6.858 Fall 2012 Lab 3: Server-side sandboxing http://css.csail.mit.edw/6.858/2012/labs/1ab3.html

1 of4

6.858 Fall 2012 Lab 3: Server-side sandboxing

Handed out: Wednesday, October 3, 2012
Parts 1 and 2 due: Friday, October 12, 2012 (5:00pm)
All parts due: Friday, October 19, 2012 (5:00pm)

Introduction

In this lab, we will extend the zoobar web application to allow users to use Python code as the:r proﬁ]es Whenever someone
requests a user's profile, the server will execute that user's Python code to generate put. This will

allow users to implement a variety of features in their profiles, such as: l’\d‘ G- l
U W60 |

o A profile that greets visitors by their user name.
o A profile that keeps track of the last several visitors to that profile.

| 1{#{ 4
f ‘. .« . [\
A profile that gives a zoobar to every visitor (limit 1 per minute). } léo- ULK_ p /e 74 (q Il"{ﬁ@ f

Supporting this safely requires sandboxing the profile code on the server, so that it cannot perform arbitrary operations or
access arbitrary files. On the other hand, this code may need to keep track ofpersi es, or to access

existing zoobar databases, to function properly.
_—

To fetch the new source code for this lab, use git to commit your lab 2 solutions, fetch the latest version of the course
repository, and then create a local branch called 1ab3 based on our lab3 branch, origin/lab3:

httpd@vm-6858:~$% cd lab
 httpd@vm-6858:~/lab$ git commit -am 'my solution to lab2'
¢ [lab2 £524ff8] my solution to lab2
1 files changed, 1 insertions(+), 0 deletions(-)
httpd@vm-6858:~/1lab$ git pull
Already up-to-date.
. httpdevm-6858:~/1lab$ git checkout -b lab3 origin/lab3
! Branch lab3 set up to track remote branch lab3 from origin.
" Switched to a new branch 'lab3'
" httpdevm-6858:~/lab$

P
Th@:rce code includes the following components, which you should familiarize yourself with: 0 \L gJ

e profiles/ contains five Python-based profiles, which you will use as examples throughout this lab: 'dﬂf/ b
* 0 profiles/hello-user.py is a simple profile that prints back the name of the visitor when the profile code is
executed, along with the current time.
o profiles/visit-tracker.py keeps track of the last time that each visitor looked at the profile, and prints out
the last visit time (if any).
0 profiles/last-visits.py records the last three visitors to the profile, and prints them out.
o profiles/xfer-tracker.py prints out the last zoobar transfer between the profile owner and the visitor.
o profiles/granter.py gives the visitor one zoobar, as long as the profile owner has any zoobars left, the visitor

has less than 20 zoobars, and it has been at least a minute since the last time the visitor got a :rjibar
® zoobar/proflib.py is a Python module imported by the Python-based profiles to provide an(API for accessin 00('1 d
zoobar state. For example prof1ib.py provides functions to get parameters passed to the Python 6 Q4
zoobar web application, to look up a user's zoobar balance and profile, look up a list of transfers for a user, and to ﬁm
transfer zoobars. hl
® zoobar/profile.py contains a function to run a user's profile as sandboxed Python code. You will modify this file to ‘E,
switch it to the PyPy sandbox. (i

¢ zoobar/nullsandbox.py is a Python module that provides a run function to execute Python code and return its
output. As suggested by its name, it does not provide any isolation for the code; it is the starting point for an (insecure)

" Pythonprofile system. ERE
® zoobar/pypysandbox.py provides some initial code for a module that uses th¢ PyPy ijterpreter to implement a

secure sandbox for Python code, which you will fully implement in this lab. We willdiscuss the PyPy sandbox more
later.

10/6/2012 1:52 PM

6.858 Fall 2012 Lab 3: Server-side sandboxing http://css.csail.mit.edw/6.858/2012/labs/lab3.html

To get started, verify that the lab 3 code you have checked out works, by setting up a user with each of the Python
profiles in the profiles/ directory, and checking that the profile code works properly. To run the server, follow the same
steps as before to set up the /jail directory and then run zook1d:

. httpd@vm-6858:~/lab$ make

‘cc -m32 -g -std=c99 -fno-stack-protector -Wall -Werror -D_GNU_SOURCE -c -o zookld.o zookld.c

i cc -m32 -g -std=c99 -fno-stack-protector -Wall -Werror -D_GNU_SOURCE -c -o http.o http.c

i cc -m32 =zookld.o http.o -lecrypto -o zookld :

i ce -m32 -g -std=c99 -fno-stack-protector -Wall -Werror -D_GNU SOURCE -¢ -o zookfs.o zookfs.c

‘ cc -m32 =zookfs.o http.o -lcrypto -o zookfs

i cc -m32 -g -std=c99 -fno-stack-protector -Wall -Werror -D_GNU_SOURCE -c -o zookd.o zookd.c

i cc -m32 =zookd.o http.o -lcrypto -o zookd

i cc -m32 -g -std=c%9 -fno-stack-protector -Wall -Werror -D_GNU SOURCE -c -o zooksvc.o zooksvec.c

i cc -m32 zooksvc.o -lcrypto -o zooksvc
i httpd@vm-6858:~/1lab$ sudo make setup

: [sudo] password for httpd: 6858

: ./chroot-setup.sh

: + grep -qv uid=0

-+ id

. httpd@vm-6858:~/1lab$ sudo ./zockld
: zookld: Listening on port 8080
i zookld: Launching zookd

You can run make check to run some basic tests and verify that the profile code is working properly (although, keep in mind
that these tests are not exhaustive). At this point, the sandbox check will not pass. This is expected as the PyPy sandbox is
not enabled yet.

If something doesn't seem to be working, try to figure out what went wrong, or contact the course staff, before proceeding
further.

Part 1: Python profiles with privilege separation

The first part of this lab will require you to combine your privilege-separated design from lab 2 with the Python profiles from
this lab. There are two main ways in which these features interact. First, the databases used to look up information are

different (e.g., the zoobar balances are stored in a separate database in a privilege-separated design). Second, transferring
zoobars between users in a privilege-separa i uires an authentication token for the sender.

To get started, you will next need to merge your solutions to achieve privilege separation for lab 2 into the 1ab3 branch, by
running:

: : T A i
. httpd@vm-6858:~/1lab$ it merge lab2
: Merge made by recursive

. httpd@vm-6858:~/1lab$

At this point, if git reports any conﬂfcts, you should resolve them first, and commit the resolved merge, before proceeding.

Exercise 1. Make Python profiles work i ivilege-se ign. Verify that the resulting system can
i correctly execute all five of the example profiles. In order to support the granter. py profile, which performs
i zoobar transfers, you may need to give the profile code an authentication token for the profile owner. Be sure

i that you do not create a way for an arbitrary user to get anqther user's authentication ¢ way around | A Y7/ "4

 this would be to extend the authentication service you implemented in lab 2, to perform an operation that runs a
i given user's profile with that user's current authentication token. i

e L A e S

i Run sudo make check to verify that your modified configuration passes our basic tests, except for the sandbox '
! check. i

2 of4 10/6/2012 1:52 PM

6.858 Fall 2012 Lab 3: Server-side sandboxing http://css.csail.mit.edw/6.858/2012/labs/1ab3.html

Part 2: Initial sandboxing with PyPy

At this point, your web server can run usgr-supplied Python profiles. However, a malicious user may supply arbitrary Python
. . . - "—.-‘_-_—""_‘-

code. Since the profile code is currently executed using nullsandbox.py, it can potentially perform arbitrary actions on the

server, such as reading, writing, or deleting files accessible to the user ID under which the code is running.

. s e
To provide stronger isolation guarantees, we will use t@ndbox. At a high level, PyPy is a Python interpreter, just
like the standard CPython interpreter called python th U are used to using. One difference is that PyPy has a "sandbox"
mode of execution. In this sandbox mode, whenever the PyPy interpreter wants to perform a system call (e.g., in order to
open a file when it encounters a call to the Python open() function), it does not issue the system call directly, but instead
sends the system call arguments over RPC to another process. It then waits for the RPC server to interpret the system call
arguments, and send back the approplm values, before proceeding with its execution. Thus, the RPC
server is in complete control of how the sandboxed code can interact with the outside world, and can implement different
sandboxing policies. ¢ ;\ L

{

Vigg! ¢

For the purposes of this lab. ﬁéy?y interpreter is fixed, but you will be responsible for implementing parts of the RPC
server that interprets and executes "system calls" issued by the sandboxed interpreter, to support operations needed by our
five Python profiles.

