6.858 Fall 2012 Lab 2: Privilege separation http://css.csail. mit.edw6.858/2012/1abs/lab2.html

1 of5

6.858 Fall 2012 Lab 2: Privilege separation

Handed out: Wednesday, September 19, 2012
Part 1 due: Friday, September 28, 2012 (5:00pm)
All parts due: Friday, October 5, 2012 (5:00pm)

Introduction

This lab will introduce you 0 pr1v1lege separatlon n the context of a simple python web application called zoobar, where users
transfer "zoobars" (credits) betwee er. 1o help you pnwlege-se];%lmmu\f__fmwver used in
the previous lab is a clone of the OKWS web server, discussed in lecture 3. In this lab, you will set up a privilege separated web
server, examine possible vulnerabilities, and break up the application code into less-privileged components to minimize the

effects of any single vulnerability.
07 any STge ¥

To fetch the new source code, use Git to commit your Lab 1 solutions, and merge them into our lab2 branch:

. httpdevm-6858:~$ cd lab

. httpd@vm-6858:~/1lab$ git add answers.txt exploit-*.py [and any other new files...]
. httpde@evm-6858:~/lab$ git commit -am 'my solution to labl’

¢ [labl c¢54dd4d] my solution to labl

: 1 files changed, 1 insertions(+), 0 deletions(-)

. httpdevm-6858:~/lab$ git pull

5 httpdevm-6858:~/lab$ git checkout -b lab2 origin/lab2

: Branch lab2 set up to track remote branch lab2 from origin.
: Switched to a new branch 'lab2'

‘ httpd@vm-6858:~/1lab$ git merge labl

- Merge made by recursive.

. httpdevm-6858:~/lab$

In some cases, Git may not be able to figure out how to merge your changes with the new lab assignment (e.g. if you modified
some of the code that is changed in the second lab assignment). In that case, the git merge command will tell you which files
are conflicted, and you should first resolve the conflict (by editing the relevant files) and then commit the resulting files with git
commit -a

Once your source code is in place, make sure that you can compile and install the web server and the zoobar application:
e R T

httpd@vm-6858:~/lab$ make

. cc -m32 -g -std=c99 -fno-stack-protector -Wall -Werror -D_GNU_SOURCE -c -o zookld.o zookld.c
cc -m32 -g -std=c99 -fno-stack-protector -Wall -Werror -D_GNU_SOURCE -c -o http.o http.c
cc -m32 zookld.o http.o -lcrypto -o zookld

cc -m32 -g -std=c99 -fno-stack-protector -Wall -Werror -D_GNU_SOURCE -c -o zookfs.o zookfs.c
cc -m32 zookfs.o http.o -lcrypto -o zookfs

cc -m32 -g -std=c99 -fno-stack-protector -Wall -Werror -D_GNU_SOURCE -c -o zookd.o zookd.c

cc -m32 zookd.o http.o -lcrypto -o zookd

cc -m32 -g -std=c99 -fno-stack-protector -Wall -Werror -D_GNU_ SOURCE -c¢ -o zooksvc.o zooksvc.c

cc -m32 zooksvc.o -lcrypto -o zooksvce

. httpd@vm-6858:~/lab$ sudo make setup
[sudo] password for httpd: 6858
./chroot-setup.sh
+ grep -qv uid=0
+ id

-+ python /jail/zocobar/zoodb.py init-person

. + python /jail/zoobar/zoodb.py init-transfer
httpd@vm-6858:~/lab$

The web server for this lab uses th directory to setu - odt jails for different parts of the web server, much as in the

OKWS paper. The make command co piles the web server, and make setup installs it with all the necessary permissions in the
/jail directory.

As part of this lab, you will need to change how the files and directories are installed, such as changing their owner or

9/22/2012 2:15 PM

6.858 Fall 2012 Lab 2: Privilege separation http://css.csail.mit.edw/6.858/2012/labs/lab2.html

permissions. To do this, you should not change the permissions directly. Instead, you should edit th@ and
chroot-copy. sh scripts in the 1ab directory, and re-runjsudo make setup.

0 ‘ fwifg
Now, make sure you can run the web server, and access thelweb site frmﬁ your browser, as follows:

: httpde@vm-6858:~/1lab$ /sbin/ifconfig etho
: etho0 Link encap:Ethernet HWaddr 00:0c:29:57:90:al
: inet addr:172.16.91.143 Bcast:172.16.91.255 Mask:255.255.255.0
inet6 addr: feB0::20c:29ff:feS57:90al/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:149 errors:0 dropped:0 overruns:0 frame:0
TX packets:94 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:15235 (15.2 KB) TX bytes:12801 (12.8 KB)
Interrupt:19 Base address:0x2000

; httpd@vm-6858:~/lab$ sudo ./zoockld

In this particular example, you would want to open your browser and go to http://172.16.91.143:8080/zoobar/index.cgi,
or, if you are using KVM, to http://localhost:8080/zoobar/index.cgi. You Should see the zoobar web site. Play around
with this web application to get a feel for what it allows users to do. In short, a registered user can update his/her profile, transfer
"zoobars" its) to another user, and look up the zoobar balance, profile, and transactions of other users in the system.

If something doesn't seem to be working, try to figure out what went wrong, or contact the course staff, before proceeding
further.

Part 1: Web Server Setup

In the first part of this lab assignment, you wil[readthe provided source code of the zookws web server and further secure it
using privilege separation.

As introduced in Lab]_, the zookws web server is modeled after OKWS from lecture 4. Similar to OKWS, zookws consists of a
launcher daemoneﬁcld that launches services configured in the ﬁle@}.@ dispatcher zookd that routes requests to

corresponding services;as well as several services. For simplicity zookws does not implement helper or logger daemon as OKWS
does.

By default zookws configures only one HTTP service, simple_svc, that serves static files and executes dynamic scripts. The
simple_sve does so by invoking the executable zookEs, which is jailed in the directory /jail by chroot. You can look into
/jail; it contains executables (except for zook1d), supporting libraries, and the zoobar web site. See zook. conf and zookfs.c

for details. SG mh WL.l ,2 angm /;

The launcher daemon zook1d is running under root and can bind 10 a privileged port like 80. Note that in the default
configuration, zookd and vulnerable servi e inappropriately running under root; an attacker can exploit buffer overflows
and cause damages to the server, e.g., unlink a specific file as you have done in Lab 1.

To fix the problem, you should run these services under unprivileged usess rather than root.

i Exercise 1. Modify the configuration file zook . conf to run zookd and other services under unprivileged user IDs.

Make sure that the attacker cannot read or write to sensitive files in the server, even if zookd and these services i
! contain buffer overflow vulnerabilities. At the same time, ensure that the zoobar application continues to work: that :
i new users can register, transfer credits, and so on. :

You will need to pick additional UIDs and GIDs, set them for each service in zook. conf, and edit the chroot- ;
i setup.sh and chroot-copy.sh scripts as necessary. Remember to re-run sudo make setup after changing scripts
i that set up /jail if you want your changes to take effect. Keep in mind that the chroot-setup.sh and chroot- |
i copy.sh scripts will be re-run each time by make setup and make check, so any commands that you add to these

: scripts should be safe to run multiple times.
: —

Run sudo make check to verify that your modified configuration passes our basic tests (although keep in mind that
i our tests are not exhaustive). i

2of5 9/22/2012 2:15 PM

6.858 Fall 2012 Lab 2: Privilege separation hitp://css.csail.mit.edw/6.858/2012/1abs/lab2.html

3 of5

Now that none of the services are running as root, we will try to further privilege-separate the simple_svc service that handles
both static files and dynamic scripts. Although it runs under an unprivileged user, some pythom easily have security
holes; a vulnerable python script could be tricked into deleting important static files that the server is serving. A better
organization is to split simple_svc into two services, one for static ﬁlemmon scripts, running under different
users. — e

Additionally, a client should only be able to run the intended python scripts in the /zoobar directory from a browser, namely the
/zoobar/index. cgi script. For example, a client should not be able to run /password.cgi, which reveals the root password of
the server. Similarly, a client should not be able to directly fetch the databas€ files person.db and transfer.db via HTTP.

Exercise 2. Create two new HTTP services, along the lines of the existing simple svec service, such that one will
i only execute dynamic content, and one which will only serve static files. Modify the configuration file zook. conf
! to split the simple_svc service into two services running under different users: the static service that only serves
static files, and the dynamic service that only executes In;end d python scripts in the zoobar directory. '
alless —> pof- a4

i You may use url filtering provided in zook. conf, which supports regular expressions. For gxample, url = .*

i matches all req‘ﬁéﬁ?fﬂfﬂe url = /zoobar/(abc|def)\.html only allows requests to /zoobar/abc.html and

! /zoobar/def.html. You may also find it helpful to modify the server to not serve paths containing . ., although it
is not the only solution.

Run sudo make check to verify that your modified configuration passes our tests.

Now that we have privilege-separated the handling of static and dynamic content in the web server, we will look at fixing some
bugs in the zoobar web application code. One of the key features of the zoobar application is the ability to transfer credits

between users. This feature is implemented by the script transfer.py. Unfortunately, transfer.py has some logicatb gn ugs that
may result in wrong transfers. S —

Exercise 3. Fix as many logical bugs as you can find in transfer.py (don't worry about browser-side attacks such
i as XSS for now) and note them in answers. txt. Think carefully about what kinds of inputs an attacker might
i provide. In our solution, there are three vulnerabilities.

Deliverables

Explain in answers. txt your changes to the zookws source code, configuration, and setup scripts for each exercise. Feel free to

include any comments about your solutions in the answers. txt file (we would appreciate any feedback you may have on this
assignment).

Submit your answers to the first part of the lab assignment by running make submit to upload lab2-handin.tar.gz to the

submission web site. Q’/ﬁ 7[* 1{5 lﬂ/(@ L _Joa 4" !‘ Lot ﬁwr 4««’ -

Part 2: The zoobar Web Site o (“;’;W Y ,
SRS (Jﬂélﬁt«f

In the rest of this lab assignment, you will further secure the zoobar web site using privilege separation.

In the previous exercise, we fixed the bugs in the transfer code; now we would like to make sure we can deal with any future
such bugs that come up. To do so, we want to make sure that we have@of all zoobar transfers that happened imthe
system. The current design stores the transfer log in the transfer SQL table, Stored in zoobar/db/transfer/transfer.db.

This table is accessible to all python code in the zoobar site, which means that an attacker might be able to change the history so
that we will never find out about hisor her attack. l\-
J = Mo

We will try to make the transfer log more reliable by performing the logging operations m a separate rocess, running as a
different user from the rest of the zoobar code. This user ID will only run logging code, which will insert new log entries into the

transfer table. By setting permissions on the zoobar/db/transfer directory accordingly, we will ensure that only the logging
code (which will hopefully be trustworthy) will be able to modify log entries, but any other python code will be able to read the
log.

9/22/2012 2:15 PM

6.858 Fall 2012 Lab 2: Privilege separation http://css.csail.mit.edu/6.858/2012/labs/lab2.html

To break off some python code into a separate process, running as a separate user 1D, we have provided you with some helper
tools. The zooksve service creates a Unix domain socket, and when soméone connects to this socket, it will launch an arbitrary
program. We have created a simple echo service using this tool. Look at how zook. conf spawns this echo service, the source
code for the echo service tool in zoobar/svc-echo. py, and the sample client of this service in zoobar/demo-client.py. The
client uses a simple library for connecting to Unix domain socket services, in zoobar/unixclient .py. Note that the client is
meant to be invoked from the command line, rather than being executed as a CGI script via HTTP.

To debug the low-level protocol between the client and the server, you can use the@etca® tool. For example, once zook1d is
running and has started the echo service, you should be able to connect to and interact with the echo service as follows:
e reat

: httpd@vm-6858:~/lab$ sudo nc -U /jail/echosve/sock
: foo

: You said: foo

- httpd@vm-6858:~/1lab$

You may find this tool helpful in debugging any new Unix domain socket services you create.

s B A R o e R s < R A

i Exercise 4. Create a new service to perform transfer logging as a separate user ID. You will need to create a new

i service along the lines of svc-echo. py; modify zook. conf to start it appropriately (under a different UID); modify :
 the permissions on the transfer database directory such that only this new service can modify it; and modify the
transfer.py code to invoke this service to log transactions, instead of logging transactions directly.

i Make all of your changes in the 1ab directory rather than in /jail. In particular, if you need to set certain
: permissions on files or directories, or install additional files or directories in /jail, do so in the chroot-setup.sh
i script.

Note: be careful when picking a format for messages in your service. What if someone tries to passes spaces or a
i newline as an argument? (Hint: use some existing encoding like JSON. But don't use Python's pickle module.)

i Run sudo make check to verify that your privilege-separated transfer service passes our tests.

Now, you will break up the zoobar code into two additional protection domains. First, we want to make sure that only the
transfer code is actually able to modify the zoobar balances of different-users, so that a vulnerability in the rest of the python
code will not be able to directly modify the number of zoobars that some user has.

One complication in doing this rests in the fact that the zoobar balance information is stored in the same database table, person,
that stores profile and login information that the rest of the code must be able to modify. To protect zoobar balances from being
corrupted by the rest of the python code, you will need to create a new database table holding just the zoobar balances for each
user, and remove the balance information from the person table. ;

Exercise 5. In preparation for privilege-separating the transfer code, split the zoobars field from the person table

: into a new zoobars table stored in the database file zoobar/db/zoobars/zoobars.db, and remove the zocbars |
i column from the person table. Change the rest of the python code to access the correct table when fetching zoobar
i balances. Don't forget to handle the case of account creation, WhWMan initial 10 zoobars. !

Exercise 6. Create a new service to transfer zoobars from one user to another. Change the transfer.py codeto
i invoke this service instead of modifying the zoobar balances directly. Set the permissions on the new balances table
i such that only the transfer code can modify it, and the rest of the python code can only read it. Don't forget to '
i handle account creation, which needs to involve your new transfer service.

Finally, make sure that only the transfer code is able to invoke the logging service -- after all, no other python code
i should be able to generate log entries! You should be able to do this by using groups and group permissions on the

i directory containing the logging service socket. As before, make sure all of your changes are reflected in the
chroot-setup.sh script, and not only in the ﬁ/@_directory in your VM.

4 of 5 9/22/2012 2:15 PM

6.858 Fall 2012 Lab 2: Privilege separation http://css.csail.mit.edw/6.858/2012/labs/lab2.html

5of5

Now our web application should be more secure, because compromises of most of the python code will not allow the attacker to
modify zoobar balances. Unfortunately, the attacker can still subvert the web site by modifying user passwords or HTTP cookies
in the person database table. For the final part of this assignment, you will move the authentication and cookie-verification code
into a separate service that runs under a distinct user ID, to prevent such attacks.

! Exercise 7. Split the authentication information (password, salt, and token fields) into an auth table that is
separate from the original person table. Store this table in the database file zoobar/db/auth/auth.db. After you
do this, the only remaining fields in the person table should be the username and the profile.

| Create a new service that implements user login and cookie verification using this table. This service should
implement three functions, which correspond to existing functions implemented in auth. py that you will need to
replace. First, check the username and password for login, returning an HTTP cookie token if the password is
correct. Second, verify whether a token is correct, returning true or false. Third, register a new user, again returning

i true or false depending on success. i

Make sure that the auth table storing passwords and tokens is only readable by your new authentication service.

Exercise 8. In the current design, the attacker can still invoke the transfer service and ask for credits to be i
 transferred between an arbitrary pair of users. Modify the transfer service protocol to require a valid token from the
i sender of credits, and modify the transfer service implementation to validate this token with the authentication ;
i service before approving the transfer.

Although make check does not include an explicit test for this exercise, you should be able to check whether this
: feature is working or not by manually connecting to your transfer service using sudo nc -U /jail/.../sock,and i
i verifying that it is not possible to perform a transfer without supplying a valid toKemn. — :

Deliverables

Again, explain in answers. txt any non-obvious changes you made to zookws and zocbar for each exercise. Feel free to
include any comments about your solutions in the answers. txt file.

You are done! Run make submit to submit your answers to the the submission web site.

Acknowledgments

Thanks to Stanford's CS155 course staff for the initial zoobar web application code, which we extended in this lab assignment.

(Y ((@ f)wﬁ’ 1

9/22/2012 2:15 PM

F:\Users\Michael\Documents\SkyDrive\MIT Senior\6.858\6.858 Codellab2\chroot-setup.sh

N

e e e el el
W N R O WO o - oy e W

.
- o U

-

ki

D DN
w D = O

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

w wm
o

o
[\]

#!/bin/sh -x
if id | grep -gv uid=0; then
echo "Must run setup as root"

exit 1
£i

create_socket dir() {
local dirname="5$1"
local ownergroup="§2"
local perms="3$3"

mkdir -p $dirname
chown $ownergroup $dirname
chmod $perms $dirname

set perms() {
local ownergroup="$1"
local perms="$2"
local pn="§3"

chown $ownergroup S$Spn
chmod $perms Spn

mkdir -p /jail
cp -p index.html /jail
cp -p password.cgl /jail

./chroot-copy.sh zookd /jail
./chroot-copy.sh zookfs /jail
./chroot-copy.sh zooksvec /jail

/chroot-copy.sh /bin/bash /jail

./chroot-copy.sh /usr/bin/env /jail
./chroot-copy.sh /usr/bin/python /jail

mkdir -p /jail/usr/lib/

cp -r /usr/lib/pythonZ2.6 /jail/usr/lib

cp -r /usr/lib/pymodules /jail/usr/lib

cp /usr/lib/libsglite3.s0.0 /jailfusr/lib

mkdir -p /jail/usr/local/lib/

cp -r /usr/local/lib/pythonZ.6 /jail/usr/local/lib

nkdir -p /jail/etc
cp /etc/localtime /jail/etc/
cp /etc/timezone /jail/etc/

mkdir -p /jail/usr/share/zoneinfo

cp -r /usr/share/zoneinfo/America /jail/usr/share/zoneinfo/

-

Thursday, September 27, 2012 9:18 PM

F:\Users\Michael\Documents\SkyDrive\MIT Senior\6.858\6.858 Codellab2\chroot-setup.sh

Thursday, September 27, 2012 9:18 PM

53
54
55
56
54
58
S,
60
61
62
63
64

create_socket_dir /jail/echosvc 61010:61010 755

mkdir -p /jail/tmp
chmod a+rwxt /jail/tmp

ep -r zoobar /jail/

python /jail/zoobar/zoodb.py init-person
python /jail/zoobar/zoodb.py init-transfer

LT b2 /27

7S5y

(ommtJﬁLC’(ﬁ@W\é ZWL JM Qc/[o/

CI& ncls A {('KQC[L@b CCJ@
Dot b= ubd (i

D v v hale Golip st fie !

EQL}LJ' (/‘/\@@}' "%Jllt/p,él\ zms}?v«c{

Tr apews | 2lll hes charyad A
folwv I 1 e hf/{r Changes.
0 s
Word ol of s

oy vl ape
5 fﬁg\@@/ Vi’
“Hade (b (%Do)aw;
- toﬂL«/p %W{W IM((MLQ 7 P(()G [(/ {dqydof'\ww /1261157

Y
who e B ohe wses”
e 5 T kol 3

1/) an i @ pow I: f}rc‘rpk
| Wb Sommr §@W

p\mA Zarhus b Gk cale
S gy

(
](\/LQ((Z $ 5‘MP(QVQVC 1
LM'{’ 11/1 Any (O\j(’, {({&

v ool (M[(ylll nafon en while Eile

b‘/ dl (00{’

Lty commad oy wkadie i
l/“/ Sﬁ@owu((ot dz/abf”]

Y
Co 0 afude g net cedh sews
LS 1o lond

m(/b\{"‘”}/wv” QQ’L‘ (@PI% 6%41«(’ ;41La / /‘ “’6{/

Ocho svC
¢ f
;/\AQK aLan

th Lt
,D(&&Wri L(CJ (
T

S50

Foolly
Tock a

Toolc s
Lok
HOM IW\ 4/ Péapk ((0 A){lb 5‘1 F@[b Zce
On Qal by
~ besdes (Ol ls

2010 Sl wde el

Zold /vﬂn}ﬂg wdy (ony

Lo fi i)
Frads | Wﬂ%] by [l b Yoohler
I}TU’/ /e,
MML W&A@T
\g‘U jr\ Qﬁﬂ(‘\ (WqL
'CM f (/:/CZé

o g M o Uiy
éf’/{/ 1Lo LH/)&C

9
l@c,; /61[0 / pusy t/él,
foot 0

knﬁwa]

LH/\)

O

Wity b P
l’\o}ood(@6?3%
ol 100

/)

M s el Mﬂ;@ onde
PQ(m(%\wnj WL when cip (QC(

No/mwni }\H‘ﬁ& —Co o Zﬁ

fide %F
Uiust fut Sower (o

(W’]L Gal. — 0tess Y
WQ (,[Ac(/es fcM W?

G lier gt b ok i
o b b il

unf l/“/ Tﬂ/a/ty = b P zfa /&

Z‘ P?(m'l%\w/% MM (N <(4 ’-éwud
L&’/‘l Co/b{

.. A(,M\ {}/@

wes L mafly”
,ﬂmi J‘) e Ty /Ja/z'/ (/es/lfwf

LM Utor pv /vaa(/ar, .

f“\ p”\ 0 \“HN or N (/5@(:
H\‘PM A% VVQ({ N 50
Tﬁ(n(R\’ l‘%l’

@ me\f/l;) WL%%’
() Zod] s iy a5 o
6& &(dnl Copy

W \ll&JML @l

Q)%(, e b{ pmi%ﬂm (JM(,Q@

|1r\ 6[6/()
Ok wh @ Lile punssio to T
NO‘)' 691%1/\% f}ﬁq p@mé%glm _,sf;// /ngj
O nat—
hJ}l’ N Y0y 0N W\ Sth W
bvsL o M Lﬁﬂd

B 1\// I[Z!Q U)WMM(IM CW 61/9 Cap.—
B‘/‘L 5€ Iy J(o i\ ;q bra-dy

@ O Ll han W/ih(ﬂg The I
TWW ht % ot pwsSI/o/q{ngf(CJW/

(
(X (% @Méwo/{ /[vfﬁl ' MW//
%Q/ Py Gnars {%gf/i dny W/efefﬁ
3
%[M {[M’k "L o e

LR D st

—

go (‘%D fal)g hoa edylable

A Pon pued by il
Ot dY

go 25 ﬂM 55{/;%5, 0/2/0/&/7
M [2k / dh diefry

Pale 77 o gl by hHd©
My € o

B
Ol {les Cluangd §
Why — n work

{ven W/ 177 L ares

(Ld/‘.?)i)ﬁ%}/y‘j/f
oh i a db

@ ol
% bl Lk
\/\/L\z OLQ,‘» :VL b\/ﬂ/lL 7[0/ N,[ML not 7'26
bl
Noke o Puzta @77
D\l N WLL oy mu\'n/w/ C lfump@ TLO // ‘Ma/
jj (L)WIYL fhllfbk Goe..

it /+MP/%”\L[Q/LO"{!L
M& hefﬂ ‘LS ﬁt Q1

B
éo CL‘M/('A o
y Sy g
N (Wll,/_ o { ZM Qs an
\/\/l\o ‘Lc H /vﬂnzAﬂ Otls/(
277 1%(6 '}00
CGek A o w(ﬂ/r

i
@D@%N[(lash

)’aw{ . Z2ekdF 2@((L w/
Sy (/[fc/

é'? 7,7/&/ 6 hwld |,
ga ¢ M 4
CM m /(—@/Vz &me% |

@ Pms Oxe e

Tf\mL s Mgre Conp fcwfd fLm oled /

i)
Eﬁem\we Z

Ty b futw pov Gopake T gl e

56(/1(,@/ That- Zf\(/bl’(({(@

g‘m(,@, 7z CJjnamEc Ut all M@ﬁ 5]9/%

B(/JV Mwl MQ Cies mot Wik s
HOZQL n PZ@“WQ @Qg o

S Gl b 7 3

6}\0\/&& aly (i ;ncfexc%\(
. = yiasm@/itcg)

¢ Dy file regdd af ol ¢
J('doﬂ' c){/f(’/& LH

<
O(be Gble ‘k) 7[@((}[P@f&o%,@ A/Mf%cdf
0 Tl

O‘\ ZV[’ ﬁD/f(n}s ﬁdaswefL(C}
Ad i o evade T b (U

Y
Lt
@[ill (ﬁm‘z
i ﬁ@ﬁb({/)
1

éo WW ‘
(5
@vlt
) W/O/lﬁ(

ol |
i
(o
S s
lot
YW (gmed,
e fa
gt
755

(2
{‘Aj

ih T
How 4 !
s
L\/LWI' (i WIWHM:C
Ml g N
N P (
b dex i
"

e S

Bt
ok
0
Wi }mtf% (’“\
- Wm}m (o
LS |

)
@@Ogo VR TRV 7 B S

“hus (\ Ql»/vw ’fomd“ 647 qv- -~
pokd. 3) 49

h T gee = Duse froa /
—D#W[" b@&/ﬁ QSUA)

@ i 59/\/20” 51Lw%({
bt b g o ({YAMZ{, (e 2

'“‘(096)({045 Cnat-..
(Qgef WL@]L@/

o
L s

\ dMC{W
@ L™y ‘/Vﬂ/zk\(/ly
Nul falw | 0 (RL

MMM M e hov ayfhg
L‘s it Srne Qb \MO’\?!

By

by i vak T Oﬁ%

M WCS WLWM hes M%z;n C/W'ﬂc/
fon 013 bl
CCULWL (/tl/w% W \WAZT
’ 4
O ophoes 7

| fp(()éeas f@vsef

l/\/LML JL& L CMAge 6ifua éez,[d/ef

Oc lil' vt valth
W bt g,

L ,Mfﬂ VVWO{" é& ({;/ed(/(}z

&)

6@ e (00T
4y (002 G
\Mw Jﬂﬂ} bmvl fC‘/{(’,’/
J g e

V d\{mmt((, Wﬁ/m({
0ite Sl e fa W,

" T mike bk
@ WWJ Cg; Gkl

Zﬁﬁ) %()Obﬁf /v\/lﬂCL&éW”/Jt(ﬂ(\
40 [eqe éf ﬁ"ff)
th {fcﬂﬂl m&q
bt e b complle

/\/O /n/t l ;fl Z/;{Q - ‘/wéf,v,(ﬂ((
| Hinm

iy
O¢ 6@801&/ M/dla_ (6{{@
‘fr\?ﬁ]l/\/ty Co//cmt

LI G ohe
{/m[ﬂ\shi{ “M’ Jﬂ

—_—

Hlhva wdy 4o
QIH—Q uo/[kb£

égwwvzﬂ 0{/%«/+ C{tdéﬂg t/‘vci)

M sotly do i ~ by]
éoo(mt L0 B .
Lf&{i AV‘L ‘)730 (”Vy(

(/h VY Clagh
@Faéé e)

Bl

Lorecle 3

NQW 61%4}1{ 1[/[\62/% C(ppfz(mﬂm (ngﬂ
w/ %/aﬂs{@ (pr

zl — ’%@Ulo(/f)

B Not Wm&,

0@”/&@%
flust Wik T @[/ Ly

G e we fn as non ol - e Ly,
Yon (B vw‘é(ﬁvblﬁ

Vol cold tito v og

To b odn st . -

(WMol

F:\Users\Michael\Documents\SkyDrive\MIT Senior\6.8586.858 Codellab2\zoobar\transfer.py

Friday, September 28, 2012 1:13 AM

1 from flask import g, render template, reguest

2 import time

3

4 from login import reguirelogin

5 from zoodb import *

6 from debug import *

T

8 @catch err

9 @requirelogin

10 def transfer():

11 warning = None
12 try:
13 if 'recipient' in request.form:
14 recipient = g.persondb.guery(Person) .get (reguest. form['recipient'])
13 zoobars = eval (request.form['zoobars']) 7 @\e-/

16 sender balance = g.user.person.zoobars - zoobars

17 recipient balance = recipient.zoobars + zocbars n
- Chegtatuad
19 if sender balance < 0 or recipient balance < 0:

i alueError]
22 raise Value or() @ ﬂ’ \/@J “’ doq)
22 g.user.person.zoobars = sender balance
23 recipient.zoobars = recipient balance
24 transfer = Transfer() ‘fui dmﬂb (0’%91/;/ Cﬂﬂ l/}(, V‘?
25 transfer.sender = g.user.per ﬂ.n- rriame 4 [5‘
g person.use

26 transfer.recipient = recipient.username
27 transfer.amount = zoocbars
28 transfer.time = time.asctime()
29 g.transferdb.add(transfer)
30 warning = "Sent %d zoobars" % zoobars
31 except (Keyirror, Valuekrror, AttributeError) as e:

32 loeg("Transfer exception: %s" % str(e))
33 warning = "Transfer to %s failed" % reguest.form['recipient']
34
32 return render template('transfer.html', warning=warning)

36

new 2 Friday, September 28, 2012 1:30 AM

lab2: exercise 1

3 I set zookfs service to execute as a different user in zock.conf. I had to change
the file permissions in /jail so these new users could read these files, but not
change them; which I did in chroot-setup.sh. T made the file readable only by
this user. I didn't change the /zoobar folder, since those were already readable
by this new user. I also had to give this user writing permissions on the two
database files.

lab2: exercise 2

6 I split the two services up in zook.conf. I had to change the file permissions
again in chroot-setup.sh to make the file accessible by the new user id. To
prevent access to the very stupid password.cgi file (as well as other files) I
listed all of the valid files in zook.conf using regex. I don't know how this
hopes to scale though.
lab2: exercise 3
The number of zoobars can be negitive to steal the positive balance of other zoobars

10 Does not commit the log as an atomic unit - transfer could fail to record, but
transfer still happened.

11 Does not commit the zoobars as an atomic unit - subject to race condition on
multiple requests in short time frame

12 » memssccc——am—es

13 lab2: partl feedback

14 T would have better explained the user permission thing. There was a bit of
exploring best pratices here - but I feel that best practices should be explained,
not discovered. Now that I see the answer, it makes sense.

-

&U{

Static Detection of Security Vulnerabilities

——

o0

Yichen Xie

in Scripting Languages

Alex Aiken

Computer Science Department

- “Stanford Dniversity
é U“\Le i Qsmfom/m

{yxie,aiken}@cs.stanford.edu

ABSTRACT

We present a static sis algori etecting security
vulnerabilities in PHP, a popular server-side scripting lan-
guage for building web applications. Our analysis employs
a novel three-tier architecture to capture information at de-
creasirﬁ%xgl_s;fql‘_m@ at the intrablock, intraproce-
dural, and interprocedural level. This architecture enables
us to handle dynamic features unique to scripting languages
such as dynamic typing and code inclusion, which have not
been quatemmous techniques.

We demonstrate the effectiveness of our approach by run-
ning our tool on six popular open source PHP code bases

and finding 105-previously unknown security vulnerabilities,
most of which we believe are remotely exploitable.

1. INTRODUCTION l‘

during the past few years and have become the d,e@%n-
dard for delivering online services ranging from discussion
forums to security sensitive areas such as banking and Tetail-
ing. As such, security vulnerabilities in these applications
represent an increasing threat to both the providers and
the users of such services. During the second half of 2004,
Symantec cataloged 670 vulnerabilities affecting web appli-
cations, an 81% increase over the same period in 2003 [16].
This trend is likely to continue for the foreseeable future.

According to the same report, these vulnerabilities are
typically caused by programming errors in input validation
and improper handling of submitted requests [16]. Since
vulnerabilities are usually deeply ed in the program
logic, traditional network-level defense (e.g., firewalls) does
not offer adequate protection against such attacks. Test-
ing is also largely ineffective because attackers typically use
the least expected input to exploit these vulnerabilities and
compromise the system.

A natural alternative is to find these errors using static
analysis, but it is widely believed that scripting languages
are too difficult to analyze statically. The main message
of this paper is that this Tolk wisdom is false: we show by
example that a static analysis, suitably designed to address
the unique aspects of scripting languages, can identify many
serious security vulnerabilities in scripts. Given the impor-
tance of scripting in real world applications, we believe there
is an opportunity for static analysis to have a significant im-
pact in this new domain.

In this paper, we apply static analysis to finding secu-
rity vulnerabilities in PHP, a server-side scripting language

Con|

oo £ N0 Iflﬂ{
o Wﬁ'tsww)

Web-based applications have experienced exponential growth

, CA 94305

that has become one of the most widely adopted platforms
for developing web applications’. Our goal is a bug detec-
tion tool that automatically finds serious vulnerabilities with
high confidence. This work, however, does not aim to verify
the absence of bugs.

This paper makes the following contributions:

e We present an interprocedural static analysis algorithm
for PHP. A language as dynamic as PHP presents
unique challen r static analysis: language con-
structs (e.g., (ncludd) that allow dynamic inclusion of
program code, variables whose types change duri
ecution, operations with semantics that depend on the
runtime types of the operands (e.g., <), pervasive use
of hash tables and regular expression matching are just
sommhdt_x?mmm produce
useful results.

To faithfully model program behavior in such a lan-
guage, we use a unique three-tier analysis that cap-
tures information at decreasing levels of granularity
at the intrablock, intraprocedural, and interprocedu-
ral levels. For example, we use symbolic execution to
model dynamic features inside basic blocks and use
block summaries to hide that complexity from intra-
and inter-procedural analysis. We believe the same
techniques can be easily applied to other scripting lan-
guages (e.g., Perl). To the best of our knowledge, this
paper is the first to recognize and model complex pro-
gram features that are specific to scripting languages.

o We show how to use our static analysis algorithm to
find SQum%rﬂm;ﬁlliﬁties. Once configured,
the analysis is fully automatic. Although we focus on
SQL injections in this work, we believe that, with small
modifications, the same techniques can be applied to

detecting other vulnerabilities such as cross site script-
ing (XSS) and code injection in web applications.

e We experimentally validate our approach by imple-
menting the analysis algorithm and running it on six
popular web applications written in PHP. Our tool
found 105 previously unknown security vulnerabilities.
We furt%iﬁ\?éﬁﬁg’a’ted two reported vulnerabilities in
PHP-fusion, a mature, widely deployed content man-
agement system, and constructed exploits for both that
allow an attacker to control or damage the system.

Installed on over 23 million Internet domains [13], and is
rank[ed]fourth on the TIOBE programming community in-
dex [17].

/I hiw
e Cle
hoo if
Wo by m’wl{

The rest of the paper is organized as follows. We start
with a brief introduction to PHP and show examples of
SQL vulnerabilities in web application code (Section 2). We
then describe our analysis algorithm in detail and show how
we use it to find SQL injection vulnerabilities (Section 3).
Section 4 describes the implementation and experimental
results and show two case studies of exploitable vulnerabil-
ities in PHP-fusion. Section 5 discusses related work, and
Section 6 concludes.

2. BACKGROUND

This section briefly introduces the PHP language and shows
examples of SQL injection vulnerabilities in PHP.

PHP was created a decade ago by Rasmus Lerdorf as a
simple set of Perl scripts for tracking accesses to his online
resume. It has since evolved into one of the most popu-
lar server-side scripting languages for building web applica-
tions. Accordi recent Security Space survey, PHP
is installed o@@f\p&che web servers [15], adopted
by millions of developers, and used or supported by Yahoo,
IBM, Oracle, and SAP, among others [13].

Although the PHP language has undergone two major re-
designs over the past decade, it retains a Perl-like syntax
and dynamic (interpreted) nature, which contributes to its
most antage of being d flexible.

PHP has a suite of programming constructs and special
operations that makes web development easy. We give three
examples below:

1. Natural integration with SQL: PHP provides nearly
native support for database operations. For example,

using inline variables in strings, most SQL queries ¢
be concisely expressed with a simple Tunction call

$rows=mysql_query("UPDATE users SET
pass=‘$pass’ WHERE userid=‘$userid’");

Contrast this code with Java, where a database is typ-
ically accessed through pmﬁlﬂi_ﬁt@nent& one cre-
ates a statement template and fills in the values (along
with their types) using biﬂﬁ:ﬂ'rﬁ@ﬁ

PreparedStatement s = con.prepareStatement
("UPDATE users SET pass = 7
WHERE userid = ?");
s.setString(1, pass); s.setint(2, userid);
int rows = s.executeUpdate();

2. Dynamic types and implicit casting to and from
strings: PHP, like other scripting languages, has ex-
tensive support for string operations and automatic
conversions between strings and other types. These
features are handy for web applications because strings
serve as the common medium between the browser, the
web server, and the database backend. For example,
we can convert a number into a string without an ex-
plicit cast:

if (Suserid < 0) exit;
$query = "SELECT * from users
WHERE userid = ‘$userid’”;

Alos

3. Variable scoping and the environment: PHP
has a number of mechanisms that minimize redun-
dancy when accessing values from the execution en-
vironment. For example, HTTP get and post requests

Mot nd, +o W'y

are automaticallyi ted into the global name space
as hash tables@ié $_POST. To access the “name”
field of a submitted form, one can simply use variable
$_GET[‘name’] directly in the program.

If this still sounds like too much typing, PHP pro-
vides an extract operation that automatically imports
all key-value pairs of a hash table into the current
scope. In the example above, one can use
extract(_GET, EXTR_OVERWRITE) to import data sub-
mitted using the HTTP get method. To access the
“name” field, one now simply types $name, which is
preferred by some to $_GET[‘name’].

However, these conveniences come with security implica-
tions:

1. SQL injection made easy: bind variables in Java
have the benefit of assuring the programmer that any
data passed into a SQL query remains data. The same
cannot be said for the xample where malformed
data from a malicious attacker may change the mean-
ing of a SQL statement and cause unintended opera-
tions to the database. These are commonly called SQL
injection attacks.

In the example above (case 1), suppose $userid is con-
trolled by the attacker and has value

" ORT' =1
The query string becomes

UPDATE users SET pass="...’
WHERE userid=‘’ OR '1’=°1’

which has the effect of updating the password for all

users in the database.

2. Unexpected conversions: Consider the following
code:

if (Suserid == 0) echo Suserid;

One would expect that if the program prints anything,
it should be “0”. Unfortunately, PHP implicitly casts
string values into numbers before comparing them with
an integer. Non-numerical values (e.g. “abc™)yconvert
to 0 without complaint, so the code above can print
anything other than & non-zero number. We can imag-
ine a potential jection vulnerability if $userid is
subsequently used to construct a SQL query as in the
previous case.

3. Uninitialized variables under user control: In
PHP, uninitialized variable defaults to null. Some pro-
grams rely on this fact for correct behavior; consider
the following code:

1 extract($_GET, EXTR_OVERWRITE);

2 for ($i=0;%i<=7%i++)

3 S$new_pass .= chr(rand(97, 122));

4 mysql_query("UPDATE . . . $new_pass ...");

This program generates a random password and in-
serts it into the database. However, due to the extract
operation on line 1, a malicious user can introduce an
arbitrary initial value for $new_pass by adding an un-
expected new_pass field into the submitted HTTP form
data.

e

CFG := build_control_flow_graph(AST);
foreach (basic_block b in CFG)
summaries[b] := simulate_block(b);
return make_function_summary(CFG, summaries);

Figure 1: Pseudo-code for the analysis of a function.

3. ANALYSIS

Given a PHP source file, our tool carries out static analysis
in the following steps:

o We parse the PHP source into w
(ASTs). Our parser is based on the standard open-
source implementation of PHP 5.0.5 [12]. Each PHP
source file contains a_main section (referred to as the
main function hereon although it is not part of any
function definition) and zera or more user-defined func-
tions. We store the user—dz-;imm en-
vironment, and start the analysis from the main func-
tion.

e For each function in the program, the analysis per-
forms a standard conversion from the abstract syn-
tax tree (AST) of the function body into a control
flow graph (CFG). The nodes of the CFG are maxi-
mal bmgle entry, single exit sequences of
stateriénts. The edges of the CFG are the jump rela-
tionships between blocks. For conditional jumps, the

corresponding CFG edge is labeled with the branch
predicate.

e Each basic block is simulated using symbolic execu-
tion. The goal is to understand the collective effects
of statements in a block on the global state of the pro-
gram, and summarize their effects into a cencise block™
summary (which describes, among other things, the
set of variables that must be sanitized before entering
the block). We describe the simulation algorithm in
Section 3.1.

e After computing a summary for each basic block, we
use a standard reachability analysis to combine block
summaries into a function suymmary. The function
summary describes the pre- and post- itions of
function (e.g., the set of sanitized input variables after
calling the current function). We discuss this step in
Section 3.2.

e During the analysis of a function, we might encounter
calls to other user-defined functions. We discuss mod-
eling function calls, and the order in which functions
are analyzed, in Section 3.3.

3.1 Simulating Basic Blocks
3.1.1 Outline

Figure 2 gives pseudo-code outlining the symbolic simulation
process. Recall each basic block contains a linear sequence
of statements with no jumps or jump targets in the mid-
dle. The simulation starts in an initial state, which maps
each variable z to a symbolic initial value zo. It processes
each statement in the block in order, updating the simulator
state to reflect the effect of that statement. The simulation
continues until it encounters any of the following:

function simulate_block(BasicBlock b) : BlockSummary
{
state := init_simulation_state();
foreach (Statement s in b) {
state := simulate(s, state);

if (state.has_returned || state.has_exited)
break;
}

summary := make_block_summary(state);
return summary;

}

Figure 2: Pseudo-code for intra-block simulation.

Type (7) = str | bool | int | L
Const (¢) == string | k | true | false | null
L-val (lv) ==z | Axg#i | l[e]
Expr (e; u=c|lv|ebinope|unope|(r)e
Stmt (S) u=lv—e|lv— f(e1,...,en
| return e | exit | include e
binop € {4», —,concat,==,1=,<,>,...}
unop € {—, -}

Figure 3: Language Definition

1. the end of the block;

2. a return statement. In this case, the current block is
marked as a “return” block, and the simulator evalu-
ates and records the return value;

3. an exit statement. In this case the current block is
marked as an “exit” block;

4. a call to a user-defined function that exits the pro-
gram. This condition is automatically determined us-
ing the function summary of the callee (see Sections 3.2
and 3.3).

Note that in the last case, execution of the program has
effectively terminated and therefore we remove any ensuing
statements and outgoing CFG edges from the current block.

After a basic block is simulated, we use information con-
tained in the final state of the simulator to summarize the
effect of the block into a block summary, which we store for
use during the_intre ysis (see Section 3.2).
The state itself is discarded after simulation.

The following subsections describe the simulation process
in detail. We start with a definition of the subset of PHP
that we currently model (§3.1.2) and discuss the represen-
tation of the simulation state and program values (§3.1.3,
§3.1.4) during symbolic execution. Using the value represen-
tation, we describe how the analyzergimulates expressions
(§3.1.5) and statements (§3.1.6). Finally, we describe how
we represent and infer block summaries (§3.1.7).

3.1.2 Language

Figure 3 gives the definition of a small imperative lan-
guage that captures a subset of PHP constructs that we be-
lieve is relevant to SQL injection vulnerabilities. Like PHP,
the language is dynamically typed. We model three basic
types of ngs_ww. In

addition, we introduce a special L type to describe objects

[Value Representation I

Loc (I) == = | I[string] | I[L]

Init-Values (o) == lo
Segment () ::= string | contains(a)
String (s) := [B1,- .., 0n]

Boolean (b) ::= true | false | untaint(go,a1)

Loc-set(e) == {l1,...,In}
Integer (i) ::
Value (v) n=s|bli|o| L

State (T) : Loc — Value

(a) Value representation end simulation state.

Locations

——var — arg
r'kz=z I' - Arg#n = Arg#n
I'e =.§> lo
e &0 " =cast(v,str) dim
nw [lla] ifv" =[%"]
Tk efe’] = {IE_L] otherwise
(b) L-values.
Type casts:
_ Jtrue ifk#0
cast(k, bool) = {fa!se otherwise
cast(true, str) = [“1”]
cast(false, str) = []
cast(v = [B1,. -, Bal, bool)
true if (v # [“0"]) A VZ=1 ~is_empty(i)
= ¢ false if (v = [“0"]) V A\i_, is-empty(8;)
i otherwise
Evaluation Rules:
rFlwv31
— L-val
'+lw=T()
ke = cast(v,str) = [B1,- .., Bl
E
I'ex = va cast(vs, 51;r) = [Bat1s- -+ Om] e
['F ey concat e2 = [Bo, ..., fm]
I'e=v cast(v,bool) =’ s
true if v" = false ©
E false if v’ = true
R untaint(o1, 0o) if v’ = untaint(co, 01)
1L otherwise

(c) Ezpressions.

Figure 4: Intrablock simulation algorithm.

whose static types are undetermined (e.g. input parameters,
etc).?

Expressions can be constants, l-values, unary and binary
operations, and type casts. The definition of l-values is worth
mentioning because in addition to variables and function
parameters, we include a named subscript operation to give
limited support to the array and hash table accesses that
are used extensively in PHP programs.

A statement can be an assignment, function call, return,
ezit, or include, The first four fypes of statemment Tequire no
further explanation. The include statement is a commonly
used feature unique to scripting languages, which allows pro-
grammers to dynamically insert code into the program. In
our language, include evaluates its string argument, and ex-
ecutes the program file designated by the string as if it is in-

serted at t ramEEpoint (e.g., it shares the same scope).

= describe how we simulate such behavior in Section 3.1.6.
3.1.3 State

Figure 4(a) gives the definition Mwﬂiwluring
simulation. The simulation stﬁwﬁaﬁons
to their value representations, Where location is
either a prog@’mm*mwh
table accessed via another location (e.g. z[key]).

On entry to the function, each location ! is implicitly ini-

tialized to a symbolic initial value lo, which makes up the
initial state of the simulation. The values we represent in the
state can be classified into three categories based on type:

Strings: Strings are the most fundamental type in many
scripting languages, and precision in modeling strings di-
rectly determines the analysis precision. Strings are typi-
cally constructed through concatenation. For example, user

inputs (via HTTP get and post methods) are often concate=

nated with a pre-constructed skeleton to WW.
Similarly, results from the query can be concatenated with
HTML templates to form output. Modeling concatenation
well enables an analysis to better understand information
flow in a script. Thus, our representation of a string is
based on the concept of concatenation:

(h

string values are
represented as an ordered concatenation o
which can be one of the following: a string constant; the -
/

initial value of a memory location on entry to the current
block (lp), or a string that contains initial values of zero or
more elements from a set of memory locations (contains(o)).
We use the last representation to model return values from
function calls, which may non-deterministically contain a
combination of global variables and input parameters. For
example, in

1 function f($a, $b) {

2 if (...) return $a;

3 else return $b;

4}

5 $ret = f(%x.%y, $z);
we represent the return value on line 5 as contains({x,y,z})
to model the fact that it may contain any element in the set
as a sub-string.

The string representation described above has the follow-
ing benefits:

?In general, in a dynamically typed language, a more precise
static approximation in this case would be a sum (aka. soft
typing) [1, 19]. We have not found it necessary to use type
sums in this work.

Q [L é)v (4 gcq}%j Z%V“ﬂfj

First, we get automatic constant folding for strings within
the current block, which is often useful for resolving hash
keys and distinguishing between hash references (e.g., in
$key = “key"; return $hash[$key];).

Second, we can trawmmmput vari-
able flow into anotherby finding occurrences of initial values
of the former in the final representation of the latter. For
example, in: $a = $a . $b, the final representation of $a is
[ao, bo]. We kniow that if either $a or $b contains unsanitized
user input on entry to the current blo@n
exit.

