a set of requirements for the software you had to build --- e.g. the specification of a chat
client or AntiBattleship. (In the real world, identifying these requirements would be part of your job as
software developers.) You were then expected to meet certain milestones for each stage of your project, and
each milestone had a concrete product: (1) a design document; (2) code modules that implemented certain
functionality; (3) an integrated system.

Validation is not always sufficient; sometimes problems are missed until the next stage. Trying to code the
design may reveal flaws in the design — e.g., that it can’t be implemented in a way that meets the performance
requirements. Trying to integrate may reveal bugs in the code that weren’t exposed by unit tests. So the
waterfall model implicitly needs feedback between stages.

The danger arises when a mistake in an early stage — such as a missing requirement — isn’t discovered until a
very late stage — like acceptance testing. Mistakes like this can force costly rework of the intervening stages.
(That box labeled “Code” may look small, but you know from experience that it isn’t!)

11

Waterfall Model Is Bad for Ul Design

« User interface design is risky
— So we're likely to get it wrong

e Users are not involved in validation until
acceptance testing
— So we won't find out until the end

» Ul flaws often cause changes in requirements
and design

— So we have to throw away carefully-written and
tested code

Spring 2011 6.813/6.831 User Interface Design and Implementation 12

Although the waterfall model is useful for some kinds of software development, it’s very poorly suited to user
interface development.

First, UI development is inherently risky. UI design is hard for all the reasons we discussed in the previous
lecture. (You are not the user; the user is always right, except when the user isn’t; users aren’t designers
either.) We don’t (yet) have an easy way to predict how whether a Ul design will succeed.

Second, in the usual way that the waterfall model is applied, users appear in the process in only two places:
requirements analysis and acceptance testing. Hopefully we asked the users what they needed at the beginning
(requirements analysis), but then we code happily away and don’t check back with the users until we’re ready
to present them with a finished system. So if we screwed up the design, the waterfall process won’t tell us
until the end.

Third, when Ul problems arise, they often require dramatic fixes: new requirements or new design. We saw
in Lecture 1 that slapping on patches doesn’t fix serious usability problems.

12

Iterative Design

Design

Evaluate Implement

N

Spring 2011 6.813/6.831 User Interface Design and Implementation 13

Iterative design offers a way to manage the inherent risk in user interface design. In iterative design, the
software is refined by repeated trips around a design cycle: first imagining it (design), then realizing it
physically (implementation), then testing it (evaluation).

In other words, we have to admit to ourselves that we aren’t going to get it right on the first try, and plan for it.
Using the results of evaluation, we redesign the interface, build new prototypes, and do more evaluation.
Eventually, hopefully, the process produces a sufficiently usable interface.

Sometimes you just iterate until you're satisfied or run out of time and resources, but a more principled
approach is to set usability goals for your system. For example, an e-commerce web site might set a goal that
users should be able to complete a purchase in less than 30 seconds.

Many of the techniques we’ll learn in this course are optimizations for the iterative design process: design
guidelines reduce the number of iterations by helping us make better designs; cheap prototypes and discount
evaluation techniques reduce the cost of each iteration. But even more important than these techniques is the
basic realization that in general, you won’t get it right the first time. If you learn nothing else about user
interfaces from this class, I hope you learn this.

You might object to this, though. At a high level, iterative design just looks like the worst-case waterfall
model, where we made it all the way from design to acceptance testing before discovering a design flaw that
forced us to repeat the process. Is iterative design just saying that we’re going to have to repeat the waterfall
over and over and over? What’s the trick here?

13

Spiral Model
Design
Evaluate Implement
Spring 2011 6.813/6.831 User Interface Design and Implementation 14

The spiral model offers a way out of the dilemma. We build room for several iterations into our design
process, and we do it by making the early iterations as cheap as possible.

The radial dimension of the spiral model corresponds to the cost of the iteration step — or, equivalently, its
fidelity or accuracy. For example, an early implementation might be a paper sketch or mockup. It’s low-
fidelity, only a pale shadow of what it would look and behave like as interactive software. But it’s incredibly
cheap to make, and we can evaluate it by showing it to users and asking them questions about it.

14

Early Prototyping

sketches

computer - = =
mockups = = T
Spring 2012 6.813/6.831 User Interface Design and Implementation 15

Lo

Early Prototypes Can Detect Usability
Problems

cusTON. S ivicy

Fistng b1 sbomiog aom ity
verver

Spring 2011 6.813/6.831 User Interface Design and Implementation 16

Remember this Hall of Shame candidate from the first lecture? This dialog’s design problems would have
been easy to catch if it were only tested as a simple paper sketch, in an early iteration of a spiral design. At that
point, changing the design would have cost only another sketch, instead of a day of coding.

iterative Design of User Interfaces

Early iterations use cheap prototypes

— Parallel design is feasible: build & test multiple
prototypes to explore design alternatives

Later iterations use richer implementations,
after Ul risk has been mitigated

More iterations generally means better Ul
Only mature iterations are seen by the world

Spring 2011 6.813/6.831 User Interface Design and Implementation 17

Why is the spiral model a good idea? Risk is greatest in the early iterations, when we know the least. So we
put our least commitment into the early implementations. Early prototypes are made to be thrown away. If we
find ourselves with several design alternatives, we can build multiple prototypes (parallel design) and evaluate
them, without much expense.

After we have evaluated and redesigned several times, we have (hopefully) learned enough to avoid making a
major Ul design error. Then we actually implement the UI — which is to say, we build a prototype that we
intend to keep. Then we evaluate it again, and refine it further.

The more iterations we can make, the more refinements in the design are possible. We’re hill-climbing here,
not exploring the design space randomly. We keep the parts of the design that work, and redesign the parts that
don’t. So we should get a better design if we can do more iterations.

17

Case Study of User-Centered Design:
The Olympic Message System

Cheap prototypes
— Scenarios
— User guides
— Simulation (Wizard of Oz)
— Prototyping tools (IBM
Voice Toolkit)
Iterative design
— 200 (!) iterations for user guide
= Evaluation at every step
* You are not the user

— Non-English speakers had trouble with alphabetic entry on
telephone keypad

Spring 2011 6.813/6.831 User Interface Design and Implementation 18

The Olympic Message System is a classic demonstration of the effectiveness of user-centered design (Gould et
al, “The 1984 Olympic Message System”, CACM, v30 n9, Sept 1987). The OMS designers used a variety of
cheap prototypes: scenarios (stories envisioning a user interacting with the system), manuals, and simulation
(in which the experimenter read the system’s prompts aloud, and the user typed responses into a terminal). All
of these prototypes could be (and were) shown to users to solicit reactions and feedback.

Iteration was pursued aggressively. The user guide went through 200 iterations!

The OMS also has some interesting cases reinforcing the point that the designers cannot rely entirely on
themselves for evaluating usability. Most prompts requested numeric input (“press 1, 2, or 3”), but some
prompts needed alphabetic entry (“enter your three-letter country code™). Non-English speakers — particularly
from countries with non-Latin languages — found this confusing, because, as one athlete reported in an early
field test, “you have to read the keys differently.” The designers didn’t remove the alphabetic prompts, but
they did change the user guide’s examples to use only uppercase letters, just like the telephone keys.

A video about OMS can be found on YouTube (http://youtube.com/watch?
v=W6UYpXcdczM&feature=related). Check it out — it includes a mime demonstrating the system.

18

USER & TASK ANALYSIS

Spring 2012 6.813/6.831 User Interface Design and Implementation

19

19

Know Your User

* Questions to ask
— Age, gender, culture, language
Education (literacy? numeracy?)
Physical limitations
Computer experience (typing? mouse?)
Motivation, attitude
Domain experience
Application experience
— Work environment and other social context
— Relationships and communication patterns with other people
« Pitfall
— describing what you want your users to be, rather than what
they actually are

» “Users should be literate in English, fluent in spoken Swahili,
right-handed, and color-blind”

Spring 2011 6.813/6.831 User Interface Design and Implementation 20

The reason for user analysis is straightforward: since you’re not the user, you need to find out who the user
actually is.

User analysis seems so obvious that it’s often skipped. But failing to do it explicitly makes it easier to fall into
the trap of assuming every user is like you. It’s better to do some thinking and collect some information first.

Knowing about the user means not just their individual characteristics, but also their situation. In what
environment will they use your software? What else might be distracting their attention? What is the social
context? A movie theater, a quiet library, inside a car, on the deck of an aircraft carrier; environment can place
widely varying constraints on your user interface.

Other aspects of the user’s situation include their relationship to other users in their organization, and typical
communication patterns. Can users ask each other for help, or are they isolated? How do students relate
differently to lab assistants, teaching assistants, and professors?

Many problems in user and task analysis are caused by jumping too quickly into a requirements mindset. In
user analysis, this sometimes results in wishful thinking, rather than looking at reality. Saying “OMS users
should all have touchtone phones” is stating a requirement, not a characteristic of the existing users. One
reason we do user analysis is to see whether these requirements are actually satisfied, or whether we’d have to
add something to the system to make sure it’s satisfied. For example, maybe we’d have to offer touchtone
phones to every athlete’s friends and family...

20

Multiple Classes of Users

» Many applications have several kinds of
users

— By role (student, teacher)
— By characteristics (age, motivation)

« Example: Olympic Message System
— Athletes
— Friends & family
— Telephone operators
— Sysadmins

Spring 2011 6.813/6.831 User Interface Design and Implementation 21

Many, if not most, applications have to worry about multiple classes of users.

Some user groups are defined by the roles that the user plays in the system: student, teacher, reader, editor.
Other groups are defined by characteristics: age (teenagers, middle-aged, elderly); motivation (early adopters,
frequent users, casual users). You have to decide which user groups are important for your problem, and do a

user analysis for every class.

The Olympic Message System case study we saw in a previous lecture identified several important user classes
by role.

21

Exercise: Drug Database

» Suppose a company has contracted you to
design “a database of drugs”
» With your neighbor:

— Decide on questions you should ask the company
or its users

— Make up plausible answers to your questions

T

Spring 2012 6.813/6.831 User Interface Design and Implementation 22

2

ldentify the User’s Tasks and Goals

Identify the individual tasks involved in the problem
» Decompose them into subtasks
(think about) abstracting them into goals

Example: Olympic Message System
— send message to an athlete

— find out if | have messages

— listen to my messages

Spring 2011 6.813/6.831 User Interface Design and Implementation 24

The best sources of information for task analysis are user interviews and direct observation. Usually, you’ll
have to observe how users currently perform the task. For the OMS example, we would want to observe
athletes interacting with each other, and with family and friends, while they’re training for or competing in
events. We would also want to interview the athletes, in order to understand better their goals in the task.

24

Questions to Ask About a Task

* Why is the task being done?
* What does the user need to know or have before doing the task?
+ Where is the task performed?
- At a kiosk, standing up
« What is the environment like? Noisy, dirty, dangerous?
- Outside
+« How often is the task performed?
— Perhaps a couple times a day
* What are its time or resource constraints?
— A minute or two (might be pressed for time!)
* How is the task learned?
- Bytryingit
— By watching others
— Classroom training? (probably not)
+ What can go wrong? (Exceptions, errors, emergencies)
— Enter wrong country code
— Enter wrong user name
~ Getl distracted while recording message
* Who else is involved in the task?

Spring 2011 6.813/6.831 User Interface Design and Implementation 25

There are lots of questions you should ask about each task. Here are a few, with examples relevant to the OMS
send-message task. Collecting this information about tasks helps inform your design.

Common Errors in Task Analysis

» Thinking from the system'’s point of view, rather than the user’s
- "Notify user about appointment”
— vs. “Get a notification about appointment”

» Fixating too early on a Ul design vision

= "The sz_‘s_llem bell will ring to notify the user about an
appointment...”

» Bogging down in what users do now (concrete tasks), rather
than why they do it (essential tasks)
— "Save file to disk”
~ vs. “Make sure my work is kept”
« Duplicating a bad existing procedure in software
« Failing to capture good aspects of existing procedure

Spring 2011 6.813/6.831 User Interface Design and Implementation 26

The requirements mindset can also affect task analysis. If you’re writing down tasks from the system’s point
of view, like “Notify user about appointment”, then you’re writing requirements (what the system should do),
not tasks (what the user’s goals are). Sometimes this is merely semantics, and you can just write it the other
way; but it may also mean you’re focusing too much on what the system can do, rather than what the user
wants. Tradeoffs between user goals and implementation feasibility are inevitable, but you don’t want them to
dominate your thinking at this early stage of the game.

Task analysis derived from observation may give too much weight to the way things are currently done. A task
analysis that breaks down the steps of a current system is concrete. For example, if the Log In task is broken
down into the subtasks Enter username and Enter password, then this is a concrete task relevant only to a
system that uses usernames and passwords for user identification. If we instead generalize the Log In task into
subtasks Identify myself and Prove my identity, then we have an essential task, which admits much richer
design possibilities when it’s time to translate this task into a user interface.

A danger of concrete task analysis is that it might preserve tasks that are inefficient or could be done a
completely different way in software. Suppose we did a task analysis by observing users interacting with
paper manuals. We’d see a lot of page flipping: “Find page N” might be an important subtask. We might
naively conclude from this that an online manual should provide really good mechanisms for paging &
scrolling, and that we should pour development effort into making those mechanisms as fast as possible. But
page flipping is an artifact of physical books! It would pay off much more to have fast and effective searching
and hyperlinking in an online manual. That’s why it’s important to focus on why users do what they do (the
essential tasks), not just what they do (the concrete tasks).

An incomplete task analysis may fail to capture important aspects of the existing procedure. In one case, a
dentist’s office converted from manual billing to an automated system. But the office assistants didn’t like the
new system, because they were accustomed to keeping important notes on the paper forms, like “this patient’s
insurance takes longer than normal.” The automated system provided no way to capture those kinds of

annotations. That’s why interviewing and observing real users is still important, even though you’re observing
a concrete task process.

26

Exercise: Elevator Task Analysis

» Suppose we're designing the Student Center
elevator interface

* What are the tasks?

Spring 2011 6.813/6.831 User Interface Design and Implementation

27

27

Techniques for Understanding Users &
Tasks

* |nterviews & observation

» Contextual inquiry technique

— Interviews & observation conducted “in context”,
i.e. with real people dealing with the real problem
in the real environment

— Establish a master-apprentice relationship
« User shows how and talks about it
» Interviewer watches and asks questions

+ Participatory design technique
— Including a user directly on the design team

Spring 2011 6.813/6.831 User Interface Design and Implementation 29

The best sources of information for task analysis are user interviews and direct observation. Usually, you’ll
have to observe how users currently perform the task. For the OMS example, we would want to observe
athletes interacting with each other, and with family and friends, while they’re training for or competing in
events. We would also want to interview the athletes, in order to understand better their goals in the task.

Contextual inquiry is a technique that combines interviewing and observation, in the user’s actual work
environment, discussing actual work products. Contextual inquiry fosters strong collaboration between the

designers and the users. (Wixon, Holtzblatt & Knox, “Contextual design: an emergent view of system design”,
CHI ’90)

Participatory design includes users directly on the design team — participating in the task analysis, proposing
design ideas, helping with evaluation. This is particularly vital when the target users have much deeper
domain knowledge than the design team. It would be unwise to build an interface for stock trading without an
expert in stock trading on the team, for example.

29

CLASS PROJECT

Spring 2012 6.813/6.831 User Interface Design and Implementation

30

30

User-Centered Design in 6.813/6.831:
Group Project

GR1: Proposal & user/task analysis
GR2: Design sketches
GR3: Paper prototype
GR3: User testing

GR4: Computer prototype
HW?2: Heuristic evaluation
GRS5: Full implementation
GR6: User testing

Design

00 Y gE L g T o

Evaluate Implement

Spring 2011 6.813/6.831 User Interface Design and Implementation 3

The term project’s milestones are designed to follow a user-centered design process:

1. task and user analysis (1 week): collecting the requirements for the UI, which we’ll discuss in the next
lecture.

2. design sketches (1 week): paper sketches of various Ul designs.

3. paper prototype (1 week): an interactive prototype made of paper and other cheap physical materials.

4. user testing (1 week): during the paper prototype assignment, you’ll test your prototype on your classmates.
5. computer prototype (2 weeks): an incomplete but interactive software prototype.

6. heuristic evaluation (1 week): we’ll exchange implementation prototypes and evaluate them as usability
experts would.

7. full implementation (3 weeks): you'll build a real implementation that you plan to keep.
8. user testing (1 week): you’ll test your implementation against users and refine it.

Notice that the part you probably did in your software engineering class is step 7 — which is only one milestone
in this class!

3l

Summary

* lterative design
» User & task analysis

Spring 2012

6.813/6.831 User Interface Design and Implementation

32

32

(L EE B, Y

GR e Sun
Vo (lass Fr

P l/&SI od fln e Gun
YA &
u@(ads oofvub

—_—
o=

Wl o [M Sy B

S

pf@/m{& Yo 4(04\ (rm%/&(ﬁ@ W/ /W% V/’r\,cf?‘/

(o 0 ok of ghe 005 —not befary

G CM(WL(S8l (oaled

]HOBF Joajr WM Jro C((C}(M}L(f (AU’A(J@ Cgﬂfe/f/'

Lﬁoﬂ\ }({(Q,H(Wl 1L0 I /V\ﬂclal@b (ﬁ&/% AGX
“".69 M c}onle /Mw Ml}(/k Izs wb'cé‘?

Naci Mo D(’a,[% 's a Sheet hat o)
Jf)wn #[om ‘h\(/ a/)F’:‘ ﬂﬁe [90(/

(Qneis)tﬁw{ t aﬁa/daaw}

Y
N 10 aw\t L

mu/dﬂte/(w” mady | Aok PM\ st ~otie fa g

- \stq Jw\(qa S
= 5\/‘05{‘2@& H‘{/ l Sl LIVU/”(SR 4,1
ol L (O

@ A “ Corref

éP‘(/d/(SIL(/?(&L(L W/ 9w @flﬂwgﬁjy
Lol fo ()T

SP;/W‘ ;5 O’M*]\Wd

©

=
—

PLO(L\}A@ #5"@@(2@
harkul
(/‘LT%{{ Lol ﬂa{g/

Chonls
Of\‘ﬂt"“””{ Q@ wl of endy e ppr((?ﬂ“(l”/’

DQPQ/@) Lof\ " P(ng/h’m dad (/»/Aa/L
Yov Mmdy Lo

Can [Wm\)f?/ Cé]m[ks){E#ﬁf hm M /pugJ(Sff z!flj
(
€9P (é (Uﬂ'hlﬂ\e f;(/l’l 5‘@/«4&(4”(, (ah}mﬁ (/Wama’#

Q‘QWQMW/(I/?S (/LESS (ﬂnfigs

wa’} //VL%"’@*; 6/ LOQH“W O{J’/(a &f /(’w/ g Ang)
(ool ¢ fmk b {DO(/WM)

“(&b)‘@l@

— (00l (g

Bo.hl WE{’Wf f‘h/)‘/;C@b ho gﬁlﬂd Q/\J“
/cwdam/ implivselle 4 /We
W@/(Iv:rtq MWY
T chobs e D%
Uhkss repeat qor ¥ our

Y

LJWJ Te//a memb! - f@l@tﬁwﬂ/ﬁ (¢ M’;q{
— bl e (oneoting /dmks

£
- QLoufd Q‘{(:’;P(G‘r /‘TG/()B
B (JOCM}L i’(s{"lfy i vnils
Y (Oﬂm\ﬁ(} Jdc 56‘)@(@)

~ Pase 6&@1{9/
- CL\uf»k {%9 m%cj K

[ty + Gheniny
Ftts Lo
— din doesa ci@ﬂ(’d([on @rnt{fxf
~H i W o b RE a gl

- [
of fagee o Mo

—

gm&, Con Mo ML ﬁ@l{/ [ot/f 71@4 M%)lt ((\/\e mﬁ/x@_/
B 24& {thuzqa))OU/LJ\Q/&/ \OT 0/[Citor 6@!’1 }ML nw)(/{dfl iég
@;D <S L bk]Lo\(ﬁ{?j

Tapr ar tge of gweer = gy A Size Slte (oMl
Cocrers ae 0w befter
- e p 5 i Gles
"t 4 b dm o by TEN
Constaine] 67 S —

(
}D (f hww\
P &ll\ﬂ 00“_

RCMM/CA\)

oty L
Weed fo 4 N ¥ fyane) "
NDW ({M /F\/ﬂ” I,ID

LGKpﬁr\mﬂw“f longer Thas Z‘)ﬂ

0
Wé 5 Caécw&}ng %
Torad o (oo Kol achiafon o

e

=i
il _
~
T‘t(Q](m]r -664\((&«{ iﬁfo)alem

[ak (fect b Yogphs loiﬂ
pﬂL M 1%/5{’/1‘5 v Ol Q!L@p
Usg edyey \© (ot

Ay o S)VEU’/\(/j Wl%
(s
H“ éfﬂb W) JOCW,' 6

LS@M @/?/Ym’“tj {MF f 1/4 m He,(tl
- ,
- lfm’mfg dell, ol
(ffer €mq// rcent Vaed
bty A mali @ops

Ak Complofe |
—See poas‘/y&"@
Fitole solectio
o Ja oy at o

ok Gl b — -

Pedikve vt (shdet 1)
~Slove seonds 0T Comam Tugls
~ (an speal ot ot fune

—'HM, /‘WM @IC Auma/{

~ Sindafe. qﬂq,\m by s mod |
——]} w)rlk) w@\l }n Z;M-Om/ {}euj

—

“LL ‘m(ug@ eﬂ\dzwoqlry
/60 v, dule e T+7 Chunlis m@J@)
“Thery puikes vl of whah s canig e podlen

G

\lw: £/~Q76]f[0k Le! m()d@] (L(U/tl)

)Nut thole

[D)VHM pregs //e lous e ")/ Mol
Fot% W/ st

D an e ‘N{ o

Hon@ haals L/w movie fltcz b

mw*\%”[p/e()lw

ot visalle b dualysh
‘ l "‘ND_{‘ k{(fp,: (/I
Dw) 6 for eWler Ve

Brde a withl e of bue low fud Opecutys
U Wil o lnset Mdirj

Hoe e Hﬂt@z@ o Pess Oxfis

—0r (4, eflimaby [M,g ale 2| goc

bo M Nihd | Mettal 7

I ekt ﬂ

3500 4
%6\&()] e
s

s H“K

\1\/@ e MMM) m@k\@ det\ts[uan; lo/t/

L6: Efficiency

+ GR1 (project proposal) due Sun
« no class this Friday
* PS1/RS1 out Mon, due next Sun

Spring 2012 6.813/6.831 User Interface Design and Implementation

Y

Ul Hall of Fame or Shame?

el =]
o |

D GOMS e of s ctertycs s ecton s Crepenace nd
LA Uy Dorin S s Dirkd fonead ACH 1CPE, 724
Tomormte *

i (i L i

Suggested by Vikki Chou

Spring 2012 6.813/6.831 User Interface Design and Implementation 2

Today’s candidate for the Hall of Fame or Shame is the modal dialog box.

A modal dialog box (like the File Open dialog seen here) prevents the user from interacting with the
application that popped it up.

Modal dialogs do have some usability advantages, such as error prevention (the modal dialog is always on
top, so it can’t get lost or be ignored, and the user can’t accidentally change the selection in the main window
while working on a modal dialog that affects that selection).

But there are usability disadvantages too, chief among them loss of user control and reduced visibility (e.g.,
you can’t see important information or previews in the main window, and can’t scroll the main window to
bring something else into view). Modal dialogs may also overload the user’s short-term memory — if the user
needs some information from the main window, or worse, from a second modal dialog, then they’re forced to
remember it, rather than simply viewing and interacting with both dialogs side-by-side.

When you try to interact with the main window, Windows gives some nice animated feedback — flashing the
border of the modal dialog box. This helps explain why your clicks on the main window had no effect.

On most platforms, you can at least move, resize, and minimize the main window, even when a modal dialog is
showing. (The modal dialog minimizes along with it.) Alas, not on Windows... the main window is
completely pinned! You can minimize it only by obscure means, like the Show Desktop command, which
minimizes all windows. This is a big obstacle to user control and freedom.