You can read more about the PyPy sandbox here:

e http://codespeak.net/pypy/dist/pypy/doc/sandbox.html

In the lab 3 source code, zoobar/pypysandbox.py implements an initial version of PyPy-based sandboxed execution using
its run function. The MySandboxedProc class in pypysandbox.py implements the RPC server we described-above. This
class inherits from existing library code for implementing such an RPC server, which you can find in /jail/zocbar/pypy-
sandbox/pypy/translator/sandbox/pypy_interact.py and /jail/zoobar/pypy-sandbox/pypy/translator
/sandbox/sandlib.py. This library code invokes a method called do_11_os_ 11_os_syscall() to perform system call
syscall; youcanseea few examples in pypysandbox. py already. The library invokes the sandboxed PyPy interpreter
binary, called pypy-c, from the /zoobar/pypy-sandbox/pypy/translator/goal directory (inside of a chroot to /jail).

To implement system calls related to the file system, the RPC server uses a Python-based representation of a file system,
which you can see in /jail/zoobar/pypy-sandbox/pypy/translator/sandbox/vEs.py. You will be extending the file

system parts of the RPC server in later exercises, but for now you may want to simply familiarize yourself with this code.
[S

Exercise 2. Modify the zoobar web application to use pypysandbox instead of nullsandbox to execute Python
i profiles. For now, focus on supporting basic functionality working (namely, the hello-user . py profile). We '
i will get to supporting other example profiles later. — T

To see system calls being issued by the sandboxed PyPy interpreter, set self.debug to True in the
: MySandboxedProc constructor __init__ ().

You will need to provide a different version of proflib.py for Python profiles running inside of the sandbox,

! because the PyPy interpreter does not support some modules, such as the sqlite database. For now, you only
i need to implement the get_param() function in the sandboxed version of proflib.py. You will also need to

. expose your new version of prof1ib.py in the sandboxed file system, perhaps by modifying pypysandbox. py.
: Note that the sandboxed PyPy interpreter loads all files, including proflib.py, via calls to the RPC server in

i pypysandbox.py.

{ Run sudo make check to verify that your modified configuration passes our tests for hello-user.py. The ;
i sandbox check should also pass at this time. It is expected that the other profiles and /tmp check do not pass. If
! you run into problems from the make check tests, you can always check /tmp/html.out for the output html of :
 the profiles. Similarly, you can also check the output of the server in /tmp/zookld. out. If there is an error in '
i the server, they will usually display there.

Submit your answers to the first two parts of the lab assignment by running make submit to upload lab3-handin.tar.gzto
the submission web site.

3of4 10/6/2012 1:52 PM

6.858 Fall 2012 Lab 3: Server-side sandboxing http://css.csail. mit.eduw/6.858/2012/labs/lab3.html

Part 3: Extending the PyPy sandbox

In this part of the lab, we will extend the PyPy sandbox implemented in pypysandbox.py to support operations needed for a
profile to store persistent data, and to access zoobar application state. 60 J V$+ (a & ¢

: Exercise 3. Implement a writable and persistent /tmp directory in the PyPy sandbox. This is needed by the
! visit-tracker.py and last-visits.py profiles to store their persistent information. Make sure that the /t
i directory seen by each user's profife-is separate from other users, so that profiles of different users cannot il ‘; 'ﬁwf- 1‘&{

tamper with each other's files. As in lab 2, remember to consider the possibility of usernames with special

characters. zhg b,,_ P[M

. Ensure that the visit-tracker and last-visits profiles work correctly after you implement your changes.
The /tmp check should also pass at this time. '6/ d‘ (

i Exercise 4. Since the standard Python SQLite module is implemented by calling into the native SQLite C/C++
library, it is not available in the PyPy sandbox (because the native library does not know how to forward its

¢ system calls via the RPC channel). In this exercise, your job is to support the get_xfers () function from

| proflib.py in the sandbox. A reasonable approach to do this is to extend the RPC server (pypysandbox.py)
i to perform the get_xfers () functionality on behalf of the sandboxed code. You will also need to modify

i proflib.py to invoke this new interface.

Hint: to create a new interface between code in the sandbox and the RPC server outside of the sandbox, such as
: for performing get_xfers() calls, consider overloading the file namespace by defining a special file name that
: corresponds to get_xfers calls. You can take a look at VirtualizedSocketProc in .. ./pypy-sandbox

| /pypy/translator/sandbox/sandlib.py to see an example of how the PyPy sandbox exposes access to TCP
: sockets in this manner.

i Once you are finished with this exercise, the xfer-tracker.py should be functioning correctly in the sandbox.

i Exercise 5. Implement the last remaining parts of prof1ib.py in the sandbox: get_user() and xfer (). Once
i you are done, granter.py should work from within the sandbox.)

i Challenge! (optional) For extra credit, allow sandboxed code to safely manipulate sub-directories under /tmp

! using mkdir and rmdir, to open files in those sub-directories, and to be able to unlink and rename files and

i sub-directories. Write an example Python profile that uses sub-directories and renames files. r CL.! M
T A TR o i T8, 00 Bt 1§ st

Challenge’ (optional) Allow sandboxed code to safely create and use symlinks inside of its /tmp directory.

You are done! Run make submit to upload lab3-handin.tar.gz to the submission web site.

4 of 4 10/6/2012 1:52 PM

U?JM“@ (/04@
den ,ou/(L C:O‘w
Lo, ar p(67€ L'(@
%fﬁ Uzél‘,(h?/ ,ng [f/l l*mp [[/(

ggcm\%oy (’J %4& 7 Q@WFQ Pf.@ce{sj
V(’ftf'{j \"// 4 CL\M@G&

ak

’(Jf& 'h\eje 1[1795 Gﬁlaﬂqg@/’

C@Af’) ((/]Lb ;V\ M fun “6]’9[/{ U?d@ s
O Fixed

Eacte |

I‘wlk prof”@s ol i P Sttt {
&%ﬂ

@ (wt g
Dh Loggg in wlon it dgisbied Uy en

O Fal b oty b pll 2l
Able oty tn polile feat
Ve & v woe . oo potile?

ﬂOJLLC foliles 1ol b phe speatad daiy,
(o Jﬂ hq W‘L (,\/p(ﬁ a/)(@ﬂ /’zaw/

&6(04’{0(n‘z VW@(& 7 ﬁ%

9
@ go how JA ve 39% G?Lml@d fo V*lff/[("z; Tooe
W'k

50 6@+ h“v V% (0 ﬁ, /\ 60’””(7'577 B flzr:g/(é,‘
\/f@ @ ~beloe e V!