Finally, interprocedural dataflow is possible by tracking
function return values based on function summaries using
contains(c). We describe this aspect in more detail in Sec-
tion 3.3.

Booleans: In PHP, a common way to perform input valida-
tion is to call a function that returns Wending
on whether the input is well-formed or not. For example,
the following code sanitizes $userid:

$ok = is_numeric($userid);

if (1$ok) exit;
The value of Boolean variable $ok after the call is_unde-
termined, but it is correlated with the validity of Suseridt:
This motivates untaint(co, 01) as a representation for such
Booleans: oo (resp. o1) represents the set of validated I-
values when the Boolean is false (resp. true). In the example
above, $ok has represenfation untaint({}, {userid}).

Besides untaint, representation for Booleans also include

constants (true and false) and unknown ().

Integers: Integer operations are relatively less emphasized
in our simulation. We track integer constants and binary
and unary operations between them. We also support type
casts from integers to Boolean and string values.

1
3.1.4 Locations and L-values JQAJ[@9

In the language definition in Figure 3, hash references may
be aliased through assignments and l-values may contain
hash accesses with non-constant keys. The same l-value may
refér to different memory Iocations depending on the value
of both the host and the key, and therefore, l-values are not
suitable as memory locations in the simulation state.

Figure 4(b) gives the rules we use to resolve l-values into
memory locations. The var and arg rules map each program
variable and function argument to a memory location iden-
tified by its name, and the dim rule resolves hash accesses
by first evaluating the hash table to a location and then
appending the key to form the location for the hash entry.

These rules are designed to work in the presence of simple
aliases. Consider the following program:

1 $hash = $_POST;

2 $key = ’userid’;

3 S$userid = $hash[$Skey];

The program first creates an alias ($hash) to hash table
$_POST and then accesses the userid entry using that alias.
On entry to the block, the initial state maps every location
to its initial value:
" = {hash => hasho, key = keyo, .POST = _POSTy,
_POST/[userid] = _POST [userid]o}

According to the var rule, each variable maps to its own
unique location. After the first two assignments, the state
is:

I’ = {hash == _POSTy, key = [‘userid’],...}

r/Cff-Mp } Ze dl\ ‘(‘

We use the dim rule to resolve $hash[$key] on line 3: $hash
evaluates to _POSTy, and $key evaluates to constant string
‘userid’. Therefore, the l-value $hash[$key] evaluates to loca-
tion _POST [userid], and thus the analysis assigns the desired
value _POST[userid]o to $userid.

3.1.5 Expressions

We perform abstract evaluation of expressions based on
the value representation described above. Because PHP is
a dynamically typed language, operands are automatically
cast into appropriate types for binary and unary operations
in an expression. Figure 4(c) gives a representative subset
of cast rules that simulates cast operations in PHP. For ex-
ample, Boolean value true, when used in a string context,
evaluates to “1”. false, on the other hand, is converted to
the empty string instead of “0”. In cases where exact repre-
sentation is not possible, the result of the cast is unknown
(L1).

Figure 4(c) also gives three representative rules for eval-
uating expressions. The first rule handles l-values, and the
result is obtained by first resolving the l-value into a memory
location, and then looking up the location in the evaluation
context (recall that ['(I) = lo on entry to the block).

The second rule models string concatenation. We first
cast the value of both operands into string values, and the
result is the concatenation of both.

The final rule handles Boolean negation. The interesting
case involves untaint values. Recall that untaint(cg, 1) de-
notes an unknown Boolean value that is false (resp. true) if
l-values in the set og (resp. 1) are sanitized. Given this
definition, the negation of untaint(go, g1) is untaint(e, oo).

The analysis of an expression is L if we cannot determine
a more precise representation, which is a potential source of
false negatives.

3.1.6 Statements

We model assignments, function calls, return, exit, and
include statements in the program. The assignment rule
resolves the left-hand side into a memory location I, and
evaluates the right-hand side into a value v. The updated
simulation state after the assignment maps [to the new
value v:

w21l Tresw
THive—e3 Tl

assignment

Function calls are similar. The return value of a function call
f(e1,...,en) ismodeled using either contains(c) (if f returns
a string) or untaint(op, o1) (if f returns a Boolean) depend-
ing on the inferred summary for f. We defer discussion of
the function summaries and the return value representation
to Sections 3.2 and 3.3. For the purpose of this section, we
use the uninterpreted value f(v1,...,vn) as a place holder
for the actual representation of the return value:

TFiw=El TreSv ... Fen= v
Tkl e fler,...,en) = Tl fvr,...,vn)]

In addition to the return value, certain functions have
pre- and post-conditions depending on the operation they
perform. Pre- and post-conditions are inferred and stored
in the callee’s summary, which we describe in detail in Sec-
tions 3.2 and 3.3. Here we show two examples to illustrate
their effects:

fun

1 function validate($x) {

2 if (lis_numeric(3x)) exit;
3 return;

4}

5 function my_query($q) {

6 global $db;

7 mysql_db_query($db, $q);
8

9

}

validate($a.$b);

10 my-query("SELECT . .. WHERE a = ’$a’ AND c = ’$c’");
The validate function tests whether the argument is a num-
ber (thus safe) and aborts if it is not. Therefore, line 9 sani-
tizes both $a and $b. We record this fact by first inspecting
the value representation of the actual parameter (in this case
[ao, bo]), and remembering the set of non-constant segments
that are sanitized.

The second function my_query uses the argument as a
database query string. To prevent SQL injection attacks,
we require that any user input be sanitized before it be-
comes part of the first parameter. Again, we enforce this
requirement by inspecting the value representation of the
actual parameter. We record any unsanitized non-constant
segments (in this case $c, since $a is sanitized on line 9) and
require they be sanitized as part of the pre-condition for the
current block.

Sequences of assignments and function calls are simulated
by using the output environment of the previous statement
as the input environment of the current statement:

gy I E g T
Tk (s1382) > T

seq

The final simulation state is the output state of the final
statement.

The return and exit statements terminate control flow®
and require special treatment. For a return, we evaluate the
return value and use it in calculating the function summary.
In case of an exit statement, we mark the current block as
an ezit block.

Finally, include statements are a commonly used feature
unique to scripting languages allowing programmers to dy-
namically insert code and function definitions from another
script. In PHP, the included code inherits the variable scope
at the point of the include statement. It may introduce new
variables and function definitions, and change or sanitize
existing variables before the next statement in the block is
executed.

We process include statements by first parsing the included
file, and adding any new function definitions to the environ-
ment. We then splice the control flow graph of the main
function at the current program point by a) removing the
include statement, b) breaking the current basic block into
two at that point, ¢) linking the first half of the current
block to the start of the main function, and all return blocks
(those containing a return statement) in the included CFG
to the second half, and d) replacing the return statements in
the included script with assignments to reflect the fact that
control flow resumes in the current script.

3.1.7 Block summary

380 do function calls that exits the program, in which case
we remove any ensuing statements and outgoing edges from
the current CFG block. See Section 3.3.

The final step for the symbolic simulator is to character-
ize the behavior of a CFG block into a concise summary. A
block summary is represented as a six-tuple (€, D, F, T, R, U):

e Error set (£): the set of input variables that must be
sanitized before entering the current block. These are
accumulated during simulation of function calls that
require sanitized input.

e Definitions (D): the set of memory locations de-
fined in the current block. For example, in

$a = $a.$b; $c = 123;

we have D = {a,c}.

e Value flow (F): the set of pairs of locations (l1,!2)
where the string value of {1 on entry becomes a sub-

string of Iz on exit. In the example above, F = {(a,a), (b,a)}.

e Termination predicate (7): true if the current block
contains an exit statement, or if it calls a function that
causes the program to terminate.

e Return value (R): records the representation for the
return value if any, undefined otherwise. Note that if
the current block has no successors, either R has a
value or 7 is true.

e Untaint set (): for each successor of the current
CFG block, we compute the set of locations that are
sanitized if execution continues onto that block. San-
itization can occur via function calls, casting to safe
types (e.g., int, etc), regular expression matching, and
other tests. The untaint set for different successors
might differ depending on the value of branch predi-
cates. We show an example below.

validate($a);
$b = (int) $c;
if (is_numeric(3d))

As mentioned earlier, validate exits if $a is unsafe.
Casting to integer also returns a safe result. There-
fore, the untaint set is {a,b,d} for the true branch,
and {a,b} for the false branch.

3.2 Intraprocedural Analysis

Based on block summaries computed in the previous step,
the intraprocedural analysis computes the following sum-
mary {£,R,S, X) for each function:

1. Error set (£): the set of memory locations (vari-
ables, parameters, and hash accesses) whose value may
flow into a database query, and therefore must be san-
itized before invoking the current function. For the
main function, the error set must not include any user-
defined variables (e.g. $_GET[..."] or $_POST["..."])—
the analysis emits an error message for each such vio-
lation.

We compute £ by a backwards reachability analysis
that propagates the error set of each block (using the
£,D,F, and U components in the block summaries) to
the start block of the function.

2. Return set (R): the set of parameters or global
variables whose value may be a substring of the re-
turn value of the function. R is only computed for
functions that may return string values. For exam-
ple, in the following code, the return set includes both
function arguments and the global variable $table (i.e.
R = {table, Arg#1, Arg#2}).

function make_query($user, $pass) {

global S$table;
return "SELECT * from $table ".
"where user = $user and pass = $pass";
}

‘We compute the function return set by using a forward
reachability analysis that expresses each return value
(recorded in the block summaries as R) as a set of
function parameters and global variables.

3. Sanitized values (S): the set of parameters or global
variables that are sanitized on function exit. We com-
pute the set by using a forward reachability analysis
to determine the set of sanitized inputs at each return
block, and we take the intersection of those sets to
arrive at the final result.

If the current function returns a Boolean value as its
result, we distinguish the sanitized value set when the
result is true versus when it is false (mirroring the
untaint representation for Boolean values above). The
following example motivates this distinction:

function is_valid($x) {
if (is_numeric($x)) return true;
return false;

}

The parameter is sanitized if the function returns true,
and the return value is likely to be used by the caller
to determine the validity of user input. In the example
above,

S = (false = {}, true = {Arg#1})

For comparison, the validate function defined previ-
ously has § = (* = {Arg#1}). In the next section, we
describe how we make use of this information in the
caller.

4. Program Exit (X): a Boolean which indicates whether
the current function terminates program execution on
all paths. Note that control flow can leave a function
either by returning to the caller or by terminating the
program. We compute the exit predicate by enumer-
ating over all CFG blocks that have no successors, and
identify them as either return blocks or exit blocks (the
T and R component in the block summary). If there
are no return blocks in the CFG, the current function
is an exit function.

The dataflow algorithms used in deriving these facts are
fairly standard fix-point computations. We omit the details
for brevity.

3.3 Interprocedural Analysis

This section describes how we conduct interprocedural
analysis using summaries computed in the previous step.
Assuming f has summary (€, R, S, X'}, we process a function
call f(e1,...,en) during intrablock simulation as follows:

1. Pre-conditions: We use the error set (£) in the func-
tion summary to identify the set of parameters and
global variables that must be sanitized before calling
this function. We substitute actual parameters for for-
mal parameters in £ and record any unsanitized non-
constant segments of strings in the error set as saniti-
zation pre-condition for the current block.

2. Exit condition: If the callee is marked as an exit
function (i.e. X is true), we remove any statements
that follow the call and delete all outgoing edges from
the current block. We further mark the current block
as an exit block.

3. Post-conditions: If the function unconditionally san-
itizes a set of input parameters and global variables,
we mark this set of values as safe in the simulation
state after substituting actual parameters for formal
parameters.

If sanitization is conditional on the return value (e.g.,
the is_valid function defined above), we record the in-
tersection of its two component sets as being uncon-
ditionally sanitized (i.e., oo N o1 if the untaint set is
(false = oo, true = a1)).

4. Return value: If the function returns a Boolean value
and it conditionally sanitizes a set of input parameters
and global variables, we use the untaint representation
to model that correlation:

TFWwZE] TrerSv ... Tken= v
Summary(f) = (£, R, S, X)

8§ = (false = oo, true = 01) o.=o0oNo
o = substs(do — 0.) o] = substg(o1 — o)

THlwe fler,...,en) = Tl — untaint(og, 1))

In the rule above, substs(o) substitutes actual param-
eters (v;) for formal parameters in o.

If the callee returns a string value, we use the return set
component of the function summary (R) to determine
the set of input parameters and global variables that
might become a substring of the return value:

TFiwEl Trei=v ... ey v,
SmmarY(f) = (Eth 8, X) 0" = SLIbSt,—,(R)

s fun-str
T'klv — f(e1,-.-,en) = [l — contains(c’)]

Since we require the summary information of a function
before we can analyze its callers, the order in which func-
tions are analyzed is important. Due to the dynamic nature
of PHP (e.g., include statements), we analyze functions on
demand—a function f is analyzed and summarized when we
first encounter a call to f. The summary is then memoized
to avoid redundant analysis. Recursive function calls are
rare in PHP programs. If we encounter a cycle during the
analysis, our current implementation uses a dummy “no-op”
summary as a model for the second invocation.

4. EXPERIMENTAL RESULTS

The analysis described in Section 3 has been implemented
as two separate parts: a frontend based on the open source
PHP 5.0.5 distribution that parses the source files into ab-
stract syntax trees and a backend written in O’Caml that

fun-bool

“Uyhad
'{(D ()(MPM

\(‘kjd L\
OMS

reads the ASTs into memory and carries out the analysis.
This separation ensures maximum compatibility while min-
imizing dependence on the PHP implementation.

The decision to use different levels of abstraction in the
intrablock, intraprocedural, and interprocedural levels en-
abled us to fine tune the amount of information we retain
at one level independent of the algorithm used in another
and allowed us to quickly build a usable tool. The checker
is largely automatic and requires little human intervention
for use. We seed the checker with a small set of query func-
tions (e.g. mysql_query) and sanitization operations (e.g.
is_numeric). The checker infers the rest automatically.

Regular expression matching presents a challenge to au-
tomation. Regular expressions are used for a variety of pur-

poses including, but not limited to, jnput validation. Some
regular expressions match well-formed input while others de-

tect malformed input; assuming one way or the other results
in eithex Talse positivi falseLz‘:E};Msoiution is to
maintain a database of previously seen regular expressions
and their effects, if any. Previously il pres-
sfons-are-assumed by default to have no sanitization effects,
so as not to miss any errors due to incorrec gment. To
make Tt eas 0 specify the sanitization effects
of regular expressions, the checker has an interactive mode
where the user is prompted when the analysis encounters a
previously unseen regular expression and the user’s answers

re recorded for future reference. Practically, we found this

pproach to be very effective and it helped us find at least
iwo vulnerabilities caused by overly lenient regular expres-
sions being used for sanitization.?

The checker detects errors by using information from the
summary of the main function—the checker marks all vari-
ables that are required to be sanitized on entry as poten-
tial gecurity vulnerabilities. From tm.i.%pec-
tive,mm are defined in the environment and used
to construct SQL queries without being sanitized. In real-
ity, however, € varia either defined by the run-
time environment or by some language constructs that the
checker does not fully understand (e.g., the extract operation
in PHP which we describe in the case study below). The tool
emits an error message if the variable d to be eas-
ily controlled by the user (e.g. &GETWT,
$_COOKIE["..."], etc). For others, the checker emits a warn-
ing.

We conducted our experiments on the latest versions of six
open source PHP code bases: €107 0.7, Utopia News Pro
1.1.4, mybloggie 2.1.3beta, DCP Portal v6.1.1, PHP
Webthings 1.4patched, and PHP fusion 6.00.204. Table 1
summarizes our findings for the first five. Our checker emit-~
ted a total of 99 error messages for the first five applications,
where unsanitized user input (from $_GET, $_POST, etc)
may flow into SQL queries. We manually inspected the error
reports and believe all 99 represent real vulnerabilities. We
have notified the developers about these errors and will pub-
lish security advisories once the errors have been fixed. We
have not inspected warning messages—unsanitized variables
of unresolved origin (e.g. from database queries, configura-
tion files, etc) that are subsequently used in SQL queries

4For example, Utopia News Pro misused “[0-9]+" to vali-
date some user input. This regular expression only checks
the ezistence of a number, instead of ensuring that the input
is actually a number. The correct regular expression in this
case is “~[0-9]+$".

(% \
Bugs (FP)| Warn

Err Msgs
e107 16 16 | (0) 23
News Pro 8 8 | (0) 8
myBloggie 16 16 | (0) 23
DCP Portal 39 39 1 (0) 55
PHP Webthings 20 20 \(0) 6
Total 99 99 Y0) | 115

Table 1: Summary of experiments. EMsgs: num-
ber of reported errors. Bugs: number of confirmed
bugs from error reports. FP: number of false pos-
itives. Warn: number of unique warning messages
for variables of unresolved origin (uninspected).

R | e
due to the high likelihood f/falsW

PHP-fusion is different from the other five code bases be-
cause it does not directly access HT'TP form data from input
hash tables such as $_GET and $_POST. Instead it uses the
extract operation to automatically import such information

into the current variable scope. We describe our findings for
PHP-fusion in the following subsection.

4.1 Case Study: Two Exploitable SQL Injec-
tion Attacks in PHP-fusion

In this section, we show two case studies of exploitable
SQL injection vulnerabilities in PHP-fusion detected by our
tool. PHP-fusion is an open-source content management
system (CMS) built on PHP and MySQL. Excluding locale
specific customization modules, it consists of over 16,000
lines of PHP code and has a wide user-base because of its
speed, customizability and rich features. Browsing through
the code, it is obvious that the author programmed with
security in mind and has taken extra care in sanitizing input
before use in query strings.

Our experiments were conducted on the then latest 6.00.204
version of the software. Unlike other code bases we have
examined, PHP-fusion uses the extract operation to import

user input into the current scope. As an example, extract($_POST,EXTR.O

has the effect of introducing one variable for each key in the
$_POST hash table to the current scope, and assigning the
value of $_POST][key] to that variable. This feature reduces
typing, but introduces confusion to the checker and secu-
rity vulnerabilities to the software—both of the exploits we
constructed involve use of uninitialized variables whose val-
ues can be manipulated by the user because of the extract
operation.

Since PHP-fusion does not directly read user input from
input hashes such as $_.GETor $_POST, there are no di-
rect error messages generated by our tool. Instead we in-
spect warnings (recall the discussion about errors and warn-
ings above), which correspond to security sensitive variables
whose definition is unresolved by the checker (e.g., intro-
duced via the extract operation, or read from configuration
files).

‘We ran our checker on all top level seripts in PHP-fusion.
The tool generated 22 unique warnings, a majority of which
relate to configuration variables that are used in the con-
struction of a large number of queries®. After filtering those
out, we arrive at 7 warnings in 4 different files.

SData base configuration variables such as $db_prefix ac-
counted for 3 false positives, and information derived from
the database queries and configuration settings (e.g. locale
settings) caused the remaining 12.

|

Y i
In 2

arises from-anunanticipated sanitization:
sword.php */
~[0-9a-z]{32}$/", $account))

if (!preg_match("/

$error = 1;

if (1$error) { /* database access using $account */ }
if (Serror) redirect("index.php");

Instead of terminating the program immediately based on

the result from preg_match, the program sets the $error flag

to true and s error handling, which is in general not &
good practice. This idiom ¢ t()_y adding slightly

more information in the block summary. (
We investigated the 0 of the remaining warnings

for potential exploits, and confirmed that both are indeed
exploitable on a test installation. Unsurprisingly both er-
rors are made possible because of the extract operation. We
explain these two errors in detail below.

1) Vulnerability in script for recovering lost pass-

word. This is a remotely exploitable vulnerability that al-

lows any registered user to elevate his privileges via a care-
e{ onstructed URL. We show the relevant code below:

A% php-files /lostpassword.php */

($i=0;8i<=7:8i++)

$new_pass .= chr(rand(97, 122));

*
or

$result = dbquery("UPDATE ".$db_prefix."users

SET user_password=md5 (’$new_pass’)

7 WHERE user_id=’".$data[’user_id’]."’");
Our tool issued a warning for $new_pass, which is uninitial-
ized on entry and thus defaults to the empty string during
normal execution. The script proceeds to add seven ran-
domly generated letters to $new_pass (lines 2-3), and uses
that as the new password for the user (lines 5-7). The SQL
request under normal execution takes the following form:

3
4
5
6

WHERE user_id=’userid’
However, a malicious user can simply add a new_pass field to
his HTTP request by appending, for example, the following
string to the URL for the password reminder site:

&new._pass=abc%27%29%2cuser Jevel =%27103%27%2cuser .aim=%28%27

The extract operation described above will magically intro-
duce $new_pass in the current variable scope with the fol-
lowing initial value:

abc’), user_level =’ 103', user_aim = (/
The SQL request is now constructed as:

(/ UPDATE users SET user_password=md5(abc’),
C()/{’Jx(i user_level="103, user_aim=(’7777777’

(Mo
Weatd
{\e

WHERE user_id=’userid’
Here the password is set to “abc”, and the user privilege is
elevated to 103, which means “Super Administrator.” The
newly promoted user is now free to manipulate any content
on the website.

) Vulnerability in the messaging sub-system. This

ulnerability exploits another use of potentially uninitial-
ized variable $result_where_message_id in the messaging sub
system. We show the relevant code in Figure 5.

We believe all but one of the 7 warnings ma i
loitable security vulnerabiliti hw

=R R = I

e e
W N = O

if (isset($msg-view)) {
if (lisNum($msg_view)) fallback("messages.php");
$result_where_message_id="message_id=".$msg_view;
} elseif (isset($Smsg_reply)) {
if (lisNum($msg_reply)) fallback("messages.php");
$result_where_message_id="message_id=".$msg_reply;

... /* 7100 lines later */ ...

} elseif (isset($-POST[’btn_delete’]) ||
isset($msg_delete)) { // delete message
$result = dbquery("DELETE FROM ".$db_prefix.
"messages WHERE ".$result_where_message_id. // BUG
" AND ".$result_where_message_to);

Figure 5: An exploitable vulnerability in PHP-
fusion 6.00.204.

sequence of if statements does not have a fall back branch.

And therefore, $result_where_message_id might be uninitial-

ized on malformed input. We exploit this fact, and append
&request_where_message_id=1=1/*

The query string submitted on line 11-13 thus becomes:
DELETE FROM messages WHERE 1=1 /* AND ...
Whatever follows “/*” is treated as comments in MySQL
and thus ignored. The result is loss of all private messages
in the system. Due to the complex control and data flow,
this error is unlikely to be discovered via code review or

testing.

We reported both exploits to the author of PHP-fusion,
who immediately fixed these vulnerabilities and released a
new version of the software.

5. RELATED WORK

5.1 Static techniques

WebSSARI is a type qualifier based analyzer for PHP [7].
It uses a standard intraprocedural tainting analysis to find
cases where user controlled values flow into functions that re-
quire trusted input (sensitive functions). The analysis relies
on three user written “prelude” files to provide information
regarding: 1) the set of all sensitive functions-those require
sanitized input; 2) the set of all untainting operations; and
3) the set of untrusted input variables. Incomplete specifi-
cation will result in both false positives and false negatives.

The key limitation of WebSSARI is its analysis power: 1)
the analysis is intraprocedural and does not infer function
pre- and post-conditions, thus requiring extensive annota-
tions to use; 2) it does not model predicates and conditional
branches, which is a key mechanism for testing and sanitiz-
ing input variables in PHP; and 3) it uses a generic type
based algorithm which does not model dynamic features in
scripting languages like PHP. For example, dynamic typing
may introduce subtle errors that WebSSARI misses. The
include statement dynamically inserts code to the program
which may contain, induce, or prevent errors.

Our tool warns about unsanitized use of $result_where_message._id. Livshits a.nd I.';am (8] deve[o;_)efi a -static detec:‘t.or fms' Secu-
On normal input, the program initializes $result_where_message_id ity vulnerabilities (e.g. SQL injection, cross site scripting,

using a cascading if statement. As shown in the code, the
author is very careful about sanitizing values that are used to
construct $result_where_message_id. However, the cascading

etc) in Java applications. The algorithm uses a BDD-based
context-sensitive pointer analysis [18] to find potential flow
from untrusted sources (e.g. user input) to trusting sinks
(e.g. SQL queries). One limitation of this analysis is that

it does not model control flow in the program and there-
fore may misflag sanitized input that subsequently flows
into SQL queries. Sanitization with conditional branching
is common in PHP programs, so techniques that ignore con-
trol flow are likely to cause large numbers of false positives
on such code bases.

Other tainting analysis that are proven effective on C code
include CQual [4], MECA [20], and MC [6, 2]. Collectively
they have found hundreds of previously unknown security
errors in the Linux Kernel.

Christensen et. al. [3] developed a string analysis that ap-
proximates string values in a Java program using a context
free grammar. The result is then widened into a regular
language and can be checked against a specification of ex-
pected output to determine syntactic correctness. However,
syntactic correctness does not entail safety, and therefore
it is unclear how one can adapt this work to the detection
of SQL injection vulnerabilities. Minamide [9] extended the
approach and constructed a string analyzer for PHP. It cited
SQL injection detection as a possible application. However,
the analyzer models a small set of string operations in PHP
(e.g. concatenation, string matching and replacement), and
ignores more complex features such as dynamic typing, cast-
ing, and predicates. Furthermore, the framework only seems
to model sanitization with string replacement, which repre-
sents a small subset of all sanitization in real code. There-
fore, accurately pinpointing injection attacks remains chal-
lenging.

Gould et. al. [5] combines string analysis with type check-
ing to ensure not only syntactic correctness but also type
correctness for SQL queries constructed by Java programs.
However, type correctness does not guarantee safety, which
is the focus of our analysis.

5.2 Dynamic Techniques

Scott and Sharp [14] proposed an application-level firewall
to centralize sanitization of client input. Firewall products
are also commercially available from companies such as Net-
Continuum, Imperva, Watchfire, etc. Some of these firewalls
detect and guard against previously known attack patterns,
while others maintain a white list of valid inputs. The main
limitation here is that the former is susceptible to both false
positives and false negatives, and the latter is reliant on cor-
rect specifications, which are difficult to come by.

The Perl taint mode [11] enables a set of special secu-
rity checks during execution in an unsafe environment. It
prevents the use of untrusted data (e.g. all command line
arguments, environment variables, data read from files, etc)
in operations that require trusted input (e.g. any command
that invokes a sub-shell). Nguyen-Tuong [10] proposed a
taint mode for PHP. It employs a set of heuristics to deter-
mine whether a query is safe when it contains fragments of
user input. The limitation of a heuristics based approach is
that it is susceptible to both false positives and false nega-
tives, which presents an obstacle for deployment in a pro-
duction environment.

In general, the advantage of a static analysis is that it
finds the root cause of a security vulnerability and prevents
the attack before the application is deployed.

6. CONCLUSION

We have presented a static analysis algorithm for detect-
ing security vulnerabilities in PHP. Our analysis employs a

novel three-tier architecture that enables us to handle dy-
namic features unique to scripting languages such as dy-
namic typing and code inclusion. We demonstrated the ef-
fectiveness of our approach by running our tool on six popu-
lar open source PHP code bases and finding 105 previously
unknown security vulnerabilities, most of which we believe
are remotely exploitable.

7. REFERENCES

[1] A. Aiken, E. Wimmers, and T. Lakshman. Soft typing with

conditional types. In Proceedings of the 21st Annual

Symposium on Principles of Programming Languages, 1994.

K. Ashcraft and D. Engler. Using programmer-written compiler

extensions to catch security holes. In 2002 IEEE Symposium

on Security and Privacy, 2002.

[3] A. Christensen, A. Moller, and M. Schwartzbach. Precise
analysis of string expressions. In Proceedings of the 10th Static
Analysis Symposium, 2003.

[4] J. S. Foster, T. Terauchi, and A. Aiken. Flow-sensitive type

qualifiers. In Proceedings of the 2002 ACM SIGPLAN

Conference on Programming Language Design and

Implementation, pages 1-12, June 2002.

C. Gould, Z. Su, and P. Devanbu. Static checking of

dynamically generated queries in database applications. In

Proceedings of the 26th International Conference on Software

Engineering, 2004.

S. Hallem, B. Chelf, Y. Xie, and D. Engler. A system and

language for building system-specific, static analyses. In

Proceedings of the ACM SIGPLAN 2002 Conference on

Programming Language Design and Implementation, Berlin,

Germany, June 2002.

[7] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D. Lee, and S.-Y.

Kuo. Securing web application code by static analysis and

runtime protection. In Proceedings of the 13th International

World Wide Web Conference, 2004.

V. Livshits and M. Lam. Finding security vulnerabilities in

Java applications with static analysis. In Proceedings of the

14th Useniz Security Symposium, 2005.

[9] Y. Minamide. Approximation of dynamically generated web
pages. In Proceedings of the 14th International World Wide
Web Conference, 2005.

[10] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and
D. Evans. Automatically hardening web applications using
precise tainting. In Proceedings of the 20th International
Information Security Conference, 2005.

[11] Perl documentation: Perlsec.
http://search.cpan.org/dist/perl/pod/perlsec.pod.

[12] PHP: Hypertext Preprocessor. http://www.php.net/.

[13] PHP usage statistics. http://www.php.net/usage.php.

[14] D. Scott and R. Sharp. Abstracting application-level web
security. In Proceedings of the 11th International World Wide
Web Conference, 2002.

[15] Security space apache module survey (Oct 2005).

[2

5

6

[8

http://www.securityspace.com/s_survey/data/man.200510/apachemods.html.

[16] Symantec Internet security threat report: Vol. VII. Technical
report, Symantec Inc., Mar. 2005.

[17] TIOBE programming community index for November 2005.
http://www.tiobe.com/tpci.htm.

[18] J. Whaley and M. Lam. Cloning-based context-sensitive pointer
alias analysis using binary decision diagrams. In Proceedings of
the ACM SIGPLAN 2004 Conference on Programming
Language Design and Implementation, 2004,

[19] A. Wright and R. Cartwright. A practical soft type system for
Scheme. ACM Trans. Prog. Lang. Syst., 19(1):87-152, Jan.
1997.

[20] J. Yang, T. Kremenck, Y. Xie, and D. Engler. MECA: an
extensible, expressive system and language for statically
checking security properties. In Proceedings of the 10th
Conference on Computer and Commaunications Security,
2003.

Notation for Yichen's paper http://css.csail.mit.edw/6.858/2012/readings/yichen-static-notation.html

Notation for Yichen's paper

Figure 4 in Yichen's paper uses some notation that might not be familiar. Here are some notes to help
you along:

e The turnstile symbol I, in "G x", basically means "x is true in the environment G".
e The horizontal line is called a "rule": if all the things above the line are true, then the thing

below the line must be true.

The Wikipedia page on sequents has more details.

1of1 9/29/2012 1:23 PM

Sequent - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Sequent

Sequent

From Wikipedia, the free encyclopedia

In proof theory, a sequent is a formalized statement of provability that is frequently used when
specifying calculi for deduction. In the sequent calculus, the name sequent is used for the construct
which can be regarded as a specific kind of judgment, characteristic to this deduction system.

Contents

= | Explanation _
= 2 Intuitive meaning
= 3 Example
= 4 Property
5 Rules

6 Variations
7 History

Explanation

A sequent has the form

'FX

where both I" and X are sequences of logical formulae (i.e., both the number and the order of the
occurring formulae matter). The symbol |- is usually referred to as furnstile or tee and is often read,
suggestively, as "yields" or "proves". It is not a symbol in the language, rather it is a symbol in the
metalanguage used to discuss proofs. In a sequent, I" is called the antecedent and X is said to be the
succedent of the sequent.

Intuitive meaning

The intuitive meaning of the sequent [* |- }] is that under the assumption of I' the conclusion of X is
provable. Classically, the formulae on the left of the turnstile can be interpreted conjunctively while the
formulae on the right can be considered as a disjunction. This means that, when all formulae in I" hold,
then at least one formula in X also has to be true. If the succedent is empty, this is interpreted as falsity,
i.e. [' |- means that I proves falsity and is thus inconsistent. On the other hand an empty antecedent is
assumed to be true, i.e., |- ¥} means that X follows without any assumptions, i.e., it is always true (as a
disjunction). A sequent of this form, with I" empty, is known as a logical assertion.

Of course, other intuitive explanations are possible, which are classically equivalent. For example,

I' I ¥ can be read as asserting that it cannot be the case that every formula in I" is true and every
formula in Z is false (this is related to the double-negation interpretations of classical into intuitionistic
logic, such as Glivenko's theorem).

1 of3 9/29/2012 1:23 PM

Sequent - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Sequent

20of 3

In any case, these intuitive readings are only pedagogical. Since formal proofs in proof theory are purely
syntactic, the meaning of (the derivation of) a sequent is only given by the properties of the calculus that
provides the actual rules of inference.

Barring any contradictions in the technically precise definition above we can describe sequents in their
introductory logical form. T" represents a set of assumptions that we begin our logical process with, for
example "Socrates is a man" and "All men are mortal". The ¥ represents a logical conclusion that
follows under these premises. For example "Socrates is mortal" follows from a reasonable formalization
of the above points and we could expect to see it on the Y] side of the turnstile. In this sense, |- means
the process of reasoning, or "therefore" in English.

Example

A typical sequent might be:

oY

This claims that either & or 3 can be derived from ¢ and 1.

Property

Since every formula in the antecedent (the left side) must be true to conclude the truth of at least one
formula in the succedent (the right side), adding formulas to either side results in a weaker sequent, while
removing them from either side gives a stronger one.

Rules

Most proof systems provide ways to deduce one sequent from another. These inference rules are written
with a list of sequents above and below a line. This rule indicates that if everything above the line is true,
so is everything under the line.

A typical rule is:
TolY TF3a
ik ol

This indicates that if we can deduce that I"| ¢x yields ¥, and that T yields 33, c, then we can also
deduce that " yields ¥..

Variations

The general notion of sequent introduced here can be specialized in various ways. A sequent is said to be
an intuitionistic sequent if there is at most one formula in the succedent. This form is needed to obtain
calculi for intuitionistic logic. Similarly, one can obtain calculi for dual-intuitionistic logic (a type of
paraconsistent logic) by requiring that sequents be singular in the antecedent.

9/29/2012 1:23 PM

Sequent - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Sequent

3of3

In many cases, sequents are also assumed to consist of multisets or sets instead of sequences. Thus one
disregards the order or even the number of occurrences of the formulae. For classical propositional logic
this does not yield a problem, since the conclusions that one can draw from a collection of premises does
not depend on these data. In substructural logic, however, this may become quite important.

History

Historically, sequents have been introduced by Gerhard Gentzen in order to specify his famous sequent
calculus. In his German publication he used the word "Sequenz". However, in English, the word
"sequence" is already used as a translation to the German "Folge" and appears quite frequently in
mathematics. The term "sequent” then has been created in search for an alternative translation of the
German expression.

This article incorporates material from Sequent on PlanetMath, which is licensed under the Creative
Commons Attribution/Share-Alike License.

Retrieved from "http://en.wikipedia.org/w/index.php?title=Sequent&oldid=487274092"
Categories: Proof theory | Logical expressions

» This page was last modified on 14 April 2012 at 02:26.
= Text is available under the Creative Commons Attribution-ShareAlike License; additional terms
may apply. See Terms of use for details.

Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit
organization.

9/29/2012 1:23 PM

6.858 / Fall 2012 / Paper Reading Questions

6.858: Computer
Systems Security

Home

General
information

Schedule

Reference
materials

Piazza discussion

Submission

2011 class
materials

1of1l

http://css.csail.mit.edw/6.858/2012/questions.html?q=q-static-scripti...

Fall 2012

Paper Reading Questions

For each paper, your assignment is two-fold. By the start of lecture:

e Submit your answer for each lecture's paper question via the

submission web site in a file named lecn.txt, and

E-mail your own question about the paper (e.g., what you find
most confusing about the paper or the paper's general
context/problem) to 6.858-g@pdos.csail.mit.edu. You cannot
use the question below. To the extent possible, during lecture

we will try to answer questions submitted by the evening
before.

éLectureS \[U\'OW\ Uhf/ﬂ [})'Q//Of

The paper only mentions one potential false positives arising (2'"{ W:(J
because of the use of regular expression. Explain why it is \ r,(:
i indeed a false positive. N Tt«ffe

bttt

7 Wiy & JBJWOL
bk for by ot iy,
L Lo 004 vy Iy hisy |
[Oal'\ fo Attaks

Questions or comments regarding 6.858? Send e-mail to the course
staff at 6.858-staff@pdos.csail.mit.edu.

Top // 6.858 home // Last updated Saturday, 29-Sep-2012 10:55:47 EDT

9/29/2012 1:24 PM

Paper Question 8

Michael Plasmeier

You can write regular expressions in one of two ways. You can either make sure that input
matches the structure of good input, or that there is no known attack strings in the input. Both are
subject to false positives and false negatives. A false positive is when there is an alarm, but no fire. A
false negative is a fire, but no alarm. Either structure could label good input as suspect, or miss some
crucial attack string. The matching of well-formed inputs is more susceptible to a false positive, while
looking for attack strings is maore susceptible to a false negative.

The false paositive in PHP-fusion on page 9 arises from the fact that the order of the code shows
the SQL statement is executed first, even though it actually would not execute when run, since $error
would be set true. This caused the first version of the static analysis to raise an alarm when the code
was fine. As the authors said, this was easy to fix.

(b 957 A

Pl bys o apltn
@L/Q, (ot 0 QIQW/{OP\?/)

PHP
\‘ilt ,O\;Jﬂw
VQ{] (JINM‘L(’

}w&e/ ol a fw|

WW\L hp& 0 t{jﬁf’

AL el
§—GETL") o
Mﬁ({‘ﬁc 01{/@’1 UDP[’\E . (ABAE 4=

H (\J |)\
%‘l v 0"7 Oolmy 0 male e Saaative |
Lok b yoe ol pog i s bty

0
echo " H, HH“/'
LF bty e st) R

%

0, M(m/
0 pén CH / / .h/{@/#}d'\\)/‘

Pl |

(om0 j§

bu) [" - ML)

"bfey Shiny

m& are OT/“ m L/th»eot@d ;/4[% b»gzj

pfoé‘l gof(‘l ‘[Cf hL P\(ﬁaﬁq/\ ga N cf"{/”{/
/,_,_\

{indior CWA(%] {
Tl = 6 _ponetc (4 a,)/'
(thiq l§0L

>

'6mmn (ﬁAZ(ﬂw jf
by =gk (f);

%G@ﬂ W#
Ckﬂ KQﬁMj
3
be=d_(Er[ix']
CMZUM)J’]j
@% :”X% g)c >/7/“(

J
isql_quey g

6@0\/“ HW U ‘A p%(a’:bly LQW/ UN(LW (/LH p%&’ﬂﬂ f’f'ﬁvé
foniy > 0y i lph v e o o/

Mot dad U (gl [fy) =")e»wt
e il W e

h‘“{j)ﬂ M’/lh% IC/Z?@ or g%@fc/c word.
M(fl\ [31/@ Ve On @/({(/lté‘lm “2)\/1\ /\Off’_ (106& 671/70%17

-
3 el of Gl
baly blak
T it who, bmd@ﬁ/ ol
Ve dekded dnalys
(one P w/ Gumny/f

|
éwgmbﬁv(Gummy lor eady hustc bl

S [@ok at 5~/m«w{7 {0/ Méqu sz’m

)

(o) | b Ik
J/OW\'P wa ﬁa W;/} é&

b g\m)ﬂo]}c ot 7
[un :/\ é:ﬂw)a/}/'ﬂq %

\/MWH% (/oﬂ I}L /uu((m(f@)[ﬁ Sl
7% WE Sywlds flend

!\ Cammq Map V‘”MQ’? [MJW’ = Symbole

\/a,ﬁ/(

e Vaghle gy = 27
Inght- e

< h lts

():: P ety
A2 Ay
EOL —»ouj
fob =\ nmiclha);
b= (o\ 3 (,

0% 9 o, J dan't lan el
\(Hw; Gon. VC{!MOLﬂé tre Senilize]

o Faiﬁe hnmry Sln fz—e{

oM 2 un]L'*.’”’L({fj/ %%5)

Cale
/Of” \n@f W wa]L ;5 SQL /)/Q(/f/O/)
MOJF %L(/ /Wf% (o/feom oL

Jony |

HOW Jﬂ h«q L(/Ww ‘(bv'nth(]L l‘5 b (9 P 7%(/“%
L(Mf/“ ’:B ;MH \M/ p/zmj{l/{

50 {‘kﬁ PGyt bt {/noff!aw; to ¢ s'cm/ﬁ}//y

ﬁn\u !’\/@t/w/ L)e 5 /0} 7L0 ghvt
ggy WmlL)L@ SVI??MWJ%

4 JM@?LL Vil bl

m& 0o g!,
E rﬂfmb%s fku‘ m\t,{,jhl* Lqﬂ«v }Wllo Sl C{:/€((

6 (e af’% oles MC might- €ad vl
(WA oh 6k lings Coissgd] hore
X < (m/:;;% Vg% Sunativd U (chu | 15 b"d‘—’ﬂﬂ

—

’A:E}; nt A ’St/:{mfp\é g 33
) Arg

‘%;% @ T {mli u+/ vnbanl

X = fulse

bt flhel)
(W%{gwmﬁ

bl
P AW(M} rfé&&[/o
P
é@ We

/e/

47 o)

I
~

V BB3] retan]
302 ext |

8]

b < b%va%j

Qlﬁv Check ()

k)%‘o V> (/nhfﬂt({)) {@U})

@m‘ OIJL at Gy
Vo 5 {[/y /

})\/E}‘ g 8 \/Vlf‘a’f[m[
Soat Bo(3 0,43, Pog) T=ful

[Vofoblts Tk Ty, gy 0
/
m \{\/E(i i@iﬂgb{ \lf"lld\ '/“Mﬂé’j wa

in lnnu#
Move, by ovfet

% Tk whve
by (s e op

&Vﬂb@((/ {Uﬁ Uﬁqa

(WL/ \//\'h&%({ gl

ﬁ-” Cuh Gnfal €],
Ce of best. bl

UBM :{W oft

Uﬂb) :{bg crgnt

B
B B3, 0-3, my
%;le / (Q> /&%‘W/ U = 1w
Mo PJ]r)L(ogP/H%

Ef{] R=(3 Co{% (agr1d)
fpoﬂvﬁ ioa% c?nyfhwj q IJML][MN /@Wm vyl
ptans b ne A€

WZJ Gupibiting /

)
/Mﬂ i Foued 10{(,;)

fua nadl have “betn
547

b7 (2l q 9 ¢, | _GET 3 _GET,
I ——GET[Q - GET)C?}

)(3 { “‘/CETBQD/ - 364/1‘(’%’({ [}
(C‘/@ckz(ﬁc
) |

”\

sq,,,rm {) o _ ()[%}

éof*e Cxir pcm &é 6W€
L%@{‘ 0é hﬂrﬂj /)LML e (ﬁomti}l/@@&i

G it

do=--

ol de (e by bk Ciagy At e i

G‘f‘i 4{ o) [{K&l/ - GET[X]OJ /\/7]]/ ——\j

hI .
O (mgq& qm“
) 6;{ wu})QJL @%‘/’{Mrbﬂ b@ﬂi(é‘iﬂwﬂz@jf
T unthunght
gvmm f}w 9 761# EAJ iy
st § £ Thing It thvpa/lm sg}(mg W
Z CFT[)O]J fer o yy!
k=4 3
g:Q wg
Y=t

o ok ab ko W
b [§ W(“b E G’mp}\lf

N 69 Q)HL he L‘uj’ (hau :/5 b [‘{(/{;%))

M(@H/]Q/f 5Jb l(c//t!/f'(mq)\6(/6 Nan QWWLZ E
8\/'!~ (MM st ‘E/‘()}'L

V/ ﬁ({gu E:{]

0

OM{ \/‘/W WJ

//@TL Sl

) G2 (F e g3)
\M“ W‘L do santiied ok
l’lol‘tces i f)e Sine n//jp

D) fuchin 0 3 ($E)

ﬁb@ (ET (4£))
(a2 B!
P

Wil his eat L ifuder’
T sholl

Yaki abess = wil bt 5 » a sl

N@@i A Summery

E{}&Us
> Gile

(1

¢ §€ o
: {/ﬁbo
(s ﬂ.._ﬁff[ﬁ]
)

\ l ’)l
£ Clin ﬁg\m ’W%/"é{’a 4
Wl"/wéle - GETL J—J

(-: { %4__ [ETLL] 3 ?Scm‘%m‘ti&
J
éo Mn el (hd 9 x ‘)

Suttoed < (_ () 1,]

69 E wl“ /m‘} be €mﬂ7

Pl b be lclcwa{

'go m\l/ {wnﬂw/ Zqﬁﬁ\/ 0 \L5 nmf‘ czmlwfl/%
vty F ddle By

S Sumery Vs 1o Uofotled 3 o valf v
WMQ [rtpnm

1[%!@0@ ot 1%@ pos féo[bef Ny (mz{s%{%]/

[hy Séﬂtfl/w@@q)

all pb i) qey \,
E) (;}@ﬁb) 6&7&/@}) 4 b@H?/ be Sarw}r-’&vy
\=(7
57(3
Yo = false
!‘15 » huw&,(ﬂv)

§={ T (ng#), F3¢3 9
g;i{}} X ?{({l&{

R%\/lw E@)
‘h\% J«let I 7llo do

b= Py —nah("o)4
Dﬁ)@é Can pomgl- Lot
@@@s b gty
NO =) mst by

"N g)e b

o\ e
wres ol Z\M, WWWG/

W 50 0 bh ¢

Y

Dy, Ldbgsh Yot f it

[sl
g o Ml JELETE WHERE /4 = hob
ok =]

Pogame vight ackially st b &
Y A lskary

LQ“ g&l/ ’mje,(/tgm Now

~ (s (d Shterinl

0 WY magie oyt motél
A[&o (m%}m l/%]/ﬂ"j

i N €XVL/0L LiF

als {@L‘;& paézll)/f’
bt e o0 vas oife

1 of 5

http://css.csail.mit.eduw/6.858/2012/lec/108-static-analysis. txt

Static analysis [O/{

What's the goal of this paper?
Help developers fix vulnerabilities, by finding security bugs in PHP code.
Show that static analysis is feasible for PHP.

What kinds of vulnerabilities are they looking for?
Unchecked input vulnerabilities: missing sanitization checks.
Most specifically, tool targeted at SQL injection.
S$rows = mysql_query("UPDATE users SET pass='S$pass' WHERE userid='S$userid'")
Authors also claim their approach might work for cross-site scripting.
echo "Hello Suserid\n";
Might work for other cases of unsanitized input.
open("/foo/bar/$filename") may be vulnerable to filenames with ".." or "/".
eval ($_GET['x']) .

Example program [bug: missing "not" in check2's if statement]:

function check($a) {
$ok = is numeric($a);
return $ok;

}

function check2(3b) {
$v = check($b);
if (8v) exit;
else return;

}

$c = § GET['x'];
check2 ($c) ;

$9 = "xx Sc yy";
mysgl_ query ($q) ;

Static analysis goal: understand how some code behaves, given any inputs.
In our simple example, can cover all behavior with a few inputs.
For large applications, impractical to enumerate possible inputs.
Control flow depends on inputs, need to consider all possible paths.
Recursive functions, loops, etc make enumeration difficult.
Hard to decide some questions statically.
E.g., suppose we add this before mysgl query():

if (shal($ec) != '...'") exit();

Is there an input that hashes to this wvalue and triggers SQL injection?
hopeless ..