Modeless dialogs, by contrast, don’t prevent using other windows in the application. They’re often used for
ongoing interactions with the main window, like Find/Replace. One problem is that a modeless dialog box can
get in the way of viewing or interacting with the main window (as when a Find/Replace dialog covers up the
match). Another problem is a consistency problem: modal dialogs and modeless dialogs usually look
identical. Sometimes the presence of a Minimize button is a clue that it’s modeless, but that’s not a very strong
visual distinction. A modeless dialog may be better represented as a sidebar, a temporary pane in the main
window that’s anchored to one side of the window. Then it can’t obscure the user’s work, can’t get lost, and is
clearly visually different from a modal dialog box.

Ul Hall of Fame or Shame?

® 06O untteds.aiff

e\ Close
(:;A& Save changes to Untitled5.tiff?

0

{_ Don't Save E_Cancel } W

ety L
4 Mac 05 9
id System

Spring 2012 6.813/6.831 User Interface Design and Implementation 3

On Windows, modal dialogs are generally application-modal — all windows in the application stop responding
until the dialog is dismissed. (The old days of GUISs also had system-modal dialogs, which suspended all
applications.) Mac OS X has a neat improvement, window-modal dialogs, which are displayed as translucent
sheets attached to the titlebar of the blocked window. This tightly associates the dialog with its window, gives
a little visibility of what’s underneath it in the main window — and allows you to interact with other windows,
even if they’re from the same application.

Another advantage of Mac sheets is that they make a strong contrast with modeless dialogs — the translucent,
anchored modal sheet is easy to distinguish from a modeless window.

Today’s Topics

Chunking

Pointing & steering
Shortcuts

» Keystroke level model

L]

Spring 2012 6.813/6.831 User Interface Design and Implementation

CHUNKING

Spring 2012 6.813/6.831 User Interface Design and Implementation

Chunking

* “Chunk” is a unit of memory or perception

— Depends both on presentation and on what you
already know

Hard: MWBCRALOAB IMBF |
Easier: MWB CRA LOA BIM BFI
Easiest: BMW RCA AOL IBM FBI

AEWSHAE - xWaBeE B AN W R
;tlif:tt:tctt ‘ﬂl. Wil: al El EA

B s - Em N

m BN E Cmimem N
O B i w B

rfﬂzi‘ o ‘??u‘ugn iy
GoaaE mem pz CECEE

Spring 2012 6.813/6.831 User Interface Design and Implementation 8

The elements of perception and memory are called chunks. In one sense, chunks are defined symbols; in
another sense, a chunk represents the activation of past experience. Our ability to form chunks in working
memory depends strongly on how the information is presented: a sequence of individual letters tend to be
chunked as letters, but a sequence of three-letter groups tend to be chunked as groups. It also depends on what
we already know. If the three letter groups are well-known TLAs (three-letter acronyms) with well-established
chunks in long-term memory, we are better able to retain them in working memory.

Chunking is illustrated well by a famous study of chess players. Novices and chess masters were asked to
study chess board configurations and recreate them from memory. The novices could only remember the
positions of a few pieces. Masters, on the other hand, could remember entire boards, but only when the pieces
were arranged in Jegal configurations. When the pieces were arranged randomly, masters were no better than
novices. The ability of a master to remember board configurations derives from their ability to chunk the
board, recognizing patterns from their past experience of playing and studying games. (De Groot, A. D.,
Thought and choice in chess, 1965.)

Working Memory

* Working memory
— Small: 7 + 2 “chunks”
— Short-lived: ~10 sec

— Maintenance rehearsal fends off decay (but costs
attention)

Spring 2012 6.813/6.831 User Interface Design and Implementation 9

Working memory is where you do your conscious thinking. The currently favored model in cognitive science
holds that working memory is not actually a separate place in the brain, but rather a pattern of activation of
elements in the long-term memory. A famous result is that the capacity of working memory is roughly 7 +2
things (technically called “chunks™). That’s pretty small! Although working memory size can be increased by
practice (if the user consciously applies mnemonic techniques that convert arbitrary data into more memorable
chunks), it’s not a good idea to expect the user to do that. A good interface won't put heavy demands on the
user’s working memory.

Data put in working memory disappears in a short time — a few seconds or tens of seconds. Maintenance
rehearsal — repeating the items to yourself — fends off this decay, but maintenance rehearsal requires attention.
So distractions can easily destroy working memory.

Long-term memory is probably the least understood part of human cognition. It contains the mass of our
memories. Its capacity is huge, and it exhibits little decay. Long-term memories are apparently not
intentionally erased; they just become inaccessible.

Maintenance rehearsal (repetition) appears to be useless for moving information into long-term memory.
Instead, the mechanism seems to be elaborative rehearsal, which seeks to make connections with existing
chunks. Elaborative rehearsal lies behind the power of mnemonic techniques like associating things you need
to remember with familiar places, like rooms in your childhood home. But these techniques take hard work
and attention on the part of the user. One key to good learnability is making the connections as easy as
possible to make — and consistency is a good way to do that.

Example: Displaying Numbers

» Redesign this filesystem quota display so that
it's more efficient

DO

Terminal — ssh — 80x24

N Rl B e e TP Bl

shaggy ~ > fs lg

VYolume Name Quota Used %Used Partition

u.rcm 2pe00000 15327671 7% 76%
Spring 2012 6.813/6.831 User Interface Design and Implementation 10

Let’s use chunking to fix this information display.

While we’re at it, what about learnability? What learnability problems does this UI have, and how might we
fix them?

POINTING & STEERING

Spring 2012 6.813/6.831 User Interface Design and Implementation

11

Fitts’s Law

 Fitt's Law
— Time T to move your hand to a target of size S at

distance D away is:
T=RT+MT=a+blog(D/S + 1)

S
— Depends only on index of difficulty log(D/S + 1)

Spring 2012 6.813/6.831 User Interface Design and Implementation 12

Fitts’s Law specifies how fast you can move your hand to a target of a certain size at a certain distance away
(within arm’s length, of course). It’s a fundamental law of the human sensory-motor system, which has been
replicated by numerous studies. Fitts’s Law applies equally well to using a mouse to point at a target on a
screen. In the equation shown here, RT is reaction time, the time to get your hand moving, and MT is
movement time, the time spent moving your hand.

12

Explanation of Fitts’s Law

» Moving your hand to a target is closed-loop
control

* Each cycle covers remaining distance D with
error €D e

Spring 2012 6.813/6.831 User Interface Design and Implementation 13

We can explain Fitts’s Law by appealing to the human information processing model. Fitt’s Law relies on
closed-loop control. Assume that D >> S, so your hand is initially far away from the target. In each cycle,
your motor system instructs your hand to move the entire remaining distance D. The accuracy of that motion
is proportional to the distance moved, so your hand gets within some error €D of the target (possibly
undershooting, possibly overshooting). Your perceptual and cognitive processors perceive where your hand
arrived and compare it to the target, and then your motor system issues a correction to move the remaining
distance €D — which it does, but again with proportional error, so your hand is now within £2D. This process
repeats, with the error decreasing geometrically, until » iterations have brought your hand within the target —
ie,e"D <8S. Solving for n, and letting the total time T =n (T, + T, + T), we get:

T=a+blog (D/S)

where a is the reaction time for getting your hand moving, and b=- (T, + T, + T,)/log «.

The graphs above show the typical trajectory of a person’s hand, demonstrating this correction cycle in action.

The position-time graph shows an alternating sequence of movements and plateaus; each one corresponds to
one cycle. The velocity-time graph shows the same effect, and emphasizes that hand velocity of each
subsequent cycle is smaller, since the motor processor must achieve more precision on each iteration.

13

implications of Fitts’s Law

- Targets at screen edge are easy to hit
- Mac menubar beats Windows menubar
- Unclickable margins are foolish

- Linear popup menus vs. pie menus

Bookmark Ths Page..,
Save Page As...
Sgnd Link....

Sebect A1

Spring 2012 6.813/6.831 User Interface Design and Implementation 14

Fitts’s Law has some interesting implications.

The edge of the screen stops the mouse pointer, so you don’t need more than one correcting cycle to hit it.
Essentially, the edge of the screen acts like a target with infinite size. (More precisely, the distance D to the
center of the target is virtually equal to S, so T=a + b log (D/S + 1) solves to the minimum time T=a.) So
edge-of-screen real estate is precious. The Macintosh menu bar, positioned at the top of the screen, is faster to
use than a Windows menu bar (which, even when a window is maximized, is displaced by the title bar).
Similarly, if you put controls at the edges of the screen, they should be active all the way to the edge to take
advantage of this effect. Don’t put an unclickable margin beside them.

Fitts’s Law also explains why pie menus are faster to use than linear popup menus. With a pie menu, every
menu item is a slice of a pie centered on the mouse pointer. As a result, each menu item is the same distance D
away from the mouse pointer, and its size S (in the radial direction) is comparable to D. Contrast that with a
linear menu, where items further down the menu have larger D, and all items have a small S (height).
According to one study, pie menus are 15-20% faster than linear menus (Callahan et al. “An empirical
comparison of pie vs. linear menus,” CHI 1991, htip://doi.acm.org/10.1145/57167.57182). Pie menus are used
occasionally in practice -- in some computer games, for example, and in the Sugar GUI created for the One-
Laptop-Per-Child project. The picture here shows a pie menu for Firefox available as an extension. Pie menus
are not widely used, however, perhaps because the efficiency benefits aren’t large enough to overcome the
external consistency and layout simplicity of linear menus.

Related to efficiency in general (though not to Fitts’s Law) is the idea of a gesture, a particular movement of
the mouse (or stylus or finger) that triggers a command. For example, swiping the mouse to the left might
trigger the Back command in a web browser. Pie menus can help you learn gestures, when the same

movement of your mouse is used for triggering the pie menu command (note that the Back icon is on the left of
the pie menu shown). The combination of pie menus and gestures is called "marking menus", which have been
used with good results in some research systems (Kurtenbach & Buxton, “User Learning and Performance with
Marking Menus,” CHI 1994. http:/www.billbuxton.com/MMUsetLearn.htinl)

14

Steering Tasks

» Time T to move your hand through a tunnel of
length D and width S is:
T=a+bD/S

D

» Index of difficulty is now linear, not logarithmic
— So steering is much harder than pointing

« Thus cascading submenus are hard to use

Spring 2012 6.813/6.831 User Interface Design and Implementation 15

As we discussed in the first lecture, cascading submenus are hard to use, because the mouse pointer is
constrained to a narrow tunnel in order to get over into the submenu. Unlike the pointing tasks that Fitts’s Law
applies to, this steering task puts a strong requirement on the error your hand is allowed to make: instead of
iteratively reducing the error until it falls below the size of the target, you have to continuously keep the error
smaller than the size of the tunnel. The figure shows an intuition for why this works. Each cycle of the motor
system can only move a small distance d such that the error &d is kept below S. The total distance D therefore
takes D/d = £D/S cycles to cover. As a result, the time is proportional to D/S, not log D/S. It takes
exponentially longer to hit a menu item on a cascading submenu than it would if you weren’t constrained to
move down the tunnel to it.

Windows tries to solve this problem with a 500 ms timeout, and now we know another reason that this solution
isn’t ideal: it exceeds T, (even for the slowest value of T)), so it destroys perceptual fusion and our sense of
causality. Intentionally moving the mouse down to the next menu results in a noticeable delay.

The Mac gets a Hall of Fame nod here: when a submenu opens, it provides an invisible triangular zone,
spreading from the mouse to the submenu, in which the mouse pointer can move without losing the submenu.
The user can point straight to the submenu without unusual corrections, and without even noticing that there
might be a problem. (Hall of Fame interfaces may sometimes be invisible to the user! They simply work
better, and you don’t notice why.)

4

Example: Steering Tasks on the Web

wsdm 2012

Fifth ACM Internaticnal Conference on Seattle, W
Web Search and Data Mining

el
February 8
Home About Autlprs Aftendees Progmm Sponsons Contact Us

Papers CFP | Tutorials Cki Workshops CFP | Doctonal Consortium CTP | Peperinstructions

Platinum Sponsors

*wisdom") is the premier international ACM conference 2
ac areas of search and data mining on the Web. The Fifth Microsoft

nc il taka place 1 Scattlé, Winltigion, USA daring ResearCh

=y

«anal, high quality pf:pesnd.premm related 1o search - = re

Spring 2012 6.813/6.831 User Interface Design and Implementation 16

Steering tasks are surprisingly common in systems with cascading submenus. Here’s one on a website (http://

wsdm2012.org/). Try hovering over Authors to see its submenu. How do you have to move the mouse in
order to get to “Paper instructions™?

Improve Mouse Efficiency

Make frequently-used targets big
— Use snapping in drawing editors

» Put targets used together near each other
» Use screen corners and screen edges
« Avoid steering tasks

Spring 2012 6.813/6.831 User Interface Design and Implementation 17

Now that we’ve discussed aspects of the human cognitive system that are relevant to user interface efficiency,
let’s derive some practical rules for improving efficiency.

First, let’s consider mouse tasks, which are governed by pointing (Fitts’s Law) and steering. Since size matters
for Fitts’s Law, frequently-used mouse affordances should be big. The bigger the target, the easier the pointing
task is.

Similarly, consider the path that the mouse must follow in a frequently-used procedure. If it has to bounce all
over the screen, from the bottom of the window to the top of the window, or back and forth from one side of
the window to the other, then the cost of all that mouse movement will add up, and reduce efficiency. Targets
that are frequently used together should be placed near each other.

We mentioned the value of screen edges and screen corners, since they trap the mouse and act like infinite-size
targets. There’s no point in having an unclickable margin at the edge of the screen.

Finally, since steering tasks are so much slower than pointing tasks, avoid steering whenever possible. When
you can’t avoid it, minimize the steering distance. Cascading submenus are much worse when the menu items
are long, forcing the mouse to move down a long tunnel before it can reach the submenu.

17

SHORTCUTS

Spring 2012 6.813/6.831 User Interface Design and Implementation

18

18

Defaults & Pending Delete

 Fill in a form with defaults
— from history, by prediction

» Make the defaults fragile

Bookmark

Name: {Web Search and Data Mining (WSOM) 2012 |

Folder: { Bookmarks 8ar]
Remove | {(Edit.. @ i

/ pending delete

Save As: |LO4-learnability-efficiency.pptx

Spring 2012 6.813/6.831 User Interface Design and Implementation

Defaults are common answers already filled into a form. Defaults help in lots of ways: they provide shortcuts
to both novices and frequent users; and they help the user learn the interface by showing examples of legal
entries. Defaults should be fragile; when you click on or Tab to a field containing a default value, it should be
fully selected so that frequent users can replace it immediately by simply starting to type a new value. (This
technique, where typing replaces the selection, is called pending delete. It’s the way most GUIs work, but not
all. Emacs, for example, doesn’t use pending delete; when you highlight some text, and then start typing, it
doesn’t delete the highlighted text automatically.) If the default value is wrong, then using a fragile default
allows the correct value to be entered as if the field were empty, so having the default costs nothing.

Incidentally, it’s a good idea to remove the word “default” from your interface’s vocabulary. It’s a technical

term with some very negative connotations in the lending world.

19

History
= Offer recently-used or frequently-used choices
L04-learnability-efficiency.pptx
6470-usability.pptx
module-shortcuts.pptx
module-fitts-law.pptx
; e T T module-chunking.pptx
pus e a Llaian B ng-learnability.pptx
for: Ceecvons % L03-learnability-contd.pptx
Arial Black (Theme Headings) hofs-aggregation.pptx
¥ anal (Theme Body) crowd-computing-seminar-talk.pptx
g e EECS_ppt_R1_optionB.pptx
T G - —
Asadessy Engraved LET
Adiadu Araw »
Adsde Caslon Pra »
Spring 2012 6.813/6.831 User Interface Design and Implementation 20

Many inputs exhibit temporal locality — i.e., the user is more likely to enter a value they entered recently. File
editing often exhibits temporal locality, which is why Recently-Used Files menus (like this) are very helpful
for making file opening more efficient. Keep histories of users’ previous choices, not just of files but of any
values that might be useful. When you display the Print dialog again, for example, remember and present as
defaults the settings the user provided before.

Spring 2012

Autocomplete

» Minimize typing with autocomplete

danr]

danneel harris 361 090 resuts
danner boots
danny devito

1,870,000 resuts

danry elfman 2400000 resuta| £
danny phantom 1,500,000 resuts | &
danny bonaduce 472000 remts [1
danny ooyle 2430000 resute
danny glover 2210,000 roeats
danny kaye 597,000 resilta

danny bay 3,240090 results
coze

6.813/6.831 User Interface Design and Implementation

21

Autocomplete doesn’t just help with efficiency. What other usability dimensions does it help?

21

Aggregation

TITLE

[Tea Agenda soeed UID

i@ calendar 6,813/6.831 spring 2012 ¢
B3 CrowdCamp @ CHI2012 Shared

i CSCW on Follow the Crowd =uree
iF HCI Seminar Invites Srarse

K

multiple selection for action

Drop files here .
To add them as attachments

multiple drag & drop

Spring 2012 6.813/6.831 User Interface Design and Implementation 22

Hearkening back to the Hall of Fame & Shame for this lecture, aggregation is an excellent way to add
efficiency to an interface. Think about ways that a user can collect a number of items — data objects, decisions,
graphical objects, whatever — and handle them all at once, as a group. Multiple selection is a good design
pattern for aggregation, and there are many idioms now for multiple selection with mouse and keyboard
(dragging an outline around the items, shift-click to select a range, etc.)

Not every command needs aggregation, however. If the common case is only one item, and it’s never more
than a handful of items, than it may not be worth the complexity.

22

KEYSTROKE LEVEL
MODELS

Spring 2012 6.813/6.831 User Interface Design and Implementation

23

Predictive Evaluation

+ Predictive evaluation uses an engineering
model of human cognition to predict usability

— In this case, we'll predict efficiency
* The engineering model is

— abstract

— quantitative

— approximate

— estimated from user experiments

Spring 2012 6.813/6.831 User Interface Design and Implementation 24

Now we’re going to turn to the question of how we can predict the efficiency of a user interface before we
build it. Predictive evaluation is one of the holy grails of usability engineering. There’s something worthy of
envy in other branches of engineering -- even in computer systems and computer algorithm design -- in that
they have techniques that can predict (to some degree of accuracy) the behavior of a system or algorithm
before building it. Order-of-growth approximation in algorithms is one such technique. You can, by analysis,
determine that one sorting algorithm takes O(n log n) time, while another takes O(n?) time, and decide between
the algorithms on that basis. Predictive evaluation in user interfaces follows the same idea.

At its heart, any predictive evaluation technique requires a model for how a user interacts with an interface.

This model needs to be abstract — it can’t be as detailed as an actual human being (with billions of neurons,
muscles, and sensory cells), because it wouldn’t be practical to use for prediction.

It also has to be quantitative, i.e., assigning numerical parameters to each component. Without parameters,
we won’t be able to compute a prediction. We might still be able to do qualitative comparisons, such as we’ve
already done to compare, say, Mac menu bars with Windows menu bars, or cascading submenus. But our
goals for predictive evaluation are more ambitious.

These numerical parameters are necessarily approximate; first because the abstraction in the model aggregates
over a rich varicty of different conditions and tasks; and second because human beings exhibit large individual
differences, sometimes up to a factor of 10 between the worst and the best. So the parameters we use will be
averages, and we may want to take the variance of the parameters into account when we do calculations with
the model.

Where do the parameters come from? They’re estimated from experiments with real users. The numbers seen
here for the general model of human information processing (e.g., cycle times of processors and capacities of
memories) were inferred from a long literature of cognitive psychology experiments. But for more specific
models, parameters may actually be estimated by setting up new experiments designed to measure just that
parameter of the model.

24

Advantages of Predictive Evaluation

« Don't have to build Ul prototype

— Can compare design alternatives with no
implementation whatsoever

» Don't have to test real live users

* Theory provides explanations of Ul problems

— So it points to the areas where design can be
improved

— User testing may only reveal problems, not explain
them

Spring 2012 6.813/6.831 User Interface Design and Implementation 25

Predictive evaluation doesn’t need real users (once the parameters of the model have been estimated, that is).
Not only that, but predictive evaluation doesn’t even need a prototype. Designs can be compared and
evaluated without even producing design sketches or paper prototypes, let alone code.

Another key advantage is that the predictive evaluation not only identifies usability problems, but actually
provides an explanation of them based on the theoretical model underlying the evaluation. So it’s much better
at pointing to solutions to the problems than either inspection techniques or user testing. User testing might
show that design A is 25% slower than design B at a doing a particular task, but it won’t explain why.
Predictive evaluation breaks down the user’s behavior into little pieces, so that you can actually point at the
part of the task that was slower, and see why it was slower.

25

Keystroke-Level Model (KLM)

» Keystroke

* Button press or release with mouse

» Point with mouse

* Draw line with mouse

+ Home hands between mouse and keyboard
» Mentally prepare

Spring 2012 6.813/6.831 User Interface Design and Implementation 26

The first predictive model was the keystroke level model (proposed by Card, Moran & Newell, “The
Keystroke Level Model for User Performance Time with Interactive Systems”, CACM, v23 n7, July 1978).

This model seeks to predict efficiency (time taken by expert users doing routine tasks) by breaking down the
user’s behavior into a sequence of the five primitive operators shown here.

Most of the operators are physical — the user is actually moving their muscles to perform them. The M
operator is different — it’s purely mental (which is somewhat problematic, because it’s hard to observe and
estimate). The M operator stands in for any mental operations that the user does. M operators separate the
task into chunks, or steps, and represent the time needed for the user to recall the next step from long-term
memory.

26

KLM Analysis

« Encode a method as a sequence of physical
operators (KPHD)

» Use heuristic rules to insert mental operators
(M)

» Add up times for each operator to get total
time for method

Spring 2012 6.813/6.831 User Interface Design and Implementation 27

Here’s how to create a keystroke level model for a task.

First, you have to focus on a particular method for doing the task. Suppose the task is deleting a word in a text
editor. Most text editors offer a variety of methods for doing this, e.g.: (1) click and drag to select the word,
then press the Del key; (2) click at the start and shift-click at the end to select the word, then press the Del key;
(3) click at the start, then press the Del key N times; (4) double-click the word, then select the Edit/Delete
menu command; etc.

Next, encode the method as a sequence of the physical operators: K for keystrokes, B for mouse button presses
or releases, P for pointing tasks, H for moving the hand between mouse and keyboard, and D for drawing tasks.

Next, insert the mental preparation operators at the appropriate places, before each chunk in the task. Some
heuristic rules have been proposed for finding these chunk boundaries.

Finally, using estimated times for each operator, add up all the times to get the total time to run the whole
method.

27

Estimated Operator Times

- Keystroke determined by typing speed
0.28s average typist (40 wpm)
0.08s best typist (155 wpm)
120s worst typist
« Button press or release
01s highly practiced, no need to acquire button
 Pointing determined by Fitts's Law
T=a+blog(d/s+1)=a+bliD
0.8+0.11D [Card 1978]
01+041D [Epps 1986]
-0.1+0.2ID [MacKenzie 1990, mouse selection]
0.14 + 0.251D [MacKenzie 1990, mouse dragging]
OR
T ~ 1.1 s for all pointing tasks
» Drawing determined by steering law

Spring 2012 6.813/6.831 User Interface Design and Implementation 28

The operator times can be estimated in various ways.

Keystroke time can be approximated by typing speed. Second, if we use only an average estimate for K, we’re
ignoring the 10x individual differences in typing speed.

Button press time is approximately 100 milliseconds. Mouse buttons are faster than keystrokes because there
are far fewer mouse buttons to choose from (reducing the user’s reaction time) and they’re right under the
user’s fingers (eliminating lateral movement time), so mouse buttons should be faster to press. Note that a
mouse click is a press and a release, so it costs 0.2 seconds in this model.

Pointing time can be modelled by Fitts’s Law, but now we’ll actually need numerical parameters for it.
Empirically, you get a better fit to measurements if the index of difficulty is log(D/S+1); but even then,
differences in pointing devices and methods of measurement have produced wide variations in the parameters
(some of them seen here). There’s even a measurable difference between a relaxed hand (no mouse buttons
pressed) and a tense hand (dragging). Also, using Fitts’s Law depends on keeping detailed track of the location
of the mouse pointer in the model, and the positions of targets on the screen. An abstract model like the
keystroke level model dispenses with these details and just assumes that Tp ~ 1.1s for all pointing tasks. If
your design alternatives require more detailed modeling, however, you would want to use Fitts’s Law more
carefully.