Afd Wflt é]“owﬁ P On g H/b

‘Lab* J Vs @(/a//tg(
100%\ 7(5;/ M. Gad lgZR
I,dml l/Es i+ @

OL‘\ Now W/'L fle 7L/‘(%H/ fo Lah

J

A Nele_why_reods Aolen
Fedoh tolg | v (ull

Y

éﬂ CW(Gmt/y we N@(J a (IKULM {/a/v, L@/d[/

iﬂ Ol//(%@ 564«({(’/ e Fﬂ{ﬁ @
o proe it
40 W ‘hu th(d“) h% T/nr époze it
o * @
(s potile u/ s Gt ol
Th Gharony bt Gl Charge T / kil
7 ol M (iia p} 7 M/f@%
/ IM\JZ UL“ (F/ﬂ(@)
('F e et fokr

Dot aton folen|
ew ﬁ%w o o ot

?@ C@H To MR h'w Vtrs p/pff/@ \,./
kN
hay [}o/oﬂ'le, robad

JLEA Yt e patile
gﬁﬂ I/UOW (/9@/5/ PY /s ""),lb L/(F/&

@
gO T«w end . Wm
: JrML Lw/ﬁ Wﬂx ‘}
un /&v“ | mwF{ﬁ/
0 @

T Dk
6\
J{L“ m@(', jw [
e N W
F o

AT Y

Y Diat |
“' (mp[)/]\' TSON

@Qﬂ/p/o(élﬁ it d f
(/o4 -
@N&/ ;ML defle(
| l |
PM”@ 0'/11%29 \Lefﬁ({}d
(o W)

L
m

o
W{CR JFO P%om o

0

@ \/\/9/ L(mﬁ O«f} 6;(1@, [(ZCV Cam[f)(/L
| \“31[‘/(1@1{' ’(Lf ‘{‘l’ly 1Lo g@l_ Haq/u @/H’d@

T MM@ . mlt%‘(/%

[(/Vk (s /JILU(/ VAV
S (fn{f L\ML5

fl/\ {)fmq\olaP\(
(W)W;@, é;\; Yy /e
mod:ﬂ ?ﬁﬂlﬁtw

éa M(!, V(bllf(J/ 314 §(/)pL l,/L API ’{gq,ﬂ
_’\‘Nq /Q{Mrll &)Oj/ ~ hp} gL S0 0 GMH]
@ ﬁ‘dﬂ‘i (gl s

0
@ Gest Wik paolks Gga A

R

i WM&G% fode 1 ve bl
N @{hL _
I @@1L £7L Now

/qnxy o Lan Call [%mﬂ

M ngf’l@ (in R)ﬂ h\alt dm/vv&o/

@ <?Q/E;M 5‘0}@“ M Ny 6LH/ %o:‘ah?vj

Oh gt CL\W(tﬁ At o
Ng ﬁt @Wﬂ'ﬂﬁ p1 c/oas hML

W@Uy wb o ol oo
TL T}WL 25 wwﬂﬂzly

M a 7[?’?’{104/} Yoobi Charge
Q ted Ob

ga Mg thﬂL mfk G whit é/wée

@dﬁ{?/vw@, Cirar [t\»c W
ﬂlmL s éwzi an,

Rt it IS0
) Prtsdor e
St v all fuds
ol tusfe bp o (U013 —uhih off gl

elida b upde
é ﬁ(eq, whih @//?S G Cq/“ Soclof £,

&7(!’\ 5</C—
€ e
rile 9 AN s 4 by of-

Tt

/P - M ?ﬂvlc (9«(

)
Lu
\//O/tk an

I
5
F}lt e
7
1%,:
o
> |
(/gfjbe/
Jr (
C}W
i

d
"
()@n

n J'W(Q
"y

Lé(f/“

B d

by
W

l

\fW

Gt

T

EbHE«j

lor

b

o T

‘(’ﬁ
(ltﬂ
5
}'(

)9(

by

wﬂ

o %

1Ie &

dos ég

:;0?

%[/;% C

wold
i

h

Oh

A

o
o +
vl

NOuv

“QK
Vs
Y

‘{71
st
§

0
Fe L Tl edbadeg
mﬂi,m
S0 Gun (o (el (ode
Uit L/\ufy]r vt d
whah Uy /@{/”z 6I[VV)J,’

TM Sold it okl Gumple e "k
Thogh @b tinly ~Se souts,
g@ e p\(by gand by

56/@ 6%% (av“ﬁ A Ll b e Procgys
bkl flﬂbﬂ&} boand Cvete
th\d f@ﬁ//q 0\}@/})

We wed % ball b of Bl AL gy

4

W CLW:) :fl)O\;P«z gaﬂdijnv lmp}(mb
hott ¢ ﬁfolucag b e
Qlo . “_, % ﬂ._“ =5 é‘;é(d/l[C)

S e we o e
Lovieddib /des 6)0@@
L s sodasd it g,
L n dvle,l oir <y all) b
U b5 i bt alls
To gl Glls ol o vss Py - et
i £ whih (w0 e n s, 07

iﬂ@u Qlé’() f%‘& l/\/ﬁ)"'?

\J‘b{ S0 L)W /g/p/{ Py Cﬂde

¢

JVow e add Bl

mo&{tﬁt %9\@‘% hreb 44
I/p{' MM/ M[[a“t/%

C(,({L '17//1 h Q)Q/ba ;a /17/ gfﬂzdéﬂﬂé Pﬁ’(, @%k/ﬂv

() [oe

Nid & 36 o ot it (i
r‘Wﬂ } mf’b 19@(/(0y M) L COQ@//

Orly Nl o 4ot suan() oo
E;%@, N p/oﬂjkw i wadbndd ff
9 0 lbgd e lods v G
Qe -—%’0] \mqﬂmp#‘g }
el % oy o A/“%éﬂwy @l

)

OtL Q0 Now WML "{0 d‘)(c/épﬁz JO//

\/\/af‘b)r rw“um bie S(*;J)o/@cea;

P
- Téo ol o oo wstr X

éo ([r\ P(ok((({é ¢ ,O\f CW}""{J@ ;M/Po/l'

Wy 1, o« fadul o>
I/%QW\} f b{ éd@
N bl vaed pofJi
0 Whn v et el
JQ{{, 1'0 Jo Tl {le Che
S T (il g
i M vl
Th (Paa @152 Yo

i, % (I/L v

((W/E 40 We wadt Z ML z!lL
((W./"J' +9 he e J‘mpﬂ/Z— f«// 6‘![4/‘1(‘?/‘4/1/L

(léﬁ in (067%

@ il o

Tﬂ l(PA WWW’/{ 1’4 d\{M . & Py Smfélﬂ)ﬁ
an wp

LI{ I ?N/Q -wwu b €aa/
- lugh /D(,AL A Ml,)

e bopt A
Don t gt whee {iles Ghow P
jwfw)\! A(L(L (}b (/’Ll(()ﬁ* ’N/\[U[O/W & p7}¢)/«107

O No mdle 2and)
Loo N I "W 2 it of

el
) |

A M

pu é

ifit%

?\;J{ 1‘;@

i 0%

(b);}i%?i

U ;

F:\Users\Michael\Documents\MIT Senior\6.858\6.858 Codellab3\zoobar\pypysandbox.py

Thursday, October 11, 2012 11:19 PM

1 import os, sys, errno
2 from cStringIO import StringIO
3
4 pypy_sandbox dir = '/zoobar/pypy-sandbox'
5 sys.path = [pypy sandbox dir] + sys.path
6
7 from pypy.translator.sandbox import pypy interact, sandlib, vfs
8 from pypy.translator.sandbox.vfs import Dir, RealDir, RealFile
9 from pypy.rpython.module.ll os stat import s StatResult
10 from pypy.toocl.lib pypy import LIB ROOT
11
12 class WritableFile(vfs.ReallFile):
13 def init (self, basenode):
14 self.path = basenode.path
15 def open(self):
16 try:
17 return open(self.path, 'wb')
18 except IOError, e:
1 raise OSError(e.errno, 'write open failed')
20
21 class MySandboxedProc(pypy interact.PyPySandboxedProc):
22 def init (self, profile owner, code, args):
23 super (MySandboxedProc, self). init (
24 pypy_sandbox dir + '/pypy/translator/goal/pypy-c',
25 ['=8", "'"=g', code] + args
26)
21 self.debug = False
28 self.virtual cwd = '/’
29
30 ## Replacements for superclass functions /f AWMF
CH def get node(self, vpath): I 69 L\/ (Jﬁ
32 dirnode, name = self.translate path(vpath)
33 if name: \/\/Q LLMI‘G +ﬂ
34 node = dirnode.join(name) =
35 else: ng (
36 node = dirnode
37 if self.debug:
38 sandlib.log.vpath('%r => %r' % (vpath, node))
39 return node
40
41 def handle message(self, fnname, *args):
42 if ' ' in fnname:
43 raise ValueError("unsafe fnname")
44 try:
45 handler = getattr(self, 'do ' + fnname.replace('.', '__ "))
46 except AttributeError:
47 raise RuntimeError('"no handler for " + fnname)
48 resulttype = getattr(handler, 'resulttype', None)
49 return handler(*args), resulttype
50 _
51 def build virtual root(self):