Bpproach: lose precision but gain scalability.

Analyze smaller pieces in detail: typically basic blocks or functions.

Summarize interesting aspects of that piece in a concise way.

Use the summary when other pieces call this piece.

This tool actually applies this summary-based idea at two levels.
First analyze basic block, generate BB summary.
Then combine BBs in a function, generate function summary.
Function summary for the main section/function used to flag errors.

Analyzing check(): only one basic block.
How do we figure out what's going on in this function without running it?
This tool: simulate execution on "symbolic" values.
The current set of symbolic values is denoted with the symbol G (UTF-8: I').
Maps memory locations (variables, hash table entries) to symbolic wvalues.

10/6/2012 1:51 PM

http://css.csail.mit.edw/'6.858/2012/1ec/108-static-analysis.txt

Initially, each memory location is assigned to initial symbolic value.
G ={a->a0, ok -> oko0 }

What happens when 3ok=is numeric($a) "runs" in our simulation?
Need to assign some value to the "ok" memory location.
No idea what wvalue will be returned.
But what we care about is how it might relate to validating input.
This tool's model has a special kind of value in simulation: untaint.

Symbolic value untaint({x, ..}, {y, ..}) means:
If actual value is false, then {x, ..} are all validated.
If actual value is true, then {y, ..} are all validated.

Still don't know if it's true or false, but will help analysis shortly.
"Tainted" means could be a "malicious" wvalue.

Simulation also supports "true", "false", and "unknown" (UTF-8: 1) bools.
Thus, after $ok=is numeric($a), new state is:

G ={a->a0, ok -> untaint({}, {a0}) }

[Section 3.1.3 suggests it should be location {a} instead of value {a0},
but that doesn't make much sense, and step 4 in section 3.3 seems to
suggest it should be a value instead of a memory location.]

How does the tocol know what is numeric does? What is "malicious"?

Hard-coded by tool maker / developer for SQL injection.

No underlying proof that is_numeric does the right thing.

Would similarly hard-code functions that sanitize SQL strings.

Return statement finishes basic block, done with BB analysis.

How to summarize check()'s behavior? [Section 3.2]
This tool's function-level summary boils down to <E, R, S, X>:
E (error set): memory locations that might flow into an SQL query,
but aren't sanitized in the function itself.

For check(), E={}.

R (return set): what parameters or global variables might be in retwval?
For check(), R={}.

S (sanitized values): what parameters or global variables are sanitized?
Can be conditional on boolean return value, or unconditional.
For check(), 8={ T => {Arg#l}, F => {} }

X (exit): does this function always exit?
For check(), X=false.

Analyzing check2(): three basic blocks.
/-> [exit 1]
entry -> [call to check]
\-> [return]

First basic block of check2().

Initial: G = { b -> b0, v -> v0 }.

Call to check() -- what symbolic value does v get? [Section 3.3, step 4]
Figure out what values are passed as arguments to check(): Arg#l ==E==> b0
Figure out what the sanitized value summary is: S={T=>{Arg#1l}, F={}}

Plug in arguments into summary, convert to an untaint wvalue:
v -> untaint({}, {bo})
Two control flow transitions from BB: one to exit, another to return.

How to summarize basic block?

Slightly more complex than a function: [Section 3.1.7]

E (error set): memory locations that might flow to SQL query.
For check2's first BB, E={}.

D (definitions): which memory locations were defined in this BB?
For check2's first BB, D={v}.

F (value flow): how did this BB move strings between memory locations?
For check2's first BB, F={}.

T (termination): is there an exit statement?
For check2's first BB, T=false.

R (return value): what's being returned (if anything)?
For check2's first BB, R=undefined.

20of5 10/6/2012 1:51 PM

3of5

http://css.csail. mit.edw/'6.858/2012/lec/108-static-analysis.txt

U (untaint set): for each successor BB, what's sanitized?
For the exit BB ($v==true): U={b}.
For the return BB (S$v==false): U={}.
[Or, if we fix bug, vice-versa.]

What happens in the exit BB?
E={}, D={}, F={}, T=true, R=undef, No successors -> no U's.

What happens in the return BB?
E={}, D={}, F={}, T=false, R=undef, No successors -> no U's.

How to summarize the check2() function?
E={}, R={}, X=false.
How to compute S? [Section 3.2 step 3]
Find all return blocks: just the return BB.
Find the set of sanitized inputs for that BB (chain of U's from entry).
Take intersection.
S={* => {}} [or, if we fix bug, S={* => {Arg#1}}]

Finally, what happens in the main function? One basic block.

Initial: G={c->c0, g->qg0, GET -> _GETO0, _GET[x] -> GET[x]0 }
Assign $c: G = { ¢ -> _GET[x]0, .. }
Call check2: use S to mark validated locations. [Section 3.3 step 3]

If we fix bug, this marks location c's value (_GET[x]0) as validated.
Compute $q: G = { g -> ['xx', _GET[x]0, 'yy' 1, .. }

Call mysgl query: need to ensure that all parts of g's value are validated.
More complicated examples:
Suppose we replace check2($c) with check2($_GET['x'])?
Works fine: summary for check2 says _GET[x]0 becomes validated.

What if we replace $c = $ GET['x'] with: [Section 3.1.4]

$d = § GET;

se = 'x';

$c = sdlsel;

Init: G={c->c0,d->do, e ->e0, ..}
Assign $d: G = { 4 -> _GETO, .. }

Assign $e: G = { e -> ['x'], .. }

Assign $c: G = { ¢ -> GET[x]O, .. }

What if we instead use check3('x'):
function check3 (sf) {
$b = $_GETI[$f];
$v = check($b);
if (!$v) exit; # bug fixed
else return;

}

Init: G={b->bo, £->f0, ..}

Assign $b: G = { b -> _GET[bottom]0, .. }

Check: G = { v -> untaint({}, {_GET[bottom]0}) }
Summary: S = { * => { GET[bottom]o0} }

In main function, _GET[bottom]0 marked validated, not _GET[x]O0.

Built-in functions, like substr()?
Presumably need to hard-code summaries for them.
What would the summary for substr() look like?
E={}, R={Arg#1}, s={}, X=false.

What does the tool need to hard-code about SQL injection?
Sink sites: mysgl query().

10/6/2012 1:51 PM

http://css.csail.mit.edw/6.858/2012/1ec/108-static-analysis.txt

What would the summary for mysgl query() look like?
E={Arg#1}, R={}, S={}, X=false.

Sanitization functions: is numeric(), presumably others.
What would the summary for is numeric() look like?
E={}, R={}, s={ T => {Arg#1}, F => {} }, X=false.
What would the summary for mysgl escape string() look like?
E={}, R={}, 8={}, X=false.

Source sites: any "external" values that aren't assigned in program code.
Flag external inputs from $ GET, $ POST, etc as errors.
Others are just warnings -- false positives.

Why do they run into extermal variables other than $ GET, $_ POST, etc?
Analysis doesn't understand / deal with extract().

What about unvalidated values as return values from built-in functions?
E.g., read from socket or return from mysqgl query()?
Paper doesn't say anything about this case.
May want to represent return value as unvalidated.
Could invent a fake global string variable for this.

Why do they make such a big deal about regexps?
Often used for pattern-matching to validate inputs.
Their analysis doesn't know ahead of time which regexps validate correctly.
For each new regexp, ask user if it validates input properly.
Seems like an error-prone step: easy to declare incorrect regexp as correct.
Nice example from Utopia News Pro: "[0-9]+" should be "*[0-9]+$".

How well does this work for SQL injection?
For 5 applications, 99 error reports (unsanitized $ GET params, etc).
Manually checked all 99 error reports, decided they were real bugs.
Didn't get acknowledgment from developers if bugs are real or not.
Also got 115 warnings for those 5 apps, suggest mostly false positives.

Other application: PHP-fusion, uses extract() -> no errors, 22 warnings.
15 false positives: unvalidated config variables used to construct queries.
7 remaining warnings, authors say 6 are real bugs and 1 FP (below).
Developer acknowledged and fixed two bugs. (Unclear what about other 4..)

PHP-fusion false positive example:
if (!preg match("...", $account))
serror = 1;
if (!$error) { mysqgl_query("xx $account xx"); }

Why does this result in a false positive?
How could we augment BB summary to handle this correctly?

How would you modify this tool to catch cross-site scripting?
Sinks?
Sources?
Sanitization functions?
Current design keeps track of only one kind of sanitization per analysis.

What are the sources of false positives?
Tool doesn't understand some sanitization function.
(But it does ask when it sees a new regexp.)
Tool doesn't understand subtle sanitization / checking plan.
Doesn't conform to return value patterns used by this tool.
Sources aren't actually malicious (e.g., config file inputs).

What are the sources of false negatives?
Code in eval or dynamically-generated PHP filenames.
Can't determine array index (e.g., computed at runtime).
Recursive functions.

4 of 5 10/6/2012 1:51 PM

http://css.csail.mit.edw/6.858/2012/1ec/108-static-analysis. txt

Are these ideas applicable to static analysis for other languages?
Python? Seems reasonably close, fewer implicit conversions.
C? Less string-oriented, hard to distinguish types, aliasing.
Java? Well-defined strings, much stricter than Python.
PQL is a similar tool for Java, looks for source-to-sink paths.

Advantages / disadvantages of different approaches to fixing vulnerabilities.
Prevent bugs in the first place.
Prepared SQL statements: Java example from the paper.
Cross-site scripting: HTML templates?
Avoid error-prone functions, such as PHP's extract().

[Similar bug affected github: Ruby-on-Rails mass assignment]
Privilege separation might work, but requires significant re-design (lab 2).
+: good to prevent bugs when possible.

-: programmers may still make mistakes even with less error-prone APIs.
-: developers prefer simple APIs, can be hard to combine simple+secure.
Lab 2's privilege separation, SQL prepared statements, etc.

-: applications evolve, can't always predict developer's needs.

Test cases / fuzzing.
Good idea but tests cover only situations programmer already thought about.
Fuzzing helps but might not trigger bugs that require complex inputs.
Might require a lot of time to get coverage.

Runtime checking: taint tracking.
Potentially fewer false positives than static analysis.
Adds runtime overhead.
Bugs flagged at runtime may show up for the user, rather than developer.
Taint propagation can be too conservative (false alarms = false positives).
Taint propagation can be too lax (missed alarms = false negatives).

Grep.
What if we just "grep mysgl query *.php"?

Static analysis.
+: no need to run code, might get more coverage than testing / fuzzing.
+: can run at development time, help developers fix bugs.
+: no runtime overhead in deployment.
-: potential for false positives.
-: precise analysis impossible in all cases (decidability, halting prob).
-: might miss bugs since analysis is not perfectly precise.
-: might require some non-trivial time to analyze code.

Are static analysis tools actually used?
Doesn't appear that this specific tool got much immediate use.
However, the underlying ideas seem pretty good.
Other tools use / build on similar techniques.
Summary-based analysis is a common approach.
Static analysis for C and Java programs pretty common.
Linux kernel developers use some static analysis tools (sparse, smatch).
Coverity provides commercial static analysis tools.
Java static analysis tools are reasonably common.
E.g., IBM helps customers find bugs in Java software.
Static analyses look for all kinds of bugs.
Memory leaks.
Buffer overflows in C.
Unchecked inputs in Java.
Missing access control checks.

50f5 10/6/2012 1:51 PM

(Mﬂ“@?

Run-Time Enforcement of Secute JavaScript Subsets)

Sergio Maffeis John C. Mitchell Ankur Taly
Imperial College London Dep. of Computer Science Stanford University
maffeis@doc.ic.ac.uk Stanford University ataly @stanford.edu

mitchell @cs.stanford.edu

Abstract

Many Web-based applications such as advertisement,
social networking and_online shopping benzfit from the
infferaction of trusted and unstrusted content within the
same page. If the untrusted content includes JavaScript
code, it must be prevented from maliciously altering pages,
stealing sensitive information, or causing other harm. We
study filtering and rewriting techniques to control untrusted
JavaScript code, using Facebook FBJS as a motivating ex-
ample. We explain the core problems, provide JavaScript
code that enforces provable isolation properties at run-time,
and compare our results witlTie Techniquies used in FBIS.

e

1 Introduction

Many contemporary web sites incorporate untrusted con-
tent. For example, many sites serve third-party advertise-
ments, allow users to post comments that are then served
to others, or allow users to add their own applications to
the site. Although untrusted content can be placed in an
isolating iframe [3], this is not always done because of

limitations impgsed on communication-betweenrtrusted and

untrusted code. Instead, Facebook [18], for example, pre-
processes untrusted content, applying filters and source-to-
source rewriting before the conté’rmvlﬁ]ts?m
of these methods make intuitive sense, JavaScript [7, 9]
provides many subtle ways for malicious code to subvert
language-based isolation methods, as shown here and in our
previous work [14].

In this paper, we review some previous filtering methods
for managing untrusted JavaScript [14] and explore ways
of replacing some aspects of these restrictive static code
filters with more flexible run-time instrumentation that is
implementable as source-to-source translation. Our previ-
ous efforts uncovered problems and vulnerabilities with the

then-current versions of FBJS and ADsafe [5], Yahoo's safe
advertising proposal. We then developed a formal foun-

dation for proving isolati rties of JavaScript pro-
grams [14], based on our operational semantics of the full
ECMA-262 Standard language (3rd Edition) [6], available
on the web [12] and described previously in [13]. The lan-
guage subsets defined in [14] provided a foundation for
code filtering — any JavaScript filter that only allows pro-
grams in a meaningful sublanguage will guarantee any se-
mantic properties associated with it. More specifically, we
developed proofs that certain subsets of the ECMA-262
Standard langmgﬁﬂm‘: to syntactically identify
the object properties that may be accessed, make it possible
to safely rename variables used in the code, and/or make it
possible to prevent access to scope objects (including the
global object). However, these syntactic subsets are more
restrictive than the solution currently employed by Face-
book, which uses run-time instrumentation to restrict the-
semantic behavior of code m?m.
In this paper, we therefore focus on subsets of JavaScript
and semantic restrictions that model the effect of rewriting
JavaScript source code with “wrapper” functions. Our main
contribution is the definition of JavaScript code that imple-
ments secufe, semantic preserving run-time checks that en-
force isolation of untrusted JavaScript code. We also com-
pare our methods with the solutions employed by Facebook
a the time of our submission. In particular, we describe
a previously unknown Facebook vulnerability that we dis-

covered thanks @_ogr_ag:lysis, and the fix adopted in the
current version of FBJS following our disclosure to them.

Related work on language-based methods for isolat-
ing the effects of potentially malicious web content in-
clude [16], which examines ways to inspect and cleanse dy-
namic HTML content, and [24], which modifies question-
able Tﬁsmore restricted fragment of JavaScript
than we consider here. A short workshop paper [23] also
gives an architecture for server-side code analysis and in-
strumentation, without exploring details or specific methods
for constraining JavaScript. The Goagle Caja [4] project
follows instead a different approach, based on transpar-

ent compilation of JavaScript codgju&ﬂ.ﬁ@_&bﬂfy-based
JavaScript subset, with libraries that emulate DOM-objects.
"‘_‘_'—___/_

Additional related work on rewriting based methods for
controlling the execution of JavaScript include [11]. Foun-
dational studies of limited subsets of JavaScript and dy-
namic languages in general are reported in [2, 21, 24, 10,
17, 1, 22]; see [13].

2 JavaScript Isolation Problems

In this Section, we summarize the Facebook isolation
mechanism. Over time, several teams of researchers have
discovered flaws in the Facebook protection mechanisms
that were promptly addressed by the Facebook team [8, 15,
14]. Specific handling of $FBJS.ref described below, for
example, is the result of vulnerabilities reported to Face-
book [14]. Based on past evidence, we believe it is impor-
tant to develop a foundation for proving isolation properties.
Without careful scrutiny and reliable semantic methods, it is
simply not possible to reliably reason about a programming
language as complex as JavaScript.

2.1 Facebook JavaScript

Facebook is a web-based social networking application.
Registered and authenticated users store private and public
information on the Facebook website in their Facebook pro-
file, which may include personal data, list of friends (other
Facebook users), photos, and other information. Users can
share information by sending messages, directly writing on
a public portion of a user profile (called the wall), or inter-
acting with Facebook applications.

Facebook applications can be written by any user and
can be deployed in various ways: as desktop applications, as
external web pages displayed inside a frame within a Face-
book page, or as integrated components of a user profile.
Integrated applications are by far the most common, as they
affect the way a user profile is displayed.

Facebook applications are writte in EBME{20], a vari-
ant of HTML designed to make it easy to write applications
and also to restrict their possible behavior. A Facebook ap-
plication is retrieved TronT theapptication publisher’s server
and embedded as a subtree of the Facebook page document.
Since Facebook applications are intended to interact with
the rest of the user’s profile, they are not isolated inside an
iframe. However, the actions of a FaceBook application
must be restricted so that it cannot maliciously manipulate
the rest of the Facebook display, access sensitive informa-
tion (including the browser cookie) or take unauthorized ac-
tions on behalf of the user. As part of the Facebook isolation
mechanism, the scripts used by applications must be written
in a subset of JavaScript called FBIS [19] that restricts them
from accessing arbitrary paris of the DOM tree of the larger

T s % /QWV‘E/ ﬂ\\tb

make sure it contains valid FBJS, and some rewriting is ap-
plied to limit the application’s behavior before it is rendered
in the user’s browser.

FBJS. While FBJS has the same syntax as JavaScript, a
preprocessor consistently adds an application-specific pre-
fix to all top-level identifiers in the codg, isolating the ef-
fective namespace of an application from the namespace of
other applicantions and of the rest of the Facebook page.
For example, a statement document.domain may be rewritten
to a12345_document.domain, where a12345_ is the application-
specific prefix. Since this renaming will Preventapptication
code from directly accessing most of the host and native
JavaScript objects, such as the document object, Facebook
provides libraries that are accessible within the application
namespace. For example, the libraries include the object
a12345_document, which mediates interaction between the
application code and the true document object.

Additional steps are used to restrict the use of the special
identifier this in FBIS code. The expression this, executed in
the global scope, evaluates to the window object; which is the
global scope itself. Without further restrictions, an applica-
tion could simply use an expression such as this.document
to break the namespace isolation and access the document
object. Since renaming this would drastically change the
meaning of JavaScript code, occurrences of this are replaced
with the expression $FBJS.ref@this), which calls the function
$FBJS.ref to check what object this refers to when it is used.
If this refers to window, then $FBJS.ref(this) returns null.

Other, indirect ways that malicious content might
reach the window object involve accessing certain standard
or browser-specific predefined object properties such as
parent and constructor. Therefore, FBJIS blacklists such
properties and rewrites any explicit access to them in the
code into an access to the useless property _unknown_..
Since the notation ofe] denotes the access to the prop-
erty of object o whose name is the result of evaluat-
ing expression e to a string, FBJS rewrites that term to
a12345_0[$FBJS.idx(e)], where $FBJS.idx enforces blacklist-

ing on the string value of e. Note that this technique i
vulnerable to standard obfuscation, because $SFBJS.idx is Tut

on the string obtained as the final result of evaluating e.

Finally, FBIS code runs in an environment where prop-
erties such as valueOf, which may access (indirectly) the
window object, are redefined to something harmless.

2.2 Formalizing JavaScript Isolation

FBIS illustrates two fundamental issues with mashup
isolation. (i) Regardless of the technique adopted to enforce
isolation, the ultimate goal is usually very simple: make
sure that a piece of untrusted code does not access a cer-
tain set of global variables (typically the DOM). (ii) While

Facebook page.~The source application code 1s checked to—— enforcing this constraint may scem easy, there are a number

of subtleties related to the expressiveness and complexity of
JavaScript.

Common isolation techniques include blacklisting cer-
tain properties, separating the namespaces corresponding to
code in different trust domains, inserting run-time checks to
prevent illegal accesses, and wrapping sensitive objects to
limit their accessibility.

In the remainder of this paper, we study how combin-
ing run-time checks (analogous to $FBJS.idx and $FBJS.ref)
with syntactic restrictions leads to expressive and provably
secure subsets of JavaScript. While we use FBIJS as a run-
ning example, the ideas illustrated in this paper also apply
to JavaScript isolation in other settings.

3 Syntactic JavaScript Subsets

In this Section, we describe two secure subsets of
JavaScript (first defined in [14]) that enforce isolation ex-
clusively by means of syntactic restrictions, so that the user
code is directly executed in the browser. The informal prop-
erties stated in this section are all fully supported by formal
proofs available in [14]. These earlier results are included
in the present paper both as background for modifications
to them we present in Section 4, and as motivation for more
permissive, run-time checks in the user code.

Two JavaScript Isolation Problems. If we can solve the
problem of determining the set of properties that a piece of
code can access, then we can isolate global variables by a
simple syntactic check.

Our first subset, Jt, is designed to solve this problem
without restricting the use of this. A JavaScript program can
get hold of its own scope by way of this. For example, the
expression var x; this.x=42 effectively assigns 42 to variable
x. In fact, manipulating the scope leads to a confusion of the
boundary between variables (which are properties of scope
objects) and properties of regular object. Hence, Jt code
must be prevented from using as property name any of the
global variable names to be protected. In theory, this does
not constitute a significant limitation of expressiveness. Ef-
fectively, Jt is a good subset for isolating the code of a sin-
gle untrusted application from a library of functions whose
names may be all prefixed by a designated string such as .
On the other hand, J¢ is not suited to run several applica-
tions with separate namespaces, since the sets of property
names used by each one needs to be disjoint.

To better support multiple applications, the next problem
we have to solve is to prevent code from explicitly manip-
ulating the scope, so that variables are effectively separated
from regular object properties. To this end, we propose a
refinement of Jt, which we call Js, that forbids the use of
this. Hence, only the global variable names of each applica-
tion, and of the page libraries, need to be distinct from one

another. Moreover, Js enjoys the property that the seman-
tics of its terms does not change after a safe renaming of
variables. Hence, isolation can be enforced by an automatic
rewriting pass (with suitable side-conditions).

3.1 Isolating property names: Jt

The problem of determining the set of properties
names that may be accessed by a piece of code is
intractable for JavaScript in general, because property
names can be computed using string operations, as
in o={prop:42}; m="pr’; n="0p", o[m + n], which returns 42.
However, we can determine a finite set containing all ac-
cessed properties if we eliminate operations that can con-
vert strings to property names, such as eval and e[e]. In
doing so, we must also consider implicit access to native
properties that may not be mentioned explicitly in the code.
For example, the code fragment var o = { }; "an_"+ o causes
an implicit type conversion of object o to a string, by an im-
plicit call to the toString property of object o, evaluating to
the string "an._fobject.Object]". (If o does not have the toString
property, then it is inherited from its prototype). Fortu-
nately, the property names that can be accessed implicitly
are only the natural numbers used to index arrays and a fi-
nite set of native property names [13].

Definition 1 The set Ppqt of all the property names that
can be accesses implicitly is {0,1,2,...} U

toString, toNumber, valueOf, constructor, prototype,
length, arguments, message, Object, Array, RegExp

This list is exhaustive for an ECMA-262-compliant imple-
mentation. Other properties may be added to Pyq: to ac-
count for browser-specific JavaScript extensions.

Our first subset, called Jt, is designed to make property
access (whether for read or for write) decidable.

Definition 2 Ji is defined as JavaScript minus all terms
containing the identifiers eval, Function, hasOwnProperty,
propertylsEnumerable and constructor; the expressions efe],
e in e, the statement for (eine) s.

Since we consider checking for the existence of a property
as a read access, we exclude from Jt also the eine and
for (e in e) s statements, even though they cannot be used to
read the actual contents of the corresponding property.

From the usability point of view, the only serious restric-
tions of Jt are the lack of eval, and e[e]. The former, al-
though has practical uses, is commonly considered evil, and
is excluded from most subsets. The latter constitutes the
natural way to access arrays elements. The dynamic subset
Jb of Section 4.1 addresses this limitation.

Jt lends itself naturally to enforce whitelisting of prop-
erties and variable. It can also be used to enforce blacklist-
ing. A Jt piece of code cannot read or write any variable or

property, except for those in Ppq¢, that does not appear ex-
plicitly in its code or in a function pre-loaded in the run-time
environment (Theorem 1 of [14]). A simple static analysis
can be used to screen the actual code for blacklisted proper-
ties. Since the initial JavaScript environment is defined by
the specification, blacklisting can be effectively enforced as
long as the code of any pre-loaded, user-defined function is
known a priori (such is the case for Facebook).

3.2 Protecting the Scope: Js

In ECMA-262-compliant JavaScript implementations
there are three ways to obtain a pointer to a scope object.
The simplest way, supported by all JavaScript implementa-
tions, is by referencing the global object, for example by
evaluating the expression this in the global scope. Another
way to get a pointer to a scope object is by the statement

try {throw (function(){return this})}
catch(get.scope){ scope=get.scope(); ... };

When the code is executed, the function thrown as an ex-
ception in the try block is bound to the identifier get_scope
in a new scope object that becomes the scope for the catch
block. Hence, when we call get_scope(), the this identifier of
the function is bound to the enclosing scope object, which
we make available to arbitrary code by saving it in variable
scope. Although this behaviour conforms to the ECMA-262
standard, as far as we are aware Safari, Opera and Chrome
are the only browser where this example works. Other
browsers, such as for example Internet Explorer and Fire-
fox bind the global object instead of the catch scope object
to the this of the call to get.scope in the catch clause. Finally,
we can get a pointer to a scope object by the expression

(function get_scope(x){if (x==0) {return this}
else {scope = get.scope(0); ...} (1)

Here we use a named function expression. As this func-
tion executes, the static scope of the recursive function is a
fresh scope object where the identifier get.scope is bound to
the function itself, making recursion possible. When in the
else branch we recursively call get_scope(0), then this is once
again bound to the scope object, which is saved in scope for
later usage. Once again, although ECMA-262-compliant,
this example works only in Firefox and Safari. Internet Ex-
plorer, Opera and Chrome instead bind the global object to
the this of get_scope in the recursive call.

We now define the subset Js which keeps variables dis-
tinct from property names by preventing manipulation of
explicit scope objects (Theorem 2 of [14]).

Definition 3 The subset Js is defined as Jt minus all terms
containing this, with{e){s} and the identifiers valueOf, sort,
concat and reverse,

First and foremost the subset forbids any use of
this, which can be used to access scope objects as de-
scribed above. Just like in FBIJS, we need to remove
also the with construct because it gives another (direct)
way to manipulate the scope. For example, the code
var o = {x:null}; with(o){x=42} assigns 42 to the property o.x.
Since we eliminate this and with, scope objects are only ac-
cessible via internal JavaScript properties which in turn can
only be accessed as a side effect of the execution of other
instructions. For example, the internal scope pointer of a
scope object is accessed during identifier resolution, in or-
der to search along the scope chain. However, its value is
never returned as the result of evaluating a term. Similarly,
the scope pointer stored in a function closure is never re-
turned as a result. The internal @this property is returned
only by the reduction rule for this, which cannot be triggered
in Js, and by the native functions concat, sort or reverse of
Array.prototype, and valueOf of Object.prototype. For example,
the expression valueOf() evaluates to window (which is also
the initial scope). By defining Js as a subset of Jt, we can
blacklist these dangerous properties.

Closure under renaming The goal of variable renaming is
to isolate the namespaces of different applications without
requiring all of the property names to be distinct. There-
fore, we want o.p to be renamed to a12345.0.p, and not to
a12345.0.a12345p. Due to implicity property access, and
the fact that variables are effectively undistinguishable from
properties of scope objects, the definition of variable renam-
ing in JavaScript is subtle. In particular, one should not
rename all the variables that correspond to native proper-
ties of a scope object, including the ones inherited via the
prototype chain. These properties in fact have a predefined
semantics that cannot be preserved by renaming. For exam-
ple toString() evaluates to "fobject.Window]", but throws a “ref-
erence error’”’ exception when evaluated as a12345_toString()
after renaming.

Since Js does not contain with, only the global object, in-
ternal activation objects or freshly allocated objects (in the
case of try-catch and named functions) can play the role of
scope objects. Hence, the only (non-internal) inherited na-
tive properties are the ones present in Object.prototype, and
the pre-defined properties of the global object. The com-
plete set of properties that should not be renamed, denoted
by Pﬂoch is:

NaN, Infinity,undefined,eval,parselnt,parseFloat,IsNaN,
IsFinite,Object,Function,Array,String,Number,Boolean,
Date,RegExp,Error,RangeError,ReferenceError, TypeError,
SyntaxError,EvalErar,constructor,toString,loLocaleString,
valueOf,hasOwnProperty,propertylsEnumerable,isPrototypeOf

Bowser implementations contain additional properties such
as document,setTimeout,elc..

Let a safe renaming be a partial injective function
that renames identifiers (not in Prnogren) Without intro-
ducing clashes. In [14], we prove that the intended
meaning of a Js program does not change under re-
naming. Jt instead does not support the semantics
preserving renaming of variables. The counterexam-
ple try {throw (function(){return this});} catch(y){y().x=42; x; }
is valid Jt code that, according to the JavaScript semantics,
evaluates to 42. If we rename x to $x, in the catch clause is
rewritten to catch(y){y().x=42; $x} which raises an exception
because $x is undefined.

3.3 Comparison with FBJS

A purely syntactic solution to the FBIS isolation prob-
lem, justified by our analysis, is to restrict Facebook ap-
plications to Js. While this could be an attractive solution
for isolating user-supplied applications in contexts where
code is written from scratch, it is more restrictive than the
solutions proposed in Section 4. Since Js preserves safe
renamings, we can separate the namespaces of different ap-
plications, and of the FBJS libraries, without altering their
semantics. Since it is a subset of Jt, a simple syntactic
check on application code guarantees that it cannot escape
its namespace or access blacklisted properties (which need
to include also browser-specific extensions such as caller,
proto., getters, setters, etc.).

FBIJS is more expressive than Js, because it includes a
(sanitized) version of this and of the member access e[e]
notation. On the other hand, FBIS does not correctly sup-
port renaming because it does not prevent explicit manipu-
lation of the scope, and because it renames the properties in
ProRen- The toString and try-catch counterexamples of Sec-
tion 3.2 apply to FBIS as well. In Section 4 we shall propose
better subsets that preserve renaming and are as expressive
as FBIS.

4 Semantic JavaScript Subsets

In this Section, we present three JavaScript subsets that,
by virtue of using run-time checks, are more expressive than
Jt and Js yet still enforce strong insolation properties. The
informal claims put forward in this Section are proven in
the Appendix A.

JavaScript Isolation Problems Revisited. While the sub-
set Jt of Section 3 makes it possible to statically determine
all the properties accessed during execution of given code,
this subset prevents ei[e2], which is often useful in pro-
gramming. We therefore define a subset Jb with modified
semantics (wrapper function) that allows ei[e2] and guar-
antees the weaker property that no program accesses prop-
erties that are explicitly blacklisted.

Our second semantic subset, called Js*, is the semantic
counterpart to Js. It solves the same problem of prevent-
ing the direct manipulation of scope objects, but it is more
expressive, because Js® programs can use this when it does
not evaluate to a scope object. Disallowing this altogether
would break many existing JavaScript libraries, and entail
extensive rewriting.

The last semantic subset of this section, called Jg (first
defined in [14]), solves the problem of isolating the window
object, hence the global scope, while permitting to use this,
even when it is bound to other scope objects. Indeed, we
shall see that for some purposes the ability to explicitly ma-
nipulate the scope can be a desirable.

4.1 Blacklisting Properties: Jb

We now define the subset Jb that prevents user code from
accessing any property included in a blacklist (or excluded
from a whitelist). Note that if a property in Py, is black-
listed it can still be accessed implicitly as a side effect.

Definition 4 Ler B be a set of blacklisted properties. The
subset Jb(B) is defined as Jt plus the construct efe], minus
all terms containing property names or identifiers in B.

In order for Jb(B) to effectively achieve its isolation goal,
B must contain at least the properties eval, Function and
constructor blacklisted also by J¢, and a small number of pri-
vate identifiers beginning with $, as explained below.

Enforcing Jb. The idea is to insert a run-time check in each
occurrence of e1[e2] to make sure that e2 does not eval-
uate to a blacklisted property name. We transform every
access to a blacklisted property of an object into an access
to the property "bad” of the same object (we assume that B
does not contain "bad"). A different option, clashing with the
JavaScript silent failure philosophy is to throw an exception
when a blacklisted property is accessed.

A faithful implementation of Jb is complicated by subtle
details of the JavaScript semantics for the expression e1[e2].
In fact, the execution of e1[e2] goes through several steps
involving evaluation of expressions to values, and possibly
type conversions executed in a very specific order. Roughly,
first e1 is evaluated to a value va1, then e2 to va2, then if vat
is not an object it is converted into an object o, and similarly
if va2 is not a string it is converted into a string m:

el[e2] — val[e2] — vai[va2] — o[va2] — o[m]

Each of these steps, which precede the actual access of
property m in o, may raise an exception or have other side
effects. Therefore, their execution order must be preserved.

The simplest and most efficient faithful implementation
of this run-time check that we could find is to rewrite e1[e2]
to e1[IDX(e2)], where IDX(e2) is the expression

(8=e2,{toString:function(){ return($=TOSTRING(S),FILTER($) } })

The IDX code evaluates once and for all e2 to a value va2 that
is saved in the variable $, and returns an object value va so
that effectively the internal execution steps so far are

el[IDX(e2)] — va1[IDX(e2)] — val[va] — o[va]

Since va is an object and not a string, its toString method is
invoked next. The expression TOSTRING(S), which is de-
fined as (new $String($)).valueOf() converts va2 into a string,.
In fact, the most direct way to convert a value into a string
exactly as o[va2] would do, is by passing va2 to the original
String constructor (which we assume to have saved in a vari-
able $String), and invoking the valueOf method of the result-
ing string object. Finally, the expression FILTER(S), defined
as

(8 == "$String”? "bad”:
(8§="3"? "bad":
($ == "constructor”? "bad": $))

uses nested conditional expressions to return the string
saved in § if it is not in the blacklist B, and "bad” other-
wise. For this filtering to work 8, $String and constructor
must always be blacklisted (and cannot appear as identi-
fiers or property names in the source code). While these
are the only blacklisted properties in the code above, it is
straightforward to nest further conditional expressions to
blacklist other properties. An alternative implementation
of FILTER(S) is the expression (Sblacklist[$]?"bad™$), where
$blacklist is a (blacklisted) global variable containing an ob-
ject with the properties to be blacklisted initialized to true.
Note that all the properties of Object.prototype that are not
overridden by Sblacklist, and that do not contain values (such
as null,0,” false) that evaluate to false in a boolean con-
text, will be automatically blacklisted. Hence, in our case
Sblacklist should actually be the object

{$:true,8String:true, Sblacklist:true,
toSlring:ialse,ioLocaleSlring:1alse,...}

Our run time check is correct with either choice of FILTER.

Claim 1 For every blacklist B containing the property
names $ and $String, and for every JavaScript program P €
Jb(B), the program $String=String;Q where Q is obtained
by rewriting every instance of etfe2] in P to et[IDX(e2)]
(adapted to include all of B), behaves exactly like P when P
accesses non-blacklisted properties. If P accesses a black-
listed property m of an object o, Q accesses instead of "bad’].

In many practical cases, one can use simpler variants of
IDX, sacrificing their correspondence to the original seman-
tics of e1[e2].

When the order of the side-effects (including excep-
tions) caused by the evaluation of et and e2 can be ignored
(say because the exceptions are not caught, or the expres-
sions are side-effect free) we can simplify IDX(e2) to be
(5=TOSTRING(e2),FILTER(S)).

If e2 evaluates to an object va2, converting va2 to a string
in the expression o[va2] involves invoking first its toString
method, and if that fails, its valueOf method. The oppo-
site happens when converting va2 to a string by the ex-
pression va2+™. If va2.toString() returns the same value as
va2.valueOf(), or if the latter does not return a string, we can
redefine TOSTRING(e2) in IDX to be the expression e2+™.

Combining these two simplifications, we can define
IDX(e2) as (S=e2+",(Sblacklist[$]?"bad™$)). which is remark-
ably simple and efficient, and in particular implements cor-
rectly the JavaScript semantics in the most common case
when the expression e2 is just a string or a number.

These latest variants of IDX do not enjoy Claim 1 because
there are some (corner) cases in which their behaviour de-
parts from that of e1[e2]. Yet, they are secure, because they
still prevent any blacklisted property from being accessed.

4.2 Protecting the Scope: Js*

In Js, we exclude this because it can be used to obtain a
scope object. Now, we reinstate this and look for dynamic
ways to prevent it to be bound to scope objects.

Definition 5 The subset Js* is defined as Jt minus all terms
containing with{e){s}, the identifiers valueO¥, sort, concat and
reverse and property names or identifiers beginning with 8.

Js?® still excludes valueOf, sort, concat and reverse because
those native functions can return the window object, if called
in the appropriate context.

Enforcing Js®. Unfortunately, it is not possible to en-
force Js® in an ECMA-262-compliant implementation of
JavaScript. In the general case, there is no JavaScript ex-
pression that can detect if an object has an internal scope
pointer, or test for its existence directly. Only code that has
a handle to a scope object that is present in the scope chain
can test such object and detect that it is a scope object. Re-
call the two ways of obtaining a scope object described in
Section 3.2. In the case of the recursive function, the scope
object that we obtain is active in the scope chain just be-
low the activation object of the function returning its this.
Therefore, we can insert a run-time check that detects it and
replaces it with null. In the try-catch case instead the func-
tion returning its this is defined before the scope of the catch
branch is created, so when at run-time the catch scope ob-
ject is bound to the this, it is not active in the (static) scope
chain of the function, and cannot be detected.

Hence, our implementation is useful to prevent direct
scope manipulation in Firefox, which as discussed in Sec-
tion 3.2 returns a scope only in the recursive function case,
but not in Safari or other strictly ECMA-262-compliant im-
plementations, which return the scope also in the try-catch.

To enforce Js® in Firefox all we need to do is to initialize
a global (blacklisted) variable § with true, and replace each

instance of this with the expression NOSCOPE(this), defined
as (this.S=false,3?(delete this.$,this):(delete this.$,$=true,null)).
When this is bound to the global object, the expression
this.$=false overrides the global declaration, which needs to
be restored by the $=true expression in the last branch of the
conditional. In the case of a local scope object, this expres-
sion leaves behind a useless (but unharmful) local binding
of $ to true. In the case of regular objects, the temporary
variable § is correctly removed.

Claim 2 For every Firefox-JavaScript program P € Js*
that does not contain 8, the program $=true;Q where Q
is obtained by rewriting every instance of this in P to
NOSCOPE(this), behaves exactly like P when P never ac-
cesses a this bound to a scope object. If P evaluates the
expression this to a scope object then Q evaluates the same
expression to null

4.3 Isolating the Global Object: Jg

In Section 4.2 we argued that, in general, it is not pos-
sible to detect a scope object in an ECMA-262-compliant
JavaScript implementation. What we can do instead, is to
prevent this to be bound to the global object. This solution is
effectively equivalent to Js® for Internet Explorer, because
in that browser local scope objects cannot be accessed any-
way, as discussed in Section 3.2. In the other browsers,
keeping at least the global variables separate from generic
property names still supports flexible isolation policies, as
discussed for Js.

Arguably, the ability to manipulate scope objects directly
may be a desirable feature. For example, it can be used to
implement open closures which are a concept that we dis-
covered after understanding direct scope manipulation via
the examples given in Section 3.2. The idea is to write ex-
pressions that return a number of functions sharing some
private state (like normal closures), plus an object that effec-
tively embodies that shared state. A software architecture
may distribute such functions, guaranteeing the encapsula-
tion of the shared state, plus retain a handle to the shared
state itself. In particular, in the case where the functions
participating in the closure return results by updating shared
variables, the shared state is ready to be used as a result ob-
ject, without need to do any copying. For example, given

var oc = (function scope(x){if (x==0) {return this}
else {shared=scope(0);shared.y=7,;
return [function(){y+=23},iunction(){y+=12},shared] } } (1)

the expression oc[0]();oc[1]();oc[2].y evaluates to 42. Tra-
ditional closures could encode less efficiently some of this
behaviour by providing a dedicated function to access and
update the shared state.

The subset Jg contains this and isolates the global object.

Definition 6 The subset Jg is defined as Js plus the this
expression and minus all terms containing property names
or identifiers beginning with $.

Note that Jg still excludes valueOf, sort, concat and reverse,
that can return the window object.

Since the local scope can still be directly manipulated, in
general variables can be confused with property names, and
therefore variable renaming does not preserve the meaning
of programs. Yet, this rarely happens accidentally, and does
not constitute a security problem. On the other hand, since
variables defined in the global scope are effectively sepa-
rated from property names, Jg can be used to isolate the
namespaces of different applications.

Enforcing Jg. In practice, the semantic restriction can be
implemented by rewriting every occurrence of this in the
user code into the expression NOGLOBAL(this) defined as
(this==$7null;this). $ is a blacklisted global variable, initial-
ized with the address of the global object.

Claim 3 For every JavaScript program P € Jg that does
not contain $, the program $=this;Q where Q is obtained
by rewriting every instance of this in P to NOGLOBAL(this),
behaves exactly like P if P does not access a this bound to
the global object. If Pevaluates this to the global object then
Q evaluates NOGLOBAL(this) to null.

4.4 Comparison with FBJS

We now compare our run-time checks with the corre-
sponding ones in FBJS. Below, we denote by FBJS), the

version of FBJS-d ed on Facebook at the time of our
analysis, iff March 20092 The FBJS}, $FBJS.ref function
carries out equivalent to NOGLOBAL, plus some ad-

ditional filtering needed to wrap DOM objects exposed to
user code (we reserve to study the secure wrapping of li-
braries in future work). Since $FBJS is effectively black-
listed in FBJS},, we are satisfied that ref prevents the this
identifier to be evaluated to the window object, and the check
is semantically faithful in the spirit of Claim 3.

The FBJS}, $FBJS.idx function instead does not pre-
serve the semantics of the member access notation, and as
a result can be compromised. In the context of our expla-
nation of Section 4.1, SFBJS.idx is in fact equivalent to the
expression (S=e2,(Sinstanceof Object| |Sblacklist[$])? "bad™$),
where Sblacklist is the object {caller:true,$:true,Sblacklist:true }.
The main problem is that, differently from our definition
of IDX, the expression Sblacklist[$]?"bad™$ converts va (that
in principle could be an object) to a string two times. The
object

{toString:function(){ this.toString=function() {return "caller’};
return "good’} }

can fool the blacklisting by first returning the good prop-
erty “good’, and then returning the bad property "caller”
(we found a similar attack, which has since been fixed,
on [11]). To avoid this problem, FBJS}, inserts the check
$ instanceof Object that tries to detect if $ contains an ob-
ject. In general, this check is not sound. According to the
JavaScript semantics, any object with a null prototype (such
as Object.prototype) escapes this check. Moreover, in Firefox,
Internet Explorer and Opera also the window object escapes
the check.

In FBJS}g, Object.prototype and window are not accessi-
ble by user code, so cannot be used to implement this at-
tack. We found instead that the scope objects described
in Section 3.2 have a null prototype in Safari, and therefore
we were able to mount attacks on the $FBJS.idx that effec-
tively let user application code escape the Facebook sand-
box. (See [14] for examples of exploit code, and a discus-
sion on the security implications.) Shortly after our notifi-
cation of this problem, Facebook has modified the SFBJS.ref
function to include code that detects if the current browser
is Safari, and in that case checks if this is bound to an object
able to escape the instanceof check described above.

Unfortunately this solution is not very robust, and is un-
necessarily restrictive. First, some browsers may have other
host objects that have a null prototype, and that can be ac-
cesses without using this. Such objects could still be used
to subvert $FBJS.idx, which has not been changed. Sec-
ond, $FBJS.idx prevents objects to be used as arguments of
member expressions. This restriction is unnecessary for the
safety of blacklisting, as shown by our IDX.

Another minor problem with $FBJS.idx is that it deals
inconsistently with the blacklisting of inherited properties
such as toString. While the expression ({}).toString() is
valid FBJS code returning “Jobject.Object]’, the expression
({ DI toString’])() raises an exception because toString is im-
plicitly blacklisted.This problem can be easily fixed, as de-
scribed in Section 4.1, by setting Sblacklist.toString=false.

5 Conclusions

We reviewed previous filtering methods for managing
untrusted JavaScript and developed ways of replacing re-
strictive static code filters with more flexible run-time in-
strumentation that is implementable as source-to-source
translation. We defined a subset with modified semantics
(wrapper functions) that allows e1[e2] and guarantees that
no program accesses properties that are explicitly black-
listed. Our second semantic subset prevents the direct ma-
nipulation of scope objects, but allows programs to use this
when it does not evaluate to a scope object. Our third
semantic subset isolates the window object, and hence the
global scope, while permitting code to use this, even when it
is bound to other scope objects. We have applied our results

to analyze FBJS, which apart from some minor problems
discovered by our analysis, has proven to be a remarkably
sound and cfficient practical JavaScript subset. We hope
that our semantics-based study will convince developers of
the value of programming language methods for evaluating
language-based isolation.

Acknowledgments. Sergio Maffeis is supported by EP-
SRC grant EP/E044956 /1. Mitchell and Taly acknowledge
the support of the National Science Foundation.

References

[1] Irem Aktug, Mads Dam, and Dilian Gurov. Provably correct
runtime monitoring. In Proc. of FM 2008, volume 5014 of
LNCS, pages 262-277. Springer, 2008.

[2] C. Anderson, P. Giannini, and S. Drossopoulou. Towards
type inference for JavaScript. In Proc. of ECOOP’05, pages
429-452, 2005.

[3] A. Barth, C. Jackson, and J.C. Mitchell. Securing browser
frame communication. In Proc. of USENIX Security, 2008.

[4

—_

Google Caja Team. Google-Caja: A source-to-source trans-
lator for securing JavaScript-based web. http://code.
google.com/p/google-caja/.

[5

—

Douglas Crockford. ADsafe: Making JavaScript safe for ad-
vertising. http://www.adsafe.org/, 2008.

[6] ECMA International. ECMAScript language specification.
stardard ECMA-262, 3rd Edition.
http://www.ecma—-international.org/
publications/files/ECMA-ST/Ecma-262.pdf,
1999.

[7] B.Eich. JavaScript at ten years. http://www.mozilla.
org/js/language/ICFP-Keynote.ppt.

[8] A. Felt, P. Hooimeijer, D. Evans, and W. Weimer. Talking to
strangers without taking their candy: isolating proxied con-
tent. In Proc. of SocialNets '08. ACM, 2008.

[9] D. Flanagan. JavaScript: The Definitive Guide. O’Reilly,
2006.

[10] P. Heidegger and P. Thiemann. Recency types for
dynamically-typed, object-based languages. Proc. of
FOOL’09, 2009.

[11] P.H.Phung, D. Sands, and A. Chudnov. Lightweight self pro-
tecting JavaScript. In Proc. of ASIACCS 2009. ACM Press,
2009. '

[12] S. Maffeis, J.C. Mitchell, and A. Taly. Complete ECMA
262-3 operational semantics. http://jssec.net/
semantics/.