Drawing time, likewise, can be modeled by the steering law: T=a + b (D/S).

28

Estimated Operator Times

» Homing estimated by measurement
0.4 s (between keyboard and mouse)

« Mental preparation estimated by

measurement
12s
Spring 2012 6.813/6.831 User Interface Design and Implementation 29

Homing time is estimated by a simple experiment in which the user moves their hand back and forth from the
keyboard to the mouse.

Finally we have the Mental operator. The M operator does not represent planning, problem solving, or deep
thinking. None of that is modeled by the keystroke level model. M merely represents the time to prepare
mentally for the next step in the method — primarily to retrieve that step (the thing you’ll have to do) from
long-term memory. A step is a chunk of the method, so the M operators divide the method into chunks.

The time for each M operator was estimated by modeling a variety of methods, measuring actual user time on
those methods, and subtracting the time used for the physical operators — the result was the total mental time.
This mental time was then divided by the number of chunks in the method. The resulting estimate (from the
1978 Card & Moran paper) was 1.35 sec — unfortunately large, larger than any single physical operator, so the
number of M operators inserted in the model may have a significant effect on its overall time. (The standard
deviation of M among individuals is estimated at 1.1 sec, so individual differences are sizeable too.) Kieras
recommends using 1.2 sec based on more recent estimates.

29

Heuristic Rules for adding M’s

» Basicidea:
— M before every chunk in the method that must be recalled
from long-term memory or that involves a decision
« Before each task or subtask
« Deciding which way to do a task
» Retrieving a chunk from memory
— Command name
-~ File name
— Parameter value
« Finding something on screen
— So P is often preceded by M

= Unless the location is well-known from practice, in which case the visual
search is overlapped with the motor action

= Verifying entry or action result
— e.g. before pressing OK on a dialog

Spring 2012 6.813/6.831 User Interface Design and implementation 30

One of the trickiest parts of keystroke-level modeling is figuring out where to insert the M’s, because it’s not
always clear where the chunk boundaries are in the method. Here are some heuristic rules, suggested by
Kieras (“Using the Keystroke-Level Model to Estimate Execution Times”, 2001).

30

Example: Deleting a Word

« Shift-click selection * Del key N times
M M
P [start of word] P [start of word]
BB [click] BB [click]
M H
P [end of word] M
K [shift] K [Del]
BB [click] x n [length of word]
H [to keyboard] « Total: 2M+P+2B+H+nK
M =4.36 + 0.28n sec
K [Del]

- Total: 3M + 2P + 4B + 1K
=6.93 sec

Spring 2012 6.813/6.831 User Interface Design and Implementation 31

Here are keystroke-level models for two methods that delete a word.

The first method clicks at the start of the word, shift-clicks at the end of the word to highlight it, and then
presses the Del key on the keyboard. Notice the H operator for moving the hand from the mouse to the
keyboard. That operator may not be necessary if the user uses the hand already on the keyboard (which
pressed Shift) to reach over and press Del.

The second method clicks at the start of the word, then presses Del enough times to delete all the characters in
the word.

Empirical Validation of KLM
Fig 6. Predicted ve. ohserved exeqution iimes i (he expetiment
50 Y Fp ey T o +
sn{ .
wr .]
w0 4
in &]
= & (2]
£} o iy .
€ [=]
§ of
2 of e * Testediton :
= 5t kY.L & POET 4
b} B o5
§ 4 oA A DISED
) Graphics sditors .
O MARKUe
O DRAW
b A s 4
Exscutive subsysterm
& AN subtysterns
3 N T I o
1 2 3 4 56 810 15 20 30 4050
Prudicted nscution tima {sec)
Source: Card, Moran & Newell
Spring 2012 6.813/6.831 User Interface Design and Implementation 32

The developers of the KLM model tested it by comparing its predications against the actual performance of
users on 11 different interfaces (3 text editors, 3 graphical editors, and 5 command-line interfaces like FTP and
chat).

28 expert users were used in the test (most of whom used only one interface, the one they were expert in).

The tasks were diverse but simple: e.g. substituting one word with another; moving a sentence to the end of a
paragraph; adding a rectangle to a diagram; sending a file to another computer. Users were told the precise
method to use for each task, and given a chance to practice the method before doing the timed tasks.

Each task was done 10 times, and the observed times are means of those tasks over all users.

The results are pretty close — the predicted time for most tasks is within 20% of the actual time. (To give you
some perspective, civil engineers usually expect that their analytical models will be within 20% error in at least
95% of cases, so KLM is getting close to that.)

One flaw in this study is the way they estimated the time for mental operators — it was estimated from the study
data itself, rather than from separate, prior observations.

For more details, see the paper from which this figure was taken: Card, Moran & Newell, “The Keystroke
Level Model for User Performance Time with Interactive Systems”, CACM, v23 n7, July 1978.

32

Applications of KLM

» Comparing designs & methods
« Parametric analysis

T / Del n times
/ Shift-click
n
Spring 2012 6.813/6.831 User Interface Design and Implementation 33

Keystroke level models can be useful for comparing efficiency of different user interface designs, or of
different methods using the same design.

One kind of comparison enabled by the model is parametric analysis — e.g., as we vary the parameter n (the
length of the word to be deleted), how do the times for each method vary?

Using the approximations in our keystroke level model, the shift-click method is roughly constant, while the
Del-n-times method is linear in n. So there will be some point n below which the Del key is the faster method,
and above which Shift-click is the faster method. Predictive evaluation not only tells us that this point exists,
but also gives us an estimate for .

But here the limitations of our approximate models become evident. The shift-click method isn’t really
constant with » — as the word grows, the distance you have to move the mouse to click at the end of the word
grows likewise. Our keystroke-level approximation hasn’t accounted for that, since it assumes that all P
operators take constant time. On the other hand, Fitts’s Law says that the pointing time would grow at most
logarithmically with n, while pressing Del n times clearly grows linearly. So the approximation may be fine in
this case.

33

Limitations of KLM

« Only expert users doing routine (well-learned)
tasks
« Only measures efficiency
— Not learnability or safety
* |gnores
— errors (methods must be error-free)
— parallel action (shift-click)
— mental workload (e.g. attention & WM limits)

— planning & problem solving (how does user select
the method?)

— fatigue

Spring 2012 6.813/6.831 User Interface Design and Implementation 34

Keystroke level models have some limitations -- we’ve already discussed the focus on expert users and
efficiency. But KLM also assumes no errors made in the execution of the method, which isn’t true even for
experts. Methods may differ not just in time to execute but also in propensity of errors, and KLM doesn’t
account for that.

KLM also assumes that all actions are serialized, even actions that involve different hands (like moving the
mouse and pressing down the Shift key). Real experts don’t behave that way; they overlap operations.

KLM also doesn’t have a fine-grained model of mental operations. Planning, problem solving, different levels
of working memory load can all affect time and error rate; KLM lumps them into the M operator.

34

Summary

L]

Spring 2012

Chunking

Pointing & steering
Shortcuts
Keystroke-level model

6.813/6.831 User Interface Design and Implementation

a5

35

GRI: Project Proposal and Analysis http://courses.csail.mit.edu/6.831/2012/handouts/gr 1 -analysis/gr1.shtml

lof2

6.813/6.831 ¢ USER INTERFACE DESIGN AND IMPLEMENTATION

Spring 2012 Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science

GR1: PROJECT PROPOSAL AND ANALYSIS

Due at 11:59 pm o@y, February 26,2012, by making a page on the class wiki. 1‘

The heart of this course is a semester-long project, in which you will design, implement, and evaluate a user
interface. User interface design is an iterative process, so you will build@your Ul not just once, butthree times, as
successively higher-fidelity and more complete prototypes. In order to have time for these iterations, we need to
get started on the project as early as possible.

Each project group should consist ople/If you need help finding group members, see the Groups Wanted
page on the class wiki.

Choosing a Problem

For your project, you will choose a problem faced by some user population, and then design and implement a user
interface to address that problem. Note that the problem should come first; try to avoid having preconceived

notions about the solution until you've at least understood the rom
e K| e 3 st o P -T hl abot botn 6Fpuq_

You have a lot of freedom in choosing your problem topic. Previous year's projects (which you'll find linked from the

course wiki) may provide some inspiration for problems, but use this only as a starting point. We want you to reach [m(
for a problem that’s less familiar. A conventional web app -- a database of type X (where X may be recipes, courses, 9 J
books, ...) that lets users log in, create items of type X, and search and browse for other people's X items -- is Papgfwa-k
unlikely to give you a deep experience of original user interface design. You have already seen and used dozens of

websites liKe thatryeukmow-hew-itsdone. ; \
= § 5 do conghiay G| My ided

Instead, you will learn the most from this project if you stretch yourself into unfamiliar areas of the design space.
Here are two ways to stretch (not the only ones): N‘;ﬂ‘ﬂt \ﬂ 0

Go mobile. Choose a problem that requires a mobile interface -- a web app or native app for a smartphone or

tablet. Mobile interfaces impose significant design constraints -- screen size, necessary simplicity, touch interaction 1‘00

-- that will force you to keep it simple, think hard about what matters, and solve the problem in an original way. /\.0‘(w
Also, mobile apps must be small, not sprawling, with only essential features, which make them a good fit for the

low-fidelity prototyping techniques in this course. C[’tﬁk

Design for somebody else.. Choose a problem faced by a user population that nobody in your group belongs to. If
you design for somebody much different from you, you will have to learn more about your users and their problems,
you will have to challenge your assumptions, and you will have to be more creative in your designs. Examples
include people with different roles (diving coaches, singers, mothers), different capabilities (children, elderly,
people with disabilities), and different contexts (windsurfers, rock climbers, buskers). Note that your chosen user
population must be reasonably available to you -- you will have to interview and observe them for this assignment,
and you will have to do user testing with them later inC he semester.

|
L v/ my 1deg
Juwe (o
Start your design process by talking with at least 3 representative users who face the problem you are tackling.
Observe them dealing with the problem in tmmn you write up your analysis, you must give
us evidence that you interviewed and observed people, but don't provide a narrative of these sessions. Instead,
offer your conclusions, and justify them when you can by referring to observations. For example, "grocery shoppers

may be distracted by children; one mother was repeatedly harrassed by her son to buy some candy." Also, don't
identify the users you interviewed by name. :

User Observation and Analysis

2/16/2012 1:59 AM

GRI1: Project Proposal and Analysis http://courses.csail. mit.edw/'6.831/2012/handouts/gr1 -analysis/er 1 shtml

20f2

Using your observations, write up the following:

® User analysis.

Identify the characteristics of your user population. If you have multiple user classes, describe each one.
e

® Task analysis.
e
Determine the tasks of the problem you've chosen, analyze their characteristics, and answer the general
questions about tasks we asked in lecture. Think about other questions you should ask that might be relevant
to your particular domain. You should find and analyze at least 3 high-level tasks. If you can't find 3
interesting tasks, then your problem may be too small to serve as a good project, and you should rethink it.

What to Hand In Con Am elﬁ(/ﬂ 5]1%4 _’(9&/{3/ 9/{

For this assignment, you need to create a page for your project on the class wiki. Each group assignment will add
more information to your group's wiki page over the semester. By the end of the semester, your wiki page will
constitute the final report for your project.

The wiki is accessible from the course web page. The homepage of the wiki has instructions for creating your
project page and linking it from the wiki homepage.

Your project page should include the following parts:
® Group members
A list of your group members. Students who are not registered for credit are not permitted to participate
in the group project. All members of your group must be registered for the class by the timeéthisassignment
is due.
® Problem statement

Briefly state the problem(s) that your project will seek to solve. Take the user's point of view. Consider what

¥ RN T T
the user’s goals are, and what obstacles lie in the way.
—_—

® GR1 Analysis

Write up your user analysis and task analysis clearly, concisely, and completely. Put your GR1 Analysis on a
new page of the wiki, with a link to it from your main project page.

Feel free to use the wiki for working dMiﬁnmunication within your group, but don't clutter your
primary project page with this internal communication.

2/16/2012 1:59 AM

+ Why is the task being done?
* What does the user need to know or have before doing the task?
+ Where is the task performed?
— Al a kiosk, standing up
* What is the environment like? Naisy, dirty, dangerous?
- Oulside
» How often is the task performed?
- Perhaps a couple times a day
+ What are its time or resource constraints?
- A minute or two (might be pressed for time!)
+ How is the task learned?
— By trying it
- By watching others
- Classroom training? (probably not)
= What can go wrong? (Exceptions, errors, emergencies)
— Enter wrong country code
- Enter wrong user name
- Getdistracted while recording message
+ Who else is involved in the task?

Spring 2011 6.813/6.831 User Interface Design and Implementation 25

There are lots of questions you should ask about each task. Here are a few, with examples relevant to the OMS
send-message task. Collecting this information about tasks helps inform your design.

'O{U (p Werfray

m 1 @06}(’/ CKWL?('Sfou(q(@Donq
T pody clealty —obdedd
ok poty v ®)

b urtng RAD gl sl
Web etace — (eaor
Mbﬁln'luﬁm - \/‘MW

(tedes 5 ohulyd
Vi > fust

T&Lﬁt‘%wlyé!w “hw R
Mfwh 0 Voster

D bun 4 Pt AU f Cadeder

b QP
V‘gﬂu&/}t Vle ’

[T
0 Vel

3 Bl

U, Gral g &

225

9
foder Yo
— UC(apl0 w“{
Make an G4y w Yo ;W\w
b b @b v paly 3 alrt

Wl we f it oy o
1_\6 H’\%@‘ﬁ QNLm, M}ﬂlﬁo W(lﬁf CO({Z

f

H&%l T dezra

Hove @ﬁ%*

\ \
I Wl“ CQubw
e

@AﬁmQNA
&%&HPRWL

4/ TH
LT MATT
Q&AA¢&

Bt

REVPTX

ORI M5 2

QQA vy \L)VMPKM % %\/‘\/

(75

Pé r_Ou\{

Hall of Fuefthwg Wodss XP ALY +Til

Lou/ Jﬂ@b”z’!i - gl see Gomorp
hb C(Msbﬁfﬂl p/ gm(apps
(M ‘f‘?’ld ‘/f) /’fl W@? app

Move affah ¢ it fu

AR 198 9T g,
O\/Q(§M1L eald
Oé Optimiged b g0 o ool w5 d M‘MJ"“’

—_

Mo\ o bl ﬂme/7
F? /J/(’.D) O’LC@

[/‘"l"dowz Tily

Spedal ttn on Lo
U g dom ghestag
i1 O R S)

|
(53¢

b2y

P01¢+(% hblt "Mﬁ)[(0/15,#/‘(('%({ l\Ow YOV e)@f TZ€/€ /[[/V?Ol/

Vogst Goug dok-not 0 ¢ kb,

(5@ S

~ o)l by 1
= VVWO]L 611(47 wtﬂ!lﬂ A/ﬂ

~ Jooks e U

=l T wll Sy b A ol hax (/i
Tl of sy N

6o e Cousidys Vol

/7L0W[‘\P4/£/Mvﬁt ‘/M,?L (’8,006:1!(’04 ([CZVVLCLJ“
_)[:fILS [t{w brw/{g

~ dugiag £l b b
= G oo shab/miss
o 69 Q‘i

’[\7}0(@% ot
N efficne - faster

Gaflry |
P G oaly pul o sk gy (et b

~hot Male L(oader miéﬁi’h’ € o fast
g4 Sees \{our [)(0\/5((Z\'Lbitﬂ"?

Y
TOioq; @ éﬁﬁ(ﬁ% (MPIGWILWF(M

~ Dos (g0 afterag _
s I okl

—WehVT

LJf?J' Q”i ,\Ya,l/{ 6“'1‘”'1
“211,(1, Ffex

~d M Ty

) Oﬂb‘z Foach Craal 0ad
~ @170 dos el

M cﬂ%/ i,

Ul@v | ree

{adx p(mL @{ f (e (WL/JS po(} of M@[W%
Usvally redungil

0“‘&“’\9 bOX)
mvim,fe T(f e 1(0 (;L\cmga 9(/1[/)1/{

(s €¢/a, [Ph ety
v alge Ty '
— Ubt [1 "4Ubfdll{° 0 '
R ek \dharors ’Eaﬁﬁ defult ohals hae 4,
— O bR/

ke | oo al godhes

[(g ody fowie o 30 eyepls

v
Mdel - ottt
S pujr w togells
e fo sopafe UL fo bkl
(TLQ md(le(
~ lvon '+ Lq (overe,cf ,Iﬂ hl(/‘; Ciﬂﬁé

~ Lo € avy) ’O;Q@

_ e(nb& +0 +(’b+ *\J@b -L¢{;J, T (/4|nL F&J

Y =& G ted model Sepet/
- Qaiaqr \L | pelt St
° Qe mpltﬂa@ fo sl pegle

h({)wﬁm chart o (00¢)

-
f\@/

({?m«{q f ﬁd’{aog f 9ll{e>)

7uﬁf' P(dﬁ :\ Vour 0w mocig(b TTW/' /:/reu

ol
(: l\,awq e L‘Eﬁ}fo\ﬁ Seat 'Fg \ofdwﬂf

O o flo fodhntee el Gant

aloewfm‘j T ! Oaf’ (ﬂ\f’o%pbl
({Dh.]r(o”e{ /\eed) 'ho (,(,w\/ a (OL

go V(g"’ Mn/b+ f)mm}@ aﬁ%dm(e,; d)(o“ h Contyollo,

V(OW I‘\Vsjl\ Pfdv &Q {@@d\yu{»\ d)ML (ronf/@”Q/ éh}h
) depssd Jibtons

60 M |

2)%(]@/[i C/‘WJ
i CL\O(Y@ Mf{/{@ L)f C‘on}/a)/r’/

M G
\:}y) l/(j: Mnc;!;o sitpk

O@

0

)

L ke

-———-'-'-—-_-—-___—

"Pm(ed//wl ~ hoe W g b got what pov waal

I
"Q%MJW “‘60%9 \Nl/lb”‘ TW M/L?l

- \X\L@d‘ M@{Mlﬂ/ﬁﬂfl ~ il C/@M{(; :,(

M@ OMM B D:redL qu:pz/a]ﬁb,(

f___‘_—————_____‘_

;\ Pot does b‘k\\&l IV\T}L bt

X (1 (;

gt y 3 b‘o(/‘w’j E
Db Jon sy MRy 0 UT Gl

07 TS JPWSQ/ ~ mal Gup 710 5f}+ (‘tﬁ{’i?t

ﬂ)[‘é‘gdggL“WIﬂ“ o 7L e Gt of }
0

(/]‘t@[& ;mpqu%](Hmt hﬂs)
HML meWM 0 wldggfs

J4

T Vg X <6

o
T‘V/ éfobai §0p¢ W) VIV :a /oca,l 5(4p€ (R%W m(a/e/

L7: Ul Software Architecture

+ PS1/RS1 out, due Sun

- make sure you're registered for the right course:

6.813U or 6.831G

Spring 2012 6.813/6.831 User Interface Design and Implementation

Ul Hall of Fame or Shame?

B@mox

!6,831 - User Interface Design and Implementation i

Spring 2012 6.813/6.831 User Interface Design and Implementation 2

Today’s candidate for the Hall of Fame & Shame is the Alt-Tab window switching interface in Microsoft
Windows. This interface has been copied by a number of desktop systems, including KDE, Gnome, and even
Mac OS X.

For those who haven’t used it, here’s how it works. Pressing Alt-Tab makes this window appear. As long as
you hold down Alt, each press of Tab cycles to the next window in the sequence. Releasing the Alt key
switches to the window that you selected.

The first observation to make is that this interface is designed only for keyboard interaction. Alt-Tab is the
only way to make it appear; pressing Tab (or Shift-Tab) is the only way to cycle through the choices. If you try
to click on this window with the mouse, it vanishes. The interface is weak on affordances, and gives the user
little help in remembering how to use it.

But that’s OK, because the Windows taskbar is the primary interface for window switching, providing much
better visibility and affordances. This Alt-Tab interface is designed as a shortcut, and we should evaluate it as
such.

It’s pleasantly simple, both in graphic design and in operation. Few graphical elements, good alignment, good
balance. The 3D border around the window name could probably be omitted without any loss.

This interface is a mode (since pressing Tab is switching between windows rather than inserting tabs into text),
but it’s spring-loaded, happening only as long as the Alt button is held down.

Is it efficient? A common error, when you’re tabbing quickly, is to overshoot your target window. You can fix
that by cycling around again, but that’s not as reversible as just moving backwards with a mouse. (You can
also back up by holding down Shift when you press Tab, but that’s not well-communicated by this interface,
and it’s tricky to negotiate while you’re holding Alt down.)

Ul Hall of Fame or Shame?

Spring 2012 6.813/6.831 User Interface Design and Implementation 3

For comparison, we’ll also look at the Exposé feature in Mac OS X. When you push F9 on a Mag, it displays
all the open windows — even hidden windows, or windows covered by other windows — shrinking them as
necessary so that they don’t overlap. Mousing over a window displays its title, and clicking on a window
brings that window to the front and ends the Exposé mode, sending all the other windows back to their old
sizes and locations.

Like Alt-Tab, Exposé is also a mode. Unlike Alt-Tab, however, it is not spring-loaded. It depends instead on
dramatic visual differences as a mode indicator — with its shrunken, tiled windows, Exposé mode usually looks
a lot different than the normal desktop.

To get out of Exposé mode without choosing a new window, you can press F9 again, or you can click the
window you were using before. That’s easier to discover and remember than Alt-Tab’s mechanism — pressing
Escape. When I use Alt-Tab, and then decide to abort it, I often find myself cycling through all the windows
trying to find my original window again. Both interfaces support user control and freedom, but Exposé
seems to make canceling more efficient.

The representation of windows is much richer in Exposé than Alt-Tab (at least on Windows XP). Rather than
Alt-Tab’s icons (many of which are identical, when you have several documents open in the same application),
Exposé uses the window itself as its visual representation. That’s much more in the spirit of direct
manipulation. (The version of Alt-Tab included in Windows Vista now shows images of the windows
themselves — try it!)

Let’s look at efficiency more deeply. Alt-Tab is a very linear interface — to pick an arbitrary window out of the
n windows you have open, you have to press Tab O(n) times. Exposé, on the other hand, depends on pointing —
so because of Fitts’s Law, the cost is more like O(log n). (Of course, this analysis only considers motor
movement, not visual search time; it assumes you already know where the window you want is in each
interface. But Exposé probably wins on visual search, too, since the visual representation shows the window
itself, rather than a frequently-ambiguous icon.)

But Alt-Tab is designed to take advantage of temporal locality; the windows you visited recently are at the
start of the list. So even if Exposé is faster at getting to an arbitrary window, Alt-Tab really wins on one very
common operation: toggling back and forth between two windows.

Today’s Topics

< Design patterns for GUIs
— View tree
— Listener
— Widget
— Model-view-controller
» Approaches to GUI programming
— Procedural
— Declarative
— Direct manipulation
« Web Ul at lightning speed
- HTML
— Javascript
— jQuery

Spring 2012 6.813/6.831 User Interface Design and Implementation 6

Today’s lecture is the first in the stream of lectures about how graphical user interfaces are implemented.
Today we’ll take a high-level look at the software architecture of GUI software, focusing on the design
patterns that have proven most useful. Three of the most important patterns are the model-view-controller
abstraction, which has evolved somewhat since its original formulation in the early 80’s; the view tree, which
is a central feature in the architecture of every important GUI toolkit; and the listener pattern, which is
essential to decoupling the model from the view and controller.

‘We’ll also look at the three main approaches to implementing GUTs, and use that context for a quick
introduction to HTML, Javascript, and jQuery, which together with CSS (next lecture) constitute the user
interface toolkit that we’ll be using in lectures and problem sets in this class. Note that the backend
development of web applications falls outside the scope of the course material in this class. So we won’t be
talking about things like SQL, PHP, Ruby on Rails, or even AJAX. For more about that, you may want to
check out the 6.470 IAP web programming competition, or the soon-to-be-offered 6.170 web programming
software lab.