52 # build a virtual file system:

-

F:\Users\Michael\Documents\MIT Senior\6.858\6.858 Codellab3\zoobar\pypysandbox.py

Thursday, October 11, 2012 11:19 PM

53
54
93
56
51
58
59
60
61
62

63

64
65
66
67
68
69
70
ik
12
73
74
75
76
i
78
79
80
81
g2
83
84
85
86
87
88
89
90
91
22
a3
94
95
96
97
98
Sk
100
101
102

* can access its own executable

* can access the pure Python libraries

* can access the temporary usession directory as /tmp
exclude = ['.pyc', '.pyo'l]

tmpdirnode = RealDir('/tmp/sandbox-root', exclude=exclude)
libroot = str(LIB ROOT)

return Dir ({

exclude),

exclude)

'pin': Dir({'pypy-c': RealFile(self.executable),
'lib-python': RealDir (libroot + '/lib-python', exclude=
'lib pypy': RealDir(libroot + '/lib pypy', exclude=
I3l
'proc': Dir({'cpuinfo': RealFile('/proc/cpuinfo'), }),
'tmp': tmpdirnode,

hH

Implement / override system calls
il

Useful reference:

#4# pypy-sandbox/pypy/translator/sandbox/sandlib.py
#4 pypy—sandbox/pypy/translator/sandboxf??gfg}
#4
def do 11 os_ 11 os geteuid(self):
return 0

def do_11 os_ 11 os getuid(self):
return 0

& Cytuin OM y

def do_1ll os_ 11 os getegid(self):

return 0 \,\/Q’ M fh[\gz/y {

def do_ll_os_gllios_getgid(self):

return 0

def do_ll_os__llios_fstat(self, fd):
Limitation: fd's 0, 1, and 2 are not in open_ fds table
f = self.get file(fd)
try:
return os.fstat (f.fileno())
except:
raise OSError (errno.EINVAL)
do_11 os_ 11 os fstat.resulttype = s_StatResult

def do_11_os_ 11 os_open(self, vpathname, flags, mode):
if flags & (os.0 CREAT):

dirnode, name-=-self.translate_path(vpathname)

f¥ LAB 3: handle file creatiom—

node = self.get node (vpathname)

/'

if flags & (os.OhRDONLYlos.OﬁWRONLY]os.OiRDWR) '= 0s.0_RDONLY:

3

F:\Users\Michae\Documents\MIT Senior\6.858\6.858 Codellab3\zoobar\pypysandbox.py - — — — ——_Thursday, October 11, 2012 11:19 PM

———

103 #% LAB 3: handle writable files, by not raising OSError in some C3s&
104 raise OSError(errno.EPERM, "write access denied

105 node = WritableFile (node)

106

107 f = node.open()

108 return self.allocateﬁfd(f)

109

110 def do 11 os_ 11 os write(self, fd, data):

11 try:

112 f = self.get file(fd)

113 except:

114 f = None

115

116 if f is not None: e ———— e

117 ## LAB 3: if this file should be writable, do th;\;?fté?\
118 i# and return the number of bytes written

119 raise OSError(errno.EPERM, "write not implemented yet")
120

121 return super (MySandboxedProc, self).do 11 os 11 os write(fd, data)
122

123 def run(profile owner, code, args = [], timeout = None):

124 sandproc = MySandboxedProc(profile owner, code, args)

125

126 if timeout is not None:

127 sandproc.settimeout (timeout, interrupt main=True)

128 try:

129 code output = StringIO()

130 sandproc.interact (stdout=code output, stderr=code_output)
131 return code output.getvalue()

.32 finally:

133 sandproc.kill ()

134

135

B

e

N

Read |04

_ Will appear in the 2009 IEEE Symposium on Security and Privacy

/’_
G_&Iﬁ/vg@e&ﬁ A Sandbox for Portable, Untrusted x86 Native Code

Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley Chen, Robert Muth,
Tavis Ormandy, Shiki Okasaka, Neha Narula, and Nicholas Fullagar
Google Inc.

Abstract

This paper describes the design, implementation and eval-
uation of Native Client, a sandbox for untrusted x86 native
code. Native Client aims to give browser-based applications
the computatio ance of native applicati ith-
out cempromising safety. Native Client uses software fault
isolation and a secure runtime to direct system interaction
and side effects through interfaces managed by Native
Client. Native Client provides operating system portability
for binary code while supporting performance-oriented fea-
tures generally absent from web application programming
environments, such as thread support, instruction set ex-
tensions such as SSE, and use of compiler intrinsics and
hand-coded assembfgr. We combine these properties in an
open architecture ti'?:t encourages community review and

3rd-party tools. ‘.\ \NP‘tgof Qmp\(@

1. Introduction *

As an application platform, the modern web browser
brings together a remarkable combination of resources,
including seamless access to Internet resources, high-
productivity programming languages such as JavaScript, and
the richness of the Document Object Model (DOM) [64]
for graphics presentatmm While these
strengths put the browser in the forefront as a target for

new application development, it remains handicapped in a
critical dimension: computational performance. Thanks to
Moore’s Law and the it whiciT#—is’ observed by

the hardware community, many interesting applications get
adequate performance in a browser despite this handicap.
But there remains a set of computations that are generally
infeasible for browser-based applicati e (o performance
constraints, for example: simulation of Newtonian physics,
computational fluid-dynamics, and high-resolution scene
rendering. The current environment also tends to preclude
use of the large bodies of high-quality code developed in
languages other than JavaScript——

Modern web browsers provide extension mechanisms
such as ActiveX [15] and NPAPI [48] to allow native
code to be loaded and run as part of a web application.
Such architectures allow plugins to circumvent the secu-
rity mechanisms otherwise applied to web content, while
giving them access to full native performance, perhaps

as a secondary consideration. Given this organization, and
the absence of effective technical measures to constrain
these plugins, browser applications that wish to use native-
code must rely on non-technical measures for security; for
example, manual establishment of trust relationships through
pop-up dialog_boxes, or manual installation of a console
application. Historically, these non-technical measures have
been inadequate to prevent execution of malicious native
code, leading to inconvenience and economic harm [10],
[54]. As a consequence we believe there is a prejudice
against native code extensions for browser-based applica-
tions among experts and distrust among the larger population
of computer users.

While acknowledging the insecurity of the current systems
for incorporating native-code into web applications, we also
observe that there is no fundamental reason why native
code should be unsafe. In Native Client, we separate the
problem of safe native execution from that of extending trust,
allowing eachlobe/___’_@a\mgegl_'igtjg&gently. Conceptually,
Native Client is organized in two parts: a constrained ex-
ecution environment for native code to prevent unintended
side effects, and a runtime fm-
extensions through which allowable side effects may occur
safely.

The main contributions of this work are:

« an infrastructure for OS and browser-portable sand-

boxed x86 binary modules,

« support for advanced performance capabilities such as
threads, SSE instructions [32], compiler intrinsics and
hand-coded assembler,

« an open system designed for easy retargeting of new
compilers and languages, and—~—~————

« refinements to CISC software fault isolation, using
x86 segments for improved simplicity and reduced
overhead.

We combine these features in an infrastructure that supports
safe side effects and local communication. Overall, Native
Client provides sandboxed execution of native code and
portability across operating systems, delivering native code
performance for the browser.

The remainder of the paper is organized as follows. Sec-
tion 1.1 describes our threat model. Section 2 develops some
essential concepts for the NaCl' system architecture and

1. We use "NaCl” as an adjective reference to the Native Client system.

O\k-
§one

Shat it
(rack

Browser S
SRPC imglib.nexe
User Interface NPAPI
HTML and <L|—hf> @
JavaScript e _ i
service runtime

Figure 1: Hypothetical NaCl-based application for editing and
sharing photos. Untrusted modules have a grey background.

programming model. Section 3 gives additional implemen-
tation details, organized around major system components.
Section 4 provides a quantitative evaluation of the system us-
ing more realistic applications and application components.
In Section 5 we discuss some implications of this work.
Section 6 discusses relevant prior and contemporary systems.
Section 7 concludes.