[13] S. Maffeis, J.C. Mitchell, and A. Taly. An operational se-
mantics for JavaScript. In Proc. of APLAS’08, volume 5356
of LNCS, pages 307-325, 2008. See also: Dep. of Comput-
ing, Imperial College London, Technical Report DTR08-13,
2008.

[14]

[15]

(16]

(171

[18]
[19]
[20]

(21]

[22]

[23]

241

S. Maffeis and A. Taly. Language-based isolation of un-
trusted Javascript. In Proc. of CSF’09, IEEE, 2009. See
also: Dep. of Computing, Imperial College London, Techni-
cal Report DTR09-3, 2009.

J. Pynnonen. Facebook script injection vulnerabili-
ties. http://seclists.org/fulldisclosure/
2008/Jul/0023.html.

C. Reis, J. Dunagan, H. Wang, O. Dubrovsky, and S. Es-
meir. BrowserShield: Vulnerability-driven filtering of Dy-
namic HTML. ACM Transactions on the Web, 1(3), 2007.

A. Sabelfeld and A. Askarov. Tight enforcement of flexible
information-release policies for dynamic languages. Proc. of
PCC’08, 2008.

The FaceBook Team. FaceBook. http://www.
facebook.com/.

The FaceBook Team. FBIS. http://wiki.
developers.facebook.com/index.php/FBJS.

The FaceBook Team. FBML. http://wiki.
developers.facebook.com/index.php/FBML.

P. Thiemann. Towards a type system for analyzing javascript
programs. In Proc. of ESOP’05, volume 3444 of LNCS,
pages 408422, 2005.

P. Thiemann. A type safe DOM APL. In Proc. of DBPL’0S5,
pages 169183, 2005.

K. Vikram and M. Steiner. Mashup component isolation
via server-side analysis and instrumentation. In Proc. of
W2SP’08, 2008.

D. Yu, A. Chander, N. Islam, and I. Serikov. JavaScript in-
strumentation for browser security. In Proc. of POPL'07,
pages 237-249, 2007.

A Appendix: Correctness Proofs

In this Section we formally prove the correctness of our
enforcement mechanisms. In order to prove the correctness,
we make use of the operational semantics of JavaScript.
The main purpose of this appendix is to substantiate the
claims made in Section 4. The reader does not need to read
this Appendix in order to understand the main body of the
paper. Unless otherwise stated, below we assume that the
semantics of JavaScript is compliant with the ECMA-262
standard.

A.1 Operational Semantics of JavaScript

We briefly summarize our formalization of the opera-
tional semantics of JavaScript [12, 13] based on the ECMA-
262 standard [6], and introduce some auxiliary notation and
definitions. In [13], we proved properties of JavaScript
that address the internal consistency of the semantics it-
self, and memory reachability properties needed for garbage
collection, but did not address the kind isolation proper-
ties.Discussion of the relation between this semantics and
current browsers implementations appear in [13]

Our operational semantics consists of a set of rules writ-
ten in a conventional meta-notation suitable for rigorous
but (currently) unautomated proofs. Given the space con-
straints, we describe only the main semantic functions and
some representative axioms and rules.

Semantic Functions and Contexts. Expressions, state-

ments and programs each have a corresponding small-step
P

semantic relation denoted respectively by ——, =, —.
Each semantic function transforms a heap H, a pointer in
the heap to the current scope [, and the current term being
evaluated ¢ into a new heap-scope-term triple.

The semantics of programs depends on the semantics
of statements which in turn depends on the semantics of
expressions which in turn, for example by evaluating a
function, depends circularly on the semantics of programs.
These dependencies are made explicit by contextual rules,
that specify how a transition derived for a term can be used
to derive a transition for a larger term including the former
as a sub-term. The premises of each semantic rule are pred-
icates that must hold in order for the rule to be applied, usu-
ally built of very simple mathematical conditions such set
membership, inequality and semantic function application.

An atomic transition is described by an axiom. For
example, the axiom H,,(v) — H,l,v describes that brack-
ets can be removed when they surround a value (as op-
posed to an expression, where brackets are still meaning-
ful). Contextual rules propagate such atomic transitions.
For example, if program H,|,P evaluates to H1,11,P1 then also
H,l,@FunExe(12,P) (an internal expression used to evaluate
the body of a function) evaluates to H1,l11,@FunExe(12,P1).

10

The rule below shows that: @FunExe(l,—) is one of the con-
texts eCp for evaluating programs.

HALP -2 H1,1,P1
H,1,eCp[P] —— H1,11,eCp[P1]

Expressions. We distinguish two classes of expressions:
internal expressions, which correspond to specification ar-
tifacts needed to model the intended behavior of user ex-
pressions, and user expressions, which are part of the
user syntax of JavaScript. Internal expressions include
addresses, references, exceptions and functions such as
@GetValue,@PutValue used to get or set object properties,
and @Call,@Construct used to call functions or to construct
new objects using constructor functions.

Statements. Similarly to the case for expressions, the se-
mantics of statements contains a certain number of inter-
nal statements, used to represent unobservable execution
steps, and user statements that are part of the user syntax
of JavaScript. A completion is the final result of evaluating
a statement.

co i:="fclvaexe’)” vae:i=&emplylva xe::=&empty|x
cf :z= Normal | Break | Continue | Return | Throw

The completion type indicates whether the execution flow
should continue normally, or be disrupted. The value of a
completion is relevant when the completion type is Return
(denoting the value to be returned), Throw (denoting the ex-
ception thrown), or Normal (propagating the value to be re-
turn during the execution of a function body). The identifier
of a completion is relevant when the completion type is ei-
ther Break or Continue, denoting the program point where the
execution flow should be diverted to.

Programs. Programs are sequences of statements and
function declarations.

pu=fd[P]|s [P] fd ::= function x "('[x"]"){"[P1"}"

As usual, the execution of statements is taken care of by a
contextual rule. If a statement evaluates to a break or continue
outside of a control construct, an SyntaxError exception is
thrown (rule (i)). The run-time semantics of a function dec-
laration instead is equivalent to a no-op (rule (ii)). Function
(and variable) declarations should in fact be parsed once
and for all, before starting to execute the program text. In
the case of the main body of a JavaScript program, the pars-
ing is triggered by rule (iii) which adds to the initial heap
NativeEnv first the variable and then the function declarations
(functions VD,FD).

ct < {Break,Continue}
0 = new_SyntaxError() H1,11 = alloc(H,0)

6
H,l,(ct,vae,xe) [P] s H1,I,(Throw,I1,&empty)

H 1 function x (CD{[P1} [P1] -
H,l,(Normal,&empty,&empty) [P1] (ii)

VD(NativeEnv,#Global, { DontDelete },P) = H1
FD(H1,#Global,{ DontDelete },P) = H2

5 (iii)
P — H2,#Global,P

Native Objects. NativeEnv is the initial heap of core
JavaScript. It contains native objects for representing prede-
fined functions, constructors and prototypes, and the global
object @Global that constitutes the initial scope, and is al-
ways the root of the scope chain. In web browsers, the
global object is called window. For example, the global ob-
ject defines properties to store special values such as &NaN
and &undefined, functions such as eval and constructors to
build generic objects, functions, numbers, booleans and ar-
rays. Since it is the root of the scope chain, its @Scope prop-
erty points to null. Its @this property points to itself. None
of the non-internal properties are read-only or enumerable,
and most of them can be deleted.

A.2 Preliminaries

We now define some notation and state some proper-
ties of the semantics that support the formal analysis of
JavaScript subsets defined in Section 4.

A state S is a triple (H, 1, t). We use the notation H(S),
&S(S) and T(S) to denote each component of the state. We
denote by Hy the “empty” heap, that contains only the na-
tive objects, and no user code. We use I to denote the
heap address of the global object #Global. If a heap, a scope
pointer and a term are well-formed then the corresponding
state is also well-formed (see the Appendix of [14] for a
formal definition). In [13], we show that the evaluation of
well-formed terms, if it terminates, yields either a value or
an exception (for expressions), or a completion (for state-
ments and programs). A state S is initial if it is well-formed,
H(S) = Hy, S(S) = lg and T(S) is a user term. A re-
duciton trace 7 is the (possibly infinite) maximal sequence
of states S1,...,Sn,...suchthat Sy — ... = S, — ...
Give a state S, we denote by 7(S) the (unique) trace origi-
nating from § and, if 7(.9) is finite, we denote by Final(S)
the final state of 7(5).

To ease our analysis, we add a separate sort mp to dis-
tinguish property names from strings and identifiers in the
semantics. We make all the implicit conversions between
these sorts explicit, by adding the identity functions Id2Prop:
x — mp, Prop2ld: mp — x; Str2Prop: m — mp, Prop2Str: mp —
m. The semantics already contained explicit conversion of
strings to programs: ParseProg, ParseFunction, ParseParams.
In order to keep track of the names appearing in a state S,
we define functions that collect respectively the identifiers

11

and the property names of the term and the heap of S.

NT(S) = {zlz € T(S)} NE(S)={mp|mpeT(S)}
NE(S)={z|zeP, Pe H(S)}

NE(S) = {mp| 3 : mp € H(S)(1)}

Ni(8) = NT (S)UNF(S) Np(S) =NE(S)UNE(S)

set of all
appearing in a

Finally, we define the
and property names
N(S) = WNi(S) U Prop2ld(Np(S)). From these
definitions, follows that for any initial state Sy,
N(So) = NF(So) U NHE(S). NE(S) is the set of
property names present in the initial heap Hy. This is a
fixed set, and will henceforth be denoted by M3.

We define meta-call a pair (f, (args)) where f is a se-
mantic function or predicate appearing in the premise of
a reduction rule, and (args) is the list of its actual argu-
ments as instantiated by a reduction step using that rule.
For every state S, we denote by C;(S) the set of the meta-
calls triggered directly by a one step transition from state
S. Since each meta-call may in turn trigger other meta-
calls during its evaluation, we denote by C(S) the set of
all the meta-calls involved in a reduction step. We denote
by Fp the set of functions that can read or write to the
heap: Fy = {Dot(H, I, mp), Get(H, I, mp), Update(H, ,mp),
Scope(H, I, mp), Prototype(H, |, mp)},

the identifiers
state S by

Definition 7 (Property access) For any state S, we define
the set of all property names accessed during a single tran-
sitionby A(S) £ {mp|3f € Fu 3H,1: (f,(H,l,mp)) €
C(S)}. In the case of a trace T, A(T) = Ug, ¢, A(S:).

In Sections 3 and 4, we considered syntactic subsets of
JavaScript. A syntactic subset J is essentially a subset of
JavaScript user terms. For a given subset J, we denote by
Initial(J), the set of all well-formed initial states for J. We
denote by J* the set

J*={t'|teJ A 3H,l: Hy,lg,t — H,Lt'}

of all terms that are reachable by reducing terms in J.
We denote by Wf ;(S) the well-formedness predicate for
a state in the subset J, defined exactly like Wf(S) except
that Wf(7(S)) instead of checking if a term is derivable
by the grammar, checks if the term is in J*.

A.3 Proof of Claim 1

In this Subsection we prove Claim 1, which states that
given a black list B, for all initial states Sy in the set Jb(B),
for which the 7(Sp) is appropriately rewritten, no property
from the blacklist B is accessed. We start by giving a few
notations and definitions that will be used in the lemmas and

theorems that come later. We define Jb"([3) as the subset
Jb(B) where for every term ¢ € Jb(B), the subexpression
e1[e2] (if it is present in ¢) is replaced with e1[IDX(e2)]. We
formalize the property that if the execution of a program P
involves accessing property mp of some object then either
mp € Prat or mp ¢ B as follows:

Definition 8 (Pb) Given a well-formed state S € Jb7(B),
Pb(S) holds iff A(T(S)) N (B\ Prat) =0
S() in

Theorem 1 For all well-formed states

Initial(Jb7(B)) , Pb(So) holds.

It is easy to see that theorem 1 proves Claim 1. In this rest
of this Subsection we sketch out the proof of Theorem 1.
We split the proof into the following two main steps

Step 1: We define a state predicate Pb*7°™(S) and
show that for all initial states Sp in JavaScript,
Pb*°™9(Sy) = Pb(Sp)

Step 2: For all initial states Sy in the subset Jb"(B),
Pb*7™9(S5) holds.

A3.1 Step(1)

Given a blacklist B we define the following whiteness pred-
icate on states:

Definition 9 (State Whiteness) For a well-formed state S
in the subset Jb"(B)*, White(S) is true iff (NE(S1) U
102Prop(N7(51))) N (B\ Prat) = 0.

Consider any reduction rule from the operational seman-
tics. The general structure of such a rule is “);’4_".%’;'11. We
define the following goodness property on rules.

Deﬁni!ion 10 (Rule goodness) A reduction rule of the form
“D%_”:;cl is good iff for all applicable Sy, So

W hite(S1) = W hite(S2)

Based on the above definition of rule goodness we try to
enumerate the set of good rules. If the initial state is white
and the final state is not white then it is necessarily the case
that some additional property names or identifier names get
dynamically generated during the particular reduction step.
According to our semantics, for most of the reduction rules,
all the property names and identifier names that appear in
the final state are a subset of those that appear in the initial
state. If any identifier present in the final state is not present
in the initial state then it must have been obtained by conver-
sion from a string value present in the initial state. Similarly
if any property name that appears in the final state, does not
appear as a property name or an identifier in the initial state
and also does not appear in the set Py,4¢, then it must have

12

been obtained by conversion from a string value present in
the initial state. Therefore we claim that if a rule is good
then it must not involve any of the following conversions:
(1) strings to property names: rule E—ctx—Str—Pname (2)
strings to identifiers: rule N—Funparse—Strid; (3) strings to
programs: rules N—Funparse—StrProg, E—Eval—StrProg.

The rule E—ctx—Str—Pname also includes the context
I[-]. We argue that the context I[—] is not bad if the re-
sult of converting the string to a property name is outside
the blacklist. In order to make the analysis simpler, we split
the rule for the term l+m in two:

mp = convStrPname(m)
mp !< Blacklist OR mp = "bad”

H,l,H[m] — H,L,11*mp

[E—AccGood]

mp = convStrPname(m) AND mp < Blacklist
H,L11[m] — H,l,1{*mp

[E—AccBad]

Therefore the rule E—AccGood is good as it applies to only
those cases where the resulting property names are outside
the blacklist. We define the set R9°°? as all rules minus
the set { E—AccBad, E—ctx—Str—Pname, N—Funparse—Strld,
N—Funparse—StrProg, E—Eval—StrProg}. The detailed de-
scription for these rules is given in Figure 1.

Lemma 1 All reduction rules present in the set R9°°¢ are
good.

Proof. We divide the set of good rules into two sets:
R9°%4\ {E — AccGood} and {E — AccGood}.

Case I: R9°°¢ \ {E — AccGood}

For all rules in this set, we make use of Lemma 1 from [14]
which states that all rules of the form };’li";:c in the set
R9°°4\ {E — AccGood} have the property:

A(S1) € NE(S1) U Puar \ o)
Ni(S2) € Ni(S) A\ @)
NE(S2) S NE(S1) Uld2Prop(N7(51)) U Prar (3)

By definition,

White(Sy) = (N3 (S1) Uld2Prop(N1(51))) () (B\Prat) =0

From conditions (2) and (3) we have,

NE(S2) Uld2Prop(N7(S2)) € NE(S1) Uld2Prop(N7(S1))
UPnat

Therefore,

(NE(S2) Uld2Prop(N1(52))) N (B\ Prat) C
(VB (S1) U1d2Prop(N7(S1)) UPrat) N (B\ Prat) =
(NB(S1) Uld2Prop(N71(S1))) N (B\ Prat)

Figure 1. List of bad reduction rules

StrP(_) ::=_in | | #OPhasOwnProperty.@Exe(I1,.) | #OPpropertylsEnumerable.@Exe(l,.)

ParseFunction(m) = P

mp = convStrPname(m)

[E—Ctx—Str—Pname]

H,Function(fun(x™)P,#Global) = H1,I1

H,1,StrP(m) — H,1,StrP(mp)

ParseParams(m1) = x~

H,l,@FunParse(x”,m) — H1,l,11

[N—FunParse—StrProg]

H,l,@FunParse(m1,m2) — H1,l,@FunParse(x",m2)

ParseProg(m) =P

[N—FunParse—Strid]

H,| #GEval.@Exe(11,m) — H2,|,#GEval.@Exe(l1,P)

[E—Eval—StrProg]

mp = convStrPname(m) AND mp < Blacklist

H,l,1{[m] — H,LI1*mp

[E—AceBad]

Hence, using definition of state whiteness we can conclude
that White(S1) = W hite(S2).
Case 2: {E — AccGood}. The rule {E — AccGood} is

mp = convStrPname(m)
mp !< Blacklist OR mp = "bad"”

H,,i[m] — H,L11*mp

[E—AccGood]

Let S = H,l,11[m] and S; = H,l,l1 * mp. The only
additional property names in

(NE (S2)Uid2Prop(NG(S2)))\ (VA (S1)Uid2Prop(N7(S1)))
would be the property name mp. The premise of the rule
ensures that this property is not in the blacklist. Therefore
W hite(S1) = W hite(Sz) follows in this case as well. O

We denote the set of all rules not in R9°°? as R*?4, Fi-
nally, given a reduction trace 7, we define R(7) as the set
of all axioms R; used to derive the transitions S; — Sy

in 7 (for all 7). We are now ready to define the property
Pbstrong (S)

Definition 11 (Pb*"°") For a given state well-formed S
we define Pb**"°™(S) as true iff R(1(S)) € R9°%4.

The above definition basically says that a state has the
property Pb*"°™ if only reduction rules from the set R9°%¢
are involved during its reduction.

Lemma 2 For all initial states Sq in Jb", Pb*7"9(S) =
Pb(Sp).

Proof. If the initial state Sy corresponds to a value then
Pt(Sp) is trivially true. Therefore we consider initial states
Sp which have at least one reduction step in their trace. Let
7™(Sp) denote the n step partial reduction trace of the state
Sq, that is, 7(Sp) consists of the first n + 1 terms of the
sequence 7(Sp).

13

In order to prove the above theorem we prove that
Pt*t7°"9(S,) implies the stronger property:-
Vn > 1:P(Sp,n) is true, where P(Sp, n) is defined as

A(TH(SO)) n (B \ pna.t)
W hite(Sy) is true.

= 0)

&)

where we assume (without loss of generality) 77
S0, 51,550

Clearly, for all Sp which have at least one reduction step,
Yn>1 :'P(So,n)) = Pt(SU)

Given that Pt**™°"9(S;) holds, we prove Yn > 0
P(Sp, n) by induction over n.

Base Case: n = 1. Let 71(Sp) = Sp,S1. By definition
of the subset Jb™, White(Sp) holds. Since Pt*"°"9(S;)
holds, the reduction rule that applies to Sp has to be good.
From goodness property of rules, White(S;) holds. From
our semantics, for all reduction rules % we know
that:

A(S1)) € NE(S1) U Prat (6)
Therefore A(Sp) € NE(So) U Prat- By definition of
state whiteness, it follows that A(Sp) N (B \ Prat) = 0.
Hence property P(Sp, 1) holds.

Induction hypothesis: Assume P(Sp,n) is true for n = k.
Therefore we have

A(TH(80)) N (B\ Prat) = 0
W hite(Sy) is true.

)
8

Induction Step: Consider n = k + 1. Let 7¥¥1(Sp) =
S0,51,...,5k, Sk+1. By definition, A(TFT1(Sp))

A(7%(S0)) U .A(Sk). Using condition (6) we get A(Sx) C

NE(Sk) U Prae. Therefore,

A(SK)N(B\ Prat) € WNE(Sk) U Prat) N
(B\Pnat)

This is equivalent to

‘A(Sk) N (B \ Pﬂat) g -N/;(Sk) n (B \ an!)
Since W hite(Sy) is true NE(Sk) N (B\ Pnat) = 0. There-
fore we have A(Sk) N (B\ Prat) = 0. Combining this with
condition (7) we get

ATHH(So)) N (B\ Prat) = @)}
From condition (8) we know that W hite(S}.) is true. There-
fore using Pb*™°" and the goodness property of rules,
W hite(Sk+1) is true. Combining this with condition (9),
we get that the predicate P(Sp, k + 1) is true. Therefore
Vn > 1:P(Sp,n) is true by induction. 0.

A3.2 Step (2)

We need to show that for all initial states Sy in the sub-
set Jb™(B)*, Pb®""9(S,) holds. This is also the basis
on which the subset Jb7(B)™ was obtained, that is, no
term should ever move to a state where a rule from R4
becomes applicable. We prove this property by defining
a "goodness” property (inductive invariant) on heaps and
terms such that: (1) For all states with a good heap and term,
no reduction rule from R%%¢ applies. (2) Heap goodness
and term goodness are always preserved during reduction.
Before defining these properties, we state a few no-
tations. Let !punction, leval, lhoP, lprg denote the heap
addresses of the constructor Function and methods eval,
hasOwnProperty and propertylsEnumerable of Object.prototype.

Definition 12 (State goodness for Jb"(B)) We say that a
state S is good, denoted by Good yyr(5y(S), iff the term is
good and the heap is good. The conditions for term good-
ness and heap goodness are given as follows.

Term goodness:

(1) Structure of t does not contain any property name
or identifier from the set B U {eval Function,
hasOwnProperty, propertylsEnumerable constructor }

(2) $ only appears inside a subexpression of the form
IDX(e) for some e.

(3) Structure of t does not contain any sub terms with
any contexts of the form eforin(), pforin(), cEval),
FunParse() contexts and any constructs of the form
eine, for(eine) s

14

(4) Structure of t does not contain any of the heap ad-
dresses | punctions leval, lhoP, lpIE

(5) If Structure of t contains a sub-expression eife2]

then for all well-formed states S such that
Good gyr () (H(S)) holds and T(S) = elle2]:
Pb*tTom(S) is true.
Heap goodness:
Vi,p: H(1).p = lpunction = P = constructor
V p = Function
Vi,p: H().p = leval = p=eval
Vi,p: H(l).p = lnop = p = hasOwnProperty
Vi,p: H(l).p=lpE = p = propertylsEnumerable
Vi,p:pe H() A = l=lg

isPrefiz($,p)

isPrefiz($,p) is true iff $ is a prefix of p. The contexts
pforin() and eforin are internal continuation contexts used to
express the internal states obtained during the reduction of
a for (e in e) s statement. FunParse() is an internal continu-
ation context which is entered during a call to the Function
constructor, in order to parse the argument string. In the
rest of this Section, we will apply the predicate Good jpr to
heaps, terms and states; the interpretation for each of them
being the corresponding goodness definition.

Lemma 3 For all well-formed states S, and Sy in the
subset JbT(B)*, S1 — S2 A Goodjyr(s)(S1) =
GOOder(B)(Sg)

Proof. We prove this lemma by an induction over the set of
all reduction rules. Since state goodness holds for the ini-
tial state S;, by Lemma 5 it is sufficient to consider only
the set of good rules (R9°°4)). All context rules which
have a reduction in their premise form the inductive cases
and the transition axioms form the base cases. For the
base cases we prove the theorem by a detailed case anal-
ysis. For the inductive case, consider any context rule of
the form a‘.‘g)%scj(?u_} (Recall that if S = (H,1,t) then
C(S) = (H,1,C(t))). We divide the set of reduction con-
texts into the following three cases:

(1) C = va[-] For any state S;
T(C(S1)) va[t.1]. Therefore, by definition
of state goodness, Goodjr(C(S1)) holds iff
Pb¥t7°™(C(S))) holds . By definition of Pb*™"9,
C(S]_ = C(Sg) A Pbstrong(C'(S1)) =i Pbstrong(sz)‘
Therefore we have Good - (3)(C(S1)) =
Good pyr(5)(C(S2))

(Hlvllztl)v

(2) C=—[e] For any state S; = (Hi,11,t1), T(C(51)) =
t1[e]. Therefore, by definition of state good-
ness, Goody-(C(S1)) holds iff Pb*7°™(C(S;))

holds. By definition of Pb*"™™, C(S; —
C(S2) A ppetrons(C(81) o, ppstrong(S2) Therefore
we have Good () (C(51)) = Good jy-(8)(C(52))

3)

All other reduction contexts. For any term ¢, and
an appropriate C from this set, we have the following
(easy to prove) propositions.

e Proposition 1 Good j,-(C(t)) = Good - (1)

e Proposition 2 (3t Good jp-(C(t))) A

Good - (') = Good j:(C(t'))

From the induction hypothesis we know that
Good jp-(S1) = Good jp-(S2). Therefore,
Good jpr (T (S1)) = Good sy (T (S2)) and
GOOder (H(Sl)) = GOOdJ’br (H(Sg))
For all states S,
Good jy- (H(S)) = Good ju-(H(C(S))). Therefore,
Good y-(H(C(51))) = Good gy (H(C(Sz2))) holds.
As a result we only need to show
GOOder(T(C(Sl))) = GOOd_}[,r(T(C(Sz))). This
can be shown by using Propositions 1 and 2

and the induction hypothesis: Good j,-(T(S1)) =
GOOth,r (T(Sg))

O

Lemma 4 For all well-formed expressions ey and e in
the subset Jb" such that Good yy-(5y(€1), Good yy-(13)(e2)
holds, and for all well-formed states S such that
Good yyr(gy(H(S)) holds and T(S) = et[iDX(e2)];
PY**T™(S) is true. In other words term goodness holds
for ei[IDX(e2)]

Proof. Let S = (H,1,el[IDX (e2)]) be any state such that
Good jp()(H) holds. We need to show that R(7(S)) C
R990d According to our semantics.

H,lel —s H1,I1,val
H,l,e1[IDX(e2)] — H1,!1,va1[IDX(e2)]

[E—eCgv]

Since Good_u,.-(g) (H) and GOOd_}br(B) (el) hold,
Good yyr(py(H, 1, 1) is true and Pb**™"9(H, 1, el) is true.
So all the transition axioms involved in R(7(H,l,el))
would be from the set of good rules. By Lemma 3, we get
that Good ju+()(H1) holds. Now we only need to argue
that R(7(H1,11,val[IDX (e2)])) C R9°%.

From our semantics we deduce that

H1,11,62 — H2,I2,va2
H1,11,va1[IDX(e2)] — H2,12,va1[IDX(va2)]

[E—eCqgv]

15

Again GOOder(B) (Hl) and GOOder{B) (62) hold, there-
fore Good y-()(H1,1,€2) is true and Pb**""9(H1,1,€2)
is true. So all the transition axioms involved in
R(7(H1,1,€e2)) would be from the set of good rules. By
Lemma 3, we get that Good ju-()(Hz) holds. Now we
only need to argue that R(7(H2,12,val[IDX (va2)])) C
Rgood.

This can be done using a straightforward symbolic execu-
tion based on the operational semantics rules. We deduce
that H2,12,val[IDX (va2)] — H3,13,14d + mp

where mp € B or mp= bad” In either case the axiom
E—AccGood applies to the state and reduces it to a final
value. Therefore all transition axioms involved in the en-
tire trace are from the set of R9°°¢, Therefore Pb**"°"9(S)
is true. a

Lemma 5 For all well-formed states S in the subset
Jb™(B)* such that Good yy- () (T (S)) is true, no reduction
rule from R4 applies to S.

Proof. We prove this result by a detailed case analysis over
the set of rules in R%*? and show that no rule from R is
applicable to any term with the term goodness property. O

Lemma 6 For all well-formed states
Initial(Jb™(B)), Good jur(5)(So) is true.

So

in

Proof. For any initial state Sp, H(Sp) is the initial heap
and only consists of native objects. Therefore from the
semantics and the definition of heap goodness, we show
that Good - (H(So)) holds. We show Good j,-(T (Sp)) by
structural induction over the set of user terms in Jb™ is con-
tained in the set of user terms Jt. The base case is straight-
forward. For the inductive cases, using the definition of Jb7,
we can show that conditions (1), (2) and (3) in the defini-
tion of term goodness hold. Condition 4 is trivially true for
all inductive cases except e1[IDX(e2)]. In this case we use
Lemma 4 to argue that term goodness holds for e1[1DX(e2)].
O

Combining Lemmas 2, 3, 5, and 6 we can prove Theo-
rem 1.

Restatement of Theorem 1 For all well-formed states
Sp in Initial(Jb"(B)), Pt(So) holds.

Proof. From Lemma 2 we obtain, Pb*""9(S)) =
Pb(S,). Therefore proving that Pb*"°™9(S4) holds is suf-
ficient for proving this theorem. From Lemma 5, good-
ness property for a state implies that no reduction rule from
the set R%¢ applies to it. Thus showing that for all states
S € 7(So), Good j»-(S) holds is sufficient to prove the
theorem. From Lemma 6, Good j3r(Sp) is true and from
Lemma 3, state goodness is preserved during reduction.

Therefore goodness holds for all states in the trace 7(Sp).
O

A.4 Proof of Claim 2

In this Subsection we prove Claim 2, which states that if
P is a Firefox-JavaScript program in Js® that does not con-
tain $, the program $=true;Q where Q is obtained by rewrit-
ing every instance of this in P to NOSCOPE(this), behaves
exactly like P if P does not access a this bound to the scope
object. We assume that the Firefox-JavaScript semantics is
the ECMA-262 semantics for javascript with the difference
in the rule for ’this value assignment for function calls’. In
particular, the corresponding operational semantics has the
rule E—CallRefAct modified to the following:

Type(Inxm) = Reference
isActivation(H,In) OR isCatch(H,In)

H,LIn¥m([va™]) — H,l,@Fun(Global,In+m[,va™])

where the predicate isCatch(H,In) is true iff H(In) is the
“catch-scope” object, the definition for which is elaborated
in section 3.2. If P evaluates this to the scope object then Q
evaluates NOSCOPE(this) to null.

‘We now formalize this claim in terms of the operational
semantics. The this property is accessed only by the rule
E—This.

Scope(H,l,@this)=I1 H,l1.@Get(@this)= 12
H,Lthis — H,112

[E-This]

For the sake of argument, we replace this rule by the rules
below, that return null if @this points to a scope object, and
the effective value of @this otherwise.

Scope(H,l,@this)=I1
H,1.@Get(@this)=I2 @scope in H(I2)

- [E-This-KO]
H,l.this — H,J,null
Scope(H,l,@this)=I1
H,l1.@Gel(@this)=12 @scope notin H(I2) [E-This-OK]

H,l,this — H,l,va

The property Ps which implies isolation of all scope objects
can be formalized as follows :

Definition 13 (Ps) Given a state S, let S’ = Final(S).
Ps(S) holds iff @Scope is not in H(S")(V(S")).

We denote the Firefox-JavaScript semantics along with
the modification for the semantics of this as the 'modified
Firefox-JavaScript semantics’.

Theorem 2 For all well-formed states Sy in Initial(Js®),
Ps(Sp) holds for execution with respect to the modified
Firefox-JavaScript semantics

In order to prove this theorem we need some supporting
lemmas and definitions. As in the proof of the earlier claim,
we define a goodness property on the states and show that it
is inductive, and then show that the state goodness property
implies the property Ps.

Definition 14 (State goodness for Js°) We say that a state
S is good, denoted by Good j5:(S), iff it has the following
properties

(1) Structure of T(S) does not contain any of eval,
Function, hasOwnProperty, propertylsEnumerable,
constructor, valueOf, sort, concat, reverse. Also T(S)
does not contain any identifiers or property names
beginning with 8.

(2) Structure of T (S) does not contain any contexts of the
form eforin(), pforin(), cEval) FunParse() or [] contexts
and any constructs of the form eine, for(eine) s and

[E-CallRefAct-mod] %/ ®/

(3) Structure
tain

of T(S) does
any of the heap

EFunctions le‘uah lhOPa l;pIE: lvalueOfa lsort; lcm’:cat
and lreverse-

not con-
addresses

(4) Ifa heap address Lis present in T (S) such that @Scope
€ H(S)(1) is true, then l must appear inside one of

the following contexts only : Function{fun([x"J){ P},—);

—.@Pul{mp,va); lL@call—,[va’]); Fun(—el,va’]);

@ExeFPA(l,—,va); @FunExe(—,P); @with{—In1,In2,s);

—xmp.

Heap goodness
Let H denote H(S).
Vi,U,p: H).p=UA = p= @Scope
@Scope € H(I") V p = this
V p = @FScope
Vi,p: H().p = lpunction = P = constructorV
p = Function
Vi, p: H).p = leyar = p=eval
Vi,p: H(l).p=lpop = p = hasOwnProperty
Vi,p: H{l).p =l = p = propertylsEnumerable
Vi,p: H(l).p = Luatueoy = p = valueOf
Vi,p: H(l).p = lconcat = p = concat
Vi,p: H(l).p = lsort = p=sort
Vi,p: H().p = lreverse = D= reverse
Vi,p:pe H(l)A = 1=z
isPrefiz($,p)

$e H(lg)

H(lg).$ = true

isPrefiz($, p) is true iff ’$” is a prefix of the property
name p. Observe that if Good j(.S) holds then there is no
I such that V(S) = [and @Scope € H(S)(1)).

Lemma 7 For all well-formed states S, and Ss in the sub-
set Js**, 81 — Sa A Good j5:(S1) = Good jss (S2)

Proof. We prove this lemma by an induction over the set of
all reduction rules. We consider only those reduction rules
that apply to good states. All context rules which have a
reduction in their premise form the inductive cases and the
transition axioms form the base cases. The proof is on same
lines as that of lemma 4 in [14]. O

Lemma 8 For all well-formed states Sy in Initial(Js®),
Good j5:(So) is true.

Proof. Similar to the proof for lemma 5 in [14]. Using
the definition of Js*, we show that Good j5: (T (Sp)) is true.
Using the semantics and the definition of heap goodness,
we show that Good j,: (H(Sp)) holds for the initial heap. O

Combining lemmas 7 and 8 we have the following proof
for theorem 2.

Proof of Theorem 2 : From lemma 7, the state
goodness property implies that the corresponding term can
never be the address of a scope object. From lemma 8,
state goodness holds for all initial states and from lemma
7, state goodness is preserved under reduction. Combining
these facts, we get that all states present in 7(Sp) are good
and therefore the term part for none of them would be an
address of a scope object. [

We will now state and prove Theorem 3, which will show
that rewriting this to NOSCOPE(this) correctly implements
the rules E—This—KO and E—This—OK in terms of the orig-
inal semantics with the rule E—This. These results together
prove our claim.

In order for a rewritten program Q to behave exactly
like the original program but with the modified firefox-
JavaScript semantics we need to define $= true in the be-
ginning. In order to formalize this we define the subset
Initial” (Js®) as the set of states Initial(Js®) but with the
heap having an additional property $ in the global object,
which is set to true.

SinceJs is a subset of Jt, by Theorem 1 of [14], if § is
not present as an identifier in a program then the property
$ can never get accessed. Using this it is easy to show that
lemmas 7 and 8 and hence theorem 2 are true for the
modified set of initial states- Initial" (Js®).

Theorem 3 For all states Sy = (Hy,ly,t1) such that
Goodys:(H1) N\ T(S1) = NOSCOPE(this), there ex-
ists a state S» = (Hy,ly,va) such that

e 51 —* S in the unmodified Firefox-JavaScript se-
mantics

e S = (Hy,li,this) — Sy in the modified Firefox-
JavaScript semantics with rules E—This—KO and
E—This—OK

Proof. We prove this theorem by a symbolic execution
of the semantic rules. Due to space considerations we will
sketch out only the main steps of the symbolic execution.
Recall that NOSCOPE(this) is the expression :

(this.s=false,$?(delete this.$,this):(delete this.$,$=true,null))

‘We consider the following three cases

e Case 1 : this returns the address of a scope object, say
lscp Which is along the current scope chain. The mod-
ified Firefox-JavaScript semantics would therefore re-
duce 57 to (Hy,11, null) by rule E—This—KO.

In the unmodified semantics,

(1) Executing this.$= false would set the property $ of
the object at [, to false. Therefore the heap af-
ter this statement would be H{ = Hi[lsp.$ =
false].

(2) The conditional $? in the next step would resolve
to the else branch because the identifier $ would
resolve to lyep * B since [y, shadows the global
object. The heap after this statement would be
H = 1.

(3) Within the else branch, delete this.$ will delete
property $ from object at {,.,. The next expres-
sion $=true will resolve to Ig * § = true and
therefore this statement will amount to setting the
property $ of the global object back to true. The
heap after this statement would be same as the
original one, that is, H} = H,.

(4) Finally, the value null is returned and so the final
state would be (Hy, 11, null).

The final state obtained after the reduction of S| un-
der the modified Firefox-JavaScript semantics is also
(Hy, 1, null) . Thus the theorem is true in this case.

e Case 2 : this returns the address of a non scope ob-
ject, say l,. The modified Firefox-JavaScript seman-
tics would therefore reduce S} to (Hy,!l;,1,) by rule
E—This—OK.

In the unmodified semantics,

(1) Executing this.$= false would set the property $ of
the object at [, to false. Therefore the heap at this
state would be H{ = H,[l,.$ = false].

(2) The conditional $? in the next step would resolve
to the if branch because the identifier $ would re-
solve to I * $. This is because Good j;s (H1) is

true and hence for heap H} = H;[l,.$ = false],
the only object in the current scope chain which
has the property $ would be the global object.
The heap after this statement would be H? =
HL.

(3) Within the else branch, delete this.$ will delete
property $ from object at l,. The next expression
$=true will resolve to [g * $ = true and therefore
this statement will amount to setting the property
$ of the global object back to true. The heap after
this statement would be back to the original one,
that is, H} = H;.

(4) Finally, the value [, is returned and so the final
state would be (Hi, 11, 1,).

The final state obtained after the reduction of S} un-
der the modified Firefox-JavaScript semantics is also
(H1,11,1,) . Thus the theorem is true in this case.

e Case 3 : this returns the address of a scope object, say
l4cp which is NOT along the current scope chain.

According to the original JavaScript semantics the
only case in which this can happen is when the @this
property of the current activation object points to a
“catch scope” object. However as explained earlier
in section 3, in the Firefox-JavaScript semantics this
cannot happen because of the rule E—CallRefAct—mod.
Hence this case does not apply.

a

A.5 Proof of Claim 3

In this Subsection we prove Claim 3, which states that
if P is a JavaScript program in Jg that does not contain $,
the program S=this;Q where Q is obtained by rewriting ev-
ery instance of this in P to NOGLOBAL(this), behaves exactly
like P if P does not access a this bound to the global ob-
ject. If P evaluates this to the global object then Q evaluates
NOGLOBAL(this) to null.

First of all, we need to formalize this claim in terms of
the JavaScript operational semantics. The this property is
accessed only by the rule E—This.

Scope(H,l,@this)=l1 H,l1.@Get(@this)=#Global
H,l,this — H,l,null

[E-This]

As in the previous section, for the sake of argument, we
replace this rule by the rules below, that return null if @this
points to the global object, and the effective value of @this
otherwise.

Scope(H,l,@this)=I1 H,l1.@Get(@this)=#Global
H,Lthis — H,l,null

[E-This-KO]

18

Scope(H,l,@this)=I1
H,1.@Get(@this)=va va!=#Global

H,l,this — H,l,va

[E-This-OK]

The property Pg which implies isolation of the global
object can be formalized as follows :

Definition 15 (Pg) Given a state S, let S’ = Final(S).
Pg(S) holds iff V(Final(S)) # lg.

We denote the ECMA-262compliant JavaScript seman-
tics with the modification for the semantics of this as the
"modified JavaScript semantics’. By Theorem 3 of [14], we
have that in modified JavaScript semantics, no program P
ever evaluates to the global object.

Restatement of Theorem 3 of [14] For all well-formed
states Sy in Initial(Jg), Pg(So) holds, under the modified
JavaScript semantics.

We will now state and prove theorem 4, which will show
that rewriting this to NOGLOBAL(this) correctly implements
the rules E—This—KO and E—This—OK in terms of the orig-
inal semantics with the rule E—This. These results together
prove our claim.

In order for a rewritten program Q to behave exactly like
the original program but with the modified JavaScript se-
mantics we need to define $=I_global in the beginning. In
order to formalize this we define the subset Initial™(Js*")
as the set of states Initial(Js°") but with the heap having
an additional property $ in the global object which is set to
the address of the global object.

As in the previous section, we define a goodness prop-
erty on the states and show that the during the execution of
NOGLOBAL(this), goodness of the initial heap implies good-
ness of the final state. We consider the definition of states
goodness Good j4(S) as mentioned in definition 17 in [14].
We refine this definition by conjuncting it with two condi-
tions :

() VI:$ ¢ H(l)

(2) T(S) does not contain any identifier or property name
beginning with ”$”.

Since Jg is a subset of Jt, by Theorem 1 of [14], if § is not
present as an identifier in any program then the property $
can never get accessed. Using this it is easy to show that
lemmas 8,9 and hence theorem 3 in [14] are true even with
the refined definition of state goodness and the modified set
of initial states Initial”(Jg).

Theorem 4 For all states Sy = (Hy,li,t1) such that
Good j,(Hy) holds and T(S1) = NOGLOBAL(this),
there exists a state S, = (Hy,1y,va) such that

e S —™ Sy in the unmodified JavaScript semantics

o S| = (Hy,l1,this) — Sq in the modified JavaScript
semantics with rules E— This—KO and E— This—OK

Proof. We prove this theorem by a symbolic execution
of the semantic rules. Due to space considerations we
will only sketch out the main steps of the symbolic ex-
ecution. Recall that NOGLOBAL(this) is the expression :
(this==$Mnull;this). S.

We consider the following two cases :

e Case 1 : this returns the address of the global ob-
ject (Ig). The modified JavaScriptsemantics would
therefore reduce Sj to the state (Hy,l;, null) by rule
E—This—KO.

In the unmodified semantics

(1) The conditional this==$? would resolve to
this == lg = $. This is because the initial heap
H; is good and therefore only the global object
will have the S property set to the address of the
global object. Since this resolves to lg, the con-
ditional would resolve to the if branch. The heap
obtained after this statement would be H{ = H;.

(2) Within the if branch, the value returned would be
null and therefore the final state obtained would
be (Hy, 11, null).

The final state obtained after the reduction of Sj
under the modified JavaScript semantics if also
(H1, 11, null). Thus the theorem is true in this case.

e Case 2 : this returns the address of an object, say [,,
which is different from the global object. The modified
JavaScriptsemantics would therefore reduce Sj to the
state (H1,l;,1,) by rule E—This—OK.

In the unmodified semantics,

(1) As in the previous case, the conditional this==$?
would resolve to this == lg *$. This is because
the initial heap H; is good and therefore only the
global object will have the $ property set to the
address of the global object. Since this resolves
to l,, the conditional would resolve to the else
branch. The heap obtained after this statement
would be H} = H;.

(2) Within the else branch, the value returned would
be [, and therefore the final state obtained would
be (Hl, ll, lo).

The final state obtained after the reduction of S] under
the modified JavaScript semantics if also (Hy,11,1,).
Thus the theorem is true in this case as well.

O

19

6.858 / Fall 2012 / Paper Reading Questions http://css.csail.mit.edu/6.858/2012/questions.html?q=q-jsenforce&lec=9

6.858: Computer

Systems Security Fall 2012

Home @ =
Paper Reading Questions
General
information For each paper, your assignment is two-fold. By the start of lecture:
Schedule e Submit your answer for each lecture's paper question via the
submission web site in a file named lecn.txt, and
Reference ® E-mail your own question about the paper (e.g., what you find
materials most confusing about the paper or the paper's general
context/problem) to 6.858-q@pdos.csail.mit.edu. You cannot
Piazza discussion use the question below. To the extent possible, during lecture
we will try to answer questions submitted by the evening
Submission before
2011 class
materials - LRt

Why is it important to er?
BY . E

Questions or comments regarding 6.858? Send e-mail to the course
staff at 6.858-staff@pdos.csail.mit.edu.

Top // 6.858 home // Last updated Saturday, 29-Sep-2012 10:55:47 EDT

1ofl 9/29/2012 1:24 PM

16/

Paper Question 9

lasmeier

mMicnael r

Restricting access to scope objects is important, because otherwise the application code could
use them to access global variables on the page. Facebook only wanted an applications’ JavaScript to
interact with itself inside an application box and through approved APIs — not having access to the entire

page.

La@_v@ Ruw o of fe fo 4> St gulyss
(). D> peyle i
Mot ouly it e bkl g
Bt o € Tum
Nk prlevart 0 Fhon, PHY
Lhad Yo M ohH ¢ alsls o

@209)@ we M mon ght fule ®
hﬁn False (5

o don't wiab fo wsde Ty
~€[f9/5 T}WF (\on ‘?L

Y
T(f]ﬁ w}a e (60 q/yL(g Tc/uéu,/#

e TN |

\
e e @hovly
Ure o y @

7Y
~0lL FB Pefile

1 oule
)D[let«j = b il a NYT . am

MP ‘
W‘l&d 6}\&/b (\b\L C\IA/@/ AL]Lp '{'Oko@bmk(gm 00@,,,,

W
Pf W(MU\" \ Qm (n (‘AJ‘E/pUJ@/

_____,.—-—-——‘—-—-__/

\'\}:). rivnpl. ';mlg,pgﬂ,
Fh

@oufo()/

N(A/(,‘Lbbv) ';nJerp@/Jr@ O{ :B mw/fh[m :4 Iﬁ

Gl
ik, X% Vl’/lt(’/wga,%}oﬂ 5> My
Uiy
ﬁ%g)(o@v{q b L@r\} %M/l Ldﬁﬂqm (T PW)

Tt B | Uttt IS
jé 9%5&, t‘h AfOVbQ/_

\ndested T8 (ﬁ/@
N
L

g‘;m\lbmo @(j/ J’@
(e [din

G

U

Oh) Q"(\r((\OCWVI‘{. cro»k}’?)/\

SRR

;
Vir %= [(oie © 5

X.((OOL\lQ
M&S)MS Qoo\fwf ;s lm{

60 No hieste)

06 ke e capabilly
LJ ad b hwt bea glvev\ -t o o

D D(Obwf SQAS'IT\L/L 1die

/Jocmm‘qL -eft "
— indow ‘"@Wl(f?’wg)

,M ﬁ\w& \L (i mmé,io ({tﬁf Naire 3 40t
‘hd@eb hot- C(Ea/h o(tf-u{' Pmled“lam c{aﬁw@

) QQMM/? Vg g bl

Vir X 2 Va al23Ys X/‘

&)

; :)
go (anjrq/ (9%4)

Yo bt 2 A_ L2315 x. i

rDJM wWe il e

ot ({15 docuren),
M\Ul i; ot Seasline

9«/} O dfy Sl neb be able :PO
@[/@S} 44/9)10/5 p/ef(’x -
@l@f{az_ﬁ) L fuke Cae ot

O itton
g @\% (dl‘_ al _X)

(a0 b Gston vaiabl .
~bval (l] ¢

ot Thaodk (&/\L)
SQ/ [PKOL\bM TWQ

©

Q Perx dag Vlﬁl‘ /W/d/ {’0 é& ¢ 0ol
Bt mg- b (gt

or Ol e & Saad boy

(“LQ o Ud " L;AUX)

5%)@M O Fhes o inphilf
P Prhos ol cenlel

b we '] Lw 6{/[-———7‘)75

%/’ £L WO/M
0= { pry2
- frclion [) {
(ofn W, P/1'
3

)

gﬁ)w@h‘% more_ C\W e

[‘Qﬂma/@ hl) C(/“ ‘ﬁ)ag/ﬁm o
\MA Ths gl Jot of J$ libaes

‘f ;n OHM\ | |
s Thi gus (d b @A/

b S | ,
l/) T)‘(b g{ Y 0\)/0)151/] Q)GM//‘ H(/v:n W)

Vw XT
V(O y:ﬂﬁ}
Yox=G,

Yl cloa//%wf'% JOL |
N dolat Cookle

e & we dotde i B 5 o we’

(i
\ |
Qitloq, tashirtih i

e o J FBJS el
Clge s Salo & e

;a cef Mk%
i /Q‘((f) {

£ (?(::w;40/ﬂw) { (du /ZV[//B
(etin x

y

Mole & &l opead
bd Gus s b o (I for
buto Qo] (ad(

i (ol - g ¢

K <4 5> () x 2§

ﬁ,,-)iis\ &’hO‘){:ﬁ
) N
) X al-0.alix =
Y
AR
W05 we @W@
What |,

N Qh/ﬂl'ﬂ et '
()VJH TIOR8 ﬁycowl b(vtlk [| 2 %
be Oby oM / s a ofdle faue
'6/0 Q\/Q/{n\lﬂfj A Q/H)(@({/

\/\/l{ﬂ\ (@[—- 0) (

Al — X =5
al-o ol —x

(ouite @aftng

BA how VEHOP L\w m}/ Jwn {lfﬂ}b’/
BV g eV] il [\tb (;
fjé Wl < Metds cisswe Gone ‘M«ﬁb

PaP@f ?Lf\l(b ‘b)MP §Cope. onl Non —s@p€
Ol@ Sepeute !