DESIGN PATTERNS

Spring 2012 6.813/6.831 User Interface Design and Implementation

View Tree

» A GUI is structured as a tree of views
— Aview is an object that displays itself on a region of the screen

Wirek WidngEdior - logic gates demo
main panel

Do |Laiond | a0na | DiDww 1o

Spring 2012 6.813/6.831 User Interface Design and Implementation 8

This leads to the first important pattern we’ll talk about today: the view tree. A view is an object that covers a
certain area of the screen, generally a rectangular area called its bounding box. The view concept goes by a
variety of names in various UI toolkits. In Java Swing, they’re JComponents; in HTML, they’re elements or
nodes; in other toolkits, they may be called widgets, controls, or interactors.

Views are arranged into a hierarchy of containment, in which some views contain other views. Typical
containers are windows, panels, and toolbars. The view tree is not just an arbitrary hierarchy, but is in fact a
spatial one: child views are nested inside their parent’s bounding box.

How the View Tree is Used

* OQutput
— GUIs change their output by mutating the view tree
— A redraw algorithm automatically redraws the affected views
+ Input
— GUIs receive keyboard and mouse input by attaching listeners to
views (more on this in a bit)

* Layout

— Automatic layout algorithm traverses the tree to calculate positions
and sizes of views

Spring 2012 6.813/6.831 User Interface Design and Implementation 9

Virtually every GUI system has some kind of view tree. The view tree is a powerful structuring idea, which is
loaded with responsibilities in a typical GUI:

Output. Views are responsible for displaying themselves, and the view hierarchy directs the display process.
GUIs change their output by mutating the view tree. For example, in the wiring diagram editor shown on the
previous slide, the wiring diagram is changed by adding or removing objects from the subtree representing the
drawing area. A redraw algorithm automatically redraws the affected parts of the subtree.

Input. Views can have input handlers, and the view tree controls how mouse and keyboard input is processed.

Layout. The view tree controls how the views are laid out on the screen, i.e. how their bounding boxes are
assigned. An automatic layout algorithm automatically calculates positions and sizes of views.

We’ll look at more about each of these areas in the next three lectures.

Input Handling

+ Input handlers are associated with views
— Also called listeners, event handlers, subscribers, observers

main panel

drag listener

2 II

¥ T

area

Spring 2012 6.813/6.831 User Interface Design and Implementation 10

» To handle mouse input, for example, we can attach a handler to the view that is called when the mouse is
clicked on it. Handlers are variously called listeners, event handlers, subscribers, and observers.

Listener Pattern

» GUI input handling is an example of the Listener pattern
— aka Publish-Subscribe, Event, Observer

» An event source generates a stream of discrete events
- e.g., mouse events

« Listeners register interest in events from the source

— Can often register only for specific events — e.g., only want mouse
events occurring inside a view's bounds

— Listeners can unsubscribe when they no longer want events

= When an event occurs, the event source distributes it to all
interested listeners

Spring 2012 6.813/6.831 User Interface Design and Implementation 1

* GUI input event handling is an instance of the Listener pattern (also known as Observer and Publish-
Subscribe). In the Listener pattern, an event source generates a stream of discrete events, which correspond to
state transitions in the source. One or more listeners register interest (subscribe) to the stream of events,
providing a function to be called when a new event occurs. In this case, the mouse is the event source, and the
events are changes in the state of the mouse: its x,y position or the state of its buttons (whether they are pressed
or released). Events often include additional information about the transition (such as the x,y position of
mouse), which might be bundled into an event object or passed as parameters.

= When an event occurs, the event source distributes it to all subscribed listeners, by calling their callback
functions.

11

MODEL-VIEW-
CONTROLLER

Spring 2012 6.813/6.831 User Interface Design and Implementation

12

12

Separating Frontend from Backend

- We've seen how to separate input and output in GUls
— Output is represented by the view tree
— Input is handled by listeners attached to views

» Missing piece is the backend of the system

— Backend (aka model) represents the actual data that the
user interface is showing and editing

— Why do we want to separate this from the user interface?

Spring 2012 6.813/6.831 User Interface Design and Implementation 13

We’ve seen how GUI programs are structured around a view tree, and how input events are handled by
attaching listeners to views. This is the start of a separation of concerns — output handled by views, and input
handled by listeners.

But we’re still missing the application itself — the backend that actually provides the information to be
displayed, and computes the input that is handled.

13

Model-View-Controlier Pattern

Controller handles input
* listens for input events on the view trg
* calls mutators on model or view

View handles output
» gets data from the model to display it
* listens for model changes and updates

—

displ a =
isplay ///——___‘ M —y = s
-/

¥

input events \\
)

View

] Controller .

>N

\

\
/ get() &set() \
A _methods N

3 N chanée events ¥ = ,"éet() & sex()
get) & \ . " methods
methods o){ Model .

Model maintains application state
* implements state-changing behavior
* sends change events to views

Spring 2012 6.813/6.831 User Interface Design and Impleamentation 14

The model-view-controller pattern, originally articulated in the Smalltalk-80 user interface, has strongly
influenced the design of UI software ever since. In fact, MVC may have single-handedly inspired the software
design pattern movement; it figures strongly in the introductory chapter of the seminal “Gang of Four” book
(Gamma, Helm, Johnson, Vlissides, Design Patterns: Elements of Reusable Software).

MVC’s primary goal is separation of concerns. It separates the user interface frontend from the application
backend, by putting backend code into the model and frontend code into the view and controller. MVC also
separates input from output; the controller is supposed to handle input, and the view is supposed to handle
output.

The model is responsible for maintaining application-specific data and providing access to that data. Models
are often mutable, and they provide methods for changing the state safely, preserving its representation
invariants. OK, all mutable objects do that. But a model must also notify its clients when there are changes to
its data, so that dependent views can update their displays, and dependent controllers can respond
appropriately. Models do this notification using the listener pattern, in which interested views and controllers
register themselves as listeners for change events generated by the model.

View objects are responsible for output. A view usually occupies some chunk of the screen, usually a
rectangular area. Basically, the view queries the model for data and draws the data on the screen. It listens for
changes from the model so that it can update the screen to reflect those changes.

Finally, the controller handles the input. It receives keyboard and mouse events, and instructs the model to
change accordingly.

14

Advantages of Model-View-Controller

» Separation of responsibilities
— Each module is responsible for just one feature
+ Model: data
+ View: output
+ Controller: input
+ Decoupling
View and model are decoupled from each other, so they can
be changed independently
Model can be reused with other views
Multiple views can simultaneously share the same model

Views can be reused for other models, as long as the model
implements an interface

Spring 2012 6.813/6.831 User Interface Design and Implementation 15

In principle, this separation has several benefits. First, it allows the interface to have multiple views showing
the same application data. For example, a database field might be shown in a table and in an editable form at
the same time. Second, it allows views and models to be reused in other applications. The MVC pattern
enables the creation of user interface toolkits, which are libraries of reusable interface objects.

15

A Small MVC Example: Textbox

JTextField is a Component that can KeyListener is a listener for
be added to a view tree keyboard events
’// "-h_\\. ; ” ot e A i ’_,f-" ‘\._‘\
y \ keypress events / B
f \

JTextField |

move cursor 3

N\, tex chans\j,/" e Jedit text
\, events \ 4
gettext ../ ’
—{ Document
3

Document represents a mutable string of
characters

Spring 2012 6.813/6.831 User Interface Design and Implementation 16

A simple example of the MVC pattern is a text field widget (this is Java Swing’s text widget). Its model is a

mutable string of characters. The view is an object that draws the text on the screen (usually with a rectangle
around it to indicate that it’s an editable text field). The controller is an object that receives keystrokes typed
by the user and inserts them in the string.

Instances of the MVC pattern appear at many scales in GUI software. At a higher level, this text field might be
part of a view (like the address book editor), with a different controller listening to it (for text-changed events),
for a different model (like the address book). But when you drill down to a lower level, the text field itself is
an instance of MVC.

16

A Larger MVC Example

R i T
. :
"~ Controller ™

KeyListener

FilesystemTree

change events' /mutator

observer methods (e.g. fileDeleted(), 7 method
(e.g- getRootFolder();. il }\\ / gl
E-8 Nl ~. " (e.g.deleteFile())
getFiles()) 28 \
{ T Filesystem <

Spring 2012

Here’s a larger example, in which the view is a filesystem browser (like the Mac Finder or Windows Explorer),
the model is the disk filesystem, and the controller is an input handler that translates the user’s keystrokes and

mouse clicks into operations on the model and view.

Hard to Separate Controller and View

« Controller often needs output

— View must provide affordances for controller (e.g. scrollbar
thumb)

— View must also provide feedback about controller state

(e.g., depressed button)
+ State shared between controller and view: Who

manages the selection?

— Must be displayed by the view (as blinking text cursor or
highlight)

— Must be updated and used by the controller

— Should selection be in model?

= Generally not

» Some views need independent selections (e.g. two windows on
the same document)

« Other views need synchronized selections (e.g. table view &
chart view)

Spring 2012 6.813/6.831 User Interface Design and implementation 18

The MVC pattern has a few problems when you try to apply it, which boil down to this: you can’t cleanly
separate input and output in a graphical user interface. Let’s look at a few reasons why.

First, a controller often needs to produce its own output. The view must display affordances for the controller,
such as selection handles or scrollbar thumbs. The controller must be aware of the screen locations of these
affordances. When the user starts manipulating, the view must modify its appearance to give feedback about
the manipulation, e.g. painting a button as if it were depressed.

Second, some pieces of state in a user interface don’t have an obvious home in the MVC pattern. One of those
pieces is the selection. Many UI components have some kind of selection, indicating the parts of the interface
that the user wants to use or modify. In our text box example, the selection is either an insertion point or a
range of characters.

Which object in the MVC pattern should be responsible for storing and maintaining the selection? The view
has to display it, e.g. by highlighting the corresponding characters in the text box. But the controller has to use
it and modify it. Keystrokes are inserted into the text box at the location of the selection, and clicking or
dragging the mouse or pressing arrow keys changes the selection.

Perhaps the selection should be in the model, like other data that’s displayed by the view and modified by the
controller? Probably not. Unlike model data, the selection is very transient, and belongs more to the frontend
(which is supposed to be the domain of the view and the controller) than to the backend (the model’s concern).
Furthermore, multiple views of the same model may need independent selections. In Emacs, for example, you
can edit the same file buffer in two different windows, each of which has a different cursor.

So we need a place to keep the selection, and similar bits of data representing the transient state of the user
interface. It isn’t clear where in the MVC pattern this kind of data should go.

18

Widget: Tightly Coupled View & Controller

« The MVC idea has largely been superseded by an
MV (Model-View) idea

* A widget is a reusable view object that manages both
its output and its input

— Widgets are sometimes called components (Java, Fiex) or
controls (Windows)

» Examples: scrollbar, button, menubar

Spring 2012 6.813/6.831 User Interface Design and Implementation 19

In principle, it’s a nice idea to separate input and output into separate, reusable classes. In reality, it isn’t
always feasible, because input and output are tightly coupled in graphical user interfaces. As a result, the
MVC pattern has largely been superseded by what might be called Model-View, in which the view and
controllers are fused together into a single class, often called a component or a widget.

Most of the widgets in a GUI toolkit are fused view/controllers like this; you can’t, for example, pull out the
scrollbar’s controller and reuse it in your own custom scrollbar. Internally, the scrollbar probably follows a
model-view-controller architecture, but the view and controller aren’t independently reusable.

19

A Different Perspective on MVC

View handles output & low-level input
+ sends high-level events to the controller
e ‘-\\
p Controller mediates between model & view
\ « listens for input events on the view and
change events on the model
* calls mutators on model or view

i
-

"~

o

\ - get() & sex()
get() & set() methods.
methods - — -
et W~ Ty
~.. change A B

events

Model maintains application state
* implements state-changing behavior
* sends change events to controller

Spring 2012 6.813/6.831 User Interface Design and Implementation 20

Partly in response to this difficulty, and also to provide a better decoupling between the model and the view,
some definitions of the MVC pattern treat the controller less as an input handler and more as a mediator
between the model and the view.

In this perspective, the view is responsible not only for output, but also for low-level input handling, so that it
can handle the overlapping responsibilities like affordances and selections.

But listening to the model is no longer the view’s responsibility. Instead, the controller listens to both the
model and the view, passing changes back and forth. The events receiving high-level input events from the

view, like selection-changed, button-activated, or textbox-changed, rather than low-level input device events).

The Mac Cocoa framework uses this approach to MVC.

20

GUI Implementation Approaches

» Procedural programming

— Code that says how to get what you want (flow of control)
 Declarative programming

— Code that says what you want (no explicit flow of control)
 Direct manipulation

— Creating what you want in a direct manipulation interface

Procedural Declarative Direct Manipulation
1. Put down block A. A tower of 3 blocks. >

2. Put block B on block A.
3. Put block C on block B.

Spring 2012 6.813/6.831 User Interface Design and Implementation 21

Now let’s talk about how to construct the view tree, which will be a tale of three paradigms.

In procedural style, the programmer has to say, step-by-step, how to reach the desired state. There’s an
explicit thread of control. This means you’re writing code (in, say, Javascript or Java) that calls constructors to
create view objects, sets properties of those objects, and then connects them together into a tree structure (by
calling, say, appendChild() methods). Java Swing programming was largely procedural. Virtually every GUI
toolkit offers an API like this for constructing and mutating the view tree.

In declarative style, the programmer writes code that directly represents the desired view tree. There are
many ways to describe tree structure in textual syntax, but the general convention today is to use an HTML/
XML-style markup language. There’s no explicit flow of control in a declarative specification of a tree; it
doesn’t do, it just is. An automatic algorithm translates the declarative specification into runtime structure or
behavior.

Finally, in direct manipulation style, the programmer uses a direct-manipulation graphical user interface to
create the view tree. These interfaces are usually called GUI builders, and they offer a palette of view object
classes, a drawing area to arrange them on, and a property editor for changing their properties.

All three paradigms have their uses, but the sweet spot for GUI programming basically lies in an appropriate
mix of declarative and procedural — which is what HTML/Javascript provides.

21

Markup Languages

- HTML declaratively specifies a view tree

<body>
<div>What are you doing now?</div>
<div><textarea><ftextarea></div>
<div><button>Send</button> sign out</

a></div> bod
<
</body> y> '
<div>

. bt
What are you doing now? > text
: <div>
E L— <textarea>
: “ <div>
(Send) sign out t: <button> > text

<a> — text
Spring 2012 6.813/6.831 User Interface Design and Implementation 22

Our first example of declarative Ul programming is a markup language, such as HTML. A markup language
provides a declarative specification of a view hierarchy. An HTML element is a component in the view
hierarchy. The type of an element is its tag, such as div, button, and img. The properties of an element are its
attributes. In the example here, you can see the id attribute (which gives a unique name to an element) and

the src attribute (which gives the URL of an image to load in an img element); there are of course many others.

There’s an automatic algorithm, built into every web browser, that constructs the view hierarchy from an
HTML specification — it’s simply an HTML parser, which matches up start tags with end tags, determines
which elements are children of other elements, and constructs a tree of element objects as a result. So, in this
case, the automatic algorithm for this declarative specification is pretty simple.

22

HTML Syntax

<html>
<head></head>
<body>
<button disabled="true">

Don't Press Me

</button>
<l—=
<button>
Press Me Instead
</button>
-
</body>
</html>
Spring 2012 6.813/6.831 User Interface Design and Implementation 23

Boilerplate: DOCTYPE, html, head, and body elements should be part of every HTML file.
An element consists of a start tag, attributes, content, and end tag.
Case doesn’t matter for tag names and attribute names

Attribute values can be ‘quoted’ or “quoted”
» or not quoted at all, but it’s better to quote

Text outside of a tag is grouped together into a “text node”
Whitespace is (mostly) ignored

Some kinds of elements are void (never have an end tag)
* ¢.g. img, br
» this is often reinforced with an extra slash: , both to help the reader, and because
XML parsers demand it before they’ll consider your HTML file (HTML is related to XML, and
occasionally they try to play nicely together)

3

Comments look like <!-- -->

<, >, and & need to be escaped: < > & respectively

23

Important HTML Elements for Ul Design

Layout
Box <div> .
Grid <table>, <tr>, <td> Pixel output
<|mg>
+ Text

+ Stroke output

Font & color <canvas> (Firefox, Safari)

Widgets :
Hyperlink <a> . Java‘scnpt code
Button <button> <script>
Textbox <input type="text">
Multiline text <textarea> » CSS style sheets
Rich text <div contenteditable="true"> <slyle>
Drop-down <selecl> <oplion>
Listbox <select multiple="true">

Checkbox <input type="checkbox">
Radiobutton <input type="radio”>

Spring 2012 6.813/6.831 User Interface Design and Implementation 24

Here is a cheat sheet of the most important elements that you might use in an HTML-based user interface.

The <div> and elements are particularly important, and may be less familiar to people who have only
used HTML for writing textual web pages. By default, these elements have no presentation associated with
them; you have to add it using style rules (which we’ll explain next lecture). The <div> element creates a box,
and the element changes textual properties like font and color while allowing its contents to flow and
word-wrap.

HTML has a rather limited set of widgets. There are other declarative Ul languages similar to HTML that have
much richer sets of built-in components, such as MXML (used in Adobe Flex) and XUL (used in Mozilla
Firefox) and XAML (used in Microsoft WPF and Silverlight).

We’ll talk more about the output elements, img and canvas, in the output lecture.

The <script> element to embed procedural code (usually Javascript) into an HTML specification. This actually
breaks the model of declarative programming, because it introduces an explicit flow of control! The <script>
clements are executed in the order that they are encountered in parsing the HTML, which means that they
might see only a partially-constructed tree.

Finally, the <style> element is used for embedding another declarative specification, CSS style sheets, which
we’ll look at next lecture.

24

Exercise

« Use htmledit.squarefree.com to construct the Ul
shown below

— you'll need <div>, <textarea>, <button>, <a>

What are you doing now?

1 4

sign out ,

= Use your browser’s developer tools to inspect the Ul
you just created
— e.g. find the <textarea>

Spring 2012 6.813/6.831 User Interface Design and Implementation

25

25

View Tree Manipulation

+ Javascript can procedurally mutate a view tree

<script>

var doc = document

var div1 = doc.createElement(*div")
div1.appendChild(doc.createTextNode("What are you doing now?”)

var div3 = doc.createElement("div") What are you doing now?
var button = doc.createElement("button®) i
button.appendChild(doc.createTextiNode("Send™))
div3.appendChild(button)
var a = doc.crealeElement("a")
a.setAttribute("href”, "#")
a.appendChild(doc.createTextNode("sign out™))
div3.appendChild(a)
<[script>

Spring 2012 6.813/6.831 User Interface Design and Implementation 26

Here’s procedural code that generates the same HTML view tree, using Javascript and the Document Object
Model (DOM). DOM is a standard set of classes and methods for interacting with a tree of HTML or XML
objects procedurally. DOM interfaces exist not just in Javascript, which is the most common place to see it,
but also in Java and other languages.

Note that the name DOM is rather unfortunate from our point of view. It has nothing to do with “models” in
the sense of model-view-controller — in fact, the DOM is a tree of views. It’s a model in the most generic sense
we discussed in the Learnability lecture, a set of parts and interactions between them, that allows an HTML
document to be treated as objects in an object-oriented programming language.

Most people ignore what DOM means, and just use the word (pronouncing it “Dom” as in “Dom DeLouise”).
In fact DOM is often used to refer to the view tree.

Compare the procedural code here with the declarative code earlier.

Incidentally, you don’t always have to use the setAttribute method to change attributes on HTML elements. In
Javascript, many attributes are reflected as properties of the element (analogous to fields in Java). For
example, obj.setAttribute(“id”, value) could also be written as obj.id = value. Be warned, however, that
only standard HTML attributes are reflected as object properties (if you call setAttribute with your own wacky
attribute name, it won’t appear as a Javascript property), and sometimes the name of the attribute is different
from the name of the property. For example, the “class” attribute must be written as obj.className when used

as a property.

Raw DOM programming is painful, and worth avoiding. Instead, there are toolkits that substantially simplify
procedural programming in HTML/Javascript -- jQuery is a good example, and the one we’ll be using.

26

Javascript in One Slide

Like Java... Like Python...

expressions no declared types

hyp = Math.sqrt(a*a + b*b) var x = 5;

console.log(“Hello” for (var 1 = 0; 1 < 18; ++i) {.}

+ “, world”);

objects and arrays are dynamic

statements var obj = { x: 5, y: -1 };
if (a < b) { return a } obj.z = 8;
else { return b } var list = ["a”, “b”];
list[2] = “c”;
comments
/* this functions are first-class
is a comment */ function square(x) { return x*x; }
// and so is this var double = function(a) {
return 2*a; }
Spring 2012 6.813/6.831 User Interface Design and Implementation 27

Here’s everything you need to know about Javascript. Ha! Not exactly. But Javascript is not a hard language
to pick up —it’s a lot like Java and Python in many ways, and you probably already know Java and Python.
Most of the differences are syntactic, which is visible and easy to learn by example. The trickiest pitfalls in
Javascript (or in learning any language) are its semantics. Javascript’s particular semantic pitfalls are variable
scoping (which unlike Java is function scoped, not block scoped,and unlike Python it defaults to putting new
variables in the global scope rather than the local scope) and the semantics of this (which doesn’t behave quite
like Java’s this or Python’s self). The variable scoping pitfalls are responsible for both warnings on this slide —
(a) never omit the var keyword when you introduce a new variable, and (b) even though you should use var in
your for loops, don’t expect it to behave as in Java — there’s only one variable i for the entire function, it isn’t
just scoped to the body of the for loop. A corollary of that is that functions you create within the body of the
for loop all share the same variable i. (See “The Infamous Loop Problem™ in http://robertnyman.com/
2008/10/09/explaining-javascript-scope-and-closures/)

A good online tutorial for Javascript is “A re-introduction to JavaScript” (https://developer.mozilla.org/en/
JavaScript/A_re-introduction_to_JavaScript).

Some good online articles describing the pitfalls of scoping and this:

» http://jszen.blogspot.com/2005/04/variable-scoping-gotchas.html

« http://stackoverflow.com/questions/500431/javascript-variable-scope

* http://robertnyman.com/2008/10/09/explaining-javascript-scope-and-closures/

* http://www.digital-web.com/articles/scope_in_javascript/

27

jQuery in One Slide

« Select nodes

$(“#send”) | <button id="send" class="toolbar">
$(“.toolbar") <.'bSE:tnd b
$(“button”) ution

+ Create nodes
$('<button class="toolbar’></button>')

» Act on nodes
$(“#send”).text() ! returns “Send”
$(“#send”).text(“Tweet") // changes button label
$(“.toolbar”).attr("disabled”, “true”)
$("#send”).click(function() { ... })
$(“#textarea”).val()
$(“#mainPanel”).html(“<button>Press Me</button>")

Spring 2012 6.813/6.831 User Interface Design and Implementation 28

jQuery offers a much better way to interact with the DOM than the actual DOM interface. jQuery is a

Javascript library that you include in your HTML page. See jquery.com for more details, documentation, and
tutorials.

The essence of jQuery is selecting a node (or set of nodes) in the DOM and acting on it (getting properties,
setting properties, or changing tree structure).

Selection is done by a pattern language (which is a good pattern language to know because it’s used in CSS as
well, which we’ll be learning about in the next lecture). For example, the pattern #send finds a node with the id

attribute “send”, .toolbar finds nodes with the class attribute “toolbar”, and button just finds all <button>
nodes.

jQuery provides a variety of methods for acting on the nodes you find. In general, jQuery methods come in
pairs with the same name: the method with no arguments gets a value, and the method with arguments sets a
value. So .text() returns the text contained in the node’s descendents, while .text(“Tweet”) replaces all those
descendents with the text node “Tweet”. Similarily, .attr() gets and sets attribute values, .click() sets a mouse

event handler (or simulates a click), .val() gets or sets the value of a text widget, and .html() gets or sets the
descendents of a node as HTML.