1.1. Threat Model

Native Client should be able to handle untrusted modules
from any web site with comparable safety to accepted
systems such as JavaScript. the system,
an W and data. A
consequence of this is that the NaCl runtime must be able
to confirm that the module conforms to our_validity rules
(detailed below). Modules that don’t conform to these rules
are rejected by the system.

Once a conforming NaCl module is accepted for ex-
ecution, the NaCl runtime must constrain its activity to
prevent unintended side effects, suclmﬁeved
via unmoderated access to the native operating system’s
system call interface. The NaCl module may arbitrarily
@N(_)/m/b‘lhe the entire variety of behaviors permitted by the

aCl execution environment in attempting to compromise
the system. It may execute any reachable instruction block
in the validated text segment. It may exercise the NaCl
application binary interface to access runtime services in
any way: passing invalid arguments, etc. It may also send
arbitrary data via our intermodule communication interface,
with the communicating peer responsible for validating
input. The NaCl module may allocate memory and spawn
threads up to resource limits. It may attempt to exploit race
conditions iirsubverting the system.

We argue below that our architecture and code validity
rules constrain NaCl modules within our sandbox.

2. System Architecture

A NaCl application is composed of a collection of trusted
and untrusted components. Figure 1 shows the structure of a

|Browser

User Interface
HTML and
JavaScript

Figure 2: The hypothetical photo application of Figure 1 with a
trusted storage service.

hypothetical NaCl-based application for managing and shar-
ing photos. It consists of two components: A user interface,
implemented in JavaScript and executing in the web browser,
and an image processing library (imglib.nexe), implemented
as a NaCl module. is hypothetical scenario, the user
interface and image processing library are part of the ap-
plication and therefore untrusted. The browser component
is consirained by the—browser execution environment and
the image library is constrained by the NaCl container.
Both components are portable across operating systems and
browsers, with native code portability enabled by Native
Client. Prior to running the p! application, the user has
insta]le@e Client as a @in. Note that the
NaCl browser plugin itself is OS and browser specific. Also
note it is trusted, that is, it has full access to the OS system
call interface and the user trusts it to not be abusive.
When the user navigates to the web site that hosts the
photo application, the browser loads and executes the appli-

cation JavaScript components. The JavaScript in turn invokes
the NaCl browser plugin to load the image processing library

is"Toaded silently—no pop-up window asks for permission.

into a NaCl container. Observe that the native code module @JH ,é

Native-Client 1s respon
the untrusted module.

Each component runs in its own private address space.
Inter-component communication is based on Native Client’s
reliable datagram service, the IMC (Inter-Module Commu-
nications). For communications between the browser and a
NaCl module, Native Client provides two options: a Simple
RPC facility (SRPC), and the Netscape Plugin Application
Programming Interface (NPAPI), both implemented on top
of the IMC. The IMC also provides shared memory seg-
ments and shared synchronization objects, intended to avoid
messaging overhead for high-volume or high-frequency
communications.

Or cons!

The NaCl module also has access to a “service runtime”
interface, providing for memory management operations,
thread creation, and other system services. This interface
is analogous to the system call interface of a conventional
operating system.

In this paper we use “NaCl module” to refer to untrusted
native code. Note however that applications can use multiple
NaCl modules, and that both trusted gnd urw) compo-
nents may use the IMC. For example, the user of the photo

haf Jogs (M‘m ‘rf AJ‘

ehavior of 0(&1

\/

application might optionally be able to use a (hypothetical)
trusted NaCl service for local storage of images, illustrated
: in Figure 2. Because it has access to local disk, the storage
/ service must be installed as a_native browser plugin; it
| can’t be implemented as a NaClme photo
application has been designed to optionally use the stable
- storage service; the user interface would check for the stable
storage plugin during initialization. If it detecte%‘sm?ﬁg’e
service plugin, the user interface would establish an IMC
communications channel to it, and pass a descriptor for the
channel to the image library, enabling the image library and
the storage service to communicate directly via IMC-based
services (SRPC, shared memory, etc.). In this case the NaCl
module will typically be statically linked against a library
that provides a procedural interface for accessing the storage
service, hiding details of the IMC-level communications
such as whether it uses SRPC or whether it uses shared
memory. Note that the storage service must assume that the
image library is sted. The service is responsible for
insuring that it only services requests consistent with the
implied contract with the user. For example, Tt might enforce
a limit on total disk used by the photo application and
might further restrict operations to only reference a particular
directory.
Native Client is ideal for application components requir-
ing pure computation. It is not appropriate for modules
requiring process creation, direct file system access, or
unrestricted access to the network. Trusted facilities such
as storage should generally be implemented outside of
950 Native Client, encouraging simplicity and robustness of the
) individual components and enforcing stricter isolation and
({ 085 [}~ scrutiny of all components. This design choice echoes micro-
: kacl operating system design [2], [12], [25].
J 0 6)"9(4@ (With this example in mind we will now describe the
design of key NaCl system components in more detail.

Jold
l/\aﬂ»‘aﬂ’ﬁ
%o{@&f’/
fepe?

2.1. The Inner Sandbox

Native Client is built around an x86-specific intra-process
“inner sandbox.” We believe that the inner sandbox is robust;
regardless, to provide defense in depth [13], [16] we have
also developed a second “outersandbox” that mediates
system calls at the process mﬁ%y_.:ﬁne outer sandbox
immcmms (systrace [50] and
Janus [24]) and we will not discuss it in detail in this paper.

The inner sandbox uses static analysis to detect security
defects in untrusted x86 code. Previously, such analysis
has been challenging for arbitrary x86 code due to such
practices as self-modifying code and overlapping instruc-
tions. In Native Client we disallow such practices through a
set of alignment and structural rules that, when observed,
insure that the native code module can be disessan%jl

reliably, such that all reachable instructions are identifie
during disassembly. With reliable disassembly as a tool, our

validator can Wes—omy
the subset of legal instructions, disallowing unsafe machine

instructions.

The inner sandbox further uses x86 segmented memory
to constrain both data and instruction memory references.
Leveraging existing hardware to implement these range
checks greatly simplifies the runtime checks required to con-
strain memory-Teferences, imturn reducing the performance
impact of safety mechanisms.

This inner sandbox is used to create a security subdomain
within a native operating system process. With this organiza-
tion we can place a trusted service runtime subsystem within
the same process as the untrusted application module, with
a secure trampoline/springboard mechanism to allow safe
transfer of control from trusted to untrusted code and vice-
versa. Although in some cases a process boundary could
effectively contain memory and system-call side effects, we
believe the inner sandbox can provide better security. We
generally assume that the operating system is not defect
free, such that the process barrier might have defects, and
further that the operating system might deliberately map
resources such as shared libraries into the address space of
all processes, as occurs in Microsoft Windows. In effect our
inner sandbox not only isolates the system from the native
module, but also helps to isolate the native module from the
operating system.

2.2. Runtime Facilities

The sandboxes prevent unwanted side effects, but some

side effects are often necessary to make a_native mod-

ule useful. For interprocess communications, Native Client
provides a reliable datagram abstraction, the “Inter-Module
Communications” sewic@@c IMC allows trusted
and untrusted modules to send/receive datagrams consisting
of untyped byte arrays along with optional “NaCl Resource

Descriptors” to facilitate sharing of files, shared mem-
Grﬁﬁje/cz:: communication channels, etc., across process
boundaries. The IMC can be used by trusted or untrusted
modules, and is the basis for two higher-level abstractions.
The first of these, the Simple Remote Procedure C R
facility, provides convenient syntax for defining and using
subroutines across NaCl module boundartes;-including calls
to NaCl code from JavaScript in the browser. The second,
NPAPI, provides a familiar interface to interact with browser
state, including opening URLs and accessing the DOM, that
conforms to existing constraints for content safety. Either of
these mechanisms can be used for general interaction with
conventional browser content, including content modifica-
tions, handling mouse and keyboard activity, and fetching
additional site content; substantially all the resources com-
monly available to JavaScript.