50 PKO]Q;LH— wm\ () S?LWF@«»W}

\ |
g@ 0/)[f &ofoQ JLJ e [(JW//)LTL@’)
oq, baskeh

NO’\ 5(/@(_)9 GL)JQ(/b Cu Oﬂl\l LQ QLL@S@J_ W/ J?rﬁz 7

Bt o ldly podled chnd ghbe

)
Yo
v
ot P
0/l
N F/@}Df«ﬁﬂ(

/
/—\9
X
i
nc\ ,
I
{
Mae
ppeees :

" L

b
%Lg Jm'
i
P/o}@f\l’TL /{
N lf‘; \\/!4(5/[&(@

[
l
L COA'“
han "
: Jof:oﬂw&j
Y !mLf” pﬁo}p}
hance .
Ctxw!
o

M \
ok
0
P(@ﬁy mﬁ/ @H\PMF |
all) 'Ob)
00
Wi
k.

A(/M p)l
. O
é mLu[{GE

Pl |

not celly 1 IS Gdd

h{/[’/’

IL (w

IOOL d/ m
"

s .

e

i ot Thals

138
(C
W/{lm
6 |
| danes @F (M(;f/
(n |
: . WC |
Rmh)‘tﬁ hqc ‘co& L£ [J
VAV,]La
WJM
L X
s]L({j)
\Ll/f(/ho l/

I A/f[zj
Ha
A
(| {)e Q@
Lvw ,L .
W; }/(W:W ;a{/[b [4
-('\ | @Q My

by

What &m/ SJ(OP/;&,/% 7[%’)4@9 G how p WZ@“’

IR - B atlbe
([/’ Conﬁfwfw]]\ X
(00 > £y, uxld)

Lodin il {
i (== " (gathucto \Q
((eh/m ")
(W

}

(3 WQ/H‘ 1)?> P/‘Q\/M'} l[t/f{/f fbﬂ) é’om laa}ny
Vae/{ b an pHabie
(:%) ¢
6= § by o L (
g ‘(6 (C: _ 6}{ /@f/m q CmS/’ﬂm‘v/ /)

3 the { dhwrc——) cofm Vet L\//
5

5 o e b e oo
b Gy B usiy tfgh’y pethol

e 4, we T
X=X ooy)

Cils a(egala/ b
o it @ @b g \/7‘771//{7 AR

fod
jg A@ == Gaw f@(f@ S gt 019/’@*’
(wisil)

o ld > Sty

ég e X = 97)7 l]/tﬂ()“)
not- X <Y, L 91/}«7[)

WQ (Mﬂw gm@ (5 uﬂLF]O/O /f\ h/& \0fL JeiA /}/N\((é

H pre! x, O{r,ﬂ; .}["“

Q
6m JMLL(,
—Cyy h«ﬁw S»WML (of ﬁfﬂé Al e
19/%[@@9

‘—CLM v erg\/M/z«b

M b b gl

e Y 9{/@ l/]L m{ aless B dom Blows)

bx

:) (@L,Oa/é/v}

i) e ML = Lt 7 e dsept >
Cad b duttally delet
L yoo G £(alp,

£, Gl Eleent(e 2)

f

p%mﬁ O[OJ’ A/w 4741%8\[¥ mf/uc}ﬁ({ (oiﬁ

16 &Mgﬁ/ﬁvy ([n(ﬁ (s pﬂW"L

M Tg l/ﬁ’@wﬁr }\as i]ts Qv %(/,'/L)
mlm'l«k ity O W

W

96(//@/} P@f’}ﬂ/wﬁ (_-0({6) (5 Moo /f/ﬂrf)a/"’//(

ga FB ’tb Vlﬁp/eola/}@ ﬁ, i)
A/Ow Jﬁlfﬂﬂ Q{ZP 0/:@ ‘m}
@Vnnmﬂ E (ods 'm huﬂt J1 10

@ff D\M (950 %99‘% Pcﬁbb‘o/j Puas//\Ze&s&ﬁ@K/
0 (ondgnnty bt vor e

@M 'r me,[ll’ld; e a)ﬁl DIiLg POKY Gy
“mvb # of erva}mj \ou (i hat_

\p@f l[wwﬂ‘{ N“z (v H({m VTIWL\ [op/fh/

http://css.csail.mit.edw/6.858/2012/lec/109-javascript-sandboxing.txt

Sandboxing Javascript l(} \:3

Leftover question from last time: is static analysis actually used?
Quite popular for Java, C: sparse/smatch, Coverity, etc.
Less popular for Python, PHP in practice.
Works well for bugs that have well-defined mistake patterns.
NULL pointer checks, some buffer overflows,
Interesting lesson: false positives often bigger problem than false negs.

What's the goal of this paper?
Execute untrusted Javascript code in isolation.
More specifically, origin A wants to run some Javascript code,
without giving it all of the privileges of origin A.

Why would anyone want to execute untrusted Javascript code?
Ads.

Mashup applications.
Third-party apps in an integrator site.
Third-party library (e.g., spell-checker, text editor, etc).

How should we sandbox Javascript?

There's a few ways to do it.

The paper is one route, taken by Facebook's FBJS and Yahoo's AdSafe.

Google's Caja project is similar in some ways, although it tends to give
acecss to virtualized objects instead of giving access to real objects.

Lab 6 will involve Javascript sandboxing similar to FBJS/AdSafe.

This approach has some advantages, but is also hard to get right.

Will look at other approaches too.

Approach 1: use an interpreter to safely run untrusted code.
The fact that this untrusted code happens to be JS is almost irrelevant.
E.g., http://en.wikipedia.org/wiki/Narcissus_(JavaScript engine)
Our interpreter could easily provide special objects -- virtual DOM, etc.
+: Conceptually clean.
-: Poor performance.

Approach 2: language-level isolation (this paper's plan).
Almost think of this as an optimization on above plan (especially Caja).
Don't write our own Javascript interpreter.
Instead, carefully run untrusted code in the existing interpreter.
Need to be sure we can control what the code can do.

What does it take to reuse the same interpreter but still get isolation?
Need to define a more precise goal.
Starting point: run Javascript code, as if it runs in separate interpreter.
Typically want to ensure code can't access arbitrary DOM variables.
Next step: allow sandboxed Javascript code to interact with certain objects.

Overall workflow:

Something checks/rewrites untrusted Javascript code.
In some ways, similar to the static analysis tool we looked at on Monday.
Usually done on the server, but could be implemented on the client too.
Just a transformation algorithm on strings (containing JS code).
As a baseline, rely on Javascript's capability-like guarantees:

code cannot make up arbitrary references to objects.

Then, this checked/rewritten code runs in the browser.

In some cases, rewriter adds calls to runtime support routines.
Expects those routines to be present in the browser when code runs.
Or can just include the code for those routines in the rewritten blob.

Let's consider various ways in which Javascript code could escape sandbox.

1 of5 ' 10/6/2012 1:51 PM

http://css.csail.mit.edw/6.858/2012/lec/109-javascript-sandboxing. txt

Global variable names: document.cookie.
Solution 1: prohibit accesses to sensitive names [Jt, Js].
Need to prohibit some sensitive identifiers:
eval (run arbitrary code that wasn't inspected at analysis time).
Function (function constructor, does eval).
Workable, but non-sensitive names aren't protected.
Multiple pieces of untrusted Javascript code not isolated from each other.
Solution 2: rename all variable names, adding a unique prefix.
Each unique prefix becomes a separate sandbox / protection domain.
Also would rewrite things like eval, Function to be meaningless / safe.
E.g., origin code was:
alert (document.cookie) ;
New code will be:
alert (al2345_ document.cookie) ;
Also helps prevent access to variable names in an enclosing scope.
What if attacker guesses the al2345 prefix?
Shouldn't matter: just need it to be unique, not secret.
What if attacker has variables named al2345 foo?
Everything will get an extra "al2345 " prefix, so double-prefixed.

Adding a prefix to all variables breaks "this".
Javascript's semi-equivalent of Python's "self".
What if we didn't add a prefix to "this"?
If running code not bound to an object, "this" is the global scope object.
Also known as "window".
Can access variables from global scope as attributes of scope object.
E.g., "this.document"/"window.document" is the "document" global object.
As a result, adversary can use "this" to get access to entire DOM.
How to prevent?
Problem: unknown statically if function will run as bound to an object.
Solution 1: prohibit "this" altogether.
Might be reasonable for newly-written code.
Less practical if we want to sandbox existing Javascript libraries.
Solution 2: runtime instrumentation.
E.g., FBJS replaces "this" with "S$FBJS.ref (this)".
What's going on:
$ is a perfectly legitimate character in Javascript variable names.
Not really special, but generally reserved for synthesized code.
SFBJS is a global object created by the FBJS library.
$FBJS.ref () is a function that the static analysis tool knows about.
$FBJS.ref () is roughly:
function ref (x) {
var globalscope = this;
// Here, "this" will be the global scope because ref ()
// will not be bound to any object.
if (x==globalscope) { return null; } else { return x; }

}

[See NOGLOBAL() in section 4.3 for more precision.]

Why are scope objects problematic?

Static rewriting adds prefix to variable names, but not attribute names.
Some attribute names are special and shouldn't be modified.

But scope object allows accessing variable as an attribute.

See also the "this" = "window" = global scope problem above.

So code might break (variable has seemingly two different names).
Attributes in a scope object get renamed: they're variables.
Attributes in a non-scoped object don't get renamed.

More likely: can access non-rewritten variables, which might
belong to a different sandbox (if using multiple sandboxes) .

Worse yet, may leverage this inconsistency to escape sandbox.
Depends on assumptions being made about scope objects.

2 of 5 10/6/2012 1:51 PM

http://css.csail.mit.edw/'6.858/2012/lec/109-javascript-sandboxing. txt

How else could an adversary mix scope objects and regular objects?
The "with" statement uses a given object as a scope (almost).

E.g.:
a = { x: 12, y: 23 };
with (a) { x = 13; }; // now a.x=13

Typically prohibit "with" to keep scope & non-scope objects separate.

Other ways of getting reference to a scope object?

Section 3.2 suggests a few, but they don't work in Firefox/Chrome anymore.
So problem disappeared since they wrote the paper.

Why did they have to prohibit sort, concat, etc?
Array's sort/concat/... methods operates on "this" -- the object that
the method was bound to, and returns it.
Javascript allows taking a method (e.g., Array's sort) and binding
to another object.
Or it's possible to invoke a method without any binding at all,
in which case "this" refers to the global scope.

But recent Javascript interpreters don't seem to do this anymore
(Firefox, Chrome, ..).

Shared state.
Javascript uses prototypes to implement its version of objects.
Prototypes are just another object, and are mutable.
Even built-in objects like String have mutable prototypes.
E.g.:
x=[3.:5:2]
Wiy -3 "3,5 20
Array.prototype.toString = function(){return "zz"}
" """X - llzzll
If malicious code gets access to the prototype object, can
change behavior of objects used by trusted code in rest of page.
Important to avoid giving access to shared mutable state.
Thus, prohibit certain attributes: "prototype", etc.

Some more attributes of built-in objects can also be dangerous.

E.g., all objects have a constructor attribute.

For function objects, the function constructor turns strings to code (eval).
new Function("return 2+3") () -> 5

Can also access constructor without invoking the name "Function":
var £ = function() { return 3; };
£() -> 3
f.constructor("return 2+3;") () -> 5

Attributes can be accessed in two ways: either dot-separated or brackets.
f.attr
flrattr']

Common plan: filter out dangerous attributes: constructor, _ parent , etc.
Paper has a detailed list.

What if we can't decide array indexing statically? E.g., alb].
Recall, the PHP static analysis tool would just call it a[bottom].
Can't do this here, because we need to be sure we catch everything.
Solution 1: statically insert a call to a special function: a[$FBJS.idx(b)].
At runtime, the $FBJS.idx () function will check if b's value is allowed.
If it's allowed, return b.
Otherwise, throw an exception.
Static analyzer knows about $FBJS.idx() and assumes it works correctly.
Slightly problematic: evaluation order [see 4.1].

How to implement trusted runtime functions?

E.g., $FBJS.idx(), or some other trusted function accessible to sandbox?
Consider the following implementation:
function idx(x) {

3of5 10/6/2012 1:51 PM

http://css.csail.mit.eduw/6.858/2012/1ec/109-javascript-sandboxing. txt

if (x == 'constructor') { return ' _unknown '; }
return x;
}
alidx(b)];
Problem: there are implicit calls to toString(), effectively:
if (x.toString() == 'constructor') { ... }

a[idx(b) .toString()];

Can circumvent with:
b = { toString: function() { if (count==0) { return 'constructor'; }
count--; return 'mice'; } };
c = 1;
Then al[idx(b)] gives us a['constructor']

What if we call toString() ourselves inside idx()?
Not good enough: toString() could return another dynmamic object.

Correct fix: use the built-in String constructor.
Need to save a reference to the built-in String constructor for idx().
See section 4.1 for more details.

Is it reasonable to give untrusted code access to a DOM element object?
Could assign e.innerHTML = "<script>...</scripts>".
Could traverse up the DOM tree using e.parentNode.
Less error-prone to mediate access using a specialized API.
Watch out for implicit operations when dealing with JS objects (IDX).

Is it reasonable to give an object to an untrusted library?
E.g., what if I want to import an untrusted sum() function.
Can I give it an arbitrary object to sum up?
Risk: untrusted code could modify any attributes on the object.
Might not be able to modify prototype (if we prohibit that attribute).
But could easily assign, say, the toString attribute on object itself.

How robust is this plan?
Turns out to be pretty fragile due to inconsistent implementations.
Javascript interpreters don't always correctly implement ECMAscript.
E.g., unable to get the examples from section 3.2 to work in

either Firefox or Chrome anymore.

Sandboxing depends intimately on understanding Javascript engine.
Hard to do this reliably when the JS engine changes underneath.
Proofs aren't very meaningful under non-compliant ECMAscript engines.
Interesting final project: write something similar for Python?

Fine-grained isolation.

Potential compatibility with existing Javascript code.

Fragile.

Crossing between trusted & untrusted code requires careful analysis.
E.g., exposing DOM objects, calling functions in either direction, etc.
(Some examples came up with idx(), but not fully analyzed in this paper.)

+ o+

Zpproach 3: run the Javascript code in another origin, using an <iframes.
How to generate a separate origin?
Could create random subdomains (e.g., randomstring.google.com).
But that origin isn't quite isolated: can write to google.com cookies.
New HTML5 feature: <iframe sandbox="allow-scripts"s.
Creates a new "synthetic" origin for the iframe.
Potentially useful use case: <iframe sandbox=""> does not allow JS at all.
Might be good for displaying untrusted documents that may have Javascript.
Possible risk: if attacker guesses iframe page URL, can load w/o sandbox
and run JS code on that page with access to your standard origin!
+: Enforced by the browser's same-origin policy: perhaps less fragile.

4 of 5 10/6/2012 1:51 PM

http://css.csail.mit.edw6.858/2012/1ec/109-javascript-sandboxing. txt

Does not allow shared state / interactions between origins.
Limits display use to iframe's rectangle.

Approach 4: interaction between frames using server communication.
Play tricks like <SCRIPT SRC="http://server.com/msg?params">.
Use cross-origin resource sharing (CORS) to allow cross-origin XHR.
-: Requires round-trip to the server, higher latency.

Approach 5: allow some interaction between frames on the client.
Javascript provides a postMessage() API.
Requires sender to have a reference on the recipient frame.
Typically done by having one frame use an <iframe> to load another frame.
Parent gets a handle on the child frame.
In the child frame, 'parent' refers to the containing frame.
Given a frame/window w, send a message using:
w.postMessage (m, origin);
Sends message m as long as w is in the specified origin (string).
Why worry about the recipient's origin?
Potential problem: adversary might navigate frame/window w!
HTML5 allows many kinds of data structures to be passed as a message.
Structured clone algorithm.
Receiving frame must register to receive messages:
window.addEventListener ('message', processMsg, false);
function processMsg(event) {
// check event.origin for source of message

+: Strict isolation, only need to inspect messages being sent over.
-: Requires RPC wrappers for everything.

-: Hard to share objects (including DOM objects).

-: Still limits display to iframe's rectangle, big deal for ads.

50of5 10/6/2012 1:51 PM

%.858 Fall 2012 Lab 2: Privilege separation ; http://css.csail.mit.edu/6.858/2012/labs/lab2 him!

I of3

6.858 Fall 2012 Lab 2: Privilege separation
All parts due: Friday. October 5, 2012 (5:00pm) RQO(}(/H O](}Ué+ pM fZ/

Part 2: The zoobar Web Site

In the rest of this lab dsslgnmmt y() 1 wil lfmthu secure the zoobar web site using privilege separation.

Ou/‘ —Jp)y o‘% '
In the previous exercise, we ['m:d hc bugs in the transfer*codde; now we would like to make sure we can

deal with any future such buM&:oma up. To do so, we want to make sure that we have a reliable log
of all zoobar transfers that happened in the system. The current design stores the transfer log in the
transfer SQL table, stored in zoobar/db/transfer/transfer.db. This table is accessible to all
pmode in the zoobar site, which means that an attacker might be able to change the history so that
we will never find out about his or her attack.

We will try to make the transfer log more reliable by performing the logging operations in a separate
process, running as a different user from the rest of the zoobar code. This user ID will only run logging
code, which will insert new log entries into the transfer table. By setting permissions on the zoobar/db
/transfer directory accordingly, we will ensure that only the logging code (which will hopefully be
trustworthy) will be able to modify log entries, but any other python code will be able to read the log.

To break off some python code into a &scp’n‘alc process, running as a separate user 1D, we have provided
you with some helper tools. The zooxsve serv ice creates a Unix domain socket, and when someone
connects to this socket, it will launch an ¢ arbitrary program. We have created a simple echo service using
this tool. Look at how zook. conf spawns this echo service, the source code for the echo service tool in
zoobar/svc-echo.py, and the samplc client of this service in zoobar/demo-client.py. The client uses
a simple library for connecting to Unix domain socket services, in zoobar/unixclient.py. Note that the
client is meant to be invoked from the command line, rather than being executed as a CGI script via
HTTP.

You may find zoobar/demo-client .oy helplul in debugging any new Unix domain socket services you
create.

. Exercise 4. Create a new service to perform transfer logging as a separate user ID. You will

' need to create a new service along the lines of sve-echo.py; modify zook.conf to start it

- appropriately (under a different UID); modify the permissions on the t ransfer database

- directory such that only this new service can modify it; and modify the transfer. oy code to
- invoke this seWsactions. instead of logging transactions directly.

Make all of your changes in the 1ap directory rather than in /522 1. In particular, if you need
© to set certain permissions on files or directories, or install additional files or directories in
© /3ail,do so in the chroot-setuo. sh SCI‘i])l.

Note: be careful when picking a format for messages in your service. What if someone tries to
- passes spaces or a newline as an argument? (Hint: use some existing encoding like JSON. But

9/29/2012 3:29 PM:

6.858 Fall 2012 Lab 2: Privilege separation http://css.csail.mit.edw6.858/2012/labs/lab2 html

- don't use Python's pickle module.)
|) pickle

- Run sudo make check to verify that your privilege-separated transfer service passes our
- tests.

Now, you will break up the zoobar code into two additional protection domains. First, we want to make
sure that only the transfer code is actually able to modify the zoobar balances of different users, so that a

vulnerability in the rest of the python code will not be able to directly modify the number of zoobars that
some user has.

One complication in doing this rests in the fact that the zoobar balance information is stored in the same
database table, person, that stores profile and login information that the rest of the code must be able to
modify. To protect zoobar balances from being corrupted by the rest of the python code, you will need to
create a new database table holding just the zoobar balances for each user, and remove the balance
information from the person table.

- Exercise 5. In preparation for privilege-separating the transfer code, split the zoobars field

- from the person table into a new zoobars table stored in the database file zoobar/do

. /zoobars/zoobars.db, and remove the zoobars column from the person table. Change the
- rest of the python code to access the correct table when fetching zoobar balances. Don't forget |
- 1o handle the case of account creation, when the new user needs to get an initial 10 zoobars.

- Exercise 6. Create a new service to transfer zoobars from one user to another. Change the

| transfer.py code to invoke this service instead of modifying the zoobar balances directly.
~ Set the permissions on the new balances table such that only the transfer code can modify it.
- and the rest of the python code can only read it. Don't forget to handle account creation,

- which needs to involve your new transfer service.

- Finally, make sure that only the transfer code is able to invoke the logging service -- after all,
- no other python code should be able to generate log entries! You should be able to do this by
- using groups and group permissions on the directory containing the logging service socket. As
- before, make sure all of your changes are reflected in the chroot-setup. sh seript, and not
only in the /jail directory in your VM.

Now our web application should be more secure, because compromises of most of the python code will
not allow the attacker to modify zoobar balances. Unfortunately. the attacker can still subvert the web
site by modifying user passwords or HT'TP cookies in the person database table. For the final part of this
assignment, you will move the authentication and cookie-verification code into a separate service that
runs under a distinct user ID, to prevent such attacks.

- Exercise 7. Split the authentication information (password, salt, and token fields) into an
- auth table that is separate from the original person table. Store this table in the database file

20f3 9/29/2012 3:29 PM

6.858 I'all 2012 Lab 2: Privilege separation http://css.csail.mit.edw/6.858/2012/1abs/lab2 html

zoobar /db/auth/auth.do. Aller you do this, the only remaining fields in the person table
. should be the username and the profile.

- Create a new service that implements user login and cookie verification using this table. This
' service should implement three functions, which correspond to existing functions implemented
- in auth.py that you will need to replace. First, check the username and password for login,

- returning an HTTP cookie token if the password is correct. Second, verify whether a token is

-~ correct, returning true or false. Third, register a new user, again returning true or false

- depending on success.

- Make sure that the zuth table storing passwords and tokens is only readable by your new
- authentication service.

Now that the attacker cannot obtain anyone's passwords or HTTP cookies from the database, there is one
last problem to fix.

~ Exercise 8. In the current design, (he attacker can still invoke the transfer service and ask for
- credits to be transferred between an arbitrary pair of users. Modify the transfer service

' protocol to require a valid token from the sender of credits, and modify the transfer service

- implementation to validate this token with the authentication service before approving the

- transfer.

- Although make check does not include an explicit test for this exercise, you should be able to
- check whether this feature is working or not by manually connecting to your transfer service

' using zoobar/demo-client.py, and verifying that it is not possible to perform a transfer

- without supplying a valid token.

Deliverables

Again, explain in answers. txt any non-obvious changes you made to zookws and zoobar for each
exercise. Feel free to include any comments about your solutions in the answers. txt file.

You are done! Run make submit to submit your answers to the the submission web site.

Acknowledgments

Thanks to Stanford's CS155 course stalf for the initial zoobar web application code, which we extended
in this lab assignment.

Jof3 9/29/2012 3:29 PM

F:\Users\Michael\Documents\SkyDrive\MIT Senior\6.858\6.858 Codellab2\zoobar\demo-client.py

1 #!/usr/bin/python

from unixclient import call

5 resp = call("/jail/echosvc/sock", "hello")
6 print "Response = ", resp

7

8

: gb W)/\M (vn rh/llté (JM; “c)t’ff'z][‘fz) v (M //Lp
@{ Lohih ves @) b cod orrand

d/f é\/C V(Q(/Lw, ,0‘[6@(&/({(6, Mjﬂidz \15 /oﬂrr'mj
il ol e fed

F:\Users\Michael\Documents\SkyDrive\MIT Senior\6.858\6.858 Code\lab2\zoobar\unixclient.py Saturday, September 29, 2012 4:06 PM
1 #!/usr/bin/python

import socket

=W N

def call(pn, reg):
sock = socketl.socket (socket.AF UNIX, socket.SOCK STREAM)
sock.connect (pn)
sock.send(req)
sock.shutdown (socket.SHUT WR)
data = ""

while True:

=
= O w 0o 1 oy b

[

buf = sock.recv(1024)
if not buf:

break
data += buf

sock.close()

T S '
Gy s W N

i

return data

p—
(e8]

F:\Users\Michael\Documents\SkyDrive\MIT Senior\6.858\6.858 Codel\lab2\zoobar\svc-echo.py Saturday, September 29, 2012 4:06 PM
il #!/usr/bin/python

2

3 import sys

é

5 req = sys.stdin.read()
6 print "You said:", reg
7

Unix domain socket - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Unix domain socket

Unix domain socket

From Wikipedia, the free encyclopedia

A Unix domain socket or IPC socket (inter-process communication socket) is a data communications
endpoint for exchanging data between processes executing within the same host operating system. While
similar in functionality to named pipes, Unix domain sockets may be created as byte streams or as datagram

sequences! "] \while pipes are byte streams only. Processes using Unix domain sockets do not need to
share a common ancestry. The API for Unix domain sockets is similar to that of an Internet socket, but it
does not use an underlying network protocol for communication. The Unix domain socket facility is a
standard component of POSIX operating systems.

Unix domain sockets use the file system as address name space. They are referenced by processes as inodes
in the file system. This allows two processes to open the same socket in order to communicate. However,
communication occurs entirely within the operating system kernel.

In addition to sending data, processes may send file descriptors across a Unix domain socket connection
using the sendmsg () and recvmsg () system calls.
‘--____—_‘_‘_

- —

See also

Raw socket
Datagram socket
Stream socket
Network socket
Berkeley sockets
Pipeline (Unix)

External links

-

m socketpair(2) (http://www.kernel.org/doc/man-pages/online/pages
/man2/socketpair.2.html) — Linux Programmer's Manual — System Calls

® sendmsg(2) (http://www.kernel.org/doc/man-pages/online/pages/man2/sendmsg.2.html)
— Linux Programmer's Manual — System Calls

®m recvmsg (2) (http://www.kernel.org/doc/man-pages/online/pages/man2/recvmsg.2.html)
— Linux Programmer's Manual — System Calls

® cmsg(3) (http://www.kernel.org/doc/man-pages/online/pages/man3/cmsg.3.html)
— Linux Programmer's Manual — Library Functions

= ucspi-unix (http://untroubled.org/ucspi-unix/) , UNIX-domain socket client-server command-line tools

= unix domain sockets guide (http://beej.us/guide/bgipe/output/html/multipage/unixsock.html)

= another unix domain sockets guide (http://www.thomasstover.com/uds.html)

= Unix sockets vs Internet sockets (http:/lists.freebsd.org/pipermail/freebsd-performance/2005-
FFebruary/001143.html)

= Unix Domain Sockets for Java (http://code.google.con/p/junixsocket/)

Retrieved from "http://en.wikipedia.org/w/index.php?title=Unix_domain_socket&oldid=514437531"
Categories: Network socket Unix Computer science stubs

1of2 9/29/2012 3:58 PM

/Cc:?jg T Labe bt 9

OPI‘% {9/69“ k% (md C{%Zyu‘
hi

v r
Taste ™ adesble by all Eles

L\z@b‘“ov/) Jini ' Moo ¢ s

yndm(C {\@; AW r%hm(oqt ¢

b due e

Wl logy
[ﬂ?@@mﬂ TLo 1)6 W{Wﬁ Al (/n'(f%} M WA
$y posd 4 €ad

b0l d 6l i i bys
})‘/WL QVWWL C o /@d /
¥ Mvﬁ% mulke 661[@
G Wil b ikt 01 dey
(h dud o ﬁocM@ UB

Yook i (/e Lk dowmia o
A/}({/ Uﬂomgc ot
by 6% — g

whin ((\Oﬁm(/{‘ Wil v o
d{b t]f/(k\[P(()@/o{/y\
Ut g ol gl 6”‘(1 _ﬂ)/

%@L ‘(Wk/f' Mﬁ Pawf‘é an. \QOL\O 5%&,&
wh JVO*/ (Q/cbd,b f Q/]LUM 6/5\4‘{—({2/\

e

-HQQQ/GM - Y
N I A éuy mﬁpmw (omm pess AE/G

Y
u)@mo < CJ("WL. Py v "“Q(/(4 l(a7

/ f\]thc)ienﬁw

Q}(@w}[? M(c& (ommanl LZ/Q

E)(Q(C‘LSQ,% C/Qdft P éﬂm'ce 1(9 FE/WKW/’(
Take by o

N@%i o (fode 4w St e W ecﬁap/v
mc]\c& 0k, Canf# 7L9 &AM N 6%626(
L dJoa b e W LYY @@‘mg

Onky v stie sl b alle f fuoy
Ne tants Ji

Tmmc@.p{ Qwuu, C(/\ﬂ]11(L{Jn/t\m, :a,sfw(/
N\ I see
G0 nly ﬁuwﬂ% T el ML

TWML E’NL%L o)g f?@oole Qg Tﬁmese, ﬁhgs c‘q Prac }(207

WWL(/L\ f\awu«\e (b/ a5

- D@ jg(w/ noF prckle
Fley dfﬂﬂ;& g @}7

Undstad /15 aom A
Loge Jh&/ 61”(

NOV\/ QJWF ']o ;mp?{?ml

—

gﬂ% Gpd 4o sepecart db

o e dhal adgl

iﬂmcL Tlm }\0(/6 5 &Mﬁ b 6% /?t/M{(f//
" i fuet Comdafys g

S\Q (U/VQ / @ﬂd AL, e
| (
s (5 6{ L«/;/z

Wb |
@Bf H@ﬂ% erede ot el

@\T/%F& Sy o T
Lo ot (ondghle
O\,\ &l}fovpéf‘
LYQ&Lh
/\/M/& @Qrmiéb}ﬁft 7
Log by dh hen

LYON/;U b W ‘/WL @ d(‘/ ((’fb/7 / J b Vfé Wwr, I}L P)Of)ﬂ"h (rss/raj

Go "\//H‘avblﬂ lot
“;w}hL ({b /
“Tn l/‘“”\//‘w{(

hhe ap dhs M,M
Sold be O/“Mﬂ e

Db de net ot b

Ol\ aM; lo[cuk ft — Wﬂﬂ jf

Liky on el ¢
Yes

/\MQ Loan s /oggﬁi e G s

g

[bk 5 foy T
(il vat cifed
J\(0 WW{ al

‘[NLML 15 /M(/(
}/LMA_ 4y Clle 0t
[/Wo “dow & G T 4
OL\ l)’\ QFWL«,WL
JJO(V\O (Iﬁ ‘%{md(%j A)(/} P/{/clﬂas 904 é, g(% St
W Lw/ Ja o/ !@JL (/pf
(h - it ot o il
CHl

heted Auread(7
o QQCKL “(; (Q KM\JQ A A/ d\gg

g

b« b w

Vies Corme /

Oh odo s 756

‘h\ltﬁ ‘((mgqy
6@ (OM{»@O
Tf“((/\y NC “U /@)/Qc%osﬁ/ﬂv

g /Vb+ ‘ef: g MML

(qmt (o @VHLW Gf/l/%

—{/ = omy d@fw'm sodls

Nv ar g%rﬁf\j @,k J ...
p@fm((%ﬂ \{M\Wé

TYE - \/W@d

@ O i et b g -
\/O“Ml[—e oy
M d\af\glmy ’)20 dtms -
Ol prieng
D Wt W) fw?
[J\m(wb//g ¢ dohg

J‘[@/\{ b oty dh —why
% U Jﬁo LQ ﬁ / 0 %f{ea/!mﬁ e
AO 777 G o 1 T/()C

s

%(l @1[(mruifn /{1%@6(,“‘
Ve b o] oo

b gukh O/Z{ﬂ Ul vals
éo é@Qf Jeﬁvgq},\g y 2[/|(Q

0

W,
N\ 0\[50 V\UX(, lto Cop Lol b
M\'f ot EmpozﬁAL/t

/]} Q\W\L 'llO [r’()(‘v v - o
L)a} sl oy @Mﬂgﬂg W@Jd(‘ e

Wﬁm dﬂé Téw ol ok’
M/Ml' dOQ) H /éfc//mf'

e

§9 NLML (,jo(’,} \U» fmlm on (5(,{@,%5/ m)[J?
Ok dow o Vodar
{ ol Cohg

h\\;h{ u('c((, /ét&%/w”m)x@" ful ¢
Oh 4 o

_—EM\\(WGALT‘(ﬂL - hy a,ﬁ/cwe Z00h g5 oz
ﬂé nat 44‘”9 —

@

)/\[Y T wolls) Oga ‘«/ ()/J
9%11 (/\mL Vh’t Q(/LO ¥ g
LDK’PW Gsi0nS -)
i/
40/ © aﬂ' JW{(A5 fﬁﬂ/z

S

Ol T bl i |
B\f(’ [@%uw‘lsl any /9 <

/’.—-_-_

ol e dol £ b g
(@r {;("/5 58%& 7[0 bt e mpag !

b
(;>k_ v <fh{, LﬂW’k
;,gl(@ﬂf' 1//\)\LMI/%
LOL\ Tod- Q/(@/\sl;
@H o/l

~Thgh At ks old -1,
\~00p, .

O\/L\L Py p(@)) oty

@ NOJ[’)L (’O'}((/(3 — {('X (Q/T(G/
(f\/o/ﬁs 6/ PL -

b 158 L e loh
lop
L&@\L ﬁwn ‘ﬂL s {&}/vc(k (A/o/U/lj

1\[\(Vot as sad wahe A by fib puarifly
T A) Cho
SO G ks 4, iy oo [

T Y T e p{?(mis@% & ocho

M e Sl ey

Cf &@o}L Mqﬁ@ o s M]

—_—

Mo Do el o~ Lok 6 5
o ol by
Wil W he oo gumer

ALl v v L e
4t f abe_ chak
L(&/Ml/«ﬁ S0tms @,1{) @Kofm Dt

g@ (ur Qo puds
NQ ZVL 69@“9 Jfo Nd‘k

i’\ Wy o “7%,@

/VWL; (ht éhf/ SF{’/J)
Or NL>)Dc JF fuaskie J/b Iﬁ(mw/fﬂ

(T@u@FiJLL Do Wl gt gpeed)

W
b Teg w di o T

éo hobnce. + H&WZ Sépf/ofc’

ggda(dos it U

O}\ S0nder # {€O£p9/V/’

OL\ Y N{/(L ‘Hmﬁ/
" Commlt

Y Do

—’Mo/lxj
Mo chk
@ e Fodow w/ diess 1o 71/“%?%/)

That ws NC for gyl
bt {n]' ks -

v

(it Oy e 1 €0

NOV Mow mn 1 sw Olyr
GLOT[

O 2ok ookl Fisty By 1001 pon

JVSJJ e é/ l Now

@ m\/ H\MQ (a W/;?Le’, 1y JMX/W[Q/ ,JE
B0 eks
7 N

S

WOnby S0 | M e
bal’ Whoy ol | RN

@NOQ o (o w/u[-@

Not allowd | G wrip =
Ot Wil @ e

@@ ﬁm A is t,//w%
Wi dwlidt & b fate et

Oh @G0 due edo

Ww“@l Mo b a sk Clle v
G LUL o Conet

® (wafun (o by peg,
Oh ot e gobs gpeial Sombsly 1

NO”‘:Wl Py l[”t’/} don 11 hae
D@ﬂ YL c/trwvv \«JLUQ Cdm/{/@

@) b

s ’
% OKAHLHW} Pfﬂlgjh(m C/ﬂm@(a 5

/) /
/ h4440 Codg (WM oﬂL{ /“ﬂ¥é({ 200 Z)ér

W s 5(,00#6 KM&L

gO V‘ML@ Nwm (f/b
f@WV@, OH, ()

UW#@ a“ @Q
Mhs ox s ,ofvm/
deste .

ﬁlﬂ Jh‘o ot b&T/afe éef/c’c@

Ochally Ty o fold Higer
L b

v

0YG > po stit
for st Code

oy St ailal solp

T}\@V\/ :}9 Ml 50 d'/}ty }ra/zs{f’/ Cod <
O(/L)re fo }Wl‘ﬁg

G b Db

O b, Tt calo!

lﬂg (?n"]
and 1 vl

F,How h C/Q C/w%l’/{7

Sep 5\0/&9 C
5\/6// 6@&&‘(% Py
Ghlw u}(/ pfob l;(/ mslaﬂl)

([;
1% s J@Mgi«gl,
N

@L N{Mpt ‘F({’Q g CJ“/U/W /%%YLE/ 54/6/ 5@(
JE; ¢ Twe = b sk
Wt o o lise Ayr/ln?

Z/G[ff 6)/&0% e

M\(oV ful P (24 F’#
6%4# which wlef

OL st add T o)

Gill
p%‘ﬁ blon cl(rwé((

0)

@ o (M((w (et by e
40 J@éwg Tt LC;'@

&%:/339&
@ 6}1(‘,11 Convedtn ag- b
%JMQ\# @(J/)L

b oy of ol dily
Al il v feste -

Mo, Sl v T et
P7 p&vv‘l%éw

Qﬂ,v\{ PN
@ pﬂlm‘tﬁé}m Jm%d
bw) Subs 77 7

@ Comnedtipn, (et by peer ...
C‘\M bad Tty what hugpeed|)

Tl 4l ¢
f o
'M“Z nﬂL p/mﬂrty (

i
r,ighm n WA 1[4 glﬂlL ﬁ 74 //c'/m(?

@emo —(69(164’0”0\] {/
UW/{ 7L° do Oﬁ(kﬂé‘/@ I é/gﬂf(}

G Comeckian O
€l ks
Mh ol go db St aun

Ol\ :]j mMi /)%W\ Ovlr 7La ﬁWIL
MN(Posin b, b naw/

@W@/U T %f,s"ff./

i)

T/a/ts(lf 1 Lol
M od —Fix
on Vw1

h//dH““) A N N CML
C‘H%) ¢) &Aﬂ U Mffbj

Do ol & £ o
HWWL e 0l W/U/fj

i’r}ﬂi MW;O TLW(WI[L é@"/

l ﬂm/{“h? (Cu(/{ Nn (%7

M\[8 /DL (6{[//&1/7 g, 4

T(Wyz WG (Mwlf)/z(q] e v
ek adl wl ommlt bl

(Cb% —h’t (/lgm (a0l ALL({WMF) o

-
’h] [L am //mU rnfly

e o added

/\l\ 3 (ol 9467
] D\LJ JTT > waks Ao o

e g9

W\\o b @ M%’l
/Uiy

balvd 09
//de

dube dos vl gt o o e

bk 19
e

\W b s . db el o

UM 2wbs gon ey
(_I JLJW;L Q»[(,JWL L\q//tc (,/W(, vy -

Ly

Nons ¢l

Wﬂ Gy Can Iutife s Zoohurs JO

s oy ot Owts
o 5“/%, ,Oefmc"%ﬁm for bth @ f Y[fwl%/
e e Sl v&‘m? oo ¢y
@V\/ﬁ' {leml@l/\j

V\M«Lg 7Zo (0 01’6}*@(Se/a/;(ﬁ hot 0/0/@
Cout

“why we ools yoh /pW
PM\(S@}M o
4 il M%"/ franst ¥ (Y
ik o el H Ele

Py ia O

s
lof-
T A
474
Ny

Wofp};m
l 'bl/@u/ %
2 Vouglly

oH 0

) 59
Ok whoe wi T

JEMM[/;M“@ {ﬂ%l %ooﬁm/(% betore %H'}/zy s

ML T cm dy ol (i

Cavk (retllon s Wé b ot Cile
O da QKCML o

&) 71/7 (\//m:’ruﬂ ;’L

}ﬂ/Mu@L ge /Wm:“&} f/ZoaUJ ﬁV o/emo f

B Vsgnwe 0ok onig

0 Ik ﬁu’/ct 1[(}%

Youh > ath gy
C’fﬂ[710 il f‘fllMd !)
B Skt (ohon afatt)

Sock Eb @O“

Sle-reastt L 0l TS
e sl glolf
T) W7

/_/Az @Lmn’(-# p/«i{wu dn 7"

O Ol Slween l,

Oh Mo ot 45 b tmte Gl
6 le?t f(/f /t or ({ /(/(0/\4//

‘

bl 0 b, conl
s fo cue |
7:}]@; miloh e Goues!
T b o H

/m{ 6@//HM d5€(t(San. GuC
4 that (%40
SWUH ’Wf‘ 5& G iy

TA \é P/d? CCM%L /\WQ M(// ‘Qﬂ@ §€//¢'/@
o Somy ot 4l

I dm"(‘ see Aaw ﬁmﬁt males Sexp __
5@/ l/rz(eis& St s madle B %

\Jﬂ%‘%’/{ S nltfs
Wl & gop < b hol
M B vhd e

gg jVﬁIL {/das (r s ““/ Ofk/ W%.@

50 Nl @@W Ova/[@ Vv/m oz//ey;
@ J({Mﬂ worls

RQW{ wor ld - ook
LQ@M g’mof,@

CLM @ NM 7}/144 / ff /af/fr&(‘/‘j f’--/ 2 of 4 b g1

(CJVHM 1[/0/\'\ %cw&L conf

@ 7[o 6&/ / 7Y 5 #/(/C\C{ Aﬁ& (//1/6(51[/(‘6&(&({ ek
l/’fl(’oﬁ T s d € 5 -/

\ /|
Tﬁl ,., gi LML mi é\(727
m mwfﬂ(/!ﬂb(é f—T/Méﬁﬁf ANE (X

O% N/'

@ Pl év@ 6?2&'// hus Twbars (5!
/‘JPMM, (l/

6)[6/ S0tms woll.

oV ftuar

(Of‘vp (tft/ wﬂ/h L

/)T/o(n S%W {M 90{ @
'f/o(G'F& P7 g

Ny gpiatet

U Pt
@Pé&% ol)[

(456 1073
Lot | = W
A N, ”’) JLJ' e PKWW}- @‘t(?,(r PZ t’s 5!/@ /ﬂﬂ f’/}f’(/(

e[| ﬁﬁ W’7 J%W’c Py Code
50 ot mth lidon ’w@// fam ohe Stphy

/
9

J(}M\\ & [o@g\!/\j sl s db
0y s Gtk
h el A PUsss
P(alo ol nb o ik dnyma/l
gt £ JH s

_}; o [

AWLQLUM/ @ Shat @ eéo‘ﬂ/cj
@ p@/ﬁmt% ‘Fw[ok

b gt ghmlcator b b 5 taly

Y ,
Mo soviee
}c }03;0

0. (alie VaiLiatlon
3,, (63‘%}@/ Nw V¥

——
’Hﬂp@ {/1}7 /o p/UWM

(‘M M pat A b s po)/n‘/eas’
‘/t/swlr mon_ W/L/@ / Q/@ L”ﬂﬁ\/ Af))

e

O/m(ﬁf)w/l J@nl@({ Da m/ﬁh SuC
Whia ZMJV/

}/‘/‘ML hay ﬁl(l) ({g@(rflc
}\q/\q‘ WR_ Yo o o /e’]',’

O\’\ Cbl‘l ”W)L Lt”, OI/“M/{ fo- ?;WZLSVL

No. (h{ (@Mm(/{zlm s é(ot
W/ ﬂ; N St {ﬂe Or (J/Z/W

f @t m b o gl 5!
M\(/ f {l /ﬁ/&'{/y aﬂt‘/’h’? {e//(;/(
ica!

RY gholl clak e iy st
() egdhes

[
nowe faly Sue (olvms a,hrL Al <.

@Wk shows Up
QA’ d‘c“ (OMU/HW\ /@W{' 197 pees W[»&fj U
Oh wok e ¥ b el i

[il __,6//!
Ol\ \\/}\A’ ol (Um 0{,‘5! “’j_h(i CLM&’?

U |
Nk Sl s b matte

L

b "W s fle o diahy
DI T e T loee whot dil e dof

MQ’& CO%wm“d, [;V‘{, g s

@@6@!@%
@ Lﬂg]m \
M it
@ Rofrn danbe
— [
%o »7L Wyl Lﬁ 1([pm (&mmﬁmi [}/@

Jut red e cmmand,
TR 'l el gl

59 :/‘/UJF \Sb/[« N On l 5%%

@ NOW @WE)1 V?/dm (D(;ﬂ
fd e T e tb!

@vbl o(émo 6%6’” [mnmafr[m @W‘Jf /{ /9 b

o QX i@ptun
H’ s M/@(/H/

/n (es5 @MI@ 5 o ..

Iﬂf: @01!/&9 J’o OH‘-
Mol all Pz @W
Al G- ho Guk Eile

Ty puomdh et hy e
Wd W07 b0 T

ST,

TV\/«MJ \1 e WMW@ 777

Th O‘hef s ok

\f‘/) Jlue 6(//\#_,_'
(bt O)Lmo, o/ 155 € (EL[(/(

K NO —Sdr_ 10

[0/«(
7y

OM-tel 1y

20
/ ()
i o gt S podil 5 g

@ o Tl iy
jo it lia [wav) ik fiud

o pine g
/éﬂmt [sf 4 of eye)
/
L\/m /]6 {t,)ﬂ €r\(od!9

Gob bty (e <ercding ('t

(1 My démﬁ l[(r /(

60‘“9 V’(\/LdWé F//a/

‘_OH“(lé\? /s

Whie s %
it fued the ot n ol
W '&@ wémo wﬁ/&V)
Now %/{ H tor at|

@ﬂw%ﬂfﬂ luleg — ool are
?/)[il /s sayy
M {p (y/z’/(me Cefvira f
o Cé)olu}(/

y Coprat
{ F\ Ny d(@
gzmy)((’, (ﬁf'\c > M 67{/;90!4 /n%{w@{

e

Ol o cebied 4 (wlio
bt why mal g

U L (espht ._6/‘,% L

I/\/va /%gb}f/; ﬂbx/lL ([4@5 r/?a} &3 5[/1 C e

O W M{/
d 4 SO} fwice

Thet s foe 2

\/‘;er c!&[/eA; e;iﬂ} 9 @ln @’4’4267
ot bl patle!