28

Exercise

= Add jQuery to your user interface
<script src="http://code.jquery.comfjquery-1.7.1.min.js"></script>

* Attach an event listener to the Send button that displays
the text area in your developer console

put id attributes on the Send button and the <textarea>

use $("#id") to find an element by id

use.click() to attach an event handler

use .val() method to get the value of the textarea

use console.log() to print to the console

I

Spring 2012 6.813/6.831 User Interface Design and Implementation 29

29

Mixing Declarative and Procedural Code

<body> v
<div>What are you doing now?</div> ‘What are you doing now?
<div><texlarea id="msg></textarea></div> | i
<div><button id="send">Send</button></div> I s
<div id="sent" style="font-style: italic™> (SQHd)

<div>Sent messages appear here.</div> Sent messages appear here.
</div>

</body>

<script src="http://code.jquery.com/jquery-1. 5 min.js"></script>

<script> . i varsent= S("#senl") htmi(}
${function() { - sent += "<div>" + msg + "</div>"
$(“#send").click(function() { $("#sant") htmi(sent)

_varmsg = $("#msg’).val(}

N
Hi
</script>

‘var div = 5('<dw><ldw> Y text(msg)
$(“#sam‘) append(dw) .

Spring 2012 6.813/6.831 User Interface Design and Implementation 30

To actually create a working interface, you frequently need to use a mix of declarative and procedural code.
The declarative code is generally used to create the static parts of the interface, while the procedural code
changes it dynamically in response to user input or model changes. Even inside the procedural code, we can
use declarative code — a template of HTML that is filled with dynamically-computed parts.

One issue to think about is whether this template is constructed as a string of characters (as in the top green
box), or as a data structure of objects (as in the bottom green box). Which do you think is better?

Note also that the code in the <script> tag is wrapped in a mysterious $(function() {...}), which is highlighted
in red. This is jQuery shorthand for $(document).ready(function() {...})), which is in fact an event handler
attached to the root of the view tree (the document). This event handler is called just once, after the entire
HTML file has been parsed and the tree has been constructed. This is important to do! Why? Where could we
put the <script> element so that the Send button doesn’t even exist when the <script> element is executed?
This is one of the ways that it’s tricky to combine procedural and declarative programming.

30

Exercise

» Add a container for sent messages
<div id="sent" style="font-style: italic">
<div>Sent messages appear here.</div>
</div>

* Change the Send button’s click handler so that it adds

messages to the sent container

— use .html() to get or set the subtree under a node
use .text() to get or set the text inside a node

use .append() to add children to a node

use $("<tag>...</tag>") to create a subtree of HTML

Spring 2012 6.813/6.831 User Interface Design and Implementation

31

31

Advantages & Disadvantages of
Declarative Ul

= Usually more compact

= Programmer only has to know how to say what, not
how

— Automatic algorithms are responsible for figuring out how
« May be harder to debug

— Can't set breakpoints, single-step, print in a declarative
specification

— Debugging may be more trial-and-error
= Authoring tools are possible

— Declarative spec can be loaded and saved by a tool;
procedural specs generally can’t

Spring 2012 6.813/6.831 User Interface Design and Implementation 32

Now that we’ve worked through our first simple example of declarative Ul — HTML - let’s consider some of
the advantages and disadvantages.

First, the declarative code is usually more compact than procedural code that does the same thing. That’s
mainly because it’s written at a higher level of abstraction: it says what should happen, rather than how.

But the higher level of abstraction can also make declarative code harder to debug. There’s generally no
notion of time, so you can’t use techniques like breakpoints and print statements to understand what’s going
wrong. The automatic algorithm that translates the declarative code into working user interface may be
complex and hard to control — i.e., small changes in the declarative specification may cause large changes in
the output. Declarative specs need debugging tools that are customized for the specification, and that give
insight into how the spec is being translated; without those tools, debugging becomes trial and error.

On the other hand, an advantage of declarative code is that it’s much easier to build authoring tools for the
code, like HTML editors or GUI builders, that allow the user interface to be constructed by direct manipulation
rather than coding. It’s much easier to load and save a declarative specification than a procedural specification.
Some GUI builders do use procedural code as their file format — e.g., generating Java code and automatically
inserting it into a class. Either the code generation is purely one-way (i.e., the GUI builder spits it out but can’t
read it back in again), or the procedural code is so highly stylized that it amounts to a declarative specification
that just happens to use Java syntax. If the programmer edits the code, however, they may deviate from the
stylization and break the GUI builder’s ability to read it back in.

32

Summary

« Design patterns
— View tree is the primary structuring pattern for GUIs, used for
output, input, and layout
— Listener is used for input and model-view communication
— Model-view-controller decouples backend from GUI
« Approaches to GUI programming
— Procedural, declarative, direct manipulation
— HTML, Javascript, jQuery

Spring 2012 6.813/6.831 User Interface Design and Implementation 33

33

L Gatby

pé ’ Due $Uﬂ

‘ i T 0 (V74 :)
bip Perkgs vof Th o L i(% | (1o ek
CRY ko, de rout s,

Hull of e (Shave | Wiudis XP (1

“looks ik g ral cal
~ s Orani(ik Wmum pa(
= My [Fdtaflen cuh i
— X ;A @r@de gdqoo)
- d%“ﬂﬂ ale X
- L\/\L aky (oagish”va v/ h(baa/tl

- g%(+ = (empat vv/ P/%/awt%“y

Al

*ﬂﬂl 5bV(I°M‘(C%(’(UV‘[C’MI W/ [KLyh’WJ
" hhsp lilg

' Lv;mlom [Mzb@a/d
‘Smﬁh /ll"& d{bﬁ{"’*{

‘““Wl'w ’15 Yove g

219

4

V\/[ole Clro/

=]“ Mt’f\

Wk 7 dogs dopads 00 mode

5
T appnd

tha &
/‘Oﬁtmg L\ﬂﬂ:ptqg ’}o (fl(bptey
}Jui’ h@)d\ ﬁ C(Wﬁ Jflb,v(o/
OMK{ 5}W?\> N #

~ 66()((6(10(0

@065 pol- 61’10‘1/ P\«ﬂl 13 # n hmg” 4
(WHV S il it

4”% LJ 4680

A Controlles [‘(leMb mn VIW l
hot o [ies b Co0Mer

1677 Wi

Y
0 bl Gholl b hundtbd b, ofie conbl

/
N+ s

D la/(» ﬁwtﬂl’l otka ['5 Mdmﬁ by e (f}
QU4

— MR (ompagt-
U\ Wl o it muialen (T heille

P

—T@&l"*‘f ! E e
—
- hm an ecwr
Ly fuk
[
= estptlany
T des
— (rvention
—(Qover
i W%c&j@)

B 7lr O\JQO 6{3 i 7o 6&{@(

8 mCLZ bf_ Mo Q/ﬁ’/‘

E{rof (S
Col\((& t Lg%

W fy eyesle ,/a‘F of fYK({;d//f

—5lp > bad evautug
~ lape Y Tk of s
—fond 1n ghilled belawiar
@d@w Wi (ohgt v e Jpz-'/tj
Vo wioy puadee fo, g
Ustd E@@IQ’MW,%NW

@d\a o Yomb « Wil wass P ~Eh 5C e

Moot of Bl

Mdides ~50% of fg
é}%e (W/uv\j

%WFW mé% e ﬂwbm 0} GXcBJ/

Pro & dores

(ambm/ eior
i el

M S Ay
{wo \O(ocdv/ﬂ% QWL é/m

L p«/[x W09 iy (/«/LQA m a/;yg%

A(/dz 6/1\0)[&5 'l/\ EX(!V(/‘M’!‘ ée B(ul%
b CHE W - B

Whger N edik f

Dygighhnecac
Pecca fingy W0
’(Oﬂﬁlmlencz gooi fo {Wm@

Tk ol vy

\M‘Q W[vi L\&?nmore, G
- .03 5 ¢ 87l

9

Mode g

B,

| émw JW\IM{) éﬂ@b cl\fg(’((’/d‘ act ;M) C{WMMZQ
M Lo mode yov dje -

“ﬁbovld be 56&1/‘64{‘
(QW Lo(,[‘\ QCOML/OI@L 5&/@(@1%#
?\ﬂ: ¢ J’Vtée/L /5 (mmaad m@Jg/

Capb Lk no} v (uisthlr - f nol L“"u‘j ﬂfﬂ/m
&r 2\(JIOLF {J(dce On GM lrveybwrd

66«‘@@“1 (¥ B i moldes

Un wisu|

\9&% @Wﬂflﬁ \t (Omote (0,.}\/4L§
Cme ok 6\\1103

/_T/ W
Shory (4 wirng gl
~ 5',,,12[(,\;[// . 6}70“% %{ueﬂ) (fa"t wy/ b’
“‘Mg\(\ {(% -~ Mwgl Mooy ,'4 Jos f h,’fﬂtj E‘,;f,,
Nt (1) Shit1 F e

0 ot pogu affute
(Y Jﬁna‘flfu N lknc- (~

G

HWM LM 4 5,0&%1 / Q;mecy #xggf[g ol

? 0 e e F o
npe 5 vav o [@m Mg T

rl'Oh y

56 ol

Opeed S€ ooy

{ !‘,qulv[(@[W& »v/ [03 C‘;l‘(,ﬂb)
p

Tiroe Peration
-
Cqpte By

_AJo‘t(], MHWL 5¢4, w/ { qne. P/@ﬂ)(

| T a—

i =

= m&%h?fﬂ
— Lo U

- b\bé]\ C(/((r\g(J/O\Q “nk) Aoy FKWI @mmna gy

Male

{
— —Elmhate mleg
= (- make male Vo Clew
B [/\lLL w\«,f\ k/(wdq..r ORNTY }q

(v g otk for VEMHUL/
"M 05 Bor

= Eoen wise whin Ont[WM 0 LM Scee

Of 59(‘(49 (Oﬁd&‘
— Yoo M1 d\(/M/HZ 110 Z{ 0}*""’4
— Ohid
- Dfokg t D(o()

(ofudn
“lommon (ion o epar P{Wﬁm
SO Rt Daseqnss ot
“‘\ov* \ Moe [Ova pf%&
> not wock for 51},0
People (e W ot @pw/(tﬂy @ﬂg,;/%/
Nt B anvynay

UL ﬁpw‘m‘o\f
—undo betle

b
O &Qaé U‘j@, T:/Oeiom On Ow/,
Unky
ﬂo/q Usdile_ qu(M 40 (M("Wﬁm
Wbl o Bl el bl o o el
actaly vadoes

y
- hﬂv Maiy wnde Gletng 1

"(/nlfb ‘J‘(Vld)/r
~ o ma GMEV\IM st o reaodd |

=64 lerlor
1l
~ (s fw‘uhﬂ?

= o vl undy (g AP0 hieq
n 0 Sl bo)&)]

OJ\N’%‘l Globc&l (/f»clo L\tg)lﬁf(= ;,1 pige ~ bt 50) me gu/m)
t]: l‘ E‘”’\\ b‘)\(l\ﬁj Own l/hdg df@z{q v
"&W“A"“j oy gl h actle Cow

Qo 500 {ams o @ wnd h‘(ﬁfwff.
Uﬂitfb = CA/M agg(egqf& p Uft pKQJLGW[(; I/Vhdlt g”"f (e
FF - babl\ Y \Ml Non 1(1;0& Cher (“Le buﬁwa«fJ “/ omall I

@

1 Chore hiplighs cadye et
W ot %ol 4, £ hdde

(/UJR i({m ’m m}@

L8: Safety

» PS1/RS1 due Sun
+ Group meetings with TA this Thu & Fri
* GR2 out Mon, due next Sun

Spring 2012 6.813/6.831 User Interface Design and Implementation

<o

Ul Hall of Fame or Shame?

B calculator
Edit View Help

| 0. |

7 el =)]
& DOEOE]
)
1
1

L) e Jls Jle JL)L
(s] (2 a0 e
B e E R

Spring 2011 6.813/6.831 User Interface Design and Implementation 2

Today’s candidate for the Halls of Fame and Shame is the Windows calculator.

It looks and works just like a familiar desk calculator, a stable interface that many people are familiar with. It’s
a familiar metaphor, and trivial for calculator users to pick up and use. It deviates from the metaphor in some
small ways, largely because the buttons are limited to text labels. The square root button is labeled “sqrt”
rather than the root symbol. The multiplication operator is * instead of X.

But this interface adheres to its metrafphor so carefully that it passes up some tremendous opportunities to
improve on the desk calculator interface. Why only one line of display? A history, analogous to the paper tape
printed by some desk calculators, would cost almost nothing. Why only one memory slot? Why display “M”
nstead of the actual number stored in memory? All these issues violate the visibility of system state. A more
serious violation of the same heuristic: the interface actually has invisible modes. When I’m entering a
number, pressing a digit appends it to the number. But after I press an operator button, the next digit [press
starts a new number. There’s no visible feedback about what low-level mode I’m in. Nor can I tell, once it’s
time to push the = button, what computation will actually be made.

Most of the buttons are cryptically worded (recognition, not recall). MC, MR, MS, and M+? What’s the
difference between CE and C? My first guess was that CE meant “Clear Error” (for divide-by-zero errors and
the like); some people in class suggested that it means “Clear Everything”. In fact, it means “Clear Entry”,
which just deletes the last number you entered without erasing the previous part of the computation. “C”
actually clears everything.

It turns out that this interface also lets you type numbers on the keyboard, but the interface doesn’t give a hint
(affordance) about that possibility. In fact, in a study of experienced GUI users who were given an onscreen
calculator like this one to use, 13 of 24 never realized that they could use the keyboard instead of the mouse
(Nielsen, Usability Engineering, p. 61-62). One possible solution to this problem would be to make the
display look more like a text field, with a blinking cursor in it, implying “type here”. Text field appearance
would also help the Edit menu, which offers Copy and Paste commands without any obvious selection
(external consistency).

Finally, we might also question the use of small blue text to label the buttons, which is hard to read, and the use
of both red and blue labels in the same interface, since chromatic aberration forces red and blue to be focused
differently. Both decisions tend to cause eyestrain over periods of long use.

Today’s Topics

= Kinds of human error

— capture, description, modes
» Error prevention

— confirmation
 Error recovery

— user control & freedom

— undo

+ Ermror messages

Spring 2012 6.813/6.831 User Interface Design and Implementation

HUMAN ERROR

Spring 2012 6.813/6.831 User Interface Design and Implementation

Error Types

= Slips and lapses
— Failure to correctly execute a procedure
— Slip is a failure of execution, lapse is a failure of memory
— Typically found in skilled behavior
» Mistakes
— Using wrong procedure for the goal

— Typically found in rule-based behavior or problem-solving
behavior

Spring 2011 6.813/6.831 User Interface Design and Implementation 7

Errors can be classified into slips and lapses and mistakes according to how they occur.

Slips and lapses are found in skilled behavior — execution of procedures that the user has already learned. For
example, pressing an onscreen button — moving the mouse pointer over it, pressing the mouse button, releasing
the mouse button — is a skill-based procedure for virtually any computer user. An error in executing this
procedure, like clicking before the mouse pointer is over the button, is a slip. This is just a low-level example,
of course. We have many higher-level, learned procedures too — attaching a file to an email, submitting a
search to Google, drawing a rectangle in a paint program, etc. An error in execution of any learned procedure
would be a slip.

Slips are distinguished from lapses by the source of the failure. A slip is a failure of execution or control — for
example, substituting one action for another one in the procedure. A lapse is a failure of memory — for
example, forgetting the overall goal, or forgetting where you are in the procedure.

A mistake, on the other hand, is an error made in planning or rule application. One framework for classifying
cognitive behavior divides behavior into skill-based (learned procedures), rule-based (application of learned if-
then rules), and knowledge-based (problem solving, logic, experimentation, etc.) Mistakes are errors in rule-
based or knowlege-based behavior; e.g., applying a rule in a situation where it shouldn’t apply, or using faulty
reasoning.

Overall, slips and lapses are more common than mistakes, because we spend most of our actual time executing
learned procedures. If we spent most of our time problem-solving, we'd never get much done, because problem
solving is such a slow, cognitively intensive, serial process. I've seen statistics that suggest that 60% of all
errors are slips or lapses, but that's highly dependent on context. Relative to their task, however, slips and
lapses are less common than mistakes. That is, the chance that you'll err executing any given step of a learned
procedure is small -- typically 1-5%, although that's context dependent as well. The chance that you'll err in
any given step of rule-based or problem-solving behavior is much higher.

We won’t have much to say about mistakes in this lecture, but much research in human error is concerned with
this level — e.g., suboptimal or even irrational heuristics that people use for decision making and planning. A
great reference about this is James Reason, Human Error, Cambridge University Press, 1990.

Capture Errors

— Leave your house and find yourself walking to school instead of
where you meant to go

— vi :w command (to save the file) vs. :wg command (to save and
quit)

— Excel array formulas must be entered with Ctrl-Shift-Enter, not
just Enter

Spring 2011 6.813/6.831 User Interface Design and Implementation 8

Here are some examples of common slips. A capture slip occurs when a person starts executing one sequence
of actions, but then veers off into another (usually more familiar) sequence that happened to start the same
way. A good mental picture for this is that you’ve developed a mental groove from executing the same
sequence of actions repeatedly, and this groove tends to capture other sequences that start the same way. In the
text editor vi, it’s common to quit the program by issuing the command “:wq”, which saves the file (w) and
quits (q). Ifa user intends just to save the file (:w) but accidentally quits as well (:wq), then they’ve committed
a capture error. Microsoft Excel has a curious (and very useful!) class of formulas called array formulas, but in
order to get Excel to treat your formula as an array formula, you have to press Ctrl-Shift-Enter after you type it
— every time you edit it. Why is this prone to capture slips? Because virtually every other edit you do is
terminated by Enter, so you’re very likely to fall into that pattern automatically when you edit an array
formula.

Description Errors

Patrick Edward
Mrs, Susan lwam
! 2012 coke award
} & USLUGI POSTA

: BMC Softwars We
Crisis Counseling
Wine Masters Ch:

Kendall Station 6.813/6.831 April Lim

3 DotNetNuke Corp
Kenmore Station
ORC Internationa

Ellen Gibson

= Consistency (same) is good for learning

« Inadvertent similarity (close-but-not-quite) is bad for
safety

Spring 2011 6.813/6.831 User Interface Design and Implementation 9

A description slip occurs when two actions are very similar. The user intends to do one action, but
accidentally substitutes the other. A classic example of a description error is reaching into the refrigerator for a
carton of milk, but instead picking up a carton of orange juice and pouring it into your cereal. The actions for
pouring milk in cereal and pouring juice in a glass are nearly identical — open fridge, pick up half-gallon
carton, open it, pour— but the user’s mental description of the action to execute has substituted the orange juice
for the milk.

Mode Error

» Modes: states in which actions have different
meanings
— Vi's insert mode vs. command mode
— Caps Lock
— Drawing palette

Spring 2011 6.813/6.831 User Interface Design and Implementation 10

Another kind of error, clearly due to user interface, is a mode error. Modes are states in which the same action has different
meanings. For example, when Caps Lock mode is enabled on a keyboard, the letter keys produce uppercase letters. The
text editor vi is famous for its modes: in insert mode, letter keys are inserted into your text file, while in command mode
(the default), the letter keys invoke editing commands. In the first lecture, we talked about a mode error in Gimp:
accidentally changing a menu shortcut because your mouse is hovering over it.

Mode errors occur when the user tries to invoke an action that doesn’t have the desired effect in the current mode. For
example, if the user means to type lowercase letters but doesn’t notice that Caps Lock is enabled, then a mode error occurs.

Mode errors are generally slips, an error in the execution of a learned procedure, caused by failing to correctly evaluate the
state of the interface.

10

Causes of Slips

« “Strong-but-wrong” effect

— Similarity

— High frequency
+ Inattention or inappropriate attention
» Speed/accuracy tradeoff

Probability
of slip \/ moves down with practice
Speed of execution
Spring 2011 6.813/6.831 User Interface Design and Implementation 11

The slips and lapses we’ve discussed have a few features in common. First, the root cause of these errors is
often inattention. Since slips and lapses occur in skilled behavior, execution of already well-learned
procedures, they are generally associated with insufficient attention to the execution of the procedure, or
omission or distraction of attention at a key moment.

Second, the particular erroneous behavior chosen is often selected because of its high similarity to the correct
behavior (as in capture and description slips), or of its high frequency relative to the correct behavior (as in
capture slips). Very common, or very similar, patterns are strongly available for retrieval from human memory.
So errors are often strong-but-wrong behavior.

Finally, we can tune our performance to various points on a speed-accuracy tradeoff curve. We can force
ourselves to make decisions faster (shorter reaction time) at the cost of making some of those decisions wrong.
Conversely, we can slow down, take a longer time for each decision and improve accuracy. It turns out that for
skill-based decision making, reaction time varies linearly with the log of odds of correctness; i.e., a constant
increase in reaction time can double the odds of a correct decision.

The speed-accuracy curve isn’t fixed; it can be moved down and to the right by practicing the task. Also,
people have different curves for different tasks; a pro tennis player will have a high curve for tennis but a low
one for surgery.

One consequence of this idea is that efficiency can be traded off against safety. Most users will seck a speed
that keeps slips to a low level, but doesn’t completely eliminate them.

11

ERROR PREVENTION

Spring 2012 6.813/6.831 User Interface Design and Implementation

12

12

Safety from Capture Errors

= Avoid habitual action sequences with identical
prefixes

Spring 2011 6.813/6.831 User Interface Design and Implementation 13

Let’s discuss how to prevent errors of these sorts. In a computer interface, you can deal with capture errors by
avoiding very common action sequences that have identical prefixes.

13

Safety from Description Errors
« Avoid actions with very similar descriptions
» Keep dangerous commands away from common
ones
O - - e—
Remove
ind an Excel
alled camer
. I have only 1 cq"'
5 wall. s
: the last data
Spring 2011 6.813/6.831 User Interface Design and Implementation 14

Description errors can be fought off by applying the converse of the Consistency heuristic: different things
should look and act different, so that it will be harder to make description errors between them. Avoid actions
with very similar descriptions, like long rows of identical buttons.

You can also reduce description errors by making sure that dangerous functions (hard to recover from if
invoked accidentally) are well-separated from frequently-used commands. Outlook 2003 makes this mistake:
when you right-click on an email attachment, you get a menu that mixes common commands (Open, Save As)
with less common and less recoverable ones — if you print that big file by mistake, you can’t get the paper
back. And if you Remove the attachment, it’s even worse — undo won’t bring it back! (Thanks to Amir Karger
for this example.)

14

Safety from Mode Errors

Eliminate modes

* Increase visibility of mode
Spring-loaded or temporary modes
Disjoint action sets in different modes

Spring 2011 6.813/6.831 User Interface Design and Implementation 15

There are many ways to avoid or mitigate mode errors. Eliminating the modes entirely is best, although not
always possible. Modes do have some uses — they make command sets smaller, for example. When modes are
necessary, it’s essential to make the mode visible. But visibility is a much harder problem for mode status than
it is for affordances. When mode errors occur, the user isn’t actively looking for the mode, like they might
actively look for a control. As a result, mode status indicators must be visible in the user’s locus of attention.
That’s why the Caps Lock light, which displays the status of the Caps Lock mode on a keyboard, doesn’t really
work.

Other solutions are spring-loaded or temporary modes. With a spring-loaded mode, the user has to do
something active to stay in the alternate mode, essentially eliminating the chance that they’ll forget what mode
they’re in. The Shift key is a spring-loaded version of the uppercase mode. Drag-and-drop is another spring-
loaded mode; you’re only dragging as long as you hold down the mouse button. Temporary modes are
similarly short-term. For example, in many graphics programs, when you select a drawing object like a
rectangle or line from the palette, that drawing mode is active only for one mouse gesture. Once you’ve drawn
one rectangle, the mode automatically reverts to ordinary pointer selection.

Finally, you can also mitigate the effects of mode errors by designing action sets so that no two modes share
any actions. Mode errors may still occur, when the user invokes an action in the wrong mode, but the action
can simply be ignored rather than triggering any undesired cffect.