As indicated above, the service runtime is responsible
for providing the container through which NaCl modules

interact with each other and the browser. The service runtime
provides a set of system services commonly associated
with an application programming environment. It provides
sysbrk() and mmap() system calls, primitives to support
malloc()/free() interface or other memory allocation abstrac-
tions. It provides a subset of the POSIX threads interface,
with some NaCl extensions, for thread creation and destruc-
tion, condition variables, mutexes, semaphores, and thread-
local storage. Our thread support is sufficiently complete
to allow a port of Intel's Thread Building Blocks [51]
to Native Client. The service runtime afso provides the
common POSIX file I/O interface, used for operations on
communications channels as well as web-based read-only
content. As the name space of the local file system is
not accessible to these interfaces, local side effects are not
possible.

To prevent unintended network access, network system
calls such as cor%/tmmmﬂ_arc simply omitted.
NaCl modules can acce ¢ network via JavaScript in
the browser. This access is subject to tife same constraints
that apply to other JavaScript access, with no net effect on
network security. ITORT BT

The NaCl development environment is largely based on
Linux open source systems and will be familiar to most
Linux and Unix developers. We have found that porting
existing Linux libraries is generally straightforward, with
large libraries often requiring no source changes.

e e S o

2.3. Attack Surface

Overall, we recognize the following as the system com-

ponents that a would-be attacker might attempt to exploit:
« inner sandbox: binary validation

outer sandbox: OS system-call interception

« service runtime binary module loader

e service runtime trampoline interfaces

o IMC communications interface

« NPAPI interface

In addition to the inner and outer sandbox, the system design
also incorporates CPU and NaCl modu -lists. These
mechanisms will allow us to incorporate layers of protection
based on our confidence in the robustness of the various
components and our understanding of how to achieve the
best balance between : ibility and security.

In the next section we hope to demonstrate that secure
implementations of these facilities are possible and that the
specific choices made in our own implementation work are
sound.

3. Native Client Implementation

(
3.1. Inner Sandbox
Validdy
In this section we explain how NaCl implements software
fault isolation. The design is limited to explicit control flow,

Cl Once loaded into the memory, the binary is not writable,
enforced by OS-level protection mechanisms during execu-
tion.

C2 The binary is statically linked at a start address of zero, with
the first byte of text at 64K. ° —

C3 All indirect control transfers use a nacljmp pseudo-
instruction (defined below).

C4 The binary is padded up to the nearest page with at least
one h1lf instruction (0xf4).

C5 The binary contains no instructions or pseudo-instructions
overlapping a 32-byte boundary.

C6 All valid instruction addresses are reachable by a fall-
through disassembly that starts at the load (base) address.

C7 All direct control transfers target valid instructions.

Table 1: Constraints for NaCl binaries.

expressed with calls and jumps in machine code. Other types
of control flow (e.g. exceptions) are managed in the NaCl
service runtime, external to the untrusted code, as described
with the NaCl runtime implementation below.

Our inner sandbox uses a set of rules for reliable dis-
assembly, a modified compilation tool chain that observes
these rules, and a static analyzer that confirms that the rules
have been followed. This design allows for a small trusted
code base (TCB) [61], with the compilation tools outside
the TCB, and a validator that is small enough to permit
thorough review and testing. Our validator implementation
requires less than 600 C statements (semicolons), including
an x86 decoder aﬁiming. This compiles into
about GWcutable code (Linux optimized build)
of which"about 900 bytes are the cpuid implementation,
1700 bytes the decoder, and 3400 bytes the validator logic.

To eliminate side effects the validator must address four
sub-problems:

« Data integrity: no loads or stores outside of data sand-

box

« Reliable disassembly

« No unsafe instructions

« Control flow integrity

To solve these problems, NaCl builds on previous work on
CISC fault isolation. Our system combines 80386 segmented
memory [14] with previous techniques for CISC software
fault isolation [40]. We use 80386 segments to constrain
data references to a contiguous subrange of the virtual 32-
bit address space. This allows us to effectively implement a
data sandbox without requiring sandboxing of load and store
instructions. VX32 [20], [21] implements its data sandbox
in a similar fashion. Note that NaCl modules are 32-bit x86
executables. The more recent 64-bit executable model is not
supported.

Table 1 lists the constraints Native Client requires of
untrusted binaries. Together, constraints C1 and C6 make
disassembly reliable. With reliable disassembly as a tool,
detection of unsafe instructions is straightforward. A partial
list of opcodes disallowed by Native Client includes:

s syscall and int. Untrusted code cannot invoke the

Ease®™

operating system directly.

o all instructions that modify x86 segment state, including
1ds, far calls, etc.

« ret. Returns are implemented with a sandboxing se-
quence that ends with an indirect jump.

Apart from facilitating control sandboxing, excluding ret
also prevents a vulnerability due to a race condition if
the return address were checked on the stack. A similar
argument requires that we disallow memory addressing
modes on indirect jmp and call instructions. Native Client
does allow the h1t instruction. It should never be executed
by a correct instruction stream and will cause the module
to be terminated immediately. As a matter of hygiene, we
disallow all other privileged/ring-0 instructions, as they are
never required in a correct user-mode instruction stream.
We also constrain x86 prefix usage to only allow known
useful instructions. Empirically we have found that this
eliminates certain denial-of-service vulnerabilities related to
CPU errata.

The fourth problem is control flow integrity, insuring
that all control transfers in the program text target an
instruction identified during disasSembly. Foreach direct
branch, We statically compute the target and confirm it is
a valid instruction as per constraint C6. Our technique for
indirect branches combines 80386 segmented memory with
a simplified sandboxing sefprence. As per constraint C2 and
C4, we use the CS segment to constrain executable text to
a zero-based address range, sized to a multiple of 4K bytes.
With the text range constrained by segmented memory, a
simple constant mask is adequate to ensure that the target
of an indirect branch is aligned mod 32, as per constraints
C3 and C5:

and $eax, Oxffffffel

jmp *Feax

We will refer to this special two instruction sequence as a
nacl jmp. Encoded as a three-byte and and a two-byte jmp
it compares favorably to previous implementations of CISC
sandboxing [40], [41], [56]. Without segmented mm
zero-based text, sandboxed control flow typically requires
two six-byte instructions (an and and an or) for a total of
fourteen bytes.

Considering the pseudo-code in Figure 3, we next assert
and then prove the correctness of our design for control-
flow integrity. Assuming the text in question was validated

without errors, IWS from
the list StartAddr.

Thedrem: S contains all addresses that can be reached
from an instriction with-address in S.

Proof: By contradiction. Suppose an address IP not in S
is reached during execution from a predecessor instruction
A with address in S. Because execution is constrained by

x86 segmentation, IP must trivially be in [0:TextLimit). So
IP can only be reached in one of three ways.

// TextLimit the upper text address limit
// Block (IP) 32-byte block containing IP
// StartAddr = list of inst start addresses

// JumpTargets = set of valid jump targets

nmonon

// Part 1: Build StartAddr and JumpTargets
IP = 0; icount = 0; JumpTargets = { }
while IP <= TextLimit:
if inst_is_disallowed(IP):
error "Disallowed instruction seen"
StartAddr [icount++] = IP
if inst_overlaps_block_size (IP):
error "Block alignment failure”
if inst_is_indirect_jump_or_call (IP):
if !is_2_inst_nacl_jmp_idiom(IP) or
icount < 2 or
Block (StartAddr [icount-2]) != Block (IP):
error "Bad indirect control transfer"
else
// Note that indirect jmps are inside
// a pseudo-inst and bad jump targets
JumpTargets = JumpTargets + { IP }
// Proceed to the fall-through address
IP += InstLength (IP)

// Part 2: Detect invalid direct transfers
for I = 0 to length(StartAddr)-1:
IP = StartAddr(I)
if inst_is_direct_jump_or_call (IP):
T = direct_jump_target (IP)
if not(T in [0:TextLimit))
or not (T in JumpTargets):
error "call/jmp to invalid address"

Figure 3: Pseudo-code for the NaCl validator.

case 1: IP is reached by falling through from A. This
implies that IP is InstAddr(A) + InstLength(A). But
this address would have been in S from part 1 of the
construction. Contradiction.

case 2: IP is reached by a direct jump or call from an
instruction A in S. Then IP must be in JumpTargets,
a condition checked by part 2 of the construction.
Observe that JumpTargets is a subset of S, from part
1 of the construction. Therefore IP must be in S.
Contradiction.

case 3: IP is reached by an indirect transfer from an in-
struction at A in S. Since the instruction at A is
an indirect call or jump, any execution of A always
immediately follows the execution of an and. After
the and the computed address is aligned 0 mod 32.
Since no instruction can straddle a 0 mod 32 boundary,
every 0 mod 32 address in [0, TextLimit) must be in
S. Hence IP is in S. Contradiction.