@[@%M M//«)
bb des b it o e dd?

«pow Wi ﬁvﬂa/

fA
(;él/ll é)/oww /Q‘{M dw4

TH Bl o royds cadles
N dd dak kit

Mo Jul
Sl reed pesn do

why LT Julete
Usgryare 1+ P

O adled ddankie pofd

MA\{ o JM"‘/@}%](AML ;’[b l/Vﬂ/MW7
i+ hes not- cend (oo v - -

;4 {/pfe g(/[7(@/}[T

Fiue

ﬂ) L lob o Ty vaguestdly Yol

to*gk A _7:_ /3\/”&{ ﬂ[lﬂm %/m
IT # wokd

flogh UEE @ {ehay)

rIg T A fowse ﬁw'ry
O olittuble o

(6 fout dobggeny 1)

(/5
K74

y

p
O e 9w [

@94/@ %L@A e
fm,o‘é sapt I[W{'e(/lﬁ -

/
Caml_ %

Tﬂ? (@“ ' EJMM) fy feme et C[W«éf%/

I) l
Oy b w1

e |

(o wlhd s o o L@‘m/ %0 0
(’M Ohih v (um /\@w/f
O 0 b gate > w0 ff

@N)n Ondis Can L///{;ZQ ‘7[a JL;/)MLL(U)
ok fo Thar

Jiay was w0y e

9

@ WH* fuble J;/eo?[ﬂf M} g or w/&f f@/h,}séfm
6o Vo 9@ Ghall (oad 4 al/
T dlxg

@%/56 0K 7(/

by ¥
k - /Jm\M/Q (dn ;m/ﬂﬂk m ?La«t}#? u/WCIM
Oh L owded T ot ey

AL e %l Jrand e,
HC{/L J[ﬂ{néjr(?/ /@2@7

Wt
Ut o 646” meb Ll

o ULo Lm j?f@wger lwc;

/]L/ctsf\(/
lHlﬂu/ lan V0 (M ﬂ,;(f CWM /LC gaolf

CW gﬁr 5ead ¥

Th é/ o s (g 0° . wltiple. 30
S olr W a Ll gy

@ +/ﬂn 5-@/ 6’5@}(’/4)}/0_ {9, F
1 @%’J e

50 J&ﬂg Jud /W{]L)(/ {‘lﬁ}l Dt
ant &L({ﬂl /m/o@//\ h Cull
@ Pp/mfggz‘m denie {

Mt et — gl was wb foe

@ 7L0 ‘045 mw?l'(/ﬁ
W Y o /ML skl stetd

() Vit

M%‘fﬁ/ S Q//(‘c@ Cp}l ;a/,',,/ an, [/4/

bon i)y Rar Pl

@%‘f ik vk M

\/W/‘z %@)L (Jaﬂié pdlh -%{//Iﬁ //y[i

fngwtrs (Y-
|
n / Nn Ob\/(gv) -y i (@Wlﬂé/bﬁj

Nom. = &y St/bm'ﬁ

e

I @9‘}’ Jﬂ e w}— QJ{'/\ﬂ Nov- - — «

lofl

https://taesoo.scripts.mit.edu:444/submit/handin.py/download/theplaz/r...

Yale
PASS App functionality LUZM @ 6{

PASS Exercise
PASS Exercise
FAIL Exercise
PASS Exercise
PASS Exercise
PASS Exercise

transfer succeeded with eval

~ O B W N =

Functionality: 10/10
Exercise 1: 10/10
Exercise 2: 10/10

Exercise 3: 7/10

- eval(...) allows arbitrary code execution. Use int(...) instead.

- (There shouldn't be a race condition with the zoobars db. Database
transactions will give you the needed consistency. Cross-database
consistency is not guaranteed though.

) A
Exercise 4: 10/10 TWW W'&l Wf

Exercise 6: 14/20

- The log service from exercise 4 should be separate from
transfer svc. Then a compromised transfer service can't change
existing entries (though it can make bogus entries.)

- Not all transfer logic moved to transfer service. Compromised
service can still improperly change zoobars with negative amounts.

Exercise 7: 10/20

- Adding a 'token' RPC to the auth service defeats the purpose of
authentication checks. If you can just query the auth service for
anyone's token, there's no point in, e.g., requiring a token for
transfers. Instead, add a 'check cookie' RPC that just returns yes/no.

- The 'cookie'*RPEC—I5 similarly problematic. —

Exercise 8: 10/10
Total: 81/100

Graded tarball SHA-1: cc345bcdB8316ala2842440bc55a4f6362fc7alfs

11/1/2012 10:29 PM

Leab

orceHTTPS

Collin Jackson
Stanford University
collinj@cs.stanford.edu

ABSTRACT

As wireless networks proliferate, web browsers operate in an
increasingly hostile network eiivironment. T@pm—
tocol has th€ potential to-protect web users from network
attackers, but real-world deployments must cope with mis-

configured servers, causing imperfect web sites and users to
compromise browsing sessions inadvertently. ForceHTTPS

is a simple browser security mechanism web sites or
users can use to@pt in to stricter error processingsimprov-
ing the security o g network attacks

that leverage the browser’s lax error processing. By aug-
menting the browser with a database of custom URL rewrite
rules, ForceHTTPS allows sophisticated users to transpar-
ently retrofit security onto some insecure sites that support

\
@0 HTTPS. We provide-a prototype.implementation of Force-
0 &/ HTTPS as a Firefo@@

(% 6‘ Q> K.6.5 [Management of Computing and Information
\ Systems]: Security and Protection—Unauthorized Access;
m@AA [Computers and Society]: Electronic Commerce—

X\OJ [e% ecurity

General Terms
60(0\/ (
E HTTPS, eavesdropping, pharming, same-origin policy
QQJ{\&? (6 1. INTRODUCTION

HTTPS is designed to be secure against both eavesdrop-
pers and active network attackers. In practice, however, all
w\é modern web browsers are willing to compromise the security

\ 6 \
\N/ lﬂ the site despite the error. This behaviorcompromises the
(" confidentiality of the site’s Secure cookies, which often store

of sites that use HT'TPS in order to be compatible with sites
WS t asecond factor of authentication, and allows the attacker to

Categories and Subject Descriptors

Design, Security, Human Factors

Keywords

that deploy HTTPS incorrectly. For example, if an active
attacker presents a self-signed certificate, web browsers per-
mit the user to click through a warning message and access
hijack a legitimate user’s session, potentially letting the at-
tacker to transfer money out of the user’s bank account or

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.

WWW 2008, April 21-25,
ACM 978-1-60558-085-2/08,

8, Beijing, China.

GourH,

» Protecting High-

from Network Attacks
Seinlstetrint:s s ot

| \WA (&6&1\(,4*‘«14 a§

ity Web Sites

Uhy 1y

dtp]

perform other misdeeds. Browsers accept broken certificates
and allow embedding of insecure scripts for two reasons:

e Compatibility. Many web sites have incorrectly con-
figured certificates and embed insecure scripts: rowser
that enforces strict error—preeessing is incompatible

with these sites and will lose users to a more permissive
browser.

Adam Barth
Stanford University
abarth@cs.stanford.edu

¢ Unknown Intent. Some site owners intentionally use
self-signed certificates and host portions ir site

over HTTP because these mechanisms provide protec- a /6 /%

tion from passive attackers and they believe the risk

of an active attack is outweighed by the cost of imple—\dﬁ
menting HTTPS fully. ¥ p€%9

Although a security-conscious site owner, such as a bank,

might aim to implement a high-security site, he or she cur-

rently has no mechanism for com icati is i

the browser. Other site owners thatare less security-conscious,

desiring protection only from passive network attackers, im- = aq,e
plement low-security sites by deploying certificates that are
self-signed or have incorrect common names. The browser / G//—(O
has no mechanism for differentiating these two kinds of sites

and cannot distinguish between a legitimate misconfigura-

tion in a low-security site and an attack on a high-security

site. Without guidance, a browser does not have the context

to make an useful risk-management decision about whether

to trade off security for compatibility on a particular site.

1.1 Our Proposal

We propose ForceHTTPS, a simple mechanism that security-
conscious sites can use to opt in to stricter error processing
by the browser, essentially%!vﬂrgmﬁnv:e to
be more secure. By setting E_I_Ec%gsmmkie, a site
owner asks the browser to tréat HTTPS errors as attacks,
not as simple configuration mistakes. Spect y, enabling

ForceHTTPS causes the brower to modify its behavior as
follows:

1. Non-HTTPS connections to the site are redirected to
HTTPS, preventing contact to the site without TLS.

2. All TLS errors, including self-signed certificates and
common-name mismatches, terminate the TLS session.

3. Attempts to embed insecure (non-HTTPS) content into
the site fail with network errors.

This stricter error handling has several benefits, including
protecting the URL parameters, fragments, and Secure cook-
ies from network attackers and users who click through secu-
rity warnings. ForceHTTPS blocks participating sites from

((ool

C ik

embedding insecure content, such as scripts, cascading style
sheets, and SWF movies, in order to secure the user’s ses-
sion with buggy sites that would otherwise allow an active
network attacker to steal the user’s password and second
factor of authentication by silently replacing SWF movie
embedded in the login page. By enabling ForceHTTPS, a
site protects itself from careless mistakes by its own web-de-
velopers. ForceHTTPS also offers a “developer mode” that
explains these errors so that the site's we oper can
find and fix vulnerabilities.

Used in concert with a phishing defense, such as Bank
of America’s_SiteKey [1], ForceHTTPS lets a site protect
itself from pharming. Previously proposed anti-pharming
defenses [6; 20, 15] are difficult to implement and face ma-
jor challenges to deployment. By contrast, ForceHTTPS is
easy to implement because browsers already detect the er-
rors siteg wish to block and easy to deploy because sites need
only set a single cookie. To demonstrate the feasibility of
our approach, we provide a prototype of ForceHTTPS as a
Firefox browser extension [12].

1.2 Power Users

ForceHTTPS also enables “power users” to upgrade the se-
curity of sites that implement HTTPS insecurely by setting
a For@ﬂnﬂ%w. This approach
follows a recent trend in which sophisticated users have
taken web security into their own hands. The NoScript [18]
browser extension enables users to fix cross-site scripting
vulnerabilities in sites they visit by disabling or limiting
the capabilities of scripts on that site, albeit at the cost of
functionality. Other client side tools for mitigating web site
vuln&rabtiities include Noxes [16] and NoMoXSS [28]. The
GMailSecure user script (which has had over 25,000 down-
loads) enables users to force secure connections to Gmail,
mitigating eavesdroppifig attacks without any reduction in
functionality.

In fact, this paper arose largely out of a desire by the au-
thors to secure their Gmail sessions while using the wireless
networks at security conferences after witnessing an alarm-
ingly effective attack demonstration at Black Hat 2007 [10].
Securing Gmail without Google’s cooperation is challeng-
ing because Gmail’s session identifier is stored in an inse-
cure cookie that is transmitted whenever a user visits any
other Google property. By setting the For ookie,
a‘Gmai upgrades the session cookie to a Secure cookie
that is protected from both eavesdropping and active at-
tackers.

—_—

1.3 Organization

o A
7{‘%@{ (oo

The rest of this paper is organized as follows. In Section 2
we describe the threats that ForceHTTPS is designed to
protect against. In Section 3 we survey existing techniques
that attempt to defend against these threats. In Section 4
we provide a specification of our proposal. In Section 5
we discuss design decisions and implementation details. We
conclude in Section 6.

2. THREAT MODEL

2.1 Threats Addressed
e D LA LT
ForceHTTPS is concerned with three threats: passive net-
work attackers, active network attackers, and imperfect web
developers.

e Passive Network Attackers. When a user browses
the web o ireless network, a nearby attacker can
eavesdrop on unencrypted connections, such as HTTP
requests. Such a passive network attacker can steal
session identifiers and hijack the user’s session. These
eavesdropping attacks can be performed easily using
wireless sniffing toolkits [29, 10]. Some sites, such as
Gmail, permit access over HTTPS, leading a user to
believe that accessing such a service over HTTPS pro-
tects them from an passive network attacker. Unfor-
tunately, this is often not the case as session identi-
fiers are typically stored in insecure cookies to per-
mit interoperability with HTTP versions of the ser-
vice. For example, the session identifier for Gmail is
usually stored in a non-Secure cookie, permitting an
attacker to hijack the user’s Gmail session if the user
makes a single HTTP request to Gmail. Additionally,
the subjects and snippets of the one hundred most re-
cent email messages can be retrieved using the user’s
.google.com session cookie, which is sent in the clear
during every Google search request.

e Active Network Attackers. A more determined at-
tacker can mount an active attack, either by imperson-
ating a user’s DNS server or, in a wireless network, by
spoofing network frames or offering a similarly-named
“eyil twin’-segess point. If the user is behind a wireless
home router, the attacker can attempt to reconfigure
the router using default passwords and other vulnera-
bilities [26, 27, 25]. Some sites, such as banks, rely on
HTTPS to protect them from these active attackers.
Unfortunately, browsers allow their users to opt-out of
these protections in order to be compatible with sites
that incorrectly deploy HTTPS. These sites wish to be
protected from active network attackers even if users
do not understand the security warnings provided by
their browsers.

o Honest but Imperfect Web Developers. Large
web sites are constructed by numerous developers, who
occasionally make mistakes and are Security ex-
perts. Ofie simple mistake, such as embedding a cas-
cading style sheet or a SWF movie over HTTP, can
allow an active attacker to compromise the security
of an HTTPS site completely.! Even if the site’s de-
velopers carefully fnize their login page for mixed
content, a single insecure embedding anywhere on the
site compromises the security of their login page be-
cause the attacker can script (control) the login page
by injecting script into the page with mixed content.
Both the site’s owner and the site’s users could wish
the site to be secure despite its developers making mis-
takes.

Threats Not Addressed

2.2

Phishing. Phishing attacks [7] occur when an at-
tacker solicits authentication credentials from the user
by hosting a fake site located on a different domain
than the real site, perhaps driving traffic to the fake

!Both cascading style sheets and SWF movies can script the

embedding page, to the surprise of many web developers.
MoSE Erowser§do not issue mixed content warnings when

insecure SWF files are embedded.

7
/

3.

site by sending a link in an email. Phishing attacks can
be very effective because users find it difficult to dis-
tinguish the real site from a fake site [5]. ForceHTTPS
is not a defense against phishing, but it complements
many existing phishing defenses, such as SiteKey [1],
the Yahoo! Sign-in Seal [30], and Chase’s Activation
Code [4], by instructing the browser to protect session
integrity and long-lived authentication tokens.

e Malware and Browser Vulnerabilities. Because
ForceHTTPS is implemented as a browser security mech-
anism, it relies on the trustworthiness of the user’s sys-
tem to protect the session. Malicious code executing
on the user’s system can compromise a browser session,
regardless of whether ForceHTTPS is used.

RELATED WORK

Previously known defenses to the threats described in Sec-

tion 2 are shown in Table 1 and summarized in this section.

3.

1 User-Controlled Defenses

e User-enforced HTTPS. Many web sites serve the
same content over both HTTP and HTTPS, taking
care to use HT'TPS on the login or credit card entry
page and HTTP elsewhere. This protects the user’s
long-lived authentication credentials and financial de-
tails from being stolen by eavesdroppers while retain-
ing the performance benefits of unencrypted HTTP
traffic. Unfortunately, many such sites set an non-
Secure cookie containing the user’s session identifier.
This cookie is sent in the clear over HTTP and can be
used by an eavesdropper to hijack the user’s session.

Security-conscious users can mitigate this vulnerabil-
ity by attempting to visit the site using HTTPS, to
the exclusion of HTTP. For example, the user can dili-
gently type HTTPS URLs into the address bar and
check the status bar before clicking on links. Unfor-
tunately, even a single insecure HTTP request by the
web site can lead to a compromise of the session cook-
ies. If the insecure request is the result of a redirect or
button click, the user could be unaware of the request
until their credentials have already been compromised.

For example, Gmail serves its content to authenticated
users both over HTTPS and HTTP. The login form,
however, is served exclusively over HTTPS. Users that
want to check sensitive mail using Gmail can access
the Gmail site over HTTPS instead of HTTP. In fact,
many users install GMailSecure [21] to automatically
redirect them to HTTPS pages when using Gmail.
Unfortunately, GMailSecure does not actually protect
the session cookie on mail.google.com because it per-
forms the redirect after the browser has already sent
the HTTP request (which contains the cookie) in the
clear.

¢ Certificate Errors. Incorrectly configured web servers
can cause a number of HTTPS certificate errors:

— Common-Name Mismatch. HTTPS requires
that a server present a certificate whose common
name matches the server’s host name. Many web
servers erroneously present certificates with incor-
rect common names.

R ——o T
He [Yew Hgloy fpomads Jods brp ol
A, T e G 8l G
Gmall Calendsr Documerts Phaics Groups Web mers v forcehapa@gmall.com | Settings | Help | Sign st 1™
_ |
x Foumezoae 8
raail = ===
W Hn {
Compose Hail The DlackBemy® Dovca « waww FiaciBeery comYourChek Sermorsd ok
S‘&:ﬂé- (Aecbire) [Bopoi iy) (Gomn) Moresctons [w! Refwsh 14
= Select: A5, Hone. Read, Uniaad, Siared, Unstred A
= \.u [0 Gmail Team Gail s diflerent. Here's whatye 11:15 pm
Deats
A W o
T Ty T p——— [eeesrsoes cwigmeom @ O _

Figure 1: This account has only ever been accessed
over HTTPS, but the confidentiality of this user’s
email has already been compromised because Fire-
fox leaked the user’s cookie in an automatic request
for anti-phishing data from Google.

——— e ——

— Self-Signed. Many site owners wish to use HTTPS
but are unable or unwilling to purchase certifi-
cates from certificate authorities. Instead, these
owners deploy self-signed certificates that provide
security against passive attackers.

— Expired. Certificates are valid only for a limited
time period. Many web servers present certifi-
cates that have either not yet become valid or
whose validity period has expired.

When it encounters a certificate error, the browser
presents the user with a security warning dialog, giv-
ing the user the option to continue despite the er-
ror. DBrowsers permit users to override these secu-
rity errors in order to be compatible with misconfig-
ured servers. Unfortunately, the warnings have be-
come commonplace, with approximately 63% of cer-
tificates causing errors [24]. Although the user is in
control, many users do not understand these warnings
and are trained to ignore them by the multitude of
misconfigured sites [23]. ForceHTTPS lets sites force
these certificate errors to be treated as fatal.

Extended Validation. Many certificate authorities
issue “extended validation” (EV) certificates that re-
quire more extensive investigation by the certificate
authority before being issued [9]. Like certificate warn-
ings, EV certificates are used to present information
about the connection security to the user. For exam-
ple, Internet Explorer 7 and Firefox 3 highlight the
site’s identity in green if the site supplies a valid EV
certificate. Extended validation certificates have no
effect on the browser’s defenses against network at-
tackers. A site that uses EV can still be contacted
via HTTP and mix insecure content into secure pages.
Moreover, the user is still able to accept a broken cer-
tificate for the host, putting primary control over en-
forcement in the hands of the user. ForceHTTPS al-

lows the site to Wmitment to the

browser, rather than to the user.
ier than 1o the user.

Firefox 3. Firefox 3 contains a new user interface
for dealing with certificate errors. Early versions of
this interface required ten clicks to accept certificate
errors and asked the user to type the domain name

Threat Model

Passive Attacker

Active Attacker

Imperfect Developer

GMailSecure
Secure cookies

User-controlled
Site-controlled

Certificate warnings
Locked same-origin policy, HTTPSSR

Mixed content warnings
Content restrictions

Table 1: Current attempts to defend against the threats that ForceHTTPS addresses.

manually in the hopes that this process would dis-
courage users from giving up their security. This pro-
posal was controversial [11] and was eventually scaled
back to require only four clicks [3] as a compromise for
site owners that use HTTPS with self-signed certifi-
cates. ForceHTTPS avoids compromising security for
usability by affecting only those sites that are security-
conscious.

Mixed Content Warnings. Many sites serve the
same content over both HT'TP and HTTPS. If the de-
veloper expected some of the content to be served over
HTTP only, the developer is likely to embed scripts us-
ing absolute paths containing the http scheme:

<script src="http://a.com/foo.js"></script>

/2> Vieknne tn Gemad - Wandose Tntermel Erplor A s =
GO - [osecn=] 8| e
R Qho.u = =t
Graail wesspes
Iyt (122}
[T T L S miemt prowcmd oz OF . [R100% -

Unfortunately, this compromises the security of HTTPS

on the entire site because an active attacker can navi-
gate the user’s browser to the broken page over HTTPS,
replace the insecure script with his own, and invade the
security context of the secure site. These mistakes can
easily be corrected by using scheme-relative paths [8]:
<script srcq{"//a.Com/foo.js"></script>

These paths cause the browser to load the script over
HTTP when the page is viewed over HTTP and over
HTTPS when the page is viewed over HTTPS. Us-
ing this technique, a site can benefit from caching and
increased performance when the page is viewed over
HTTP but retain security when the page is viewed over
HTTPS. Unfortunately, many web developers are un-
aware of scheme-relative paths and often accidentally
embed insecure scripts into secure pages. DBrowsers
warn the {iser abomtthese insecure embeddings in dif-

ferent ways:

— Internet Explorer displays a “mixed content”
dialog that asks the user’s permisstonm before-con-
tinuing. Insecure SWF movies and Java applets
are loaded automatically without any warnings.

— Firefox automatically accepts the mixed content,
but draws a red slash over the browser’s lock icon.
Insecure images, F movies, and Java applets
do not trigger the slash.

— Opera automatically accepts the mixed content,
but replaces the lock icon with a question mark.

— Safari does not attempt to detect mixed content.

As with certificate warnings,m not un-
derstand mixed content warnings, and some browsers
do not even give users the option of remaining secure.
Users have been trained to ignore these warnings be-
cause many HTTPS pages, such as the Gmail login

Figure 2: Users have been trained to click through
mixed content warnings at sites such as Gmail.

3.2

———

page shown in Figure 2, embed mixed content. Force-
HTTPS lets security-conscious sites block unwanted
mixed content inadvertently introduced by their im-
perfect developers.

Site-Controlled Defenses

Secure Cookies. A security-conscious site can mark
a cookie as Secure, instructing the browser to refrain
from transmitting the cookie over an insecure connec-
tion. To use these cookies, the site must ensure that all
authenticated web traffic occurs over HTTPS. Many
sites, including those that have deployed anti-phishing
defenses such as SiteKey, also use a long-lived Secure
cookie to store a second factor of authentication.

— Passive Attackers. Secure cookies defend well
against passive eavesdroppers. We recommend
that sites use Secure cookies as they prevent a
passive attacker from learning the confidential in-
formation they store.

— Active Attackers. Unfortunately, active attack-
er{ can use imvalid certificates to steal Secure
cookies if users click through certificate warning
dialog boxes.

ForceHTTPS expands the usefulness of Secure cookies
to defend against active attackers by recording the web
site’s intent to use a correct HTTPS certificate. When
the attacker presents an invalid certificate for the site,
the browser terminates the connection and does not
reveal the site’s Secure cookies.

Locked Same-Origin. Web Server Key Enabled Cook-
ies [20] proposes restricting access to cookies based on

Wi

Coror

"

4.

the public key of the server. The goal of this policy is
to prevent a pharming attacker from accessing HTTPS
cookies set by the victim server. Karlof et. al. [15] ex-
tend this work to defend against dynamic pharming
through the use of two locked same-origin policies for
browsers. These policies augment the browser’s secu-
rity policy to isolate web pages based on the security
of the connection from which they were loaded. Unfor-
tunately, both locked same-origin policies face major
deployment challenges.

— Weak. The weak locked same-origin policy iso-
lates pages loaded over broken HTTPS connec-
tions from those loaded over unbroken connec-
tions. To be secure against an active attacker, a
site must not embed any scripts, cascading style
sheets, applets, or SWF movies (instead, the site
must inline all scripts and style sheets) [15], but
this requires virtually all web sites to implement
major changes in order to meet this condition.

Strong. The strong locked same-origin policy
segregates two pages if they where loaded over
HTTPS connections with different public keys.
To enable the strong policy, a site must deploy
a pk.txt file that specifies the public keys with
which it intends to interact. This file is difficult
to deploy correctly and must be maintained as
servers refresh their keys, likely resulting in a sim-
ilar misconfiguration rate to that of deploying cer-
tificates for HTTPS.

ForceHTTPS also isolates broken and unbroken pages
by allowing security-conscious sites to forbid the browser
from loading broken sites, but ForceHT TP is easier for
sites to deploy: the site can opt in to ForceHTTPS by
simply setting a cookie.

Content Restrictions. Using content restrictions,
web servers can transmit metadata to browsers in-
structing them to impose certain restrictions on the
web site’s content, such as which scripts are allowed
to run. Content restrictions can limit the damage
caused by a cross-site scripting attack in which the de-
veloper incorrectly sanitizes malicious input. Content
restrictions can be communicated in HTTP headers or
<meta> tags [19]. Other proposals include whitelists
written in JavaScript, or using a special noexecute
property of DOM nodes [13]. ForceHTTPS is another
set of content restrictions, but instead of defending
against a web developer who inadvertently exposes
the session to cross-site scripting attacks, it defends
against a web developer who inadvertently exposes the
site to network attacks via mixed content.

SPECIFICATION

ForceHTTPS can be enabled in two ways:

e Site. A security-conscious site can enable ForceHTTPS
by setting a cookie with the name ForceHTTPS using a
Set-Cookie header in an error-free HT'TPS response.
The browser will enable ForceHTTPS for that site as
long as the cookie has not expired. The domain and
path attributes of the cookie are ignored.

e User. A security-conscious user can enable Force-
HTTPS for a host through the browser user inter-
face. The browser gives them the option of configuring
custom HTTP-to-HTTPS redirection rules and non-
Secure-to-Secure cookie upgrades for that domain.

ForceHTTPS can be disabled only by an error-free HTTPS
response or by the browser’s user interface.

When ForceHTTPS is enabled for a host, the browser
modifies its behavior as follows:

e Attempts to connect over a non-HTTPS protocol are
redirected to HTTPS.

e TLS errors during connections are treated as fatal.
e Attempts to embed insecure content in pages fail.

These rules prevent an active attacker from injecting script
into the host’s security origin.

5. DISCUSSION

This section contains a discussion of design decisions, error
handling scenarios, limitations, and alternate policy adver-
tisement mechanisms.

5.1 Design Decisions

Although the ForceHTTPS mechanism is simple, a num-
ber of subtle decisions were made during its design.

e Redirecting URLs. When ForceHTTPS is enabled
for a host, the browser redirects HTTP requests to
that host to HTTPS. For example, if the user types
WWW.payp om in the location bar, the browser con-
nects t@/ /wwu.paypal.com/ instead, prevent-
ing a n attacker from intercepting the HTTP
request and redirecting the user to a phishing web
site. Additionally, this browser-side redirection trans-
parently corrects a common THixed contenmt—seenario
in which a site embeds active content from itself over
HTTP. To retrofit security onto sites like Google that
do not serve all of their content over HTTPS, Force-
HTTPS lets power users configure custom rewrite rules.

State Exhaustion. Because the browser has limited
state, the browser’s cookie eviction policy is critical
to the security of ForceHTTPS. An attacker who is
able to force the browser to evict the ForceHTTPS
cookie is effectively able to “unforce” HTTPS. More-
over, if the browser evicts the ForceHTTPS cookie be-
fore other cookies for the same host, the attacker can
potentially use the non-evicted cookies (which might
store session tokens or second factors of authentica-
tion) as part of an attack. To prevent these state ex-
haustion attacks, the browser should reserve space for
ForceHTTPS cookies and limit the rate at which it ac-
cepts new ForceHTTPS cookies. If the browser uses
an rate-limiting scheme with exponential back-off, the
browser can typically prevent an attacker from flood-
ing its ForceHTTPS cookie store in a single session. A
concerted attacker, however, can eventually overflow
the state limit over many successive sessions. To pre-
vent the other cookies from being stolen, the browser
should evict all other cookies for a domain if it evicts
the ForceHTTPS cookie.

e Denial of Service. The largest risk in deploying
ForceHTTPS is that of denial of service. An attacker
who can set a ForceHTTPS cookie for a victim host
can prevent users from using that site if the site re-
quires broken HTTPS to function properly. There are
two restrictions on when a site can set a ForceHTTPS
cookie to mitigate this issue:

— The server must set the ForceHTTPS cookie dur-
ing a non-broken HTTPS session. By establish-
ing a non-broken HTTPS session, the host has
demonstrated the ability to conduct secure HTTPS.
If the browser permitted ForceHTTPS cookies to
be set over HTTP, an active attacker could con-
duct denial of service beyond his ability to control
the user’s network.

— The server must set the ForceHTTPS cookie us-
ing the Set-Cookie header, rather than using script
to set the document.cookie property. If script
were permitted to set ForceHTTPS cookie, a tran-
sient cross-site scripting vulnerability could result
in a long-lasting denial of service.

Even with these restrictions, a shared domain Force-
HTTPS cookie could still be used for denial of service:

A student hosting content on https://www.stanford.edu/
could set a ForceHTTPS cookie for .stanford.edu,
denying service to many Stanford web sites. To pre-
vent this scenario, a ForceHTTPS cookie enables Force-
HTTPS only for the host that sent the cookie.

e Policy Expressiveness. When a site enables Force-
HTTPS, the browser makes several modifications to its
behavior at once. Instead, the browser could respect
finer-grained policies capable of expressing more spe-
cific behavior changes, for example allowing a site to
require HTTPS without disavowing mixed content or
certificate errors. However, exposing a more expressive
policy interface increases the burden on site developers
to select the appropriate policy and on browser devel-
opers to correctly implement each policy permutation.
We reserve the value of the ForceHTTPS cookie for
future enhancements to the mechanism.

5.2 Error Handling

Although it provides stricter error handling, ForceHTTPS
must be prepared to handle misconfigured clients and servers.
If ForceHTTPS simply were to provide a click-through er-
ror dialog box, the benefits of the mechanism would be lost.
Many users consider clicking through security dialog boxes
to be a routine task.

e Wireless HotSpot. The most common client error
occurs when a user first connects their computer to a
wireless hotspot. Before allowing access to the Inter-
net, the hotspot typically redirects all network requests
to its registration page. If the user attempts to nav-
igate to an HTTPS site, the hotspot will be unable
to present a valid certificate and the connection will
generate a certificate error. In this situation, the two
options offered by current browsers are both poor. The
user can either abandon the request (and not join the
network) or can accept the broken certificate, sending
their secure cookies to the hotspot registration page.

5.3

To better recover from this error condition, the browser
could attempt to connect to a known HTTP page on
the browser vendor’s web site and compare its contents
to a known value. If a redirect is encountered or the
contents of the page do not match the expected value,
the browser could ask the user if they would like to con-
nect to the wireless network registration page (which
consists of the redirected content). This technique
permits the registration page to successfully redirect
the user without compromising the user’s cookies and
without revealing any sensitive query parameters (as
used by PHP sites that set session.use_trans_sid to
true and session.use_cookies to false).

Embedded Content. When ForceHTTPS is enabled
for a host, the browser prevents pages on that host
from embedding non-HTTPS content. The security
of the site can still be compromised, however, if the
site embeds content from an HTTPS connection that
encountered a certificate error. For this reason, certifi-
cate errors are treated as fatal network errors during
any dependent load on a ForceHTTPS page. For con-
tent that would appear in a frame, the broken content
is replaced with a message indicating that the content
could not be loaded securely.

Opting Out. If a ForceHTTPS site persists in being
misconfigured, the user can remove the ForceHTTPS
cookie through the same user interface used to en-
able ForceHTTPS. This process requires several steps,
i.e. not a single mouse click, and both clears the user’s
cookies and restarts the browser to prevent any exist-
ing browser state from being compromised. We ex-
pect that the rate of ForceHTTPS hosts misconfig-
uration will be significantly lower than the general
HTTPS misconfiguration rate because the owners of
the ForceHTTPS hosts have indicated (by enabling
ForceHTTPS) that they take seriously the security of
their sites and do not wish to allow users to connect
over broken HTTPS connections. In contrast, users
will need to become familiar with the browser’s mech-
anism to bypass standard certificate errors in order to
access many misconfigured sites.

Limitations

Although ForceHTTPS has numerous security benefits, it
cannot prevent all attacks. In this section, we describe some
vulnerabilities that ForceHTTPS does not address.

Attacks on Initialization. If a user is unable to
establish a secure connection to a server, then that
server cannot set a ForceHTTPS cookie. An attacker
who controls the user’s network on every visit to a
target site can prevent the ForceHTTPS cookie at that
site from ever being set. Although the user will be
exposed to a large number of warnings, ForceHTTPS
will not yet be enabled and thus cannot force the user
to make the correct security decision. However, if the
user does ever connect to the site securely, the browser
enforce security until the ForceHTTPS cookie expires.

Privacy. Like any cookie, ForceHTTPS leaves a trace
on the user’s system for each ForceHTTPS site vis-
ited. Users who are concerned about privacy from

web sites or from other users who use the same sys-
tem often reject or frequently clear their cookies. By
clearing cookies, these users can remove all evidence
of the ForceHTTPS cookie. Although they lose Force-
HTTPS protection their next visit, the user’s decision
to purge all browser state associated with the site will
make it unlikely that the browser will have second fac-
tor authentication tokens for a future attacker to steal.
(Note that the preconfigured ForceHTTPS cookies and
rewrite rules are the same for each user and do not re-
veal the user’s browsing behavior other than to identify
them as a ForceHTTPS user.)

e Developer Errors Other Than Mixed Content.
By enabling ForceHTTPS, the web developer opts in
to more stringent error processing, but the developer
still compromise the security of his or her site by mak-
ing mistakes. We list a few common mistakes of this
sort to remind the reader that ForceHTTPS (and more
generally encryption) is not a panacea.

— Cross-Site Scripting (XSS). ForceHTTPS pro-
vides no protection if the site contains a cross-site
scripting vulnerability. Such a site is completely
vulnerable to a web attacker.

— Cross-Site Request Forgery (CSRF). Simi-
larly, ForceHTTPS does not protect a site that
contains a cross-site request forgery vulnerabil-
ity [14]. CSRF vulnerabilities often give attack-
ers the ability to issue commands from the user’s
browser.

— HTTP Response Splitting. If the server does
not properly sanitize carriage returns and other
whitespace in input included in HTTP response
headers, an attacker can inject headers (and po-
tentially scripts) into HTTP responses. An HTTP
response splitting vulnerability can often be used
to manipulate ForceHTTPS cookies.

— document.domain. A site that sets its domain
to a value must trust all the hosts with that value
as a suffix. These hosts can enter the site’s secu-
rity sandbox and script its pages.

e Plug-ins. Analysis of browser security features must
take plug-ins into account because plug-ins such as
Flash Player and Java are widely deployed and can
often provide attackers an alternate route to circum-
venting a security mechanism. ForceHTTPS must en-
sure that browser network requests on behalf of plug-
ins, which carry the user’s cookies, enforce the Force-
HTTPS restrictions. Furthermore, all cookie manage-
ment by plug-ins must respect the ForceHTTPS pol-
icy. If the plug-in allows the site to make direct net-
work requests using raw sockets, it cannot be forced
to use HTTPS without breaking backwards compati-
bility. We consider it the web site’s responsibility to
provide appropriate encryption of the raw socket traffic
if necessary; ForceHTTPS does not provide protection
from the imperfect developer in this case.

e Complexity of Rewrite Rules. As we describe in
Section 5.5, the rewrite rules required to enable Force-
HTTPS at a legacy web site can range from very sim-
ple to impossible. A site could become vulnerable if

rewrite rules are introduced that redirect sensitive in-
formation to an attacker. Rewrite rules can also break
functionality at the web site, rendering certain pages
inaccessible or issuing unauthorized transactions. If
the web site changes significantly, or the site decides
to change its support for HTTPS, the rewrite rules
might need to be updated. We consider the installa-
tion and editing of rewrite rules to be a decision with
serious security consequences, similar to installing a
browser plug-in. The addition of new rewrite rules is
a feature primarily for advanced users.

5.4 Other Policy Advertisement Mechanisms

Other mechanisms that could be used for advertising a
ForceHTTPS policy include DNS records and XML files.

e DNS. In the HTTP Service Security Requirements

(HTTPSSR) proposal [22], a site can indicate its desire
for HTTPS by including an HTTPSSR record in DNS.
The proposal relies on DNSSEC to prevent a network
attacker from manipulating this record. Although the
HTTPSSR. proposal does not address mixed content,
certificate error user interfaces, or cookie security, it
could be extended to do so. The DNS policy adver-
tisement mechanism has a number of advantages:

1. The secure initialization step is not required. The
browser can obtain the ForceHTTPS policy on
the first visit to the site, even if the network is
compromised.

2. The browser is not required to maintain any per-
sistent state associated for each host, preventing
state exhaustion attacks.

3. HTTP response splitting attacks do not allow an
attacker to manipulate ForceHTTPS policies.

Unfortunately, DNSSEC is not widely deployed. With-
out DNSSEC, sites can store their ForceHTTPS poli-
cies in DNS using the stateful, secure-initialization ap-
proach of ForceHTTPS cookies. To support this ap-
proach, HTTPSSR records would need to include an
“expires” field. The Time-To-Live (TTL) supplied by
DNS is not suitable for storing policy expiry because
it provides a maximum, rather than a minimum, du-
ration for the validity of the record.

XML. Using the XML paradigm, a site can advertise
its ForceHTTPS policy in an XML document hosted
over HTTPS at a well-known location. This tech-
nique is used by Adobe Flash Player to determine
if a server is willing to receive cross-domain URL re-
quests. Adobe’s crossdomain.xml policy file could be
extended to advertise a ForceHTTPS policy:

<?xml version="1.0" 7>
<cross-domain-policy
xmlns:f="http://www.forcehttps.com/">
<allow-access-from
domain="#.stanford.edu" />
<f:forcehttps
expires="Mon, 11 Feb 2009 23:39:27 GMT"/>
</cross-domain-policy>

The browser will enable ForceHTTPS for that site for
the duration specified by the expires attribute of this
element. This element can be included in existing
crossdomain.xml files using a unique XML names-
pace for the element. This approach has the advan-
tage that a site must already control the contents of
its crossdomain.xml file in order to be secure against
attacks using the Flash plug-in. Additionally, using
XML to store policy information makes it possible to
extend this policy advertisement mechanism to include
future security policies.

5.5 Example Rewrite Rules

In creating our prototype implementation of ForceHTTPS,
we developed rewrite rules for seven popular sites to under-
stand the subtleties in deploying ForceHTTPS. To develop
the rewrite rules, we installed the ForceHTTPS extension
and enabled ForceHTTPS for each site we wanted to sup-
port. We then turned on client-side error logging and tried
to log in and log out on each site. Using the error mes-
sages we identified HTTP content that could be served over
HTTPS and used rewrite rules to transform those HTTP
requests into HTTPS. The results are summarized below.

e PayPal. We did not need specialized rewrite rules
for paypal.com, which serves all content on its main
site over HTTPS. We also enabled ForceHTTPS for
paypalobjects.com, where PayPal’s static scripts and
stylesheets are hosted. This precaution is necessary for
Firefox 2, which prompts users to override certificate
errors for embedded content, but is no longer necessary
in Firefox 3, which blocks such content automatically.

e American Express. American Express uses SWF
movies to load HTTP files to display advertisements,
but the insecure files are served from a different do-
main (doubleclick.net) and cannot script the main
American Express page.

Fidelity. Fidelity uses SWF movies that load HTTP
files to display stock quotes, but these requests do
not require cookies, so no rewrite rules are necessary.
Fidelity hosts a crossdomain.xml file that allows ac-
cess from #.fidelity.com and *.fmr.com. Thus, to
be protected from network attackers, Fidelity needs
a ForceHTTPS cookie for both .fidelity.com and
.fmr.com.

e Bank of America. Bank of America uses both HTTP
and HTTPS on its main home page, and certain pages
require cookies to be sent over HTTP. However, the
login page and online banking are handled on subdo-
mains, such as sitekey.bankofamerica.com. These
subdomains use HTTPS exclusively, so we set Force-
HTTPS cookies for the online banking subdomains.

e Gmail. Google’s Gmail web site, mail.google.com,
presents a challenge because the site sets a domain-
wide .google.com cookie. We enabled ForceHTTPS
for the entire Google site and wrote rewrite rules to
redirect all Google pages to HTTPS except the search
page (which cannot be accessed over HT'TPS). Addi-
tionally, we rewrote a query parameter for the login
page to indicate that we wished Google to mark its
session cookies Secure. It is important to redirect all

pages (except search) to HTTPS because Google’s lo-
gin page sometimes transmits sensitive authentication
information in URL parameters. With ForceHTTPS
enabled, search traffic at Google is not protected from
eavesdropping, but no cookies are sent with this traffic,
keeping the user’s session identifier secure.

Chase. Chase refuses to serve its home page over
HTTPS. We chose to redirect http://wuw.chase.com/
to https://chaseonline.chase.com, allowing the user
to log in securely, but preventing access to any news
or special offers that appear only on the Chase home
page. ForceHTTPS also automatically repairs mixed
content on Chase’s login page by redirecting an inse-
cure SWF movie to HTTPS.

e Yahoo! Mail. We were unable to develop rewrite
rules for the Yahoo! Mail site because Yahoo! Mail
does not support HTTPS. We enabled ForceHTTPS
for the Yahoo! login page, with the goal of protect-
ing the user’s password (rather than the session) from
active attacks. Because the Yahoo! Sign-in Seal [30]
is revealed by an insecure cookie, an active attacker
could display the sign-in seal on an HTTP page with-
out requiring the user to click through a security warn-
ing dialog. With ForceHTTPS installed, the attacker
cannot display the Sign-in Seal, upgrading Yahoo!’s
phishing defense to a pharming defense as well.

6. CONCLUSIONS AND FUTURE WORK

ForceHTTPS lets users and web sites to opt in to stricter
error processing by the browser. For users, ForceHTTPS
can fix vulnerabilities in web sites and enable sites that were
not designed to be used over hostile networks to be browsed
securely over such networks. For web sites, ForceHTTPS
protects Secure cookies from active network attackers and
remediates accidental embedding of insecure content.

Previous anti-pharming proposals required either over-
hauling DNS or the deployment of complex, digitally signed
policy files encoding the frequently-changing trust relation-
ships between domains. By contrast, ForceHTTPS merely
requires setting a cookie, a procedure that many sites al-
ready handle with every new session.

ForceHTTPS is a useful mitigation for mixed content, but
sites should strive to fix these bugs by removing insecure em-
beddings. Developers have trouble detecting mixed content
because all the major browsers have significant bugs in their
mixed content detection mechanisms. In future work, we
plan to collaborate with web application vulnerability scan-
ner vendors to build a mixed content scanner that spiders a
web site and reports its mixed content vulnerabilities.

ForceHTTPS has already proven itself useful to its au-
thors, who now check their email at security conferences
without fear of eavesdropping and other network attacks.
We look forward to extending this protection to other users.

Acknowledgements

We thank Michael Barrett, Dan Boneh, John C. Mitchell,
Umesh Shankar, and Andy Steingruebl for their helpful sug-
gestions and feedback. This work is supported by grants
from the National Science Foundation and the US Depart-
ment of Homeland Security.

7. REFERENCES

[1] Bank of America SiteKey.
http://www.bankofamerica.com/privacy/sitekey/.

[2] A. Barth, C. Jackson, and J. C. Mitchell. Session
swapping: Login cross-site request forgery, March
2008. Manuscript.

[3] M. Beltzner et al. Create preference which restores
per-page ssl error override option for it professionals.
https:
//bugzilla.mozilla.org/show_bug.cgi?id=399275.

[4] Chase. Increased security. http://www.chase.com/
ccpmapp/shared/assets/page/occ_alert.

[5] R. Dhamija, J. D. Tygar, and M. Hearst. Why
phishing works. In Proceedings of the Conference on
Human Factors in Computing Systems (CHI), 2006.

[6] DNS Security Extensions. http://www.dnssec.net/.

[7] E. W. Felten, D. Balfanz, D. Dean, and D. S. Wallach.
Web Spoofing: An Internet Con Game. In 20th
National Information Systems Security Conference,
October 1997.

[8] R. Fielding. Relative Uniform Resource Locators.
IETF RFC 1808, June 1995.

[9] C. A. B. Forum. Extended validation certificate
guidelines. http:

//cabforum. org/EV_Certificate_Guidelines.pdf.

[10] R. Graham. Sidejacking with Hamster, August 2007.
http://erratasec.blogspot.com/2007/08/
sidejacking-with-hamster_05.html.

[11] F. Hecker et al. Improve error reporting for
invalid-certificate errors. https:
//bugzilla.mozilla.org/show_bug.cgi7?id=327181.

[12] C. Jackson and A. Barth. ForceHTTPS Firefox
extension, 2008.
https://crypto.stanford.edu/forcehttps.

[13] T. Jim, N. Swamy, and M. Hicks. BEEP:
Browser-enforced embedded policies. In Proceedings of
the 1fth International World Wide Web Conference
(WWW), 2007.

[14] N. Jovanovic, E. Kirda, and C. Kruegel. Preventing
cross site request forgery attacks. In Proceedings of the
IEEE International Conference on Security and
Privacy for Emerging Areas in Communication
Networks (Securecomm,), 2006.

[15] C. Karlof, U. Shankar, J. D. Tygar, and D. Wagner.
Dynamic pharming attacks and locked same-origin
policies for web browsers. In Proceedings of the 14th
ACM Conference on Computer and Communications
Security (CCS 2007), November 2007.

[16] E. Kirda, C. Kruegel, G. Vigna, and N. Jovanovic.
Noxes: A client-side solution for mitigating cross site
scripting attacks. In Proceedings of the 21st ACM
Symposium on Applied Computing (SAC), 2006.

[17] D. Kristol and L. Montulli. HTTP State Management
Mechanism. IETF RFC 2109, February 1997.

[18] G. Maone. NoScript. http://noscript.net/.

[19] G. Markham. Content restrictions. http:
//wwu.gerv.net/security/content-restrictions/.

[20] C. Masone, K.-H. Baek, and S. Smith. Wske: Web
server key enabled cookies. In Proceedings of Usable
Security 2007 (USEC "07).

[21] M. Pilgrim. GMailSecure, 2005.
http://userscripts.org/scripts/review/1404.

[22] S. E. Schechter. Storing HTTP security requirements
in the domain name system, April 2007.
http://lists.w3.org/Archives/Public/
public-wsc-wg/2007Apr/att-0332/http-ssr.txt.

[23] S. E. Schechter, R. Dhamija, A. Ozment, and
I. Fischer. The emperor’s new security indicators. In
Proceedings of the 2007 IEEE Symposium on Security
and Privacy.

[24] Security Space and E-Soft. Secure server survey, May
2007. http://vwww.securityspace.com/s_survey/
sdata/200704/certca.html.

[25] S. Stamm, Z. Ramzan, and M. Jakobsson. Drive-by
pharming. Technical Report 641, Indiana University
Computer Science, Decenber 2006.

[26] A. Tsow. Phishing with consumer electronics —
malicious home routers. In Models of Trust for the
Web Workshop at the 15th International World Wide
Web Conference (WWW), 2006.