15

Confirmation Dialogs

'g_)wn!:.m:-.‘,'z Lictmelt inSerned Saphoiat i |
Q- O Bl AG Pues e @15 T ,
UL Ty e ™ [1% You are about to permanently delete this document.
Reservor Dogs [I'm Sure,
Pulp Fictica ™ ' Really Sure.
Natural Bem K3 ﬂlimd!fﬁl' T . |
1| Al
2k _Deieto |
() e ymnse youvant 1o droe Natarl e ders?
o] (o)
A oo i 5 S diord reranet

Are you sure you want 1o quit 7
''''' ot | [xem[[@auT]

Spring 2011 6.813/6.831 User Interface Design and Implementation 16

An unfortunately common strategy for error prevention is the confirmation dialog, or “Are you sure?” dialog.
It’s not a good approach, and should be used only sparingly, for several reasons:

*Confirmation dialogs can substantially reduce the efficiency of the interface. In the example above, a
confirmation dialog pops up whenever the user deletes something, forcing the user to make two button presses
for every delete, instead of just one. Frequent commands should avoid confirmations.

*If a confirmation dialog is frequently seen — for example, every time the Delete button is pressed — then the
expert users will learn to expect it, and will start to include it in their habitual procedure. In other words, to
delete something, the user will learn to push Delete and then OK, without reading or even thinking about the
confirmation dialog! The dialog has then completely lost its effectiveness, serving only to slow down the
interface without actually preventing any errors.

In general, reversibility (i.c. undo) is a far better solution than confirmation. Even a web interface can provide
at least single-level undo (undoing the last operation). Operations that are very hard to reverse may deserve
confirmation, however. For example, quitting an application with unsaved work is hard to undo — but a well-
designed application could make even this undoable, using automatic save or keeping unsaved drafts in a
special directory.

16

USER CONTROL &
FREEDOM

Spring 2012 6.813/6.831 User Interface Design and Implementation

17

User Control & Freedom

= Learning by exploring
» Dealing with errors
» User is sentient, computer is not

Spring 2011 6.813/6.831 User Interface Design and Implementation 18

Good interfaces are explorable. One way users learn is by exploring: poking around an interface, trying things
out. An interface should encourage this kind of exploration, not only by making things more visible, but also
by making the consequences of errors less severe. For example, users navigating around a 3D world or a
complex web site can easily get lost; give them an easy, obvious way to get back to some “home”, or default
view. Users should be able to explore the interface without fear of being trapped in a corner.

User control and freedom (a term coined by Jakob Nielsen) is the idea that in the give and take between the
user and the system, the user should have ultimate control.

18

Clearly Marked Exits

» Long operations should be cancelable

Source: Interface Hall of Shame

Spring 2011 6.813/6.831 User Interface Design and Implementation 19

The simplest kind of user control is a veto — the ability to cancel an operation, even if it was something they
asked for. Users should not be trapped by the interface. Long operations should not only have a progress bar,
but a Cancel button too. Likewise, every dialog box should have a Cancel button. Where is it in this CuteFTP
dialog box on the bottom? As a user of this dialog, would you feel like you’re in control?

19

Wizard vs. Center Stage: Who’s in Control?

| Wt i ot o o ?

Ot e activey pou v 13 pertom S ik on st
4y boven demraonded & Ji Y e 0 bment o1
{3l i mouren s wart rld £ chame “Lnip
e’y

Uy of el leem o ausbeyg o e

1 Yodes w1 e0deg Yot

7 Condde o coem Do the

7 Zp raetart e ienmeta frctes enal W<]

Wizard

L Tt

R e 285
BT

Spring 2011 6.813/6.831 User Interface Design and Implementation 20

Let’s look a little further at who controls the dialog between the user and the system. (Here, dialog means the
general pattern of back-and-forth communication between the user and the interface, as if the user and the
system are having a conversation. A dialog box is a specific kind of window, a design pattern used in a dialog.
We often say dialog as a shorthand for dialog box, but hopefully the distinction will be obvious from context.)

We’ll contrast two patterns. The wizard design pattern is a familiar pattern for improving the learnability of a
complex interaction, by structuring it as a step-by-step process, with each step in a dialog. Wizards are the
conventional pattern for software installation. In a wizard, the system controls the dialog — it dictates the steps
the ordering of the steps, and what it asks for at each step. Imagine a travel agent who’s asking you a series of
questions, and refuses to listen to what you say if it’s not relevant to the question they asked. That’s a wizard.

E

Contrast that with the center stage pattern, which lays out data objects in the main section of the window, and

gives the user a set of tools for operating on the objects. In this case, the user controls the dialog, deciding
which objects to select and which tools to pick up.

Wizards clearly restrict the user’s freedom, but for complex, infrequently-done tasks (like installation), the
tradeoff is often worth it. Note, however, that a good wizard has two key features: a Back button (for backing

out of errors) and a Cancel button (for vetoing the operation entirely). So even though the wizard pattern puts
the system in control of the details, the user still has supervisory control.

20

Manual Overrides for Automatic Systems

e L Ot L
0 Mas'u:hu“ﬁ;?_
£ f’-a 2]
sarh Aar el

|
D1§Morvilin, Petar
|sebastopel. Calif. : raradam :
(o' malily,
|miw, 12 431, (chaifly eol.

D et TR
Source: www.findability.org

Spring 2011 6.813/6.831 User Interface Design and Implementation 21

One of the main reasons we build software in the first place is to automate a process, taking some burden off
the human users. But we can’t take away control entirely. Users should be able to manually override
automation.

The familiar Find & Replace command is a simple example of this. If Find & Replace were perfectly
automatable, then all we’d need is Replace All. But the world isn’t that simple, and our documents are full of

exceptions or incompletely-specified patterns, and there are plenty of cases where the user needs manual
control over replacement — hence the Find Next and Replace buttons.

Google Maps offers an example of a different kind of control — starting with the output of an automatic
algorithm (the shortest route between two points) and manually tweaking it (dragging the route around).
Systems that solve big or complex optimization problems should offer the user the opportunity to make these

tweaks, since often there are constraints or preferences that are difficult to specify in advance, but can easily be
seen when a solution is presented.

Some HCI researchers (prominently, Austin Henderson) argue that computer science in general, and corporate
system developers in particular, have gone too far in trying to regularize the world, building systems that
demand coherence from their users and their environment, expecting input that fits into expected categories
and rejecting all others. For example, stating that every person has a first name and a last name, or assuming
that every city belongs to only one country, or demanding a single shipping address for an order, are claims
about the coherence of the world. But the real world is fuzzy, full of exceptions and oddities, and we should
build pliant systems that can survive the exceptions. A great example of how paper-based systems are pliant
is the marginal comment. Here’s a card from an old-fashioned card catalog. You can easily distinguish the
coherent typewritten data, which might fit neatly into a database system nowadays, from the marginalia.
Margins on paper forms are often used by experienced workers to get their jobs done when the form is
inadequate. We have a few design patterns for pliant user interfaces — such as comment fields (though they
appear very rarely in business software!), and tagging instead of rigid hierarchies — but we don’t really know
how to build systems that are coherent enough for automation yet still pliant enough for the real world. (Jon

Udell, “Scribbling in the Margins”, Infoworld, http://www.infoworld.com/article/
04/04/09/150Pstrategic_1.html)

21

Never Ask Me Again

- - _
= You have chosen to open
A server 2pplicabon is tequesting access to your [wordrinder.java
local chert fles. © ahchisa: Java Langusge Sowrce fle
from: hitp:jjgroves. csalmtedy
" What acoses do you wart o grant? = wnat shouid Frefox éo vith ths Se? -
i U HoAccess ! i o I |
| T BesdAccess i [IOE >RINE 1icroscft vioua Studo 2005 (defautts RN
| FulAccess i a O Swe D i
Do pou want 10 be asked agan? oo 3 {7] Do ths autematizaly for fies lke this from now o,
0 Aleeys ack me | |
" Ngver ark tr agan Jor this served | Settings can be changed n the Content section of Tock, Optons,
& Vegs stk me s i Rin B R ol
""" ' = (o]
Spring 2011 6.813/6.831 User Interface Design and Implementation 22

Here’s an interesting problem related to who’s in control of the dialog. Many interfaces interrupt users with
questions, like the dialog boxes shown here. If the answer is always the same, it’s clearly inefficient (and
annoying) to keep asking the same question repeatedly — so many of these dialogs offer the option Never ask
me again.

Good idea, and superficially seems to improve user control, because it’s like a veto over all future questions of
the same type. But suppose later the user wants to change their decision? Because the system initiated this
dialog, not the user, the user has no idea how to return to the question. And the system has promised never to
ask it again! It’s a Catch-22.

One patch to this problem can be seen in the Firefox window on the right — a help message that tells the user
where to look to undo the decision. But remember that just because the user has seen a message doesn’t mean
they’ve learned what it had to say. It’s not clear that this really fixes the problem, but I haven’t seen any better
solutions.

22

User Control Over Data

+ Data entered by the user should be editable by the
user

» Ul should give the power to:

Create a data item

Read it

Update it

Delete it

I

Spring 2011 6.813/6.831 User Interface Design and Implementation 23

So we’ve discussed user control over the dialog. Let’s now consider user control over the data itself.

Editing is important. If the user is asked to provide any kind of data — whether it’s the name of an object, a list
of email attachments, or the position of a rectangle — the interface should provide a way to go back and change
what the user originally entered — rename the object, add or remove attachments, move around that rectangle
some more. Data that is initialized by the user but can never again be touched will frustrate user control and
freedom.

Keep CRUD in mind — if you can Create an object or data field, you should be able to Read, Update, and
Delete it, too.

Providing user control and freedom can have strong effects on your backend model. You’ll have to make sure
data are mutable. If you built your backend assuming that a user-provided piece of data would never change
once it had been created, then you may have trouble building a good UI. One way that can happen is if you try
to use user-provided data as a unique identifier in a database, like the user’s name, or their email address, or
their phone number, or the title of a document. That’s generally not a good practice, because if any other
object stores a reference to the identifier, then the user won’t be able to edit the identifier without breaking that
reference.

23

No Arbitrary Limits on User-Defined Names

=== | The name contains too many capital letters,

Sign Up and Start Using Facebook

Jon Fazebook to connect with your friends, share photos, 2nd create your own profie. Fi out the form
below to get started (1 faids ara requirsd 2 ¥on up)

FUll Name: | 1oh, viara cSicomney @
Tam: s zolegefraduste sthodd
at 3 company
in hagh sthool

Email |

Spring 2011 6.813/6.831 User Interface Design and Implementation 24

If an interface allows users to name things, then users should be free to choose long, descriptive names, with
any characters or punctuation they want. Artificial limits on length or content should be avoided. DOS used to
have a strong limit on filenames, an 8 character name and a 3 character extension, and a variety of punctuation
characters are forbidden from filenames. Echoes of these limits persist in Windows even today.

Here’s a bizarre requirement from Facebook (source: Error'd - The Daily WTF). No doubt the programmer’s
intention was to reject randomly-generated or nonsensical names which would reduce Facebook’s appearance
of professionalism, but the rule clearly doesn’t work.

24

UNDO

Spring 2012

6.813/6.831 User Interface Design and Implementation

25

23

Support Undo

* Revision history

» Deskiop fle [/] View Search Iools Documents H
D 5 <Y Undo deletion of 'sucks’ ctri+z |
NE’W‘?_ o temimg ; e

° Web | _— [((search Mail] [S=archthe Web];L"'m e

6 conversations hove been moved to the Trash, Leam more Undo

& MOTI My tam QrElSrences My WalCnsst my ot
article discussion 1 agit history | protect deiete || move |
- Main Page
Spring 2011 6.813/6.831 User Interface Design and Implementation 26

If Cancel is the most common answer for user control over dialog, then Undo is the most common answer to
user control over data. Undo has been around in desktop applications since the dark ages of the first
Macintosh, if not before. The first Mac applications supported only single-level undo — that is, you could
undo the last command, but no farther. This was largely due to memory constraints, and modern desktop
applications allow unlimited undo (or so much that it makes no difference given the current interface for Undo

—nobody is going to press Ctrl-Z 1000 times, after all).

Undo is also gradually appearing in web applications, like GMail. GMail’s interface (shown here) only
supports single undo. But other web applications support much longer undo histories, particularly apps
designed for collaboration, like wikis. In these apps, undo typically takes the form of a revision history, rather

than an undo command.

26

Forming a Mental Model of Undo

» Undo reverses the effect of an action

» But that leaves many questions:

— What stream of actions will be undone?
How is the stream divided into undoable units?
Which actions are undoable, and which are skipped?

How much of the previous state is actually recovered by the
undo?

How far back in the stream can you undo?

Spring 2011 6.813/6.831 User Interface Design and Implementation 27

You may think it’s obvious what the Undo command does: it reverses the effect of the user’s last action. But
it’s not as simple as that. Undo’s behavior can be mysterious. Undo is an example of a case where the system
model is not well communicated by the user interface. The actions managed by Undo are not visible; there’s
no persistent, visual representation showing the next action to be undone. (Not quite true: in well-designed
interfaces, the Undo menu command’s label gives a hint, like “Undo Typing” or “Undo Bold”. But it’s not
prominent, so it doesn’t particularly help a user form their mental model from ordinary use.) If you ask users
to predict what effect Undo will have in some particular case, they may have no idea.

Let’s look at some of the questions we should ask when we’re designing an undo mechanism.

&t

What stream of actions will be undone?

« Actions in this window (MS Office)

» Actions in this text widget (web browser)

- Just my actions, or everybody’s (multiuser apps)
+ Actions made by the computer

— MS Office AutoCorrect and AutoFormat are undoable, even
though user didn’t do them

Spring 2011 6.813/6.831 User Interface Design and Implementation 28

Undo reverses the last action made by the user, but it’s not necessarily the last one in the global stream. There
is no global Undo in current GUI environments. Each application, sometimes even each widget, offers its own
Undo command. A particular Undo command will only affect the action stream of the application or widget
that it controls — so it will undo the last action in that application or widget’s stream, which isn’t necessarily the
last command the user issued to the system as a whole.

Some applications use a separate action stream for each window. Microsoft Office works this way, for
example. If you type something into Word document A, then type something else into Word document B, then
switch back to A and invoke Undo, then A’s insert will be undone — even though B’s insert is the last one you
actually performed.

Other applications treat each fext widget as a separate action stream. Web browsers behave this way. Try
visiting a form in a web browser, and type something into two different fields. You’ll find that Undo only
affects the field with the current keyboard focus, ignoring actions you made on any other ficlds. Changes
made in other kinds of form widgets — drop-down menus or listboxes, for example — aren’t added to any action
stream.

Applications with multiple simultaneous users — such as a shared network whiteboard, where anybody can
scribble on it — face the question of whether Undo should affect only your own actions, or everybody’s actions.
Usually, the best answer to this question is only your own actions, unless you have some kind of floor control
mechanism that prevents people from working simultaneously [Abowd & Dix, “Giving undo attention,”
Interacting with Computers, v4 n3, 1992].

28

How is the stream divided into units?

L

Lexical level

— Mouse clicks, key presses, mouse moves
— Nobody does it at this level

Syntactic level

— Commands and button presses

+ Semantic level

— Changes to application data structures (e.g., the result of an
entire Format dialog)

— This is the normal level
Text entry is aggregated into a single action

— But other editing commands (like Backspace) and newlines
interrupt the aggregation

What about user-defined macros?
— Undo macro actions individually, or as a unit?

Spring 2011 6.813/6.831 User Interface Design and Implementation 29

Once you've decided which stream of actions to undo, the next question is, how is the stream divided into
units? This is important because Undo reverses the last unit action of the stream.

Dividing at the lexical level means low-level input events, so Undo might reverse the very last keyboard or
mouse change. For example, if you just did a drag-and-drop, invoking Undo might undo your mouse button
release, putting you back into drag-and-drop mode and allowing you to drop somewhere else. No user
interface (that I know of) implements lexical Undo in a systematic way; it’s not clear how to get it right (since
you’re not holding the button down anymore!), and it’s probably not what users want.

At the syntactic level, you would undo commands or onscreen button presses. For menu items and toolbar
buttons, this is the right thing. But if you just finished a dialog — say, using the Font dialog, or selecting a
Color — then this would undo the OK button press, returning you into the dialog box. Most applications don’t
do it at this level either.

The semantic level is what most designers choose, where Undo reverses the most recent change to the backend
model — whether it was caused by a simple command, like Boldface, or a complicated dialog, like Page
Layout. That’s great for one kind of user control and freedom, since it makes complex changes just as easy to
back out of as simple changes. But what if you just completed a long wizard dialog, only to discover that it
didn’t do what you wanted, and Undo only reverses the effect of the entire dialog, instead of getting you back
into the wizard and letting you Back up? There are tradeoffs in the decision to undo only at the semantic level,
but it’s the most common.

For undoing text, individual typed characters should be aggregated somehow — otherwise, Undo won’t be any
faster than pressing Backspace. One natural way to do this might be word boundaries; but most text editors
use edit commands and newlines as boundaries.

In general, the action stream should be divided into chunks from the user’s perspective. For example, a user-
defined macro is a chunk, so Undo should treat the entire macro as a unit action.

29

Which actions are undoable?

» User's action stream may include many actions that
are ignored by Undo
— Selection
— Keyboard focus
— Changing viewpoint (scrolling, zooming)
— Changing layout (opening palettes or sidebars, adjusting
window sizes)
— Ul customization (adding buttons to toolbars)

« So which actions does Undo actually undo?

— Some applications (e.g. web browsers, IDEs) have Undo/
Redo for the editing stream, Back/Forward for the viewpoint
stream

Spring 2011 6.813/6.831 User Interface Design and Implementation 30

Many actions that affect visible program state may be completely ignored by Undo. Typically these actions
affect the view, but don’t actually change the backend model. Examples include selection, keyboard focus,
scrolling and zooming, window management, and user interface customizations.

Since easy reversibility can be just as helpful for view changes, some applications define new commands for
them, so they can reserve Undo for reversing model changes. Web browsers are a fine example: the Back
button reverses a jump in view (whether caused by loading a new page or clicking on an internal hyperlink to
jump to another place in the same page). Development environments like Eclipse have borrowed this idiom
for navigation in code editors; you can press Back to undo window switching and scrolling.

30

How much state is recovered?

= Select text, delete it, and then undo
— Textis restored
— But is selection restored? Cursor position?

Spring 2011 6.813/6.831 User Interface Design and Implementation 31

Even if the Undo stream doesn’t include all the view changes you make, how much of the view state will be
restored when it reverses a model change? When you undo a text edit, for example, will the selection highlight
be restored as well? Will the text cursor be put back where it was before the edit? If the text scrolls, will it be
scrolled back to the same place?

How far back can you undo?

 Often a limit on history size
— Used to be one action -- now usually hundreds, or infinite

« Does action stream persist across application
sessions?
— If so, stream must be saved to file

» Does it persist across File/Save?

Spring 2011 6.813/6.831 User Interface Design and Implementation 32

Finally, how far back will the undo history stream go? Old Macintosh applications had only single undo —i.e.,
you could only undo the last action, and no farther. Thankfully, cheap memory has made deep undo history
feasible and commonplace.

Even though memory no longer limits undo, the conventional model of undo still does. In most applications,
Undo is a transient phenomenon, limited to a single application session. If you shut down the application, and
then restart it, the undo history is erased. So you can’t undo past the start of the current session.

Some applications even erase the undo history as soon as the user saves a document to disk. Older versions of
Microsoft Office used to behave this way.

32

Exercise: Undo Models

« Go to this web page
— see Stellar, or shoutkey URL

« Explore your browser’s undo
model for textboxes
— how many undo streams?
— what are the units of undo?

— how much previous state is
recovered? (selections?
cursor positions?)

— how visible is the undo?
(e.g., if the affected place is
scrolled out of view of the
browser page or textbox?)

one line, plain text

[Pros Cow oy Coumt furgens Ssubined o The Lt 1855)

multh-line, plain text

171w s & Purche Com,
1 ~tver hoga 5501 om0

But] ean 1ol vou, Amyhom.
T2 121 jad tha b4 o

multi-line, rich text

O

Reply (To The *Purple Cow™)
by Gelett Bargess
Apres Clag Ans 1514
Ab, yes, 1 weote the "Purple Cow’~
Ten somy, now, | wrote !
But [can tell yon saybow,

T kill you if you gaote it

Spring 2012 6.813/6.831 User Interface Design and Implementation

35

Curious Case Study: Outlook Sticky Notes

Suggested by Chris Child

Spring 2011 6.813/6.831 User Interface Design and Implementation 34

Try this in Outlook 2007 (or Outlook 2003, but doesn’t work in Outlook Express). Create a sticky note (File/
New/Note). Type some text into the note, and move the note to a different place on the screen. Then press
Ctrl-Z to undo. It undoes not only what you typed, but also the position of the note — and the note animates
through all the different positions you moved it to on the screen.

Recall the important dimensions of an undo model:

- what stream of actions is undone? Only the actions that affected this sticky note; other sticky notes, and other
Outlook windows, aren’t affected.

- how is the stream divided into units? It turns out that the entire stream of actions since the note was created is
a single unit — everything gets undone when you press Ctrl-Z once.

- what state is actually restored? everything about the note — its position, its size, even its color.

- how far back can you undo? As far as the creation of the note — unless you switch to another window.
Switching away from the note clears the note’s undo history, so further undo is impossible.

What else is wrong here? As the screenshot shows, the animation wasn’t even done properly — instead of
animating using automatic redraw, Outlook paints the moving note directly on the screen, leaving a smear

behind it. Notice that the smear is visible in some parts of the Outlook window, but not in others. Why do you
think that is?

34

Design Principles for Undo

+ Visibility
— Make sure undone effects are visible
* e.g., scrolled into view, selected, possibly animated
+ Aggregation
— Unils should be “chunks” of aclion stream: typed strings, dialogs, macros
= Reversibility of the Undo itself
~ Support Redo as well as Undo

— Undo to a state where user can immediately reissue the undone command,
or a variant on it

* e.g., restore selection & cursor position
* Reserve it for model changes, not view changes
— For consistency with other applications, reserve Undo for changes to
backend data
* "Undo” is not the only way to support reversibility

— Backspace undoes !&ping. Back undoes browsing, Recent Files undoes file
closing, scrolling back undoes scrolling

— Forward error recovery: using new actions to fix errors

Spring 2011 6.813/6.831 User Interface Design and Implementation a5

The upshot of all these questions is that it’s very hard for users to predict what Undo will do. Faced with this
unpredictability, a common strategy is to press Undo until you see the effect you want to reverse actually go
away, or until you realize it’s gone too far without solving the problem (i.c., it’s reversed an older, still-desired
effect). So visibility of Undo’s effects is a critical part of making it usable. Whenever Undo undoes a
command, it should make sure that the effects of that have a visible change on the screen. If the user has
changed the viewpoint (e.g. scrolling) since doing the command that is now being undone, the viewpoint
should be changed back, so that it’s easy to see what was reversed.

The unit actions should correspond to chunks of the user’s interaction: whole typed words (or strings),
complete dialogs, user-defined macros.

Undo itself should be reversible, so that if you overshoot, you can come back. That’s what the Redo command
is for. Another way to reverse an Undo is to manually issue the undone command again; a good undo
mechanism should set up the conditions for this as well. For example, suppose you select a range of text and
Delete it, and then Undo that deletion. The editor should not only restore the text, but also restore the selection
highlight, so that you can immediately press Delete to delete the same text again.

For consistency, reserve the Undo command for model changes. You can use other commands for view
changes. Keep in mind that you don’t necessarily need a command named “Undo” to support reversibility.
There are other commands that move through other action streams (Back), and physical manipulations (like
scrollbar dragging) support direct reversibility.

Users may not even think of reaching for Undo if the rest of your interface makes it easy to reverse undesired
changes. Undo is a form of backward error recovery, which fixes errors by going back in time. A more
natural way of thinking is forward error recovery — using other commands to reverse the change. For
example, to undo a Bold command by forward error recovery, you select the text again and toggle Bold off. If

your interface supports forward error recovery as much as possible, then warts in the Undo model won’t hurt
as much.