Hence any instruction reached from an instruction in S is
also in S.]

Note that this analysis covers explicit, synchronous con-
trol flow only. Exceptions are discussed in Section 3.2.

If the validator were excessively slow it might discourage
people from using the system. We find our validator can
check code at approximately 30MB/second (35.7 MB in 1.2

t_”/

seconds, measured on a MacBook Pro with MacOS 10.5,
2.4GHz Core 2 Duo CPU, warm file-system cache). At
this speed, the compute time for validation will typically
be very small compared to download time, and so is not a
performance issue.

We believe this inner sandbox needs to be extremely
robust. We have tested it for decoding defects using random
instruction generation as well as exhaustive enumeration
of valid x86 instructions. We also have used “fuzzing”
tests to randomly modify test executables. Initially these
tests exposed critical implementation defects, although as
testing continues no defects have been found in the recent
past. We have also tested on various x86 microprocessor
implementations, concerned that processor errata might lead
to exploitable defects [31], [38]. We did find evidence of
CPU defects that lead to a system “hang” requiring a power-
cycle to revive the machine. This occurred with an earlier
version of the validator that allowed relatively unconstrained
use of x86 prefix bytes, and since constraining it to only
allow known useful prefixes, we have not been able to
reproduce such problems.

3.2. Exceptions

Hardware exceptions (segmentation faults, floating point
exceptions) and external interrupts are not allowed, due in
part to distinct and incompatible exception models in Linux,
MacOS and Windows. Both Linux and Windows rely on the
x86 stack via $esp for delivery of these events. Regrettably,
since NaCl modifies the %$ss segment register, the stack
appears to be invalid to the operating System, such that it
cannot deliver the event and the corresponding process is
immediately terminated. The use of x86 segmentation for
data sandboxing effectively precludes recovery—fremthese
types of exceptions. As a consequence, NaCl untrusted
modules apply a failsafe policy to exceptions. Each NaCl
module runs in its own_OS process, for the purpose of
exception isolation. Nmz(%?s_mn use exception
handling to recover from hardware exceptions and must be
correct with respect to such error conditions or risk abrupt
termination. In a way (his~fs—convenient, as there are very
challenging security issues in delivering these events safely
to untrusted code. e s)

Although we cannot currently support hardware excep-
tions, Native Client does support C++ exceptions [57]. As
these are synchronous and can be Tmplerented entirely at
user level there are no implementation issues. Windows
Structured Exception Handling [44] requires non-portable
operating support and is therefore not supported.

3.3. Service Runtime

The service runtime is a native executable invoked by
an NPAPI plugin that also supports interaction between the

Platform “null” Service
Runtime call time

Linux, Ubuntu 6.06

Intel™ Core™ 2 6600 156

2.4 GHz

Mac 0SX 10.5

Intel™ Xeon™ E5462 148

2.8 GHz

Windows XP

Intel™ Core™ 2 Q6600 123

2.4 GHz

Table 2: Service runtime context switch overhead. The runtimes
are measured in nanoseconds. They are obtained by averaging the
measurements of [0 runs of a NaCl module which measured the
time required to perform 10,000,000 “null” service runtime calls.
————— \
&
service runtime and the browser. It supports a variety of web
browsers on Windows, MacOS and Linux. It implements the
dynamic enforcement that maintains the integrity of the inner
sandbox and provides resource abstractions to isolate the
NaCl application from host resources and operating system
interface. It contains trusted code and data that, while sharing
a process with the contained NaCl module, are accessible
only through a controlled interface. The service runtime
prevents untrusted code from inappropriate memory accesses
through a combination of x86 memory segment and page
protection.

When a NaCl module is loaded, it is placed in a segment-
isolated 256MB region within the service runtime’s address
space. The first 64 KB of the NaCl module’s address space
(NaCl “user” address space) is reserved for initialization
by the service runtime. The first 4 KB is rcad and write
protected to detect NULL pointers. The remaining 60 KB
contains trusted code that implements our “trampoline” call
gate and “springboard” return gate. Untrusted NaCl module
text is loaded immediately after this 64 KB region. The %cs
segment is set to constrain control transfers from the zero
base to the end of the NaCl module text. The other segment
registers are set to constrain data accesses to the 256 MB
NaCl module address space.

Because it originates from and is installed by the trusted
service runtime, trampoline and springboard code is allowed
to contain instructions that are forbidden elsewhere in un-
trusted executable text. This code, patched at runtime as part
of the NaCl module loading process, uses segment register
manipulation instructions and the far call instruction to
enable control transfers between the untrusted user code and
the trusted service runtime code. Since every 0 mod 32
address in the first 64 KB of the NaCl user space is a
potential computed control flow target, these are our entry
points to a table of system-call trampolines. One of these
entry points is blocked with a h1lt instruction, so that the
remaining space may be used for code that can only be
invoked from the service runtime. This provides space for
the springboard return gate.

Invocation of a trampoline transfers control from untrusted
code to trusted code. The trampoline sequence resets $ds
and then uses a far call to reset the %cs segment
register and uansfermmlcrs,
reestablishing the conventional flat addressing model ex-
pected by the code in the service runtime. Once outside the
NaCl user address space, it resets other segment registers
such as %fs, %gs, and %ss to re-establish the native-code
threading environment, fully disabling the inner sandbox
for this thread, and loads the stack register $esp with the
location of a trusted stack for use by the service runtime.
Note that the per-thread trusted stack resides outside the
untrusted address space, to protect it from attack by other
threads in the untrusted NaCl module.

Just as trampolines permit crossing from untrusted to
trusted code, the springboard enables crossing in the other
direction. The springboard is used by the trusted runtime

« to transfer control to an arbitrary untrusted address,

o to start a new POSIX-style thread, and

e to start the main thread.

Alignment ensures that the springboard cannot be invoked
directly by untrusted code. The ability to jump to an arbitrary
untrusted address is used in returning from a service call.
The return from a trampoline call requires popping an
unused trampoline return addresses from the top of the
stack, restoring the segment registers, and finally aligning
and jumping to the return address in the NaCl module.

Table 2 shows the overhead of a “null” system call. The
Linux overhead of 156 ns is slightly higher than that of
the Linux 2.6 getpid syscall time, on the same hardware,
of 138 ns (implemented via the vsyscall table and using
the sysenter instruction). We note that the user/kernel
transfer has evolved continuously over the life of the x86
architecture. By comparison, the segment register operations
and far calls used by the NaCl trampoline are somewhat less
common, and may have received less consideration over the
history of the x86 architecture.

3.4. Communications

The IMC is the basis of communications into and out of

NaCl modules. The implementation is built around a NaCl

socket, providing a bi-directional, reliable, in-order data;
service similar to Unix domain sockets [37]. An untrusted
NaCl module receives its first NaCl socket when it is created,
accessible from JavaScript via the Document-Object Model
object used to create it. The JavaScript uses the socket to
send messages to the NaCl module, and can also share it
with other NaCl modules. The JavaScript can also choose
to connect the module to other services available to it by
opening and sharing NaCl sockets as NaCl descriptors.
NaCl descriptors can also be used to create shared memory
segments.

Number of || Linux | OSX | Windows

Descriptor
1 33 31.5 38
2 53 | 386 51
3 6.6 | 479 64
4 82 | 509 T
5 9.7 | 54.1 90
6 11.1 60.0 104
7 126 | 63.7 117
8 142 | 66.2 130

Table 3: NaCl resource descriptor_transfer cost. The times are
in microseconds. In this tesf, messages carrying zero data bytes
and a varying number of I/O descriptors are transferred from
a client NaCl module to a server NaCl module. On OSX, a
request/ack mechanism is needed as a bug workaround in the OSX
implementation of sendmsg. On Windows, a DuplicateHandle()
system call is required per I/O object transferred.