[27] A. Tsow, M. Jakobsson, L. Yang, and S. Wetzel.
Warkitting: the drive-by subversion of wireless home
routers. Journal of Digital Forensic Practice, 1(2),
November 2006.

[28] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda,

C. Kruegel, and G. Vigna. Cross site scripting
prevention with dynamic data tainting and static
analysis. In Proceedings of the Network and
Distributed System Security Symposium (NDSS), 2007.

[29] Wireshark: What's on your network?
http://wuw.wireshark.org/.

[30] Yahoo! Inc. What is a sign-in seal? http://
security.yahoo.com/article.html?aid=2006102507.

6.858 / Fall 2012 / Paper Reading Questions http://css.csail.mit.edw/6.858/2012/questions.html ?q=q-forcehttps&]...

6.858: Computer

Systems Security all &2

S Paper Reading Questions
General
information For each paper, your assignment is two-fold. By the start of lecture:
Schedule ® Submit your answer for each lecture's paper question via the
submission web site in a file named lecn.txt, and
Reference ® E-mail your own question about the paper (e.g., what you find
materials most confusing about the paper or the paper's general
context/problem) to 6.858-q@pdos.csail.mit.edu. You cannot
Piazza discussion use the question below. To the extent possible, during lecture
we will try to answer questions submitted by the evening
Submission HefoTe.
2011 class g
materials) EEEIIEE 10

Suppose that a web application developer wants to avoid the
i security pitfalls described in the ForceHTTPS paper. The

i developer uses HTTPS for the application's entire site, and
marks all of the application's cookies as "Secure”. If the

i developer makes no mistakes in doing so, are there still

reasons to use ForceHTTPS? Explain why not, or provide
: examples of specific attacks that ForceHTTPS would prevent.

W A no st |l o bl

e

N —an el ale —doe 2y Wl
Ond wer shll Yol

‘ | (
hfowo% W 6[/ b@ﬂd = } ilc 6(3/&@ 54{
- Sigred card |
Questions or commtents regarding 6.858? Send e-mail to the course
staff at 6.858-staff@pdos.csail.mit.edu.

Top // 6.858 home // Last updated Saturday, 29-Sep-2012 10:55:47 EDT

1 of1 10/6/2012 1:52 PM

/)

Paper Question 10

Michael Plasmeier

Yes, ForceHTTPS still provides additional protection. Browsers are currently built for maximum
compatibility. One of the examples cited in the paper is that some browsers will send the Secure
flagged cookie to a site with a separate self-signed certificate after only a warning message. This means
an attacker could set up a rouge site with a self-signed certificate that if a user visits (after clicking past
the ubiquitous warning) it will send the user’s Secure cookie (ie session key) to that rouge site.

Mﬁ’ [0//0

Qﬁ b4 Joking) Lb$SL
a,b? Put | T

OH S=7P1 5 1Y)

Do 350 Shab, (Ao L5t o
Foo Lo- P w T

éﬁ/w/‘if‘z w/ 7 /V#W@/Zk ﬁi&ﬁ

———

bebbe asmd rgfuad vy safe

o

C&(D on - gp M’f('

wltad (un ou2, mbibs, ¥ b dop pudh

S Golve W/ gﬁ_@]‘
/W\L” btk ve gwe ey C"E([ﬂv/

%j

W&MHL#W [Wﬁ Ml + O lvafe N3

Y
j Vi g EPk(M)
) Dék (¢

})\f}' 0((&/ CD“/ /Mgnﬁ& 6[@
E\U t\ ; N
/hjp (0n { @([6(/7 | /lm]]
l()/\ M]LQ@/I/T%

T
~MA(-
ML _Mé@ééa[g(’/ q,dhmﬂ(cﬁ}% (OJC
of I wl o adie
Vg Gmotic \ny o

~ A (- 1k« hash

"‘;é 50
Mm_ e ho by (oq vl
- Phl by o
M oy (g ~ g o |
_,.S(Lﬁn o i
T /W{ S/OL(‘\ not hectly a@ Rash

Y
M =il W M Sel C@mm%t)(wh*méfﬂ
(L‘/C(ﬂt “S“o +WM *‘o g
Pﬂymltwm

bk g (7]

C . >
\/
[(Vlz) /\MC/\[I%)

}% m A% /% hoe sae ot of

W Symn‘g% [,w/ —wh &L Muﬁﬂ/ 61460((9,@ Thwssw}?é

C WJS
@ %&pmw

@ (o).
8“* e (e hy Pl alely ,!fliloﬂjj o S

0
‘h\\tb ’Lb Oﬂm A M’b)

U1 Rl bak o dael iMaik,
L cottiafy ooy
™

kﬁfw Oy m)?e §7 ot Wl st
\y p‘otc “7 o o howss

bk s b b (oliflute Sipd
(ﬁ%} @Do\/fa)c’(, L@yj

/| \
T bohes §phhe by & Pk,

Rener it/

ST 221,
o (S
\/Q/(ﬁ (P l& 5@4@%

New Dol © 551 T ¢
|)/\HPQ Y poy il o

EVQ/’{W‘(’\D S;\O\/\r(], LQ W/QP(BJ, \m Sgl
Evghy o/l faffec

Negdisly Cughao + Ohoc feuboe,

& Nk

W‘/%

W% v/

(“@LE%M&L S
?ﬂ”% O k- paF | pemsster, (2+(3)

A A/?
(5) M [l sy

@L@@ H@ﬂ/ﬂﬁ(% ‘(5 m Mo Lﬂnﬂ”wﬁi /€(5(é1 O{C ﬁ”tﬁ

0
SSL L\‘LS 6\ 6‘169&7 56%}4"1 Wﬁ“"’[ﬂﬂﬂ/’ I""I/ﬂd{
P./ M, ZU!{W LL

Now (c//\g £ ’O/QM‘ fﬂplqy

?ﬁﬁwnﬂ@}@ o8/

’F%L (@’ﬂf((m‘k M Aqn. W{W hastnarc
(P gpcm, P

0 ¥ puspal om

— [t & wleod mz'JHWf//
™ Ch vt be able o (/)w;,al
- 'M 15 S0r@4g (dﬂ} A ﬁv{sc, -
Mo poly e fegpuleom
1000 of (B pe instuleg

8

(}M ém/(A CI/W(/\
ﬂwa»{ oy -7 o1 C%

Mt faak 4l s Ch
> Gl o cobs s
(ol &
G = Oigho

J/———_

}\Hps / (0&7(Ja/ von 7é }VHﬁJ // f’“WMl ‘(M

~ W fﬁ for W <t G g one
Call b g l// '{k v

})ﬁ Cookles on { follp YLZ%Q ((/[%

(ohigy g ngr S ped b o/ f’)
s o, Mol gd g ﬁ?‘,as/

@
- Néem/“ H”ﬁ

only WF b WITA

h/\fof éenIL +o HTH)

s
‘(E Q/\‘lﬂ(’/lj PceééLA/o'J %odld }WMM asqu sewe.

$ite
% Lok (on
HT. 1 b
\/@/féz Joualy nae — pt 02 P Lo,
:EE(@J%” Cha 67
'p(otlem

| (it
) éEAsF

CRImp
Sy vdny ok "o

@ At 5@ e
QMI on (ﬂa F (%ly 55 Vol cos
— Aty Gt bed coltlake

Ao w vl A
“—JD&S 0{ ?‘Mmf
~ (omals
— D}(@\L H Moh/

- §€l/%(l @ Yew

- Q%/Ocaﬂm B D bad cuts
~ hae natvy| Ly e
(s phld (AL ol cuntatln Jik
‘Jr@m[%/ £ ot Cmpze[«%i«/‘ﬂ
"o many = hege [l

~ (LS
O "a'ft’@) T ﬂx
o (b ks pehd

- %L\ Céﬂr 4 (l(v@\

~ bA N Jl—(’/“ (# ¢4y G 7% uc:s;'fl.)
0l Bowes Voot [l dide Chaanls
ik 0%0(for hefel yifi log a sueens

l

% bcower 6\;,@5 wcwﬂﬁ

T fag pu oo cond (ot ool g

‘KMI’LS ()o(ln/gpﬂ fails
(ot Pato]

%L OlObW”@v
\M[ﬁ ot v € oty (/[’WWA

})} (yh Claa«gQ /lan‘u/wdy

G Ol pc)llf/f 5506

Pt endold (anon
L Supt 7

Kem}l’/d /

Lsupk Sa = ”LHP l// . 7
On Bl ¢ite

b g e ¢ 4,
fnd Lhaye T
(M{ do olfiyh’lf/d’j VO" (g

o Confor)

Can), fany A o attihe,
Cnfihade dwﬁ(

NOW X‘@%@g (,@*Lk 0 (OPL Of h/(l

@
@d&)lfb CL
- fopd e € laj

| [|
= No real coohie 1deeity

& M el dil] e b HITAS
Do vay for Guar Yol
/SO CW\ 6’}3” Q%éim /ml}wfh_._
Ub@’§ ’(66\/@

—Ues don b ik URL

pay pal com

C@ Pa,\/ pal (o)
Teale A

- e lﬁn T (b ‘@r fa/{\
_,(/56/5 (/Vd& 'h\/‘p\@l/" e//;,é

Iy o
U 60 me' CL? Wwe Q&&/@Q h@éo 1550y |

-/—\

Frad HTTP
hﬂ&g Gy sob
~felle hosy F 0 are faty
~ N W’Wid@ boHon
~HTP relield b HITPs

- WK(JQ COMLCA} /”00[‘0/0(

m‘f Sl T L (wlie
Stk @\(ldl/b)“um — b pred e,
g”o”lg W’”ﬁ of B HTPS (g
’- O‘L\C Gomao @qu 9@{3 (,péoMa,) (%/ N
Ste Dok foun Y oot
So 0aly 5?//\ VIIC(w@
g Bga%mﬂp} '
D@wz Cokr ol conec v

el
@ NS norad ©

- Ned IVSSE(

~ Sond W@/@A@%@L 0aly Whim /4, al-
T)ch fo(ad;

’DL 1/5 I - Woousers
vH i - HW[WL shol tuspot et

gm CM@ : /
C(/STLO"’] Mol
61\5 = 09e = G40 gl
T i
Sord In sr)ml feg —nt o @l

2 by

A HW§ roliel-
E(f0/§ tomLW{
M V"\‘LWA Cszlt?/H‘ = Ging Amwsm Kode ; nod 6w

N)
6 ill Yo pn BFC 6
Y o
—a.},g,bl@d \/e;{zcw{f'/dqmm/ Wﬂ/k
Oé}a / A

Bl IsF

N })mwﬁ@/)

N5 (e/ts,
<031 Lib
1 1 a{
%(t?f}«e, M/ﬁl» @ad
St
Wocfpélmi@ oigad. b, ,
TS0 g Caa }O/Q‘WHL I
— Mo \gllJQ Gl\aﬂrﬂ/(| (5(IE_ H/— "r\
M M%{‘ peopl{, cim{' lWQ
% HML%S OpiL o4

.LM 4D"hnlt
L

ow Ty had olod i Nowst,
l\lb\' 0€ (/Aa ét'JLQ &(3% F b

é{) ﬁﬂl// ?“’\{ nit- wa
M’ S ot 6}/%0;% wa

http://css.csail.mit.edw/6.858/2012/lec/110-forcehttps. txt

SSL and HTTPS LC) /()

Administrivia
Lab 3 parts 1 and 2 due Friday.
Office hours are weird this week.

Wed. 5-7pm 56-191
Thurs. 3-5pm Stata 1lst floor
i 10am-12pm Stata 1lst floor

Overall problem: security in the presence of a network adversary.
Web browser communicates with web servers via network.
Unlike previocus lectures, adversary assumed to intercept, modify packets.
Turns out this is a good model for many situations:
Nearby adversaries can intercept packets on wired, wireless networks.
Adversaries can often spoof packets from arbitrary sources.
How to build secure systems in the presence of such adversaries?

Recall: two kinds of encryption schemes.

E is encrypt, D is decrypt

Symmetric key cryptography means same key is used to encrypt & decrypt
ciphertext = E_k(plaintext)
plaintext = D _k(ciphertext)

Asymmetric key (public-key) cryptography: encrypt & decrypt keys differ
ciphertext = E_PK(plaintext)
plaintext = D SK(ciphertext)
PK and SK are called public and secret (private) key, respectively

Public-key cryptography is orders of magnitude slower than symmetric

Encryption provides data secrecy, often also want integrity.
Message authentication code (MAC) with symmetric keys can provide integrity.
Look up HMAC if you're interested in more details.
Can use public-key crypto to sign and verify, almost the opposite:
Use secret key to generate signature (compute D_SK)
Use public key to check signature (compute E_PK)
How to secure network communication with cryptography? (Simple sketch.)
Suppose two computers already have a shared secret key.
Use symmetric encryption and MAC to encrypt, authenticate messages.
Adversary cannot decrypt or tamper with messages.
What can we do if two computers don't have a shared secret?
One possibility: two computers know each other's public keys.
Use public-key encryption (expensive) to exchange symmetric keys.
Strawman: A picks symmetric key, encrypts with PK B, sends to B.
Now fall back to symmetric encryption/MAC case.

What can go wrong with strawman?
Adversary can replay all of A's traffic and B would not notice.

Solution: have the server send a nonce (random value).

Incorporate the nonce into the final master secret:

K master = f(K pre-master, nonce)

Adversary can impersonate A, by sending ancother symmetric key to B.
Possible solution (one of many; if B cares who A is):

B also chooses and send a symmetric key to A, encrypted with PK _A.

Then both A and B use a hash of the two keys combined.
Adversary can later obtain SK B, decrypt symmetric key and all messages.
Solution: use a key exchange protocol like Diffie-Hellman,

which provides forward secrecy.

What if neither computer knows each other's public key?

Common approach: use a trusted third party to generate certificates.
Certificate is tuple (name, pubkey), signed by certificate authority.
Meaning: certificate authority claims that name's public key is pubkey.
B sends A a pubkey along with a certificate.

I of5 10/13/2012 5:05 PM

http://css.csail.mit.edw/'6.858/2012/1ec/I10-forcehttps.txt

If A trusts certificate authority, continue as above.
The process to establish K master is called the "handshake"

Plan for securing web browsers: HTTPS

New protocol: https instead of http (e.g., https://www.paypal.com/).

1. How to ensure data is not sniffed or tampered with on the network?
Use SSL (a cryptographic protocol that uses certificates).

SSL encrypts and authenticates network traffic.

Negotiate ciphers (and other features: compression, extensions).

Negotiation is done in clear. Include a MAC of all handshake messages
to authenticate.

2. How to ensure that we are talking with the right server?

SSL certificate name must match hostname in the URL
In our example, certificate name must be www.paypal.com.
One level of wildcard is also allowed (*.paypal.com)
Browsers trust a number of certificate authorities.
What happens if adversary tampers with DNS records?
Good news: security doesn't depend on DNS.
We already assumed adversary can tamper with network packets.
Wrong server will not know correct private key matching certificate.

3. How to ensure client-side Javascript cannot be used to subvert security?
Origin (from the same-origin policy) includes the protocol.

http://www.paypal.com/ is different from https://www.paypal.com/
Here, we care about integrity of data (e.g., Javascript code).
Result: non-HTTPS pages cannot tamper with HTTPS pages.
Rationale: non-HTTPS pages could have been modified by adversary.

4. How to ensure user credentials are not sent to wrong server?

Server certificates help clients differentiate between servers.
Cookies (common form of user credentials) have a "Secure" flag.
Secure cookies can only be sent with HTTPS requests.

Non-Secure cookies can be sent with HTTP and HTTPS requests.

5. Finally, users can enter credentials directly. How to secure that?
Lock icon in the browser tells user they're interacting with HTTPS site.
Browser should indicate to the user the name in the site's certificate.
User should verify site name they intend to give credentials to.

How can this plan go wrong?
As you might expect, every step above can go wrong.
Not an exhaustive list, but gets at problems that ForceHTTPS wants to solve.

1. Cryptography.

There have been some attacks on the cryptographic parts of SSL.

Attack by Rizzo and Duong can allow adversary to learn some plaintext by
issuing many carefully-chosen requests over a single SSL connection. (BEAST)

More recent attack by same people using compression, mentioned in iSEC
lecture. (CRIME)

Some servers use weak crypto, e.g. certificates signed with MD5.

But, cryptography is rarely the weakest part of a system.

2. Authenticating the server.

Adversary may be able to obtain a certificate for someone else's name.
Used to require a faxed request on company letterhead (but how to check?)
Now often requires receiving secret token at root@domain.com or similar.
Security depends on the policy of least secure certificate authority.
There are 100's of trusted certificate authorities in most browsers.
Several CA compromises in 2011 (certs for gmail, etc obtained)
Servers may be compromised and the corresponding private key stolen.

How to deal with compromised certificate (e.g., invalid cert or stolen key)?
Certificates have expiration dates.
Checking certificate status with CA on every request is hard to scale.
Certificate Revocation List (CRL) published by some CA's, but relatively

few certificates in them (spot-checking: most have zero revoked certs).

CRL must be periodically downloaded by client.

2 of 5 10/13/2012 5:05 PM

http://css.csail.mit.edw/'6.858/2012/lec/110-forcehttps.txt

Could be slow, if many certs are revoked.
Not a problem if few or zero certs are revoked, but not too useful.
OCSP: online certificate status protocol.
Query whether a certificate is wvalid or not.
Various heuristics for guessing whether certificate is OK or not.
CertPatrol, EFF's SSL Observatory,
Not as easy as "did the cert change?'". Websites sometimes test new CAs.
Problem: online revocation checks are soft-fail. An active network attacker
can just make the checks unavailable. Browsers don't like blocking on a
side channel. (Performance, single point of failure, captive portals, etc.)
In practice browsers push updates with blacklist after major breaches.
SSL implementations have bugs in verifying certificate names.
Remember important principle from 6.033: "be explicit".
Certificate contains length (in bytes) followed by that many name bytes.
Many C implementations store names as standard C strings.
Some CAs would provide certificates for www.paypal.com\0.attacker.comn.
To non-C code (e.g., Java), looks like a valid attacker.com subdomain.
Users ignore certificate mismatch errors.
Despite certificates being easy to obtain, many sites misconfigure them.
Some don't want to deal with (non-zero) cost of getting certificates.
Others forget to renew them (certificates have expiration dates).
End result: browsers allow users to override mismatched certificates.
About 60% of bypass buttons shown by Chrome are clicked through.

3. Mixing HTTP and HTTPS content.
Web page origin is determined by the URL of the page itself.
Page can have many embedded elements:
Javascript via <SCRIPT> tags
CSS style sheets wvia <STYLE> tags
Flash code via <EMBED> tags
Images via tags
If adversary can tamper with these elements, could control the page.
In particular, Javascript and Flash code give control over page.
CSS gives less control, but still abusable. Particularly with
complex attribute selectors.
Probably the developer wouldn't include Javascript from attacker's site.
But, if the URL is non-HTTPS, adversary can tamper with HTTP response.

4. Protecting cookies.

Web application developer could make a mistake, forgets the Secure flag.
User visits http://bank.com/ instead of https://bank.com/, leaks cookie.

Suppose the user only visits https://bank.com/. Why is this still a problem?

1. Adversary can cause another HTTP site to redirect to http://bank.com/.

2. Even if user never visits any HTTP site, application code might be buggy.
Some sites serve login forms over HTTPS and serve other content over HTTP.
Be careful when serving over both HTTP and HTTPS.

E.g., Google's login service creates new cookies on request.

Login service has its own (Secure) cookie.

Can request login to a Google site by loading login's HTTPS URL.
Used to be able to also login via cookie that wasn't Secure.
ForceHTTPS solves problem by redirecting HTTP URLs to HTTPS.
http://blog.icir.org/2008/02/sidejacking-forced-sidejacking-and.html

Cookie integrity: a non-Secure cookie set on http://bank.com will still be
sent to https://bank.com. No way to determine who set the cookie.

5. Users directly entering credentials.
Phishing attacks.
Users don't check for lock icon.
Users don't carefully check domain name, don't know what to lock for.
E.g., typo domains (paypal.com), unicode
Web developers put login forms on HTTP pages (target login script is HTTPS).

of5 10/13/2012 5:05 PM

40f5

http://css.csail.mit.eduw/6.858/2012/lec/10-forcehttps.txt

Adversary can modify login form to point to another URL.
Login form not protected from tampering, user has no way to tell.

How can we address some of these problems?
ForceHTTPS (this paper):
A flag that a server can set for itself.
- Makes SSL certificate misconfiguraticns into a fatal error.
- Redirects HTTP requests to HTTPS.
- Prohibits non-HTTPS embedding (+ performs ForceHTTPS for them).
What problems does this solve? Mostly 2, 3, and to scome extent 4.
Is this really necessary? Can we just only use HTTPS, set Secure
cookies, etc.?
- Users can still click-through errors, so it still helps for #2.
- Not necessary for #3 assuming the web developer never makes a mistake.
- Still helpful for #4. Marking cookies as Secure gives confidentiality,

but not integrity. Active attacker can serve fake set at http://bank.com,
and set cookies for https://bank.com. (https://bank.com cannot distinguish)

Why not just turn it on for everyone?

= HTTPS site might not exist

- If it does, might not be the same site (https://web.mit.edu is
authenticated, but http://web.mit.edu isn't)

- HTTPS page may expect users to click through (self-signed certs).

Implementing ForceHTTPS
The ForceHTTPS bit is stored in a cookie.
Interesting issues:
State exhaustion (the ForceHTTPS cookie getting evicted).
Denial of service (force entire domain; force via JS; force wvia HTTP).
Bootstrapping (how to get ForceHTTPS bit; how to avoid privacy leaks).
Possible solution 1: DNSSEC.
Possible solution 2: embed ForceHTTPS bit in URL name (if possible).
If there's a way to get some authenticated bits from server owner
(DNSSEC, URL name, etc), should we just get the public key directly?
Difficulties: users have unreliable networks. Browsers are unwilling
to block the handshake on a side-channel request.

Current status of ForceHTTPS:
Some ideas from ForceHTTPS are being adopted into standards.
HTTP Strict-Transport-Security header is similar to a ForceHTTPS cookie.
Uses header instead of magic cookie:
Strict-Transport-Security: max-age=7884000; includeSubDomains
Turns HTTP links into HTTPS links.
Prohibits user from overriding SSL errors (e.g., bad certificate).
Optionally applies to all subdomains.
Why is this useful?
non-Secure and forged cookies can be leaked or set on subdomains.
Optionally provides an interface for users to manually enable it.
Implemented in Chrome, Firefox, and Opera.
Bootstrapping largely unsolved. Chrome has a hard-coded list of preloads.
Soon to be an RFC.

IE9 and Chrome block mixed scripting by default. Firefox 18 to follow up.

Other ways to address problems in SSL

Better tools / better developers to avoid programming mistakes.
Mark all sensitive cookies as Secure (#4).
Avoid any insecure embedding (#3).
Unfortunately, seems error-prone..
Does not help end-users (requires developer involvement).

EV certificates.
Trying to address problem 5: users don't know what to look for in cert.
In addition to URL, embed the company name (e.g., "PayPal, Inc.")
Typically shows up as a green box next to the URL bar.
Why would this be more secure?

10/13/2012 5:05 PM

hitp://css.csail.mit.edw/6.858/2012/lec/110-forcehttps.txt

When would it actually improve security?

Might indirectly help solve #2, if users come to expect EV certificates.
Blacklist weak crypto.

Browsers are starting to reject MD5 signatures on certificates

(i0S 5, Chrome 18, Firefox 16)
and RSA keys with < 1024 bits.
(Chrome 18, 0S X 10.7.4, Windows XP+ after a recent update)

OCSP stapling.

OCSP responses are signed by CA.

Server sends OCSP response in handshake instead of guerying online (#2).

Effectively a short-lived certificate.

Problems:

- Not widely deployed.

- Only possible to staple one OCSP response.
Key pinning.

Only accept certificates signed by per-site whitelist of CAs.

Remove reliance on least secure CA (#2).

Currently a hard-coded list of sites in Chrome.

Diginotar compromise caught in 2011 because of key pinning.

Plans to add mechanism for sites to advertise pins (HTTP header, TACK).

Same bootstrapping difficulty as in ForceHTTPS.

References:
http://www.educatedguesswork.org/2011/09/security impact of the rizzodu.html
http://en.wikipedia.org/wiki/HTTP Strict Transport Security
http://tools.ietf.org/html/draft-ietf-websec-strict-transport-sec-14
http://blogs.msdn.com/b/ie/archive/2011/06/23/internet-explorer-9-security-part-4-p1
http://blog.chromium.org/2012/08/ending-mixed-scripting-vulnerabilities.html
http://www.imperialviolet.org/2012/07/19/hopeStalk.html
http://www.thoughtcrime.org/papers/ocsp-attack.pdf
http://www.imperialviolet.org/2011/03/18/revocation.html
http://www.imperialviolet.org/2012/02/05/crlsets.html
http://tools.ietf.org/html/draft-ietf-websec-key-pinning-02
http://tack.io/
http://dankaminsky.com/2011/08/31/notnotar/

50f5 10/13/2012 5:05 PM

Public-key cryptography - Wikipedia, the free encyclopedia

Public-key cryptography

From Wikipedia, the free encyclopedia

Public-key eryptography refers to a cryptographic system
requiring two separate keys, one of which is secret and one of
which is public. Although different, the two parts of the key pair
are mathematically linked. One key locks or encrypts the
plaintext, and the other unlocks or decrypts the ciphertext.
Neither key can perform both functions (however, the private
key can generate the public key). One of these keys is published
or public, while the other is kept private.

Public-key cryptography uses asymmetric key algorithms (such
as RSA), and can also be referred to by the more generic term
"asymmetric key cryptography.” The algorithms used for public
key cryptography are based on mathematical relationships (the
most notable ones being the integer factorization and discrete
logarithm problems) that presumably have no efficient solution.
Although it is computationally easy for the intended recipient to
generate the public and private keys, to decrypt the message
using the private key, and easy for the sender to encrypt the
message using the public key. it is extremely difficult (or
effectively impossible) for anyone to derive the private key,
based only on their knowledge of the public key. This is why,
unlike symmetric key algorithms. a public key algorithm does
not require a secure initial exchange of one (or more) secret
keys between the sender and receiver. The use of these
algorithms also allows the authenticity of a message to be
checked by creating a digital signature of the message using the
private key, which can then be verified by using the public key.
In practice, only a hash of the message is typically encrypted for
signature verification purposes.

Public-key cryptography is a fundamental, important, and
widely used technology. It is an approach used by many
cryptographic algorithms and cryptosystems. It underpins such
Internet standards as Transport Layer Security (TLS), PGP, and
GPG. There are three primary kinds of public key systems:
public key distribution systems, digital signature systems, and
public key cryptosystems, which can perform both public key
distribution and digital signature services. Diffie-Hellman key

exchange is the most widely used public key distribution system,

while the Digital Signature Algorithm is the most widely used
digital signature system.

http://en.wikipedia.org/wiki/Public-key cryptography

Alice

 Large
Random
Number

Y
Key
Generation
Program
7 b

4 »

T
R

i

il

In an asymmetric key encryption scheme,
anyone can encrypt messages using the
public key, but only the holder of the paired
private key can decrypt. Security depends on
the secrecy of the private key.

Alice
will | | sign
pay $500 © (Encrypt)” = :
' ' : Alice's
+ private key

DFCD3454

BBEA788A
Bob l
il | | Verify L=
|pay $500° (Decrypt) Alice's
A S et public key

In some related signature schemes, the
private key is used to sign a message; anyone
can check the signature using the public key.
Validity depends on security of the private
key.

10/22/2012 12:20 AM

Public-key cryptography - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Public-key cryptography

P Alice
Contents ' |
Bob's Combine 751 A696C

public key

keys " 24D97009

= | How it works :

.o s Alice andBob's
=2 D?scrlpllon A dbearilneicter
2 I']ISIOI:}’ 2:;32!:5(: keey
= 4 Security
= 5 Practical considerations - Bob

= 5.1 A postal analogy OL’“::“EF\ -
= 5.2 Actual algorithms: two linked keys Alice's | Combine | 751A696C
= 5.3 Weaknesses publickey gfkevel _" 24D97009
= 5.4 Computational cost Alice and Bob's
= 5.5 Associating public keys with identities g shared secret
m 5.6 Relation to real world events private key
= 5.6.1 Privilege of key revocation
= 5.6.2 Distribution of a new key In the Diffie-Hellman key exchange scheme,
= 5.6.3 Spreading the revocation cach party generates a public/private key pair
= 5.6.4 Recovery from a leaked key and distributes the public key... After
= 6 Examples obtaining an authentic copy of each other's
= 7 See also public keys, Alice and Bob can compute a
= 8 Notes shared secret offline. The shared secret can
= O References be used, for instance, as the key for a
= 10 External links symmetric cipher.

How it works

The distinguishing technique used in public-key cryptography is the use of asymmetric key algorithms,
where the key used to encrypt a message is not the same as the key used to decrypt it. Each user has a pair
of cryptographic keys - a public encryption key and a private decryption key. The publicly available
encrypting-key is widely distributed, while the private decrypting-key is known only to the recipient.
Messages are encrypted with the recipient's public key, and can be decrypted only with the corresponding
private key. The keys are related mathematically, but the parameters are chosen so that determining the
private key from the public key is either impossible or prohibitively expensive. The discovery of algorithms
that could produce public/private key pairs revolutionized the practice of cryptography, beginning in the
mid-1970s.

In contrast, symmetric-key algorithms - variations of which have been used for thousands of years - use a
single secret key, which must be shared and kept private by both the sender and the receiver, for both
encryption and decryption. To use a symmetric encryption scheme, the sender and receiver must securely
share a key in advance.

Because symmetric key algorithms are nearly always much less computationally intensive than asymmetric
ones, it is common to exchange a key using a key-exchange algorithm, then transmit data using that key and
a symmetric key algorithm. PGP and the SSL/TLS family of schemes use this procedures, and are thus
called hybrid cryptosystems.

10/22/2012 12:20 AM

Public-key cryptography - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Public-key cryptography

Description

The two main uses for public-key cryptography are:

= Public-key encryption: a message encrypted with a recipient's public key cannot be decrypted by
anyone except a possessor of the matching private key - it is presumed that this will be the owner of

that key and the person associated with the public key used. This is used to attempt to ensure
confidentiality.

» Digital signatures: a message signed with a sender's private key can be verified by anyone who has
access to the sender's public key, thereby proving that the sender had access to the private key and,
therefore, is likely to be the person associated with the public key used. This also ensures that the
message has not been tampered with (on the question of authenticity, see also message digest).

An analogy to public-key encryption is that of a locked mail box with a mail slot. The mail slot is exposed
and accessible to the public - its location (the street address) is, in essence, the public key. Anyone knowing
the street address can go to the door and drop a written message through the slot. However, only the person
who possesses the key can open the mailbox and read the message.

An analogy for digital signatures is the sealing of an envelope with a personal wax seal. The message can be
opened by anyone, but the presence of the unique seal authenticates the sender.

A central problem with the use of public-key cryptography is confidence (ideally, proof) that a particular
public key is correct, and belongs to the person or entity claimed (i.e. is "authentic"), and has not been
tampered with, or replaced by, a malicious third party (a "man-in-the-middle"). The usual approach to this
problem is to use a public-key infrastructure (PKI), in which one or more third parties - known as certificate
authorities - certify ownership of key pairs. PGP, in addition to being a certificate authority structure, has
used a scheme generally called the "web of trust", which decentralizes such authentication of public keys by

a central mechanism, and substitutes individual endorsements of the link between user and public key. To

date, no fully satisfactory solution to this "public key authentication problem" has been Foumd, loikeion reazed]

History

During the early history of cryptography, two parties would rely upon a key using a secure, but
non-cryptographic, method. For example, a face-to-face meeting or an exchange, via a trusted courier, could
be used. This key, which both parties kept absolutely secret, could then be used to exchange encrypted
messages. A number of significant practical difficulties arise with this approach to distributing keys.
Public-key cryptography addresses these drawbacks so that users can communicate securely over a public
channel without having to agree upon a shared key beforchand.

In 1874, a book by William Stanley Jevonst ! described the relationship of one-way functions to
cryptography, and went on to discuss specifically the factorization problem used to create the trapdoor

function in the RSA system. In July 1996, one obscrvcrl-2] commented on the Jevons book in this way:

In his book The Principles of Science: A Treatise on Logic and Scientific Method, written and

published in the 18908,[3 | William S. Jevons observed that there are many situations where the
"direct" operation is relatively easy, but the "inverse" operation is significantly more difficult.
One example mentioned briefly is that enciphering (encryption) is casy while deciphering

Jof 12 10/22/2012 12:20 AM

Public-key cryptography - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Public-key cryptography

(decryption) is not. In the same section of Chapter 7: Introduction titled "Induction an Inverse
Operation", much more attention is devoted to the principle that multiplication of integers is
easy, but finding the (prime) factors of the product is much harder. Thus, Jevons anticipated a
key feature of the RSA Algorithm for public key cryptography, although he certainly did not
invent the concept of public key cryptography.

In 1997, it was publicly disclosed that asymmetric key algorithms were secretly developed by James H. Ellis,
Clifford Cocks, and Malcolm Williamson at the Government Communications Headquarters (GCHQ) in the
UK in 1973.1*) These researchers independently developed Diffie~Hellman key exchange, and a special case
of RSA. The GCHQ cryptographers referred to the technique as "non-secret encryption". This work was
named an IEEE Milestone in 2010.°!

An asymmetric-key cryptosystem was published in 1976 by Whitfield Diffie and Martin Hellman who,
influenced by Ralph Merkle's work on public-key distribution, disclosed a method of public-key agreement.
This method of key exchange, which uses exponentiation in a finite field, came to be known as Diffie—
Hellman key exchange. This was the first published practical method for establishing a shared secret-key
over an authenticated (but not private) communications channel without using a prior shared secret.
Merkle's "public-key-agreement technique" became known as Merkle's Puzzles, and was invented in 1974
and published in 1978.

A generalization of Cocks's scheme was independently invented in 1977 by Ron Rivest. Adi Shamir and
Leonard Adleman, all then at MIT. The latter authors published their work in 1978, and the algorithm
appropriately came to be known as RSA. RSA uses exponentiation modulo, a product of two very large
primes, to encrypt and decrypt, performing both public key encryption and public key digital signature. Its
security is connected to the (presumed) extreme difficulty of factoring large integers, a problem for which
there is no known efficient (i.e. practicably fast) general technique. In 1979, Michael O. Rabin published a
related cryptosystem that is provably secure, at least as long as the factorization of the public key remains
difficult - it remains an assumption that RSA also enjoys this security.

Since the 1970s, a large number and variety of encryption, digital signature, key agreement, and other
techniques have been developed in the field of public-key cryptography. The ElGamal cryptosystem,
invented by Taher ElGamal. relies on the similar and related high level of difficulty of the discrete logarithm
problem, as does the closely related DSA, which was deve loped at the US National Security Agency (NSA)
and published by NIST as a proposed standard. The introduction of elliptic curve cryptography by Neal
Koblitz and Victor Miller, independently and simultaneously in the mid-1980s, has yielded new public-key
algorithms based on the discrete logarithm problem. Although mathematically more complex, elliptic curves
provide smaller key sizes and faster operations for approximately equivalent estimated security.

Security

Some encryption schemes can be proven secure on the basis of the presumed difficulty of a mathematical
problem, such as factoring the product of two large primes or computing discrete logarithms. Note that
"secure” here has a precise mathematical meaning, and there are multiple different (meaningful) definitions
of what it means for an encryption scheme to be "secure”. The "right" definition depends on the context in
which the scheme will be deployed.

The most obvious application of a public key encryption system is confidentiality - a message that a sender
encrypts using the recipient's public key can be decrypted only by the recipient's paired private key. This

40f12 10/22/2012 12:20 AM

Public-key cryptography - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Public-key cryptography

assumes, of course, that no flaw is discovered in the basic algorithm used.

Another type of application in public-key cryptography is that of digital signature schemes. Digital signature
schemes can be used for sender authentication and non-repudiation. In such a scheme, a user who wants to
send a message computes a digital signature for this message, and then sends this digital signature (together
with the message) to the intended receiver. Digital signature schemes have the property that signatures can
be computed only with the knowledge of the correct private key. To verify that a message has been signed
by a user and has not been modified, the receiver needs to know only the corresponding public key. In some
cases (e.g2. RSA), there exist digital signature schemes with many similarities to encryption schemes. In other
cases (e.g. DSA), the algorithm does not resemble any encryption scheme.

To achieve both authentication and confidentiality, the sender can first sign the message using his private
key and then encrypt both the message and the signature using the recipient's public key.

These characteristics can be used to construct many other (sometimes surprising) cryptographic protocols
and applications, such as digital cash, password-authenticated key agreement, multi-party key agreement,
time-stamping services, non-repudiation protocols, etc.

Practical considerations

A postal analogy

An analogy that can be used to understand the advantages ol an asymmetric system is to imagine two

o o o
people, Alice and Bob, who are sending a secret message through the public mail. In this example, Alice
wants to send a secret message to Bob, and expects a secret reply from Bob.

With a symmetric key system, Alice first puts the secret message in a box, and locks the box using a padlock
to which she has a key. She then sends the box to Bob through regular mail. When Bob receives the box, he
uses an identical copy of Alice's key (which he has somehow obtained previously, maybe by a face-to-face
meeting) to open the box, and reads the message. Bob can then use the same padlock to send his secret
reply.

In an asymmetric key system, Bob and Alice have separate padlocks. First, Alice asks Bob to send his open
padlock to her through regular mail, keeping his key to himself. When Alice receives it she uses it to lock a
box containing her message, and sends the locked box to Bob. Bob can then unlock the box with his key and
read the message from Alice. To reply, Bob must similarly get Alice's open padlock to lock the box before
sending it back to her.

The critical advantage in an asymmetric key system is that Bob and Alice never need to send a copy of their
keys to each other. This prevents a third party - perhaps, in this example, a corrupt postal worker - from
copying a key while it is in transit, allowing the third party to spy on all future messages sent between Alice
and Bob. So, in the public key scenario, Alice and Bob need not trust the postal service as much. In addition,
if Bob were careless and allowed someone else to copy his key, Alice's messages to Bob would be
compromised, but Alice's messages to other people would remain secret. since the other people would be
providing different padlocks for Alice to use.

In another kind of asymmetric key system in which neither party needs to even touch the other party's
padlock (or key), Bob and Alice have separate padlocks. First, Alice puts the secret message in a box, and
locks the box using a padlock to which only she has a key. She then sends the box to Bob through regular

S5ofl12 10/22/2012 12:20 AM

Public-key cryptography - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Public-key_cryptography

60f12

mail. When Bob receives the box, he adds his own padlock to the box, and sends it back to Alice. When
Alice receives the box with the two padlocks, she removes her padlock and sends it back to Bob. When Bob
receives the box with only his padlock on it, Bob can then unlock the box with his key and read the message
from Alice. Note that, in this scheme, the order of decryption is the same as the order of encryption - this is
only possible if commutative ciphers are used. A commutative cipher is one in which the order of encryption
and decryption is interchangeable, just as the order of multiplication is interchangeable (i.e. A*B*C = A*C*B
= c*B*n). A simple xor with the individual keys is such a commutative cipher. For example, let £1 () and
E2 () be two encryption functions, and let "v" be the message so that if Alice encrypts it using £1 () and
sends £1 (M) to Bob. Bob then again encrypts the message as £ (21 (M)) and sends it to Alice. Now, Alice
decrypts £2 (Eq (M)) using £1 (). Alice will now get £5 (1), meaning when she sends this again to Bob, he
will be able to decrypt the message using E; () and get "v". Although none of the keys were ever exchanged,
the message """ may well be a key (e.g. Alice's Public key). This three-pass protocol is typically used during
key exchange.

Actual algorithms: two linked keys

Not all asymmetric key algorithms operate in precisely this fashion. The most common ones have the
property that Alice and Bob each own fwo keys, one for encryption and one for decryption. In a secure
asymmetric key encryption scheme, the private key should not be deducible from the public key. This is
known as public-key encryption, since an encryption key can be published without compromising the
security of messages encrypted with that key.

In the analogy above, Bob might publish instructions on how to make a lock ("public key"). However, the
workings of the lock are such that it is impossible (so far as is known) to deduce from the instructions given
just exactly how to make a key that will open that lock (e.g. a "private key"). Those wishing to send
messages to Bob must use the public key to encrypt the message, then Bob can use his private key to
decrypt it.

Another example has Alice and Bob both choosing a key at random, and then contacting each other to
compare the depth of each notch on their keys. Having determined the difference, a locked box is built with
a special lock that has each pin inside divided into 2 pins, matching the numbers of their keys. Now the box
will be able to be opened with either key, and Alice and Bob can exchange messages inside the box in a
secure fashion.

Weaknesses

Of course, there is a possibility that someone could "pick" Bob's or Alice's lock. Among symmetric key
encryption algorithms, only the one-time pad can be proven to be secure against any adversary - no matter
how much computing power is available. However, there is no public-key scheme with this property, since
all public-key schemes are susceptible to a "brute-force key search attack". Such attacks are impractical if
the amount of computation needed to succeed - termed the "work factor" by Claude Shannon - is out of
reach of all potential attackers. In many cases, the work factor can be increased by simply choosing a longer
key. But other algorithms may have much lower work factors, making resistance to a brute-force attack
irrelevant. Some special and specific algorithms have been developed to aid in attacking some public key
encryption algorithms - both RSA and ElGamal encryption have known attacks that are much faster than the
brute-force approach. These factors have changed dramatically in recent decades, both with the decreasing
cost of computing power and with new mathematical discoveries.

10/22/2012 12:20 AM

Public-key cryptography - Wikipedia, the free encyclopedia htp://en.wikipedia.org/wiki/Public-key cryptography

In practice, these insecurities can be generally avoided by choosing key sizes large enough that the
best-known attack algorithm would take so long to have a reasonable chance at successfully "breaking the
code” that it is not worth any adversary's time and money to proceed with the attack. For example, if an
estimate of how long it takes to break an encryption scheme is one thousand years, and it were used to

encrypt details which are obsolete a few weeks after being sent, then this could be deemed a reasonable risk
and trade-ofT.

Aside from the resistance to attack of a particular key pair. the security of the certification hierarchy must
be considered when deploying public key systems. Some certificate authority - usually a purpose-built
program running on a server computer - vouches for the identities assigned to specific private keys by
producing a digital certificate. Public key digital certificates are typically valid for several years at a time, so
the associated private keys must be held securely over that time. When a private key used for certificate
creation higher in the PKI server hierarchy is compromised. or accidentally disclosed, then a "man-in-
the-middle attack" is possible, making any subordinate certificate wholly insecure.

Major weaknesses have been found for several formerly promising asymmetric key algorithms. The
'knapsack packing' algorithm was recently found to be insecure after the development of new attack.
Recently, some attacks based on careful measurements of the exact amount of time it takes known hardware
to encrypt plain text have been used to simplify the scarch for likely decryption keys (see "side channel
attack"). Thus, mere use of asymmetric key algorithms does not ensure security. A great deal of active
research is currently underway to both discover, and to protect against, new attack algorithms.

Another potential security vulnerability in using asymmetric keys is the possibility of a "man-in-the-middle"
attack, in which the communication of public keys is intercepted by a third party (the "man in the middle")
and then modified to provide different public keys instead. Encrypted messages and responses must also be
intercepted, decrypted, and re-encrypted by the attacker using the correct public keys for different
communication segments, in all instances, so as to avoid suspicion. This attack may seem to be difficult to
implement in practice, but it is not impossible when using insecure media (e.g. public networks, such as the
Internet or wireless forms of communications) - for example, a malicious staff member at Alice or Bob's
Internet Service Provider (ISP) might find it quite easy to carry out. In the earlier postal analogy, Alice
would have to have a way to make sure that the lock on the returned packet really belongs to Bob before
she removes her lock and sends the packet back. Otherwise, the lock could have been put on the packet by a
corrupt postal worker pretending to be Bob, so as to fool Alice.

One approach to prevent such attacks involves the use of a certificate authority, a trusted third party
responsible for verifying the identity of a user of the system. This authority issues a tamper-resistant,
non-spoofable digital certificate for the participants. Such certificates are signed data blocks stating that this
public key belongs to that person, company, or other entity. This approach also has its weaknesses - for
example, the certificate authority issuing the certificate must be trusted to have properly checked the
identity of the key-holder, must ensure the correctness of the public key when it issues a certificate, and
must have made arrangements with all participants to check all their certificates before protected
communications can begin. Web browsers, for instance, are supplied with a long list of "self-signed identity
certificates" from PKI providers - these are used to check the bona fides of the certificate authority and
then, in a second step, the certificates of potential communicators. An attacker who could subvert any single
one of those certificate authorities into issuing a certificate for a bogus public key could then mount a
"man-in-the-middle" attack as easily as if the certificate scheme were not used at all. Despite its theoretical
and potential problems, this approach is widely used. Examples include SSL and its successor, TLS, which
are commonly used to provide security for web browsers, for example, so that they might be used to
securely send credit card details to an online store.

Tof12 10/22/2012 12:20 AM

Public-key cryptography - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Public-key_cryptography

Computational cost

The public key algorithms known thus far are relatively computationally costly compared with most
symmetric key algorithms of apparently equivalent security. The difference factor is the use of typically
quite large keys. This has important implications for their practical use. Most are used in hybrid
cryptosystems for reasons of efficiency - in such a cryptosystem, a shared secret key ("session key") is
generated by one party, and this much briefer session key is then encrypted by each recipient's public key.
Each recipient then uses the corresponding private key to decrypt the session key. Once all parties have
obtained the session key, they can use a much faster symmetric algorithm to encrypt and decrypt messages.
In many of these schemes, the session key is unique to each message exchange, being pseudo-randomly
chosen for each message.

Associating public keys with identities

The binding between a public key and its "owner" must be correct, or else the algorithm may function
perfectly and yet be entirely insecure in practice. As with most cryptography applications, the protocols
used to establish and verify this binding are critically important. Associating a public key with its owner is
typically done by protocols implementing a public key infrastructure - these allow the validity of the
association to be formally verified by reference to a trusted third party in the form of either a hierarchical
certificate authority (e.g., X.509), a local trust model (e.g. SPKI), or a web of trust scheme, like that
originally built into PGP and GPG, and still to some extent usable with them. Whatever the cryptographic
assurance of the protocols themselves, the association between a public key and its owner is ultimately a
matter of subjective judgment on the part of the trusted third party, since the key is a mathematical entity.
while the owner - and the connection between owner and key - are not. For this reason, the formalism of a
public key infrastructure must provide for explicit statements of the policy followed when making this
judgment. For example, the complex and never fully implemented X.509 standard allows a certificate
authority to identify its policy by means of an object identifier, which functions as an index into a catalog of
registered policies. Policies may exist for many different purposes, ranging from anonymity to military
classification.