35

ERROR MESSAGES

Spring 2012 6.813/6.831 User Interface Design and Implementation

36

36

Writing Error Message Dialogs

« Best error message is none at all
— Errors should be prevented
— Be more flexible and tolerant
— Nonsense entries can often be ignored without harm

* Credit Card Number: | 41111111 1111 1111]
o Exp (MMYYD: (1117]

The page at https:/fwww.bank-a.count.com says:

1. Irevahd characters in the “Card Number™ field, Vald characters are 0123456789
A0

Source: "No Dashes Or Spaces” Hall of Shame

Spring 2011 6.813/6.831 User Interface Design and Implementation 37

Finally, let’s talk about how to write error messages. But before you try to write an error message, stop and ask
yourself whether it’s really necessary. An error message is evidence of a limitation or lack of flexibility on the

part of the system — a failure to prevent an error or absorb it without complaint. So try to eliminate the error
first.

Some errors simply aren’t worth a message. For example, suppose the user types “abc” into the font size
combo box. Don’t pop up a message complaining about an “invalid entry”. Just ignore it and immediately
replace it with the current font size. (Why is this enough feedback, for a font size combo box?) Similarly, if
the user drags a scrollbar thumb too far, the scrollbar doesn’t pop up an error message (“Too far! Too far!”). It
simply stops. If the effect of the erroneous action is easily visible, as in these cases, then you don’t have to
beat the user over the head with a superfluous error message.

The figure shows an example of an error message that simply shouldn’t happen. Forbidding dashes and spaces
in a number that the user must type, like an account number or credit card number, is poisonous to usability.
(Why are dashes and spaces helpful for human perception and memory?) There’s a great collection of error
messages like this at the No Dashes or Spaces Hall of Shame (http://www.unixwiz.net/ndos-shame.html).

37

Be Precise and Comprehensible

- Be precise
— “File missing or wrong format”
— “File can't be parsed”
— “Line too long”
— “Name contains bad characters”
» Restate user’s input
— Not “Cannot open file”, but “Cannot open file named
paper.doc”
« Speak the user's language
— Not “FileNotFoundException™
— Hide technical details (like a stack trace) until requested

Spring 2011 6.813/6.831 User Interface Design and Implementation 38

Assuming you can’t design the error message out of the system, here are some guidelines for writing good
ones.

First, be precise. Don’t lump together multiple error conditions into a single all-purpose message. Find out
what’s really wrong, and display a targeted message. If the error is due to limitations of your system, like sizes
or allowed characters, then be specific about what the limitations are, so that the user can adapt. (Then ask
yourself why you have those limitations!)

It often helps to restate the user’s input, so that they can relate what they did to the error message, and
perhaps even detect the problem immediately (“oh, I didn’t mean paper.doc...”)

In error messages, it’s particularly important to speak the user’s language, and avoid letting technical terms or
details like exceptions and stack traces leak through.

38

Suggest Reasons and Solutions

* Give constructive help
— why error occurred and how to fix it

bat PDFMaker

2 & Acro

Acrobat PDFMaker cannot create the PDF file. It might be open in
the Viewer or Reader. Please close the file and click Retiy, or
click Save As to save as another name. :

Save As Cancel

Spring 2011 6.813/6.831 User Interface Design and Implementation 39

Next, your message should be constructive, not just reporting the error but helping the user correct it. Suggest
possible reasons for the error and offer ways to correct them — ideally in the error message dialog itself. Here’s
a good example from Adobe Acrobat.

29

Be Polite
» Be polite and nonblaming

a2
‘,-,c Sorry, a system error occurred.

Do you really want to delete this task? L]

hs.delzluhlsnsk} No, I'm Sorry E

Spring 2011 6.813/6.831 User Interface Design and Implementation 40

Finally, be polite. The message should be worded to take as much blame as possible away from the user and
heap the blame instead on the system. Save the user’s face; don’t worry about the computer’s. The computer
doesn’t feel it, and in many cases it is the interface’s fault anyway for not finding a way to prevent the error in
the first place. It’s interesting to contrast what the original 1984 Mac said when it crashed (an apology!).

The confirmation dialog on the bottom isn’t an error message, strictly speaking, but it does show incorrect
attribution of blame. The user shouldn’t have to apologize!

40

Avoid Loaded Words

+ Fatal, illegal, aborted, terminated

|_Rapid |

A fatal excoption BE has occurred at 8828:C8811E36 in UXD UNNCE1) »
BB01BE3IE. The current application will be terminated.

Concel | Hep | H
Click this to display an averview of this dialog box, idiot.

For Help on an item, ciick ‘7' ot the top of the dialog box, and
then chick the tem.

Source Interface Hall of Shame

Spring 2011 6.813/6.831 User Interface Design and Implementation 41

Many words that are unfortunately common in technical error messages have emotionally-charged meanings in
ordinary language; examples include “fatal”, “illegal”, “abort”, etc. Avoid them. Use neutral language.
Windows and DOS have historically been littered with messages like these.

The tooltip shown at the bottom isn’t strictly an error message, but it actually appeared in a production version
of AutoCad! As the story goes, it was inserted by a programmer as a joke, but somehow never removed before
release. Even as a joke, it demonstrates a lack of respect for the intelligence of the human being on the other
side of the screen. That attitude is exactly wrong for user interface design.

41

Summary

« Kinds of human error
— slips & lapses
— capture, description, mode slips

— big reasons for error: “strong but wrong”, inattention,
efficiency

= Error prevention
— avoid “strong but wrong” effects
— confirmation dialogs aren’t a panacea
« Error recovery
— give the user control & freedom over dialog & data
— support undo, but know that it can be subtle
» Error messages
— be specific, be polite, be non-blaming

Spring 2012 6.813/6.831 User Interface Design and Implementation

42

42

\/‘m\w - %&ﬂm m@m“mj
Mo]L nyjrl‘fﬁ/ pﬂﬁ]fé
— whle povkv s A AR FWL@/')

Erpr mﬁ“}“ﬂ
UT dusn
/m}/«&mu\ on plm/a

Td/M\ Mot adne 51l
\"/@q b%\leq pdfm

) vt

'*(M“@Q@ Ny

“Gedlie vags B b tam Thigy

= wi| e pf#o%1pe

T b 50%1«3 Wiy ouT Twe

/%K‘JQ/JF w[@ﬂevboléL
~ 1alfeafe IHBM jro

(é&efseriwi)

Il

[2 M (aLe) /M 9/2

)W of Fm/sw 0@m}na Pt/%@ boldr

T % (i " @rebwf
s 6/“0/7%05 f:‘d Oﬂp -

Whia E/LUWOQ 6{%& of ;f’i%’m— 4?((hgo

]/N@L P/“\‘% —Yello o runy (Fds
Wbl of o by

SR &‘mep@m o Tart

ol e based 5A0Pp‘mf) 't

Vo P v
o pie whe G abof prig

_/__’/

N(,w; Ml a

DC%/;HHOIL Ciar ‘*(Q@‘MC& m((A/Ofl({ fﬁﬂt%rg
v‘/ 077%(f@%ﬁ//@

A:lw fea/‘mg {obF o
B:C@W(EOVJL rot
G/ P O) iy
£ (ape iy Sy oty

Y /\i?r% Sqppore (RUY) 6 possiby
= Ng]l vndO

pedod 15V R b g e b d ot
pefl 600[/ ’_CL\IM@% \/“L‘“l Cifaﬂ Joe)

(gp Lk V

’_///#__
D/ v (y [

Nas Fo ?M!M/;

(dng Wm)

an | Vi Tee fobedds
{ fm\ 2\ AJVQL@ () Q/faw/‘litj
I 3 Pl O uslolaalln
”e‘/ﬂfjhtima nay/
~hefoe (] g
ur P}‘)Hﬂf w/ Q_ fen

A\L m 05)M,) “lNan Mt b@ An 0/)/{6%
\/0\/ Jﬁo't?, de Wt f O/fcm L/V (frms

Obtels . pet hawy
~ ks of stale + popyiiy
" - gl eah ot TM@
- 50 (Ovld (l/w {'h%{ (LS ;maﬂgg w/ (opy ~i lif
I,
~ Poabe ol 3 dl ¢ s
Or l/bﬂ/ dw 1o mbfz(#wfe X d @UW‘L; Mow: dﬂéé

j@ /1 9
%

\)‘lg"‘/ ﬁ e Spfﬁ‘éw 51%(/0#/()
Wr pfwem,h’on W Cé§ 5€/€/ﬁ/
[k abd ofs of (4 §¢ lefors

7

6@ I@gjf@r latn M40

~ g g W‘“f?
= ﬁ? g |
< (s , Fodlbar DA € an ol an hae akbp

& fao’,‘@ " (
_plowt palty 4 dolby b &Ji&ﬁwkm/u% 2
for Some ﬁ‘m/

Vil [t o o (asade
Py @y fo Wk o ol
"pf}o,H7 ol fo s
~ bhole. Pagg
“JW
“ el Tip
. \m\ ”u, ‘olL?k
—JG Spltlef changes
Jtueg Jly
L‘;ﬁ%@ (“L/ {0/ OMW Wisor
W gt f\tmw % (qq dr
o o G gt (b(mu}

0 .
O (G g S
| Uy Lok of g |
6@‘{4 W Tex]
MWF not Pf}d@({) Sogting
LTQH‘ ‘;aclm}
(M, & fo puyl W hoe agessiq. e «’z(@/

HQW \/I(Q,w {YQE’, ib J”@wq

"o oty dra el
"V\// (L d‘/p (63(10/1 ~()£}£mt émd@ Doy

S~

= |
Chgh [%/0'\ !f\ (/cher Qf ony
CSGGL 6M@) M\M Wwfm (e J/tln"]

~(r Only [@\@\m afé@’(@é
L)Dws@/d on (o ﬁ@\{w@%yﬂm
2700 \)\0/ +/ee, ;s Q)mm *OKJ&
Ul e DE fofulb

—

(n ’){9@ order
\]L‘U/OL SW"@ ‘{V‘L (U5 ‘ffee, 0“&\‘7

Gioke Cyll

‘I/f%”f/ e In C%/j;
¢ HIm 5 o cowes

Dmvvzms }ml?/ L(M lLD Qlfaw hb

Lo)‘((/Lglﬂj

5/%%(/Md{r\tﬁ

Cdﬂ &o w/ MM ’?:OOM\(/L\@
GMS J I horz /wluﬂoq
Ade e o] o

L9: Output

.

Spring 2012

PS1/RS1 due Sun
Group meetings with TA this Thu & Fri
GR2 out Mon, due next Sun

6.813/6.831 User Interface Design and Implementation

Ul Hall of Fame or Shame?
97

ORDER SUMMARY

Vatiog hor yeuu 1 creste m 1o

ADDTO ORDER

UNREATS
2 -

suggested by Jonathan Goldberg

Spring 2008 6.831 User Interface Design and Implementation 2

Today’s hall of fame or shame candidate is the Domino’s Pizza build-your-own-pizza process. You can try it
yourself by going to the Domino’s website and clicking Order to start an order (you’ll have to fill in an address
to get to the part we care about, the pizza-building UI).

Some aspects to think about:
- learnability

- visibility

- user control & freedom

- efficiency

Today’s Topics

Output approaches
Drawing
Rasterization

Declarative programming

Spring 2010 6.813/6.831 User Interface Design and Implementation 5

Today’s lecture continues our look into the mechanics of implementing user interfaces, by considering output
in more detail.

One goal for these implementation lectures is not to teach any one particular GUI system or toolkit, but to give
a survey of the issues involved in GUI programming and the range of solutions adopted by various systems.
Although our examples will generally come from HTML/CSS/Javascript/jQuery, these lectures should give
you a sense for what’s common and what’s unusual in the toolkit you already know, and what you might expect
to find when you pick up another GUI toolkit.

Three Output Approaches

= QObjects
— Graphical objects arranged in a tree with automatic redraw
— Example: Label object, Line object
— Also called: views, interactors, widgets, controls, elements
« Strokes
— High-level drawing primitives: lines, shapes, curves, text
— Example: drawText() method, drawLine() method
— Also called: vector graphics, structured graphics
« Pixels
— 2D array of pixels
— Also called: raster, image, bitmap

Spring 2010 6.813/6.831 User Interface Design and Implementation 6

There are basically three ways to represent the output of a graphical user interface.

Objects is the same as the view tree we discussed previously. Parts of the display are represented by view
objects arranged in a spatial hierarchy, with automatic redraw propagating down the hierarchy. There have
been many names for this idea over the years; the GUI community hasn’t managed to settle on a single
preferred term.

Strokes draws output by making procedure calls to high-level drawing primitives, like drawLine,
drawRectangle, drawArc, and drawText.

Pixels regards the screen as an array of pixels and deals with the pixels directly.

All three output approaches appear in virtually every modern GUI application. The object approach always
appears at the very top level, for windows, and often for graphical objects within the windows as well. At
some point, we reach the leaves of the view hierarchy, and the leaf views draw themselves with stroke calls. A
graphics package then converts those strokes into pixels displayed on the screen. For performance reasons, an
object may short-circuit the stroke package and draw pixels on the screen directly. On Windows, for example,
video players do this using the DirectX interface to have direct control over a particular screen rectangle.

What approach do each of the following representations use? HTML (object); Postscript laser printer (stroke
input, pixel output); plotter (stroke input and output); PDF (stroke); LCD panel (pixel).

Example: Designing a Graph View

* Object approach

— Each node and edge is an object in the view tree

- A node object might have two child objects: circle and label
+ Stroke approach

— Graph view draws lines, circles and text
+ Pixel approach

— Graph view has pixel images of the nodes

Spring 2010 6.813/6.831 User Interface Design and Implementation T

Since virtually every GUI uses all three approaches, the design question becomes: at which points in your
application do you want to step down into a lower-level kind of output? Here’s an example. Suppose you
want to build a view that displays a graph of nodes and edges.

One way to do it would represent each node and each edge in the graph by a component (as in the tree on the
right). Each node in turn might have two components, a circle and a text label. Eventually, you’ll get down to
the primitive objects available in your GUI toolkit. Most GUI toolkits provide a text label; most don’t provide
a primitive circle. (One notable exception is SVG, which has component equivalents for all the common
drawing primitives.) This would be a pure object approach, at least from your application’s point of view —
stroke output and pixel output would still happen, but inside primitive objects that you took from the library.

Alternatively, the top-level window might have no subcomponents. Instead, it would draw the entire graph by
a sequence of stroke calls: drawCircle for the node outlines, drawText for the labels, drawLine for the edges.
This would be a pure stroke.

Finally, your graph view might bypass stroke drawing and set pixels in the window directly. The text labels
might be assembled by copying character images to the screen. This pure pixel approach is rarely used
nowadays, because it’s the most work for the programmer, but it used to be the only way to program graphics.

Hybrid approaches for the graph view are certainly possible, in which some parts of the output use one
approach, and others use another approach. The graph view might use objects for nodes, but draw the edges
itself as strokes. It might draw all the lines itself, but use label objects for the text.

Issues in Choosing Output Approaches

Layout

Input

Redraw

» Drawing order

« Heavyweight objects
» Device dependence

Spring 2010 6.813/6.831 User Interface Design and Implementation 8

Layout: Objects remember where they were put, and draw themselves there. They also support automatic
layout. With strokes or pixls, you have to figure out (at drawing time) where each piece goes, and put it there.

Input: Objects participate in event dispatch and propagation, and the system automatically does hit-testing
(determining whether the mouse is over the component when an event occurs) for objects, but not for strokes.
If a graph node is an object, then it can receive its own click and drag events. If you stroked the node instead,
then you have to write code to determine which node was clicked or dragged.

Redraw: An automatic redraw algorithm means that components redraw themselves automatically when they
have to. Furthermore, the redraw algorithm is efficient: it only redraws components whose extents intersect
the damaged region. The stroke or pixel model would have to do this test by hand. In practice, most stroked
objects don’t bother, simply redrawing everything whenever some part of the view needs to be redrawn.

Drawing order: It’s easy for a parent to draw before (underneath) or after (on top of) all of its children. But
it’s not easy to interleave parent drawing with child drawing. So if you’re using a hybrid model, with some
parts of your view represented as components and others as strokes, then the components and strokes generally
fall in two separate layers, and you can’t have any complicated layering relationships between strokes and
components.

Heavyweight objects: Objects may be big -- even an object with no fields costs about 20 bytes in Java. As
we’ve seen, the view tree is overloaded not just with drawing functions but also with event dispatch, automatic
redraw, and automatic layout, so the properties and state used by those processes further bulks up the class.
Views derived from large amounts of data — say, a 100,000-node graph — generally can’t use an object for
every individual data item. The “flyweight” pattern can help, by storing redundant information in the object’s
context (i.e., its parent) rather than in each component, but few toolkits support flyweight objects. (See
Glvphs: Flyweight Objects for User Interfaces by Paul R. Calder and Mark A. Linton. UIST '90.)

Device dependence: The stroke approach is largely device independent. In fact, it’s useful not just for
displaying to screens, but also to printers, which have dramatically different resolution. The pixel approach, on
the other hand, is extremely device dependent. A directly-mapped pixel image won’t look the same on a screen
with a different resolution.

How Output Approaches Interact
Objects
l drawing
Strokes
lrasterization
Pixels
Spring 2010 6.813/6.831 User Interface Design and Implementation 9

As we said earlier, almost every GUI program uses all three approaches. At the highest level, a typical
program presents itself in a window, which is an object. At the lowest level, the window appears on the screen
as a rectangle of pixels. So a series of steps has to occur that translates that window object (and all its
descendents in the view tree) into pixels.

The step from objects down to strokes is usually called drawing. We’ll look at that first.

The step from strokes down to pixels is called rasterization (or scan conversion). The specific algorithms that
rasterize various shapes are beyond the scope of this course (see 6.837 Computer Graphics instead). But we’ll
talk about some of the effects of rasterization, and what you need to know as a Ul programmer to control those
effects.

Object Approach in HTML

- Instantiate a view element
— built-in widget <button>, <input type="text">
— primitive <div>,
— third-party widget <div class="ui-slider">

» Set its output behavior using styles

Spring 2012 6.813/6.831 User Interface Design and Implementation

10

10

Cascading Style Sheets (CSS)

» Key idea: separate the structure of the Ul
(view tree) from details of presentation

— HTML is structure, CSS is presentation
» Two ways to use CSS
— As an attribute of a particular HTML element
<button style="font-weight:bold;"> Cut </button>
— As a style sheet defining style rules for many
HTML elements at once
<style>
button { font-weight:bold; }
</style>

Spring 2011 6.813/6.831 User Interface Design and Implementation 1

Our second example of declarative specification is Cascading Style Sheets, or CSS. Where HTML creates a
view hierarchy, CSS adds style information to the hierarchy — fonts, colors, spacing, and layout.

There are two ways to use CSS. The first way is by setting styles directly on individual objects. The style
attribute of any HTML element can contain a set of CSS settings (which are simply name:value pairs
separated by semicolons).

The second way is more interesting, because it’s more declarative. Rather than finding each individual
component and directly setting its style attribute, you specify a style sheet that defines rules for assigning
styles to elements. Each rule consists of a pattern that matches a set of HTML elements, and a set of CSS
definitions that specify the style for those elements. In this simple example, button matches all the button
elements, and the body of the rule sets them to boldface font.

The style sheet is included in the HTML by a <style> element, which either embeds the style sheet as text
between <style> and </style>, or refers to a URL that contains the actual style sheet.

11

CSS Selectors

« Each rule in a style sheet has a selector
pattern that matches a set of HTML elements

Tag name
button { font-weight:bold; } <div id="malin">
<div id="toolbar">
ID <button class="toolbarButton™
#main { background-color:
rgb(100%,100%,100%); } </button>

</div>

| ttribut
el ; <textarea id="editor"></textarea>
toolbarButton { font-size: 12pt; } </giy>

Element paths
#toolbar button { display: hidden; }

Spring 2011 6.813/6.831 User Interface Design and Implementation 12

The pattern in a CSS rule is called a selector. The language of selectors is simple but powerful. Here are a
couple of the more common selectors. Selectors are also used by jQuery to select and operate on nodes in the
DOM tree, so it’s worth becoming familiar with this pattern language.

Cascading and Inheritance

« If multiple rules apply to the same element, rules are
automatically combined with cascading precedence
— Source: browser defaults < web page < user overrides
Browser says: a { text-decoration: underiine; }

Web page says: a { text-decoration: none; }
User says: a { text-decoration: underline; }

— Rule specificity: general selectors < specific selectors
button { font-size: 12pt; }
.toolbarButten { font-size: 14pt; }
« Styles can also be inherited from element’s parent

— This is the default for simple styles like font, color, and text
properties

body { font-size: 12pt; }

Spring 2011 6.813/6.831 User Interface Design and Implementation 13

There can be multiple style sheets affecting an HTML page, and multiple rules within a style sheet. Each rule
affects a set of HTML elements, so what happens when an element is affected by more than one rule? If the
rules specify independent style properties (e.g., one rule specifies font size, and another specifies color), then
the answer is simple: both rules apply. But what if the rules conflict with each other —e.g., one says the
element should be bold, and another says it shouldn’t?

To handle these cases, declarative rule-based systems need a conflict resolution mechanism, and CSS is no
different. CSS’s resolution mechanism is called cascading (hence the name, Cascading Style Sheets). It has
two main resolution strategies. The overall idea is that more specific rules should take precedence over more
general rules. This is reflected first in where the style sheet rule came from: some rules are web browser
defaults, for all users and all web pages; others are defaults set by a specific user for all web pages; others are
provided by a specific web page in a <style> element. In general, the web page rule wins (although the user
can override this by setting the priority of their own CSS rules to important). Second, rules with more specific
selectors (like specific element IDs or class names) take precedence over rules with more general selectors
(like element names).

This is an example of why declarative specification is powerful. A single rule — like a user override — can
affect a large swath of the behavior of the system, without having to write a lot of procedural code, and without
having to make sure that procedural code runs at just the right time.

But it also illustrates the difficulties of debugging declarative specifications. You may add a rule to the style
sheet, maybe trying to change a button’s font size, only to see no change in the result — because some other
rule that you aren’t aware of is taking precedence. CSS conflict resolution is a complex process that may
require trial-and-error to debug.

13

Declarative Styles vs. Procedural Styles

Css
/I found in a <style> element
button { font-size: 12pt; font-weight: bold; }

jQuery
Il in a <script> element
$(“button”).css(“font-size”, "12pt”).css(“font-weight”, “bold");

Spring 2011 6.813/6.831 User Interface Design and Implementation 14

Just as with HTML, we can change CSS styles procedurally as well. jQuery offers a particularly nice way to
do this, which matches very closely the parts of a CSS rule: a selector, a property name, and a value.

14

Exercise: Explore How Widgets Are Drawn

Go to jqueryui.com/demos
Open your browser's developer console

Examine these widgets:
dialog slider

 vos g

ThR e it Simlog =N B i
PorTatun, The Suig witdow Cn b
meed, P W (e WES D % Ko,

4

= How is output done in these widget?
— Which parts are object, stroke, pixel?
— What objects? What CSS properties?

= Tweak some properties to see the effect

Spring 2012 6.813/6.831 User Interface Design and Implementation 15

15

How a View Tree is Drawn

= Drawing goes top down
— Draw self (using strokes or pixels)

— For each child component,
= If child intersects clipping region then
— intersect clipping region with child’s bounding box
— recursively draw child with clip region set to the intersection

L

clip region o‘ 9 : @ \\N_G?_EE/
© | GG

Spring 2010 6.813/6.831 User Interface Design and Implementation 16

Here’s how drawing works in the object approach. Drawing is a top-down process: starting from the root of
the view tree, each object draws itself, then draws each of its children recursively. The process is optimized by
passing a clipping region to each object, indicating the area of the screen that needs to be drawn. Children
that do not intersect the clipping region are simply skipped, not drawn. In the example above, nodes B and C
would not need to be drawn. When an object partially intersects the clipping region, it must be drawn — but
any strokes or pixels it draws when the clipping region is in effect will be masked against the clip region, so
that only pixels falling inside the region actually make it onto the screen.

For the root, the clipping region might be the entire screen. As drawing descends the tree, however, the
clipping region is intersected with each object’s bounding box. So the clipping region for an object deep in the
tree is the intersection of the bounding boxes of its ancestors.

For high performance, the clipping region is normally rectangular, using bounding boxes rather than the
graphical object’s actual shape. But it doesn’t have to be that way. A clipping region can be an arbitrary shape
on the screen. This can be very useful for visual effects: e.g., setting a string of text as your clipping region,
and then painting an image through it like a stencil. Postscript was the first stroke model to allow this kind of
nonrectangular clip region. Now many graphics toolkits support nonrectangular clip regions. For example, on
Microsoft Windows and X Windows, you can create nonrectangular windows, which clip their children into a
nonrectangular region.

16

Redraw Example

(doesn’t .
intersect v
clip region)

Spring 2010 6.813/6.831 User Interface Design and Implementation 17

Here’s an example of the redraw algorithm running on the graph window (starting with the clipping region
shown on the last slide).

1.First the clip region is intersect with the whole window’s bounding box, and the window is told to draw itself
within that intersection. The window draws its titlebar and its gray background. The window background
effectively erases the previous contents of the window.

2.The window’s clip region is now intersected with its first child’s bounding box (Node A), and Node A is told
to draw itself within that. In this particular example (where nodes are represented by circle and label
components), Node A doesn’t do any of its own drawing; all the drawing will be handled by its children.

3.Now Node A’s circle child is told to draw itself. In this case, the circle has the same bounding box as Node
A itself, so it receives the same clip region that Node A did. It draws a white circle.

4 Now Node A’s label child is told to draw itself, again using the same clip region because it has the same
bounding box. It draws text on top of the circle just drawn.

5.Popping back up the tree, the next child of the window, Edge A-B, is told to draw itself, using the clip region
that intersects its own bounding box with the window’s clip region. Only part of the edge falls in this clip
region, so the edge only draws part of itself.

6.The next child of the window, Node B, doesn’t intersect the window’s clip region at all, so it isn’t told to
draw itself.

7.The algorithm continues through the rest of the tree, either drawing children or skipping them depending on
whether they intersect the clip region. (Would Edge A-C be drawn? Would Node C be drawn?)

Note that the initial clip region passed to the redraw algorithm will be different every time the algorithm is
invoked. Clip regions generally come from damage rectangles, which will be explained in a moment.

17

Z Order

« 2D GUIs are really “2 %2 D”
— Drawing order produces layers
— Not a true z coordinate for each object, but merely an
ordering in the z dimension
» View tree and redraw algorithm dictate z order
— Parents are drawn first, underneath children
— Older siblings are drawn under younger ones

+ Flex, HTML, most GUI toolkits and drawing programs behave
this way

+ Java Swing is backwards: last component added (highest
index) is drawn first

» CSS has a z-index property that overrides tree structure

Spring 2010 6.813/6.831 User Interface Design and Implementation 18

When the bounding boxes of two objects overlap, like the circle and label components in the previous
example, the redraw algorithm induces an ordering on the objects that makes them appear layered, one on top
of the other. For this reason, 2D graphical user interfaces are sometimes called 2'4D. They aren’t fully 3D, in
which objects have x, y, and z coordinates; instead the z dimension is merely an ordering, called z order.

Z order is a side-effect of the order that the objects are drawn when the redraw algorithm passes over the tree.
Since drawing happens top-down, parents are generally drawn underneath children (although parents get
control back after their children finish drawing, so a parent can draw some more on top of all its children if it
wants). Older siblings (with lower indexes in their parent’s array of children) are generally drawn underneath
younger ones. Java Swing is a curious exception to this — its redraw algorithm draws the highest-index child
first, so the youngest sibling ends up on the bottom of the z order.

Z order can be affected by rearranging the tree, e.g. moving children to a different index position within their
parent, or promoting them up the tree if necessary. This is often important for operations like drag-and-drop,
since we generally want the object being dragged to appear on top of other objects.

Some GUI toolkits allow you to change the z-order of an element without moving its position in the tree. In
HTML, the CSS z-index property lets you do that. There’s a nice page (http:/tjkdesign.com/articles/z-index/
teach_yourself_how_elements_stack.asp) that lets you explore how the z-index property works.

18

Damage and Automatic Redraw

damaged region
v i - / e, .

Spring 2010 6.813/6.831 User Interface Design and Implementation 19

When a graphical object needs to change its appearance, it doesn’t repaint itself directly. It can t, because the
drawing process has to occur top-down through the view tree: the object’s ancestors and older siblings need to
have a chance to paint themselves underneath it. (So, in Java, even though a graphical object can call its own
paint() method directly, you generally shouldn’t do it!)

Instead, the object asks the graphics system to repaint it at some time in the future. This request includes a
damaged region, which is the part of the screen that needs to be repainted. Often, this is just the entire
bounding box of the object; but complex objects might figure out which part of the screen corresponds to the
part of the model that changed, so that only that part is damaged.

The repaint request is then queued for later. Multiple pending repaint requests from different objects are
consolidated into a single damaged region, which is often represented just as a rectangle — the bounding box of
all the damaged regions requested by individual objects. That means that undamaged screen area is being
considered damaged, but there’s a tradeoff between the complexity of the damaged region representation and
the cost of repainting.

Eventually — usually after the system has handled all the input events (mouse and keyboard) waiting on the
queue -- the repaint request is finally satisfied, by setting the clipping region to the damaged region and
redrawing the view tree from the root.

19

Naive Redraw Causes Flashing Effects

Object moves

Determine Redraw parent Redraw children

damaged region (children blink out!)
Spring 2010 6.813/6.831 User Interface Design and Implementation 20

There’s an unfortunate side-effect of the automatic damage/redraw algorithm. If we draw a view tree directly
to the screen, then moving an object can make the screen appear to flash — objects flickering while they move,
and nearby objects flickering as well.

When an object moves, it needs to be erased from its original position and drawn in its new position. The
erasure is done by redrawing all the objects in the view hierarchy that intersect this damaged region; typically
the drawing of the window background is what does the actual erasure. If the drawing is done directly on the
screen, this means that all the objects in the damaged region temporarily disappear, before being redrawn.
Depending on how screen refreshes are timed with respect to the drawing, and how long it takes to draw a
complicated object or multiple layers of the hierarchy, these partial redraws may be briefly visible on the
monitor, causing a perceptible flicker.

Double-Buffering

* Double-buffering solves the flashing problem

Spring 2010 6.813/6.831 User Interface Design and Implementation 21

Double-buffering solves this flickering problem. An identical copy of the screen contents is kept in a memory
buffer. (In practice, this may be only the part of the screen belonging to some subtree of the view hierarchy
that cares about double-buffering.) This memory buffer is used as the drawing surface for the automatic
damage/redraw algorithm. After drawing is complete, the damaged region is just copied to screen as a block of
pixels. Double-buffering reduces flickering for two reasons: first, because the pixel copy is generally faster
than redrawing the view hierarchy, so there’s less chance that a screen refresh will catch it half-done; and
second, because unmoving objects that happen to be caught, as innocent victims, in the damaged region are
never erased from the screen, only from the memory buffer.

It’s a waste for every individual view to double-buffer itself. If any of your ancestors is double-buffered, then
you’ll derive the benefit of it. So double-buffering is usually applied to top-level windows.

Why is it called double-buffering? Because it used to be implemented by two interchangeable buffers in video
memory. While one buffer was showing, you’d draw the next frame of animation into the other buffer. Then
you’d just tell the video hardware to switch which buffer it was showing, a very fast operation that required no
copying and was done during the CRT’s vertical refresh interval so it produced no flicker at all.

21

Going From Objects to Strokes

» Drawing method approach
— e.g. Swing paint() method
— Drawing method is called directly during redraw; override it
to change how component draws itself

» Retained graphics approach

— e.g. Adobe Flex

— Stroke calls are recorded and played back at redraw time
» Differences

— Retained graphics is less error prone

— Drawing method gives more control and performance

Spring 2010 6.813/6.831 User Interface Design and Implementation 22

In our description of the redraw algorithm, we said a graphical object “draws itself,” meaning that it produces strokes to
show itself on the screen. How that is actually done depends on the GUI toolkit you’re using.

In Java Swing (and many other desktop GUI toolkits, like Win32 and Cocoa), every object has a drawing method. In
Swing, this method is paint(). The redraw algorithm operates by recursively calling paint() down the view hierarchy.
Objects can override the paint() method to change how they draw themselves. In fact, Swing breaks the paint() method
down into several overridable template methods, like paintComponent() and paintChildren(), to make it easier to affect
different parts of the redraw process. More about Swing’s painting process can be found in “Painting in AWT and Swing”
by Amy Fowler (http://java.sun.com/products/jfc/tsc/articles/painting/).

In Adobe Flex, there’s no drawing method available to override — the redraw algorithm is hidden from the programmer,
much like the event loop is hidden by these toolkits. Instead, you make a sequence of stroke calls into the object, and the
object records this sequence of calls. Subsequently, whenever the object needs to redraw itself, it just plays back the
recorded sequence of stroke calls. This approach is sometimes called retained graphics.

A key difference between these approaches is when stroke calls can be made. With the drawing method approach, drawing
should only be done while the drawing method is active. Drawing done at a different time (like during an event handler)
will not interact correctly with the redraw algorithm; it won’t respect z order, and it will be ephemeral, overwritten and
destroyed the next time the redraw algorithm touches that object. With the retained graphics approach, however, the stroke
calls can be recorded at any time, and the toolkit automatically handles playing them back at the right point in the redraw.
The retained graphics approach tends to be less error prone for a programmer; drawing at the wrong time is a common
mistake for beginning Swing programmers.

A potential downside of the retained graphics approach is performance. The recorded strokes must be stored in memory.
Although this recording is not as heavyweight as a view tree (since it doesn’t have to handle input or layout, or even
necessarily be represented as objects), you probably wouldn’t want to do it with millions of stroke calls. So if you had an
enormous view (like a map) being displayed inside a scrolling pane (so that only a small part of it was visible on screen),
you wouldn’t want to stroke the entire map. The drawing method approach gives more control over this; since you have
access to the clip region in the drawing method, you can choose not to render strokes that would be clipped. To do the
equivalent thing with retained graphics would put more burden on the programmer to determine the visible rectangle and
rerecord the stroke calls every time this rectangle changed.

22

Stroke Model

» Drawing surface

— Also called drawable (X Windows), GDI (MS Win)

— Screen, memory buffer, print driver, file, remote screen
= Graphics context

— Encapsulates drawing parameters so they don’t have to be
passed with each call to a drawing primitive

— Font, color, line width, fill pattern, etc.
Coordinate system
— Origin, scale, rotation
= Clipping region
= Drawing primitives
— Line, circle, ellipse, arc, rectangle, text, polyline, shapes

Spring 2010 6.813/6.831 User Interface Design and Implementation 23

Now let’s look at the drawing capabilities provided by the stroke model.

Every toolkit’s stroke model has some notion of a drawing surface. The screen is only one possible place
where drawing might go. Another common drawing surface is a memory buffer, which is an array of pixels just
like the screen. Unlike the screen, however, a memory buffer can have arbitrary dimensions. The ability to
draw to a memory buffer is essential for double-buffering. Another target is a printer driver, which forwards
the drawing instructions on to a printer. Although most printers have a pixel model internally (when the ink
actually hits the paper), the driver often uses a stroke model to communicate with the printer, for compact
transmission. Postscript, for example, is a stroke model.

Most stroke models also include some kind of a graphics context, an object that bundles up drawing
parameters like color, line properties (width, end cap, join style), fill properties (pattern), and font.

The stroke model may also provide a current coordinate system, which can be translated, scaled, and rotated
around the drawing surface. We’ve already discussed the clipping region, which acts like a stencil for the
drawing. Finally, a stroke model must provide a set of drawing primitives, function calls that actually
produce graphical output.

Many systems combine all these responsibilities into a single object. Java’s Graphics object is a good example
of this approach. In other toolkits, the drawing surface and graphics context are independent objects that are
passed along with drawing calls.

When state like graphics context, coordinate system, and clipping region are embedded in the drawing surface,
the surface must provide some way to save and restore the context. A key reason for this is so that parent
views can pass the drawing surface down to a child’s draw method without fear that the child will change the
graphics context. In Java, for example, the context can be saved by Graphics.create(), which makes a copy of
the Graphics object. Notice that this only duplicates the graphics context; it doesn’t duplicate the drawing
surface, which is still the same.

23

HTMLS Canvas in One Slide

HTML element
<canvas width=10e0

drawing primitives
ctx.beginPath();

height=1008></canvas> ctx.moveTo(@,0)

graphics context ctx.lineTo(500,500)
var ctx = canvas.getContext ctx.stroke()

(ﬂ‘zd!})
coordinate system
ctx.translate()

ctx.beginPath()
ctx.arc(560,560,100,0,

ctx.rotate() 2*Math.PI,false)
ctx.scale() ctx.Fil1()
color, font, line style, etc. clipping

tx.strokeStyle = “rgb(5e%,50%, .
. xs;xgg Bl 2o ctx.beginPath()

ctx.fillStyle = .. ctx.rect(e, 8, 2090, 300)

ctx.font = “bold 12pt sans- ctx.clip()
serif”

ctx.lineWidth = 2.5

Spring 2011 6.813/6.831 User Interface Design and Implementation 24

As an example of a stroke library, HTMLS5 has an element called <canvas> that provides a stroke drawing
context for Javascript programs. The way to think about a canvas is as a pixel image that you’re drawing
stroke calls on. The canvas element takes width and height attributes that specify the size of this pixel image.

When the canvas is laid out on screen, however, it might be given a different width and height by CSS layout —
in which case it will be stretched or shrunk appropriately.

The canvas element provides a graphics context object that you can interact with from Javascript. (The “2d”
graphics context is shown here; future canvas implementations may offer 3D rendering contexts.) The
interface for this object has all the pieces of a stroke library that we talked about on the previous slide.

24

Exercise: Try Some Canvas

» Go to htmledit.squarefree.com

* Make a canvas and get its graphics context:
<canvas width=1000 height=1000></canvas>

<script src="http://code.jquery.com/jquery-1.7.1.min.js"></script>

<script>

var ctx = §("canvas").get(0).getContext("2d")

<[script>

« Draw a delta shield

ctx.fillStyle = "red"; ctx.beginPath();
ctx.moveTo(100, 10); ctx.lineTo(150, 150);
ctx.bezierCurveTo(100, 100, 130, 100, 50, 150);
ctx.lineTo(100, 10); ctx.fill();

() 0 3 important!

Spring 2012 6.813/6.831 User Interface Design and Implementation

25

25

Antialiasing and Subpixel Rendering

Subpixel rand;‘ing

Simple \ Antialiased

Spring 2010 6.813/6.831 User Interface Design and Implementation 26

It’s beyond the scope of this lecture to talk about algorithms for converting a stroke into pixels. But you
should be aware of some important techniques for making strokes look good.

One of these techniques is antialiasing, which is a way to make an edge look smoother. Instead of making a
binary decision between whether to color a pixel black or white, antialiasing uses a shade of gray whose value
varies depending on how much of the pixel is covered by the edge. In practice, the edge is between two
arbitrary colors, not just black and white, so antialiasing chooses a point on the gradient between those two
colors. The overall effect is a fuzzier but smoother edge.

Subpixel rendering takes this a step further. Every pixel on an LCD screen consists of three discrete pixels
side-by-side: red, green, and blue. So we can get a horizontal resolution which is three times the nominal pixel
resolution of the screen, simply by choosing the colors of the pixels along the edge so that the appropriate
subpixels are light or dark. It only works on LCD screens, not CRTs, because CRT pixels are often arranged in
triangles, and because CRTs are analog, so the blue in a single “pixel” usually consists of a bunch of blue
phosphor dots interspersed with green and red phosphor dots. You also have to be careful to smooth out the
edge to avoid color fringing effects on perfectly vertical edges. And it works best for high-contrast edges, like
this edge between black and white. Subpixel rendering is ideal for text rendering, since text is usually small,
high-contrast, and benefits the most from a boost in horizontal resolution. Windows XP includes ClearType,
an implementation of subpixel rendering for Windows fonts. (For more about subpixel rendering, see Steve
Gibson, “Sub-Pixel Font Rendering Technology”, http:/grc.com/cleartype.htm)

26

Exercise (requires a NMac)

= Turn on screen zoom g
— System Preferences / Mouse 2eceen Zoom CDetions)

— Now holding Command and scrolling zooms the screen

Turn off SmOOthing T Smooth images (Press U3\ to turn smoothing on or off)
— System Preferences / Mouse /Screen Zoom/ Options
Find some text and zoom in on it

What do you see?

Spring 2012 6.813/6.831 User Interface Design and Implementation 27

27

Pixel Approach

= Pixel approachis a rectangular array of pixels
— Each pixel is a vector (e.g., red, green, blue components), so pixel
array Is really 3 dimensional
+ Bits per pixel (bpp)
— 1 bpp: black/white, or bit mask
— 4-8 bpp: each pixel is an index into a color palette
— 24 bpp: 8 bits for each color
— 32 bpp: 8 bits for each color + alpha channel
« Color components (e.g. RGB) are also called channels or bands
» Pixel model can be arranged in many ways
— Packed into words (RGBR GBRG ...) or loosely (RGB- RGB- ...)
- I:Sz?;pBara)te planes (RRR...GGG...BBB...) vs. interleaved (RGB RGB

— Scanned from top to bottom vs. bottom to top

Spring 2010 6.813/6.831 User Interface Design and Implementation 28

Finally, let’s talk in more detail about what a pixel image looks like.

Put simply, it’s a rectangular array of pixels — but pixels themselves are not always so simple. A pixel itself has
a depth, so this model is really three dimensional. Depth is often expressed in bits per pixel (bpp). The
simplest kind of pixel model has 1 bit per pixel; this is suitable for representing black and white images. It’s
also used for bitmasks, where the single-bit pixels are interpreted as boolean values (pixel present or pixel
missing). Bitmasks are useful for clipping — you can think of a bitmask as a stencil.

Another kind of pixel representation uses each pixel value as an index into a palette, which is just a list of
colors. In the 4-bpp model, for example, each of the 16 possible pixel values represents a different color. This
kind of representation, often called Indexed Color, was useful when memory was scarce; you still see it in the
GIF file format, but otherwise it isn’t used much today.

The most common pixel representation is often called “true color” or “direct color”; in this model, each pixel
represents a color directly. The color value is usually split up into multiple components: red, green, and blue.
(Color components are also called channels or bands; the red channel of an image, for example, is a
rectangular array of the red values of its pixels.)

A pixel model can be arranged in memory (or a file) in various ways: packed tightly together to save memory,

or spread out loosely for faster access; with color components interleaved or separated; and scanned from the
top (so that the top-left pixel appears first) or the bottom (the bottom-left pixel appearing first).

28

Transparency

« Alpha is a pixel’s transparency
— from 0.0 (transparent) to 1.0 (opaque)

— so each pixel has red, green, blue, and alpha
values

» Uses for alpha
— Antialiasing
— Nonrectangular images
— Translucent components
— Clipping regions with antialiased edges

Spring 2010 6.813/6.831 User Interface Design and Implementation 29

Many pixel models have a fourth channel in addition to red, green, and blue: the pixel’s alpha value, which
represents its degree of transparency. We’ll talk more about alpha in a future lecture.

Exercise: Translucent Rectangles

* Go to htmledit.squarefree.com

» Make a translucent rectangle with <div>

<div style="width:100px; height:100px; background-color:red; opacity:
0.5; position:absolute"></div>

» Make an overlapping rectangle with <canvas>
<canvas width=1000 height=1000 style="position:absolute”></canvas>
<script src="http://code.jquery.com/jquery-1.7.1.min.js"></script>
<script>
var ctx = $("canvas").get(0).getContext("2d")
ctx fillStyle = "rgba(100%,0%,0%,0.5)"
ctx.rect(50,50,100,100)
ctx fill()
</script>

Spring 2012 6.813/6.831 User Interface Design and Implementation 30

30

BitBIt

» BitBlt (bit block transfer) copies a block of
pixels from one image to another
— Drawing images on screen
— Double-buffering
— Scrolling
— Clipping with nonrectangular masks

» Compositing rules control how pixels from
source and destination are combined
— More about this in a later lecture

Spring 2010 6.813/6.831 User Interface Design and Implementation 31

The primary operation in the pixel model is copying a block of pixels from one place to another — often called
bitblt (pronounced “bit blit”). This is used for drawing pictures and icons on the screen, for example. It’s also
used for double-buffering — after the offscreen buffer is updated, its contents are transferred to the screen by a
bitblt.

Bitblt is also used for screen-to-screen transfers. To do fast scrolling, for example, you can bitblt the part of
the window that doesn’t change upwards or downwards, to save the cost of redrawing it. (For example, look at
Swing’s JViewport. BLIT SCROLL_MODE.)

It’s also used for sophisticated drawing effects. You can use bitblt to combine two images together, or to
combine an image with a mask, in order to clip it or composite them together.

Bitblt isn’t always just a simple array copy operation that replaces destination pixels with source pixels. There
are various different rules for combining the destination pixels with the source pixels. These rules are called
compositing (alpha compositing, when the images have an alpha channel), and we’ll talk about them in a
later lecture.

21

Image File Formats

+ GIF
— 8 bpp, palette uses 24-bit colors
— 1 color in the palette can be transparent (1-bit alpha channel)
— lossless compression
— suitable for screenshots, stroked graphics, icons
+ JPEG
— 24 bpp, no alpha
~ lossy compression: visible artifacts (dusty noise, moire patterns)
- suitable for photographs
« PNG
— lossless compression
- 1, 2, 4, 8 bpp with palette
— 24 or 48 bpp with true color
— 32 or 64 bpp with true color and alpha channel
- suitability same as GIF
~ better than GIF, but no animation

Spring 2010 6.813/6.831 User Interface Design and Implementatiocn 32

Here are a few common image file formats. It’s important to understand when to use each format. For user
interface graphics, like icons, JPG generally should not be used, because it’s lossy compression — it doesn’t
reproduce the original image exactly. When every pixel matters, as it does in an icon, you don’t want lossy
compression. JPG also can’t represent transparent pixels, so a JPG image always appears rectangular in your
interface.

For different reasons, GIF is increasingly unsuitable for interface graphics. GIF isn’t lossy — you get the same
image back from the GIF file that you put into it — but its color space is very limited. GIF images use 8-bit
color, which means that there can be at most 256 different colors in the image. That’s fine for some low-color
icons, but not for graphics with gradients or blurs. GIF has limited support for transparency — pixels can either
be opaque (alpha 1) or transparent (alpha 0), but not translucent (alpha between 0 and 1). So you can’t have
fuzzy edges in a GIF file, that blend smoothly into the background. GIF files can also represent simple
animations.

PNG is the best current format for interface graphics. It supports a variety of color depths, and can have a full
alpha channel for transparency and translucency. (Unfortunately Internet Explorer 6 doesn’t correctly display
transparent PNG images, so GIF still rules web graphics.)

If you want to take a screenshot, PNG is the best format to store it.

32

Hints for Debugging Output

« Something you're drawing isn’t appearing on
the screen. Why not?
— Wrong visibility setting
« CSS display property
— Wrong place
= left/top, position properties
— Wrong size
» width/height
— Wrong color
« color, background-color, background-image
— Wrong z-order

Spring 2010 6.813/6.831 User Interface Design and Implementation 33

A final word about debugging the output of a graphical user interface, which can sometimes be tricky. A
common problem is that you try to draw something, but it never appears on the screen. Here are some possible
reasons why.

Wrong place: what’s the origin of the coordinate system? What’s the scale? Where is the component located in
its parent?

Wrong size: if a component has zero width and zero height, it will be completely invisible no matter what it
tries to draw— everything will be clipped. Zero width and zero height tend to be the defaults for primitive
components! If you make a div or a span with nothing in it, it’ll be zero width and height. You have to give it
content, or manually set its size, to make it more reasonable size. Check whether the component (and its
ancestors) have nonzero sizes.

Wrong color: is the drawing using the same color as the background? Is it using 100% alpha, so that it’s
completely transparent?

Wrong z-order: is something else drawing on top?

33

Summary

Object, stroke, pixel approaches
Object approach

— CSS properties

— Automatic redraw and double-buffering
Stroke approach

— Drawing contexts

— HTML canvas

Pixel approach

— Alpha transparency

— Image formats

L]

Spring 2010 6.813/6.831 User Interface Design and Implementation

34