Relation to real world events

A public key will be known to a large and, in practice, unknown set of users. All events requiring revocation
or replacement of a public key can take a long time to take full effect with all who must be informed (i.e. all
those users who possess that key). For this reason, systems that must react to events in real time (e.g.,
safety-critical systems or national security systems) should not use public-key encryption without taking
great care. There are four issues of interest:

Privilege of key revocation

A malicious (or erroneous) revocation of some (or all) of the keys in the system is likely, or in the second
case, certain, to cause a complete failure of the system. If public keys can be revoked individually, this is a
possibility. However, there are design approaches that can reduce the practical chance of this occurring. Ior
example, by means of certificates, we can create what is called a "compound principal” - one such principal
could be "Alice and Bob have Revoke Authority". Now, only Alice and Bob (in concert) can revoke a key,
and neither Alice nor Bob can revoke keys alone. However, revoking a key now requires both Alice and
Bob to be available, and this creates a problem of reliability. In concrete terms, from a security point of
view, there is now a "single point of failure" in the public key revocation system. A successful Denial of

Sofl2 10/22/2012 12:20 AM

Public-key cryptography - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Public-key cryptography

Service attack against either Alice or Bob (or both) will block a required revocation. In fact, any partition of
authority between Alice and Bob will have this effect, regardless of how it comes about.

Because the principle allowing revocation authority for keys is very powerful, the mechanisms used to
control it should involve both as many participants as possible (to guard against malicious attacks of this
type), while at the same time as few as possible (to ensure that a key can be revoked without dangerous
delay). Public key certificates that include an expiration date are unsatisfactory in that the expiration date
may not correspond with a real-world revocation need - but at least such certificates need not all be tracked
down system-wide, nor must all users be in constant contact with the system at all times.

Distribution of a new key

After a key has been revoked, or when a new user is added to a system, a new key must be distributed in
some predetermined manner. Assume that Carol's key has been revoked (e.g. by exceeding its expiration
date, or because of a compromise of Carol's matching private key). Until a new key has been distributed,
Carol is effectively "out of contact". No one will be able to send her messages without violating system
protocols (i.e. without a valid public key, no one can encrypt messages to her), and messages from her
cannot be signed, for the same reason. Or, in other words, the "part of the system" controlled by Carol is, in
essence, unavailable. Security requirements have been ranked higher than system availability in such
designs.

One could leave the power to create (and certify) keys (as well as to revoke them) in the hands of each user
- the original PGP design did so - but this raises problems of user understanding and operation. For security
reasons, this approach has considerable difficulties - if nothing else. some users will be forgetful, or
inattentive, or confused. On the one hand, a message revoking a public key certificate should be spread as
fast as possible, while on the other hand, parts of the system might be rendered inoperable before a new key
can be installed. The time window can be reduced to zero by always issuing the new key together with the
certificate that revokes the old one, but this requires co-location of authority to both revoke keys and
generate new keys.

It is most likely a system-wide failure if the (possibly combined) principal that issues new keys fails by
issuing keys improperly. This is an instance of a "common mutual exclusion” - a design can make the
reliability of a system high, but only at the cost of system availability(and vice versa).

Spreading the revocation

Notification of a key certificate revocation must be spread to all those who might potentially hold it, and as
rapidly as possible.

There are but two means of spreading information (i.c. a key revocation) in a distributed system: either the
information is "pushed" to users from a central point (or points), or clse it is "pulled" from a central point(or
points) by the end users.

Pushing the information is the simplest solution, in that a message is sent to all participants. However, there
is no way of knowing whether all participants will actually receive the message. If the number of
participants is large, and some of their physical or network distancee are great, then the probability of
complete success (which is, in ideal circumstances, required for system security) will be rather low. In a
partly updated state, the system is particularly vulnerable to "denial of service" attacks as security has been
breached, and a vulnerability window will continue to exist as long as some users have not "gotten the

9of 12 10/22/2012 12:20 AM

Public-key cryptography - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Public-key cryptography

word". Put another way, pushing certificate revocation messages is neither easy to secure, nor very reliable.

The alternative to pushing is pulling. In the extreme, all certificates contain all the keys needed to verify that
the public key of interest (i.e. the one belonging to the user to whom one wishes to send a message, or whose
signature is to be checked) is still valid. In this case, at least some use of the system will be blocked if a user
cannot reach the verification service (i.e. one of the systems that can establish the current validity of another
user's key). Again, such a system design can be made as reliable as one wishes, at the cost of lowering
security - the more servers to check for the possibility of a key revocation, the longer the window of
vulnerability.

Another trade-off is to use a somewhat less reliable, but more secure, verification service, but to include an
expiration date for each of the verification sources. How long this "timeout" should be is a decision that
requires a trade-off between availability and security that will have to be decided in advance, at the time of
system design.

Recovery from a leaked key

Assume that the principal authorized to revoke a key has decided that a certain key must be revoked. In
most cases, this happens after the fact - for instance, it becomes known that at some time in the past an
event occurred that endangered a private key. Let us denote the time at which it is decided that the
compromise occurred as 7.

Such a compromise has two implications. First, messages encrypted with the matching public key (now or in
the past) can no longer be assumed to be secret. One solution to avoid this problem is to use a protocol that
has perfect forward secrecy. Second. signatures made with the no longer trusted to be actually private key
after time 7" can no longer be assumed to be authentic without additional information (i.e. who, where, when,
ete.) about the events leading up to the digital signature. These will not always be available, and so all such
digital signatures will be less than credible. A solution to reduce the impact of leaking a private key of a
signature scheme is to use timestamps.

Loss of secrecy and/or authenticity, even for a single user, has system-wide security implications, and a
strategy for recovery must thus be established. Such a strategy will determine who has authority to, and
under what conditions one must, revoke a public key certificate. One must also decide how to spread the
revocation, and ideally, how to deal with all messages signed with the key since time 7' (which will rarely be
known precisely). Messages sent to that user (which require the proper - now compromised - private key to
decrypt) must be considered compromised as well, no matter when they were sent.

Examples

Examples of well-regarded asymmetric key techniques for varied purposes include:

Diffie-Hellman key exchange protocol

DSS (Digital Signature Standard), which incorporates the Digital Signature Algorithm
ElGamal

Various elliptic curve techniques

= Various password-authenticated key agreement techniques

Paillier cryptosystem

RSA encryption algorithm (PKCS#1)

10 of 12 10/22/2012 12:20 AM

Transport Layer Security - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Transport Layer Security

Transport Layer Security

From Wikipedia, the free encyclopedia

Transport Layer Security (TLS) and its predecessor, Secure Sockets Layer (SSL), are cryptographic

protocols that provide communication security over the Internet.!") TLS and SSL encrypt the segments of
network connections at the Application Layer for the Transport Layer, using asymmetric cryptography for

key exchange, symmetric encryption for confidentiality, and message authentication codes for message
integrity.

Several versions of the protocols are in widespread use in applications such as web browsing, electronic
mail, Internet faxing, instant messaging and voice-over-IP (VoIP).

TLS is an IETF standards track protocol, last updated in RFC 5246, and is based on the earlier SSL
specifications developed by Netscape Communications.?!

Contents

= | Description
= 2 History and development
= 2.1 Secure Network Programming API
2.2 SSL 1.0,2.0 and 3.0
23TLS1.0
24TLS 1.1
m 25T1.812
= 3 Applications
= 4 Security
= 4.1 TLS handshake in detail
= 4.1.1 Simple TLS handshake
= 4.1.2 Client-authenticated TLS handshake
= 4.1.3 Resumed TLS handshake
= 4.2 TLS record protocol
= 4.3 Handshake protocol
= 4.4 Alert protocol
= 4.5 ChangeCipherSpec protocol
= 4.6 Application protocol
5 Support for name-based virtual servers
6 Implementations
= 6.1 Browser implementations
= 6.2 Software
= (.3 Standards
7 See also
8 References and footnotes
9 Further reading
10 External links

| of 22 10/22/2012 12:21 AM

Transport Layer Security - Wikipedia, the free encyclopedia

2

™~
2

http://en.wikipedia.org/wiki/Transport_Layer_Security

Description

The TLS protocol allows client-server applications to communicate across a network in a way designed to
prevent eavesdropping and tampering.

Since most protocols can be used either with or without TLS (or SSL) it is necessary to indicate to the server
whether the client is making a TLS connection or not. There are two main ways of achieving this; one option
is to use a different port number for TLS connections (for example port 443 for HTTPS). The other is to use
the regular port number and have the client request that the server switch the connection to TLS using a
protocol specific mechanism (for example STARTTLS for mail and news protocols).

Once the client and server have decided to use TLS they negotiate a stateful connection by using a

handshaking proccdure.[J] During this handshake, the client and server agree on various parameters used to
establish the connection's security.

1. The client sends the server the client's SSL version number, cipher settings, session-specific data, and
other information that the server needs to communicate with the client using SSL.

2. The server sends the client the server's SSL version number, cipher settings, session-specific data, and
other information that the client needs to communicate with the server over SSL. The server also
sends its own certificate, and if the client is requesting a server resource that requires client
authentication, the server requests the client's certificate.

3. The client uses the information sent by the server to authenticate the server (see Server
Authentication for details). If the server cannot be authenticated, the user is warned of the problem
and informed that an encrypted and authenticated connection cannot be established. If the server can
be successfully authenticated, the client proceeds to step 4.

4. Using all data generated in the handshake thus far, the client (with the cooperation of the server,
depending on the cipher being used) creates the pre-master secret for the session, encrypts it with the
server's public key (obtained from the server's certificate, sent in step 2), and then sends the encrypted
pre-master secret to the server.

5. If the server has requested client authentication (an optional step in the handshake), the client also
signs another piece of data that is unique to this handshake and known by both the client and server.
In this case, the client sends both the signed data and the client's own certificate to the server along
with the encrypted pre-master secret.

6. If the server has requested client authentication, the server attempts to authenticate the client (see
Client Authentication for details). If the client cannot be authenticated, the session ends. If the client
can be successfully authenticated, the server uses its private key to decrypt the pre-master secret, and
then performs a series of steps (which the client also performs, starting from the same pre-master
secret) to generate the master secret.

7. Both the client and the server use the master secret to generate the session keys, which are symmetric
keys used to encrypt and decrypt information exchanged during the SSL session and to verify its
integrity (that is, to detect any changes in the data between the time it was sent and the time it is
received over the SSL connection).

8. The client sends a message to the server informing it that future messages from the client will be
encrypted with the session key. It then sends a separate (encrypted) message indicating that the client
portion of the handshake is finished.

9. The server sends a message to the client informing it that future messages from the server will be
encrypted with the session key. It then sends a separate (encrypted) message indicating that the server
portion of the handshake is finished.

10/22/2012 12:21 AM

Transport Layer Security - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Transport_Layer Security

The SSL handshake is now complete and the session begins. The client and the server use the session keys to
encrypt and decrypt the data they send to each other and to validate its integrity.

This is the normal operation condition of the secure channel. At any time, due to internal or external
stimulus (either automation or user intervention), either side may renegotiate the connection, in which case,

the process repeats itself,[*]

This concludes the handshake and begins the secured connection, which is encrypted and decrypted with the
key material until the connection closes.

If any one of the above steps fails, the TLS handshake fails and the connection is not created.

History and development

Secure Network Programming API

Early research efforts toward transport layer security included the Secure Network Programming (SNP)
application programming interface (API), which in 1993 explored the approach of having a secure transport
layer API closely resembling Berkeley sockets, to facilitate retrofitting preexisting network applications with
security measures.]

SSL 1.0, 2.0 and 3.0

The SSL protocol was originally developed by Netscapc.m Version 1.0 was never publicly released; version
2.0 was released in February 1995 but "contained a number of security flaws which ultimately led to the

design of SSL version 3.0."71 SSL version 3.0, released in 1996, was a complete redesign of the protocol
produced by Paul Kocher working with Netscape engineers Phil Karlton and Alan Freier. Newer versions of
SSL/TLS are based on SSL 3.0. The 1996 draft of SSL. 3.0 was published by IETF as a historic document in
RFC 6101.

TLS 1.0

TLS 1.0 was first defined in RFC 2246 in January 1999 as an upgrade of SSL Version 3.0. As stated in the
RFC, "the differences between this protocol and SSL 3.0 are not dramatic, but they are significant enough
that TLS 1.0 and SSL 3.0 do not interoperate. " TLS 1.0 does include a means by which a TLS
implementation can downgrade the connection to SSL 3.0, thus weakening security.

On September 23, 2011 researchers Thai Duong and Juliano Rizzo demonstrated a "proof of concept" called
BEAST (Browser Exploit Against SSL/TLS) using a Java Applet to violate same origin policy constraints,

for a long-known Cipher block chaining (CBC) vulnerability in TLS 1.0.B8101 practical exploits had not been
previously demonstrated for this vulnerability, which was originally discovered by Phillip Rogaway“o] in
2002.

Mozilla updated the development versions of their NSS libraries to mitigate BEAST-like attacks. NSS is used
by Mozilla Firefox and Google Chrome to implement SSL. Some web servers that have a broken

implementation of the SSL specification may stop working as a result.[!!]

10/22/2012 12:21 AM

L]
=]

—
S
(8]

Transport Layer Security - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Transport _Layer Security

Microsoft released Security Bulletin MS12-006 on January 10, 2012, which fixed the BEAST vulnerability

by changing the way that the Windows Secure Channel (SChannel) component transmits encrypted network

packets.“?*}

As a work-around, the BEAST attack can also be prevented by removing all CBC ciphers from one's list of
allowed ciphers—Ileaving only the RC4 cipher, which is still widely supported on most websites.!31114]
Users of Windows 7 and Windows Server 2008 R2 can enable use of TLS 1.1 and 1.2, but this work-around

will fail if it is not supported by the other end of the connection and will result in a fall-back to TLS 1.0.

The authors of the BEAST attack are also the creators of the later CRIME attack, which uses data
compression as an oracle.

TLS 1.1

TLS 1.1 was defined in RFC 4346 in April 2006.1" 1t is an update from TLS version 1.0. Significant
differences in this version include:

= Added protection against Cipher block chaining (CBC) attacks.
= The implicit Initialization Vector (IV) was replaced with an explicit IV.
= Change in handling of padding errors.

= Support for IANA registration of parameters.

TLS 1.2

TLS 1.2 was defined in RFC 5246 in August 2008. It is based on the earlier TLS 1.1 specification. Major
differences include:

= The MD5-SHA-1 combination in the pseudorandom function (PRI) was replaced with SHA-256, with
an option to use cipher-suite specified PRTs.

= The MDS5-SHA-1 combination in the Finished message hash was replaced with SHA-256, with an
option to use cipher-suite specific hash algorithms. However the size of the hash in the finished
message is still truncated to 96-bits.

= The MD5-SHA-1 combination in the digitally signed element was replaced with a single hash
negotiated during handshake, defaults to SHA-1.

= Enhancement in the client's and server's ability to specify which hash and signature algorithms they
will accept.

= Expansion of support for authenticated encryption ciphers, used mainly for Galois/Counter Mode
(GCM) and CCM mode of Advanced Encryption Standard encryption.

= TLS Extensions definition and Advanced Encryption Standard CipherSuites were added.

TLS 1.2 was further refined in RFC 6176 in March 2011 redacting its backward compatibility with SSL such
that TLS sessions will never negotiate the use of Secure Sockets Layer (SSL) version 2.0.

Applications
In applications design, TLS is usually implemented on top of any of the Transport Layer protocols,

encapsulating the application-specific protocols such as HTTP, FTP, SMTP, NNTP and XMPP. Historically it
has been used primarily with reliable transport protocols such as the Transmission Control Protocol (TCP).

4 0f22 10/22/2012 12:21 AM

Transport Layer Security - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Transport Layer Security

However, it has also been implemented with datagram-oriented transport protocols, such as the User
Datagram Protocol (UDP) and the Datagram Congestion Control Protocol (DCCP), usage which has been
standardized independently using the term Datagram Transport Layer Security (DTLS).

A prominent use of TLS is for securing World Wide Web traffic carried by HTTP to form HTTPS. Notable
applications are electronic commerce and asset management. Increasingly, the Simple Mail Transfer
Protocol (SMTP) is also protected by TLS. These applications use public key certificates to verify the
identity of endpoints.

TLS can also be used to tunnel an entire network stack to create a VPN, as is the case with OpenVPN.
Many vendors now marry TLS's encryption and authentication capabilities with authorization. There has
also been substantial development since the late 1990s in creating client technology outside of the browser
to enable support for client/server applications. When compared against traditional [Psec VPN technologies,
TLS has some inherent advantages in firewall and NAT traversal that make it easier to administer for large
remote-access populations.

TLS is also a standard method to protect Session Initiation Protocol (SIP) application signaling. TLS can be
used to provide authentication and encryption of the SIP signaling associated with VoIP and other SIP-based
applications.

Security

TLS has a variety of security measures:

= Protection against a downgrade of the protocol to a previous (less secure) version or a weaker cipher
suite.

= Numbering subsequent Application records with a sequence number and using this sequence number
in the message authentication codes (MACs).

= Using a message digest enhanced with a key (so only a key-holder can check the MAC). The HMAC
construction used by most TLS cipher suites is specified in RFC 2104 (SSL 3.0 used a different
hash-based MAC).

= The message that ends the handshake ("Finished") sends a hash of all the exchanged handshake
messages seen by both parties.

» The pseudorandom function splits the input data in half and processes each one with a different
hashing algorithm (MD35 and SHA-1), then XORs them together to create the MAC. This provides
protection even if one of these algorithms is found to be vulnerable. 7LS only.

= SSL 3.0 improved upon SSL 2.0 by adding SHA-1 based ciphers and support for certificate
authentication.

From a security standpoint, SSL 3.0 should be considered less desirable than TLS 1.0. The SSL 3.0 cipher
suites have a weaker key derivation process; half of the master key that is established is fully dependent on
the MD5 hash function, which is not resistant to collisions and is, therefore, not considered secure. Under
TLS 1.0, the master key that is established depends on both MD5 and SHA-1 so its derivation process is not
currently considered weak. It is for this reason that SSL 3.0 implementations cannot be validated under FIPS

140-2.11]
A vulnerability of the renegotiation procedure was discovered in August 2009 that can lead to plaintext

injection attacks against SSL 3.0 and all current versions of TLS. For example, it allows an attacker who can
hijack an https connection to splice their own requests into the beginning of the conversation the client has

50f22 10/22/2012 12:21 AM

Transport Layer Security - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Transport_Layer Security

with the web server. The attacker can't actually decrypt the client-server communication, so it is different
from a typical man-in-the-middle attack. A short-term fix is for web servers to stop allowing renegotiation,
which typically will not require other changes unless client certificate authentication is used. To fix the
vulnerability, a renegotiation indication extension was proposed for TLS. It will require the client and server

to include and verify information about previous handshakes in any renegotiation handshakes.!'”) This
extension has become a proposed standard and has been assigned the number RFC 5746. The RFC has been

implemented in recent ()pcnSSL[18] and other libraries.[! 120!

. . . : 3
There are some attacks against the implementation rather than the protocol itself:l2!]

= In the earlier implementations, some CAst??! did not explicitly set basicConstraints CA=FALSE for
leaf nodes. As a result, these leaf nodes could sign rogue certificates. In addition, some early software
(including IE6 and Konqueror) did not check this field altogether. This can be exploited for man-in-
the-middle attack on all potential SSL connections.
= Some implementations (including older versions of Microsoft Cryptographic API, Network Security
Services and GnuTLS) stop reading any characters that follow the null character in the name field of
the certificate, which can be exploited to fool the client into reading the certificate as if it were one
that came from the authentic site, e. g. paypal. com\0.badguy.com would be mistaken as the site of
paypal.com rather than badguy.com.
= Browsers implemented SSL/TLS protocol version fallback mechanisms for compatibility reasons. The
protection offered by the SSL/TLS protocols against a downgrade to a previous version by an active
MITM attack can be rendered useless by such mechanisms.*]
SSL 2.0 is flawed in a variety of ways:[ciarion needed]
= [dentical cryptographic keys are used for message authentication and encryption.
= SSL 2.0 has a weak MAC construction that uses the MD5 hash function with a secret prefix, making it
vulnerable to length extension attacks.
= SSL 2.0 does not have any protection for the handshake, meaning a man-in-the-middle downgrade
attack can go undetected.
= SSL 2.0 uses the TCP connection close to indicate the end of data. This means that truncation attacks
are possible: the attacker simply forges a TCP FIN, leaving the recipient unaware of an illegitimate
end of data message (SSL 3.0 fixes this problem by having an explicit closure alert).
= SSL 2.0 assumes a single service and a fixed domain certificate, which clashes with the standard

feature of virtual hosting in Web servers. This means that most websites are practically impaired from
using SSL.

SSL 2.0 is disabled by default, beginning with Internet Explorer 7,[24] Mozilla Firefox 2,[25] Opera and

Safari. After it sends a TLS ClientHello, if Mozilla Firefox finds that the server is unable to complete the
handshake, it will attempt to fall back to using SSL. 3.0 with an SSL. 3.0 ClientHello in SSL 2.0 format to
[26] Support for SSL 2.0 (and weak

40-bit and 56-bit ciphers) has been removed completely from Opera as of version g5

maximize the likelihood of successfully handshaking with older servers.

Modifications to the original protocols, like False Start (adopted and enabled by Google Chr01ne[28]) or
Snap Start, have been reported to introduce limited TLS protocol version rollback attacks?®) or 1o allow
modifications to the cipher suite list sent by the client to the server (an attacker may be able to influence the
cipher suite selection in an attempt to downgrade the cipher suite strength, to use either a weaker symmetric

encryption algorithm or a weaker key cxchange[mj).

60f22 10/22/2012 12:21 AM

Transport Layer Security - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Transport_Layer Security

7022

TLS handshake in detail

The TLS protocol exchanges records, which encapsulate the data to be exchanged. Each record can be
compressed, padded, appended with a message authentication code (MAC), or encrypted, all depending on

the state of the connection. Each record has a content type field that specifies the record, a length field and
a TLS version field.

When the connection starts, the record encapsulates another protocol — the handshake messaging
protocol — which has content type 22.

Simple TLS handshake

A simple connection example follows, illustrating a handshake where the server (but not the client) is
authenticated by its certificate:

1. Negotiation phase:

= A client sends a ClientHello message specifying the highest TLS protocol version it supports, a
random number, a list of suggested CipherSuites and suggested compression methods. If the
client is attempting to perform a resumed handshake, it may send a session 1D.

= The server responds with a ServerHello message, containing the chosen protocol version, a
random number, CipherSuite and compression method {rom the choices offered by the client.
To confirm or allow resumed handshakes the server may send a session ID. The chosen protocol
version should be the highest that both the client and server support. For example, if the client
supports TLS1.1 and the server supports TLS1.2, TLS1.1 should be selected; SSL 3.0 should not
be selected.

= The server sends its Certificate message (depending on the selected cipher suite, this may be
omitted by the Scrver).[3 H

= The server sends a ServerHelloDone message, indicating it is done with handshake negotiation.

= The client responds with a ClientKeyExchange message, which may contain a
PreMasterSecret, public key, or nothing. (Again, this depends on the selected cipher.) This
PreMasterSecret is encrypted using the public key of the server certificate.

» The client and server then use the random numbers and PreMasterSecret to compute a common
secret, called the "master secret". All other key data for this connection is derived from this
master secret (and the client- and server-generated random values), which is passed through a
carefully designed pseudorandom function.

. The client now sends a ChangeCipherSpec record, essentially telling the server, "Everything I tell
you from now on will be authenticated (and encrypted if encryption parameters were present in the
server certificate)." The ChangeCipherSpec is itself a record-level protocol with content type of 20.

= Finally, the client sends an authenticated and encrypted Finished message, containing a hash
and MAC over the previous handshake messages.

= The server will attempt to decrypt the client's Finished message and verify the hash and MAC.
If the decryption or verification fails, the handshake is considered to have failed and the
connection should be torn down.

3. Finally, the server sends a ChangeCipherSpec, telling the client, "Everything I tell you from now on

will be authenticated (and encrypted, if encryption was negotiated)."
= The server sends its authenticated and encrypted Finished message.
= The client performs the same decryption and verification.

4. Application phase: at this point, the "handshake" is complete and the application protocol is enabled,

with content type of 23. Application messages exchanged between client and server will also be

(W]

10/22/2012 12:21 AM

Transport Layer Security - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Transport Layer Security

authenticated and optionally encrypted exactly like in their Finished message. Otherwise, the content
type will return 25 and the client will not authenticate.

Client-authenticated TLS handshake

The following full example shows a client being authenticated (in addition to the server like above) via TLS
using certificates exchanged between both peers.

1. Negotiation Phase:

= A client sends a ClientHello message specifying the highest TLS protocol version it supports, a
random number, a list of suggested cipher suites and compression methods.

= The server responds with a ServerHello message, containing the chosen protocol version, a
random number, cipher suite and compression method from the choices offered by the client.
The server may also send a session id as part of the message to perform a resumed handshake.

= The server sends its Certificate message (depending on the selected cipher suite, this may be
omitted by the scrvcr).[3 4

= The server requests a certificate from the client, so that the connection can be mutually
authenticated, using a CertificateRequest message.

= The server sends a ServerHelloDone message. indicating it is done with handshake negotiation.

» The client responds with a Certificate message, which contains the client's certificate.

= The client sends a ClientKeyExchange message. which may contain a PreMasterSecret, public
key, or nothing. (Again, this depends on the selected cipher.) This Pre MasterSecret is encrypted
using the public key of the server certificate.

= The client sends a CertificateVerify message, which is a signature over the previous handshake
messages using the client's certificate's private key. This signature can be verified by using the
client's certificate's public key. This lets the server know that the client has access to the private
key of the certificate and thus owns the certificate.

= The client and server then use the random numbers and PreMasterSecret to compute a common
secret, called the "master secret". All other key data for this connection is derived from this
master secret (and the client- and server-generated random values), which is passed through a
carefully designed pseudorandom function.

2. The client now sends a ChangeCipherSpec record, essentially telling the server, "Everything I tell
you from now on will be authenticated (and encrypted if encryption was negotiated). " The
ChangeCipherSpec is itself a record-level protocol and has type 20 and not 22.

» Finally, the client sends an encrypted Finished message, containing a hash and MAC over the
previous handshake messages.

» The server will attempt to decrypt the client's Finished message and verify the hash and MAC.
If the decryption or verification fails, the handshake is considered to have failed and the
connection should be torn down.

3. Finally, the server sends a ChangeCipherSpec, telling the client. "Everything I tell you from now on
will be authenticated (and encrypted if encryption was negotiated). "

= The server sends its own encrypted Finished message.
= The client performs the same decryption and verification.

4. Application phase: at this point, the "handshake" is complete and the application protocol is enabled,
with content type of 23. Application messages exchanged between client and server will also be
encrypted exactly like in their Finished message.

Resumed TLS handshake

8 of 22 10/22/2012 12:21 AM

Transport Layer Security - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Transport Layer Security

Public key operations (e. g., RSA) are relatively expensive in terms of computational power. TLS provides a
secure shortcut in the handshake mechanism to avoid these operations. In an ordinary Jfull handshake, the
server sends a session id as part of the ServerHello message. The client associates this session id with the
server's [P address and TCP port, so that when the client connects again to that server, it can use the session
id to shortcut the handshake. In the server, the session id maps to the cryptographic parameters previously
negotiated, specifically the "master secret". Both sides must have the same "master secret” or the resumed
handshake will fail (this prevents an eavesdropper from using a session id). The random data in the
ClientHello and ServerHello messages virtually guarantee that the generated connection keys will be
different than in the previous connection. In the RFCs, this type of handshake is called an abbreviated
handshake. It is also described in the literature as a restart handshake.

1. Negotiation phase:

= A client sends a ClientHello message specifying the highest TLS protocol version it supports, a
random number, a list of suggested cipher suites and compression methods. Included in the
message is the session id from the previous TLS connection.

= The server responds with a ServerHello message, containing the chosen protocol version, a
random number, cipher suite and compression method from the choices offered by the client. If
the server recognizes the session id sent by the client, it responds with the same session id. The
client uses this to recognize that a resumed handshake is being performed. If the server does not
recognize the session id sent by the client, it sends a different value for its session id. This tells
the client that a resumed handshake will not be performed. At this point, both the client and
server have the "master secret" and random data to generate the key data to be used for this
connection.

2. The server now sends a ChangeCipherSpec record, essentially telling the client, "Everything I tell
you from now on will be encrypted. " The ChangeCipherSpec is itself a record-level protocol and has
type 20 and not 22.

= Finally. the server sends an encrypted Finished message, containing a hash and MAC over the
previous handshake messages.

= The client will attempt to decrypt the server's Finished message and verify the hash and MAC.
[f the decryption or verification fails, the handshake is considered to have failed and the
connection should be torn down.

. Finally, the client sends a ChangeCipherSpec, telling the server, "Everything I tell you from now on
will be encrypted. "

= The client sends its own encrypted Finished message.
= The server performs the same decryption and verification.
4. Application phase: at this point, the "handshake" is complete and the application protocol is enabled,
with content type of 23. Application messages exchanged between client and server will also be
encrypted exactly like in their Finished message.

OS]

Apart from the performance benefit, resumed sessions can also be used for single sign-on as it is guaranteed
that both the original session as well as any resumed session originate [rom the same client. This is of

particular importance for the FTP over TLS/SSL protocol which would otherwise suffer from a man in the
; . o
middle attack in which an attacker could intercept the contents of the secondary data connections.[*?! .

TLS record protocol
This is the general format of all TLS records.

+ Byte +0 Byte +1 Byte +2 Byte +3

90f22 10/22/2012 12:21 AM

Transport Layer Security - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Transport_Layer_Security

Byte
0

Bytes Version _ Length
1.4 (Major) (Minor) (hits 15..8) (bits 7..0)
Bytes
5..(m-1)
Bytes
m..(p-1)

Bytes
p-(q-1)

Content type

Protocol message(s)
MAC (optional)
Padding (block ciphers only)

Content type
This field identifies the Record Layer Protocol Type contained in this Record.

Content types
Hex Dec Type
Ox14 20 4 ChangeCipherSpec
0x15121 |Alert
Ox16 22 Handshake
0x17 23 Application

Version
This field identifies the major and minor version of TLS for the contained message. For a ClientHello
message, this need not be the highest version supported by the client.

Versions
Major Minor

; ; Version Type
Version Version yp

3 0 SSL 3.0
3 |1 TLS 1.0
3 i TLS 1.1
3 3 TLS 1.2
Length

The length of Protocol message(s), not to exceed g bytes (16 KiB).

Protocol message(s)
One or more messages identified by the Protocol field. Note that this field may be encrypted
depending on the state of the connection.

MAC and Padding
A message authentication code computed over the Protocol message, with additional key material
included. Note that this field may be encrypted, or not included entirely, depending on the state of the
connection.
No MAC or Padding can be present at end of TLS records before all cipher algorithms and parameters

10 of 22 10/22/2012 12:21 AM

Transport Layer Security - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Transport_Layer Security

have been negotiated and handshaked and then confirmed by sending a CipherStateChange record

(see below) for signalling that these parameters will take effect in all further records sent by the same
peer.

Handshake protocol

Most messages exchanged during the setup of the TLS session are based on this record, unless an error or

warning occurs and needs to be signalled by an Alert protocol record (see below), or the encryption mode of
the session is modified by another record (see ChangeCipherSpec protocol below).

Byte Byte Byte

+ Byte +0 +1 2 43
Byte "y
0 22
Version Length
Bytes

(bits (bits

1.4 (Major) (Minor) 15.8) 7.0)

Héndshake

message data
B_ytes Message length
5.8 type
(bits (bits (bits
23.16) 15.8) 7..0)
9Bi:f;) Handshake message data
Handshake
message data
Bytes Message length

n.(nt3) type
() . (bits (bits = (bits
23.:10) 115.8)) 7.0

Bytes

(n+4).. Handshake message data

Message type
This field identifies the Handshake message type.

Message Types
Code | I)csériﬁtion
0 . HelloRequest
I ClientHello
2 ServerHello
11 Certificate
12 ServerKeyExchange

13 CertificateRequest

11 0f22 10/22/2012 12:21 AM

Transport Layer Security - Wikipedia, the free encyclopedia

14 ServerHelloDone
15 Certificate Verify

16 ClientKeyExchange
20 Finished

Handshake message data length

http://en.wikipedia.org/wiki/Transport_Layer_Security

This is a 3-byte field indicating the length of the handshake data, not including the header.

Note that multiple Handshake messages may be combined within one record.

Alert protocol

This record should normally not be sent during normal handshaking or application exchanges. However, this
message can be sent at any time during the handshake and up to the closure of the session. If this is used to
signal a fatal error, the session will be closed immediately after sending this record, so this record is used to
give a reason for this closure. If the alert level is flagged as a warning, the remote can decide to close the
session if it decides that the session is not reliable enough for its needs (before doing so, the remote may also

send its own signal).

6 Byte +0
Byte 1

0 2
Bytes Version
L4 (Major)

b Level
5..0
Bytes
7..(p-1)
Bytes

p-(q-1)

Byte +1

(Minor)

Byte +2 Byte +3

Length

Description

MAC (optional)

12 0of 22

Padding (block ciphers only)

Level

This field identifies the level of alert. If the level is fatal, the sender should close the session
immediately. Otherwise, the recipient may decide to terminate the session itself, by sending its own
fatal alert and closing the session itself immediately after sending it. The use of Alert records is
optional, however if it is missing before the session closure, the session may be resumed automatically
(with its handshakes).

Normal closure of a session after termination of the transported application should preferably be
alerted with at least the Close notify Alert type (with a simple warning level) to prevent such
automatic resume of a new session. Signalling explicitly the normal closure of a secure session before
effectively closing its transport layer is useful to prevent or detect attacks (like attempts to truncate
the securely transported data, if it intrinsically does not have a predetermined length or duration that
the recipient of the secured data may expect).

10/22/2012 12:21 AM

Transport Layer Security - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Transport_Layer Security

Alert level types
Level

Code fype Connection state
1 warning connection or security may be unstable.
5 fatal connection or security may be compromised, or an unrecoverable error
has occurred.
Description

This field identifies which type of alert is being sent.

_ ~Alert description types
Code Description Level types Note
0 Close notify warning/fatal

10 Unexpected message fatal

Possibly a bad SSL. implementation, or

20 Bad record MAC fatal payload has been tampered with e. g. F'TP
firewall rule on FTPS server.

21 Decryption failed fatal TLS only, reserved

22 Record overflow fatal TLS only

30 Decompression failure fatal

40 Handshake failure fatal
41 No certificate warning/fatal SSL 3.0 only, reserved
42 Bad certificate warning/fatal

E. g. certificate has only Server
43 Unsupported certificate warning/fatal authentication usage enabled and is
presented as a client certificate

44 Certificate revoked warning/fatal
Check server certificate expire also check
45 Certificate expired warning/fatal no certificate in the chain presented has
expired

46 Certificate unknown warning/fatal
47 lllegal parameter fatal

Unknown CA : 5
& (Certificate authority) fatal ILS only
TLS only - E. g. no client certificate has
been presented (TLS: Blank certificate

49 |Access denied Jatkzl message or SSLv3: No Certificate alert), but
server is configured to require one.

50 Decode error fatal TLS only

'51 Decr.y.pt error | warning/fatal TLS only

60 Expoft restriction fatal TLS only, reserved

13 of 22 10/22/2012 12:21 AM

Transport Layer Security - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Transport_Layer_Security

70 Protocol version fatal TLS only
71 Insufficient security fatal TLS only
80 Internal error fatal TLS only
90 User cancelled fatal TLS only
100 No renegotiation warning TLS only
110 Unsupported extension warning TLS only
: Certificate . -
! ek warning LS only
TLS only: client's Server Name Indicator
112 Unrecognized name warning specified a hostname not supported by the
server
13 Bad certificate status fatal TLS only
response
114 Bad certificate hash fatal TLS orly
value
Unknown PSK identity
115 (used in TLS-PSK and fatal TLS only

TLS-SRP)

ChangeCipherSpec protocol

g Byte +0 Byte +1 Byte +2 Byte +3
Byte "
0 20
Bytes Version Length
i 1.4 (Major) (Minor) 0 1
B)gtc CCS protocol type
CCS protocol type

Currently only 1.

Application protocol

_* Byte _+0 Byte +1 Byte +2 Byte +3

Byte

2
0 23
Bytes Version . Length
1.4 (Major) (Minor) (bits 15..8) (bits 7..0)

Bytes i Lob g

5..(m-1) Application data

14 of 22 10/22/2012 12:21 AM

Transport Layer Security - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Transport_Layer Security

Bytes '
m..(p-1) MAC (optional)
e Padding (block cipl I
a) o
p__(g_]) | | | | ing (.oc ciphers only)
Length
Length of Application data (excluding the protocol header and including the MAC and padding
trailers)
MAC
20 bytes for the SHA-1-based HMAC, 16 bytes for the MD5-based HMAC.
Padding

Variable length; last byte contains the padding length.

Support for name-based virtual servers

From the application protocol point of view, TLS belongs to a lower layer, although the TCP/IP model is too
coarse to show it. This means that the TLS handshake is usually (except in the STARTTLS case) performed
before the application protocol can start. The name-based virtual server feature being provided by the
application layer, all co-hosted virtual servers share the same certificate because the server has to select and
send a certificate immediately after the ClientHello message. This is a big problem in hosting environments
because it means either sharing the same certificate among all customers or using a different IP address for
each of them.

There are two known workarounds provided by X.509:

= Ifall virtual servers belong to the same domain, a wildcard certificate can be used. Besides the loose
host name selection that might be a problem or not, there is no common agreement about how to
match wildcard certificates. Different rules are applied depending on the application protocol or
software used.*’]

» Add every virtual host name in the subjectAltName extension. The major problem being that the

certificate needs to be reissued whenever a new virtual server is added.

In order to provide the server name, RFC 4366 Transport Layer Security (TLS) Extensions allow clients to
include a Server Name Indication extension (SNI) in the extended ClientHello message. This extension hints
the server immediately which name the client wishes to connect to, so the server can select the appropriate
certificate to send to the client.

Implementations

SSL and TLS have been widely implemented in several free and open source software projects.
Programmers may use the PolarSSL, CyaSSL, OpenSSL, MatrixSSL, NSS, or GnuTLS libraries for 8SL/ILS
functionality. Microsoft Windows includes an implementation of SSL and TLS as part of its Secure Channel
package. Delphi programmers may use a library called Indy. Comparison of TLS Implementations provides a
brief comparison of features of different implementations.

Browser implementations

150f22 10/22/2012 12:21 AM

Transport Layer Security - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Transport Layer Security

Further information: Comparison of web browsers
All the current web browsers support TLS:

Browser support for TLS

- Browser Platforms | TLS].0 TLS 1.1 | TLS 1.2
Chl'OmCmO;QQ Linux. Mac OS”X, Windows (XP, Vista, 7)1 Yes No No
Chrome 22— Linux, Mac OS X, Windows (XP, Vista, 7)1 Yes Yes NO_

Firefox 2— Linux, Mac OS X, Windows (XP, Vista, 7) = Yes34l Nol33] Nol3¢l
IE 1-7 Mac OS X, Windows (XP, Vista, 7)"" Yes No No
IE 8- Windows 7" | Yes Yes Yes
Opera 10—~ Linux. Mac OS X. Microsoft Windows!"! Yes Yes, disabled Yes, disabled
Safari 5— Mac OS X, Windows (XP, Vista, 7) Yes ? ?
Notes:

= a) Google's Chrome browser supports TLS 1.0, and TLS 1.1 from version 22 (after being dropped
from version 21). TLS 1.2 is not supported.* 7138
= b) For versions of IE that support TLS 1.1 and 1.2, both versions are disabled by default. Microsoft's

TLS implementation is provided by its Schannel packagc.[39]

= ¢) As of Presto 2.2, featured in Opera 10, Opera supports TLS i3

= d) Safari uses OS implementation on Mac OS X, Windows (XP, Vista, 7’)14 'l with unknown version!*?!

Software

OpenSSL: a free implementation (BSD license with some extensions)

GnuTLS: a free implementation (LGPL licensed)

cryptlib: a portable open source cryptography library (includes TLS/SSL implementation)

JSSE: a Java implementation included in the Java Runtime Environment supports TLS 1.1 and 1.2

from Java 7, although is disabled by default for client, and enabled by default for serverl*!
MatrixSSL: a dual licensed implementation

Network Security Services (NSS): FIPS 140 validated open source library

PolarSSL: A tiny SSL/TLS implementation for embedded devices that is designed for ease of use.
CyaSSL: Embedded SSL/TLS Library with a strong focus on speed and size.

Standards
The current approved version of TLS is version 1.2, which is specified in:
= RFC 5246: “The Transport Layer Security (TLS) Protocol Version 1.27.

The current standard replaces these former versions, which are now considered obsolete:

= RFC 2246: “The TLS Protocol Version 1.0”.
» RFC 4346: “The Transport Layer Security (TLS) Protocol Version 1.1,

16 of 22 10/22/2012 12:21 AM

Transport Layer Security - Wikipedia, the free encyclopedia

17 0f 22

http://en.wikipedia.org/wiki/Transport_Layer Security

as well as the never standardized SSI. 3.0:

= RFC 6101: “The Secure Sockets Layer (SSL) Protocol Version 3.0”.

Other RFCs subsequently extended TLS.

Extensions to TLS 1.0 include:

» RFC 2595: “Using TLS with IMAP, POP3 and ACAP”. Specifies an extension to the IMAP, POP3
and ACAP services that allow the server and client to use transport-layer security to provide private,
authenticated communication over the Internet.

» RFC 2712: *“Addition of Kerberos Cipher Suites to Transport Layer Security (TLS)”. The 40-bit
cipher suites defined in this memo appear only for the purpose of documenting the fact that those
cipher suite codes have already been assigned.

» RFC 2817: “Upgrading to TLS Within HTTP/1.17, explains how to use the Upgrade mechanism in
HTTP/1.1 to initiate Transport Layer Security (TLS) over an existing TCP connection. This allows
unsecured and secured HTTP traffic to share the same well known port (in this case, http: at 80 rather
than https: at 443).

= REFC 2818: “HTTP Over TLS”, distinguishes secured traffic from insecure traffic by the use of a

different 'server port'.

= RFC 3207: “SMTP Service Extension for Secure SMTP over Transport Layer Security”. Specifies an

extension to the SMTP service that allows an SMTP server and client to use transport-layer security to
provide private, authenticated communication over the Internet.

» RFC 3268: “AES Ciphersuites for TLS”. Adds Advanced Encryption Standard (AES) cipher suites to

the previously existing symmetric ciphers.

= RFC 3546: “Transport Layer Security (TLS) Extensions”, adds a mechanism for negotiating protocol

extensions during session initialisation and defines some extensions. Made obsolete by RFC 4366.
» RFC 3749: “Transport Layer Security Protocol Compression Methods™, specifies the framework for
compression methods and the DEFLATE compression method.
» RFC 3943: “Transport Layer Security (TLS) Protocol Compression Using Lempel-Ziv-Stac (LL.ZS)™.
» RFC 4132: “Addition of Camellia Cipher Suites to Transport Layer Security (TLS)”.
s RFC 4162: “Addition of SEED Cipher Suites to Transport Layer Security (TLS)”.
s RFC 4217: “Securing FTP with TLS”.

= RFC 4279: “Pre-Shared Key Ciphersuites for Transport Layer Security (TLS)”. adds three sets of new

cipher suites for the TLS protocol to support authentication based on pre-shared keys.

Extensions to TLS 1.1 include:

= RFC 4347: “Datagram Transport Layer Security” specifies a TLS variant that works over datagram
protocols (such as UDP).

= RFC 4366: “Transport Layer Security (TLS) Extensions™ describes both a set of specific extensions
and a generic extension mechanism.

= RFC 4492: “Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS)”.

= RFC 4507: “Transport Layer Security (TLS) Session Resumption without Server-Side State™.

= RFC 4680: “TLS Handshake Message for Supplemental Data”.

» RFC 4681: “TLS User Mapping Extension™.

= RFC 4785: “Pre-Shared Key (PSK) Ciphersuites with NULL Encryption for Transport Layer Security
TLST

u g(FC)5054: “Using the Secure Remote Password (SRP) Protocol for TLS Authentication”. Defines the
TLS-SRP ciphersuites.

¢

10/22/2012 12:21 AM

Transport Layer Security - Wikipedia, the free encyclopedia

18 of 22

http://en.wikipedia.org/wiki/Transport_Layer_Security

= RFC 5081: “Using OpenPGP Keys for Transport Layer Security (TLS) Authentication”, obsoleted by

RFC 6091.

Extensions to TLS 1.2 include:

RFC 5746: “Transport Layer Security (TLS) Renegotiation Indication Extension™.
RFC 5878: “Transport Layer Security (TLS) Authorization Extensions™.
RFC 6091: “Using OpenPGP Keys for Transport Layer Security (TLS) Authentication®.

RFC 6176: “Prohibiting Secure Sockets Layer (SSL) Version 2.0”.

RFC 6209: “Addition of the ARIA Cipher Suites to Transport Layer Security (TLS)”.

| |
See also
» Multiplexed Transport Layer Security
= [xtended Validation Certificate
= SSL acceleration
= Obfuscated TCP
= Server gated cryptography
= {cperypt
|

References and footnotes

1.

(8]

Transport Layer Security - Origin Bound Certificates - A proposed protocol extension that improves
web browser securily via self-signed browser certificates

A T. Dierks, E. Rescorla
(August 2008). "The Transport
Layer Security (TLS) Protocol,
Version 1.2"
(http://tools.ietf.org
/html/rfc5246) .
http://tools.ietf.org
/html/rfc5246.

M A. Freier, P. Karlton, P.
Kocher (August 2011). "The
Secure Sockets Layer (SSL)
Protocol Version 3.0"
(http://tools.ietf.org
/html/rfc6101) .
http://tools.ietf.org
/html/rfc6101.

A "SSL/TLS in Detail
(http://technet.microsoft.com
/en-us/library/cc785811.aspx)
". Microsoft TechNet. Updated
July 31, 2003.

A "Description of the Secure
Sockets Layer (SSL)
Handshake"
(http://support.microsoft.com
/kb/257591) . Support.

microsoft.com. 2008-07-07.
http://support.microsoft.com
/kb/257591. Retrieved
2012-05-17.

. ™ Thomas Y. C. Woo,

Raghuram Bindignavle,
Shaowen Su and Simon S.
Lam, SNP: An interface for
secure network programming
Proceedings USENIX Summer
Technical Conference, June
1994

. M "THE SSL PROTOCOL"

(http://web.archive.org
/web/19970614020952/http:
//home.netscape.com/newsref
/s1d/SSL.html) . Netscape
Corporation. 2007. Archived
from the original
(http:/fhome.netscape.com
/mewsref/std/SSL.html) on 14
June 1997.
http://web.archive.org
/web/19970614020952/http:
//home.netscape.com/newsref
/std/SSL.html.

~ Rescorla 2001

A Dan Goodin (2011-09-19).
"Hackers break SSL
encryption used by millions of
sites"
(http://www.theregister.co.uk
/2011/09
/19/beast_exploits_paypal_ssl/
) . http://www.theregister.co.uk
/2011/09
/19/beast_exploits_paypal ssl/

A "Y' Combinator comments
on the issue"
(http://news.ycombinator.com
/item?id=3015498) .
2011-09-20.
http://news.ycombinator.com
/item?id=3015498.

~ "Security of CBC
Ciphersuites in SSL/TLS"
(http://www.openssl.org/~bodo
/tls-cbe.txt) . 2004-05-20.
http://www.openssl.org/~bodo
/tls-cbe. txt.

. " Brian Smith (2011-09-30).

10/22/2012 12:21 AM