Using NaCl messages, Native Client’s SRPC abstraction
is implemented entirely in untrusted code. SRPC provides
a convenient syntax for declaring procedural interfaces be-
tween JavaScript and NaCl modules, or between two NaCl

modules, supporﬁﬁg‘a—fcw—bawmm)
as well as arrays in addition to NaCl descriptors. More

complex types and pointers are not supported. External
data representation strategies such as XDR [18] or Protocol
Buffers [26] can easily be layered on top of NaCl messages
or SRPC.

Our NPAPI implementation is also layered on top of the
IMC and supports a subset of the common NPAPI interface.
Specific requirements that shaped the current implementa-
tion are the ability read, modify and invoke properties and
methods on the script objects in the browser, support for
simple raster graphics, provide the createArray() method and
the ability to open and use a URL like a file descriptor. The
currently implemented NPAPI subset was chosen primarily
for expedience, although we will likely constrain and extend
it further as we improve our understanding of related security
considerations and application requirements.

3.5. Developer Tools

3.5.1. Building NaCl Modules. We have modified the stan-
dard GNU tool chain, using version 4.%:]1&-
tion of compilers [22], [29] and version 2.18 of bimutits [23]
to generate NaCl-compliant binaries. We have built a ref-
erence binary from newlib® using the resulting tool chain,
rehosted to use the NaCl trampolines to implement system
services (e.g., read(), brk(), gettimeofday(), imc_sendmsg()).
Native Client supports an insecure “debug” mode that allows
additional file-system interaction not otherwise allowed for
secure code.

We modified gce for Native Client by changing the
alignment of function entries (-falign-functions) to

2. See http://sourceware.org/newlib/

32 bytes and by changing the alignment of the targets
branches (-falign-jumps) to 32 bytes. We also changed
gce to use nacl-jmp for indirect control transfers, including
indirect calls and all returns. We made more significant
changes to the assembler, to implement Native Client’s
block alignment requirements. To implement returns, the
assembler ensures that call instructions always appear in
the final bytes of a 32 byte block. We also modified the
assembler to implement indirect control transfer sequences
by expanding the nacl jmp pseudo-instruction as a properly
aligned consecutive block of bytes. To facilitate testing we
added support to use a longer nacl jmp sequence, align the
text base, and use an and and or that uses relocations as
masks. This permits testing applications by running them on
the command line, and has been used to run the entire gec
C/C++ test suite. We also changed the linker to set the base
address of the image as required by the NaCl loader (64K
today).

Apart from their direct use the tool chain also serves to
document by example how to modify an existing tools chain
to generate NaCl modules. These changes were achieved
with less than 1000 lines total to be patched in gcc and
binutils, demonstrating the simplicity of porting a compiler
to Native Client.

3.5.2. Profiling and Debugging. Native Client’s open
source release includes a simple profiling framework
to capture a complete call trace with minimal per-
formance overhead. This support is based on gcc’s
—-finstrument-functions code generation option
combined with the rdtsc timing instruction. This profiler
is portable, implemented entirely as untrusted code. In our
experience, optimized builds profiled in this framework
have performance somewhere between —00 and —02 builds.
Optionally, the application programmer can annotate the
profiler output with methods similar to printf, with output
appearing in the trace rather than stdout.

Native Client does not currently support interactive debug-
ging of NaCl binary modules. Commonly we debug NaCl
module source code by building with standard tools and a
library that exports all the interfaces to the NaCl service
runtime, allowing us to build debug and NaCl modules from
identical source. Over time we hope to improve our support
for interactive debugging of release NaCl binaries.

4. Experience

Unless otherwise noted, performanee-measurements in
this section are made w@
Sandbox overhead depends on iow much message-passing
and service runtime activity the application requires. At this

time we do not have realistic applications of Native Client
to stress this aspect of the system.

14%
12%
10% -
8%
6%

|
Z:j;: | IS

2%
4%

Slowdown vs. -static

Figure 4: SPEC2000 performance. “Static” results are for statically
linked binaries; “align32” results are for binaries aligned in 32-byte
blocks, and “nacl32” results are for NaCl binaries.

static | aligned | NaCl | increase
ammp 200 203 203 1.5%
art 46.3 48.7 | 472 1.9%
bzip2 103 104 104 1.9%
crafty 113 124 127 12%
eon 79.2 76.9 82.6 4.3%
equake 62.3 62.9 62.5 0.3%
gap 63.9 640 | 654 2.4%
gee 523 547 | 570 9.0%
gzip 149 149 148 -0.7%
mcf 65.7 65.7 | 66.2 0.8%
mesa 874 89.8 | 925 5.8%
parser 126 128 128 1.6%
perlbmk | 94.0 99.3 106 13%
twolf 154 163 165 7.1%
vortex 112 116 124 11%
vpr 90.7 88.4 89.6 -1.2%

Table 4: SPEC2000 performance. Execution time is in seconds. All
binaries are statically linked.

4.1. SPEC2000

A primary goal of Native Client is to deliver substantially
all of the performance of native code execution. NaCl
module performance is impacted by alignment constraints,
extra instructions for indirect control flow transfers, and the
incremental cost of NaCl communication abstractions.

We first consider the overhead of making native code side
effect free. To isolate the impact of the NaCl binary con-
straints (Table 1), we built the SPEC2000 CPU benchmarks
using the NaCl compiler, and linked to run as a standard
Linux binary. The worst case for NaCl overhead is CPU
bound applications, as they have the highest density of align-
ment and sandboxing overhead. Figure 4 and Table 4 show
the overhead of NaCl compilation for a set of benchmarks
from SPEC2000. The worst case performance overhead is
crafty at about 12%, with other benchmarks averaging about
5% overall. Hardware performance counter measurements
indicate that the largest slowdowns are due to instruction
cache misses. For crafty, the instruction fetch unit is stalled
during 83% of cycles for the NaCl build, compared to 49%
for the default build. Gee and vortex are also significantly
impacted by instruction cache misses.

As our current alignment implementation is conservative,

static | aligned | NaCl | increase
ammp 657 759 766 16.7%
art 469 485 485 3.3%
bzip2 492 525 526 7.0%
crafty 756 885 885 17.5%
eon 1820 2016 | 2017 10.8%
equake 465 475 475 2.3%
gap 1298 1836 | 1882 45.1%
gee 2316 3644 | 3646 57.5%
gzip 492 537 537 9.2%
mcf 439 452 451 2.8%
mesa 1337 1758 | 1769 32.3%
parser 641 804 802 25.2%
perlbmk | 1167 1752 | 1753 50.2%
twolf 773 937 936 21.2%
vortex 1019 1364 | 1351 32.6%
vpr 668 780 780 16.8%

Table 5: Code size for SPEC2000, in kilobytes.

aligning some instructions that are not indirect control flow
targets, we hope to make incremental code size improvement
as we refine our implementation. *“NaCl” measurements are
for statically linked binaries, 32-byte block alignment, and
using the nacljmp instruction for indirect control flow
transfers. To isolate the impact of these three constraints,
Figure 4 also shows performance for static linking only,
and for static linking and alignment. These comparisons
make it clear that alignment is the main factor in cases
where overhead is significant. Impact from static linking and
sandboxing instruction overhead is small by comparison.

The impact of alignment is not consistent across the
benchmark suite. In some cases, alignment appears to im-
prove performance, and in others it seems to make things
worse. We hypothesize that alignment of branch targets
to 32-byte boundaries sometimes interacts favorably with
caches, instruction prefetch buffers, and other facets of
processor microarchitecture. These effects are curious but
not large enough to justify further investigation. In cases
where alignment makes performance worse, one possible
factor is code size, as mentioned above. Table 5 shows
that increases in NaCl code size due to alignment can
be significant, especially in benchmarks like gcc with a
large number of static call sites. Similarly, benchmarks
with a large amount of control flow branching (e.g., crafty,
vortex) have a higher code size growth due to branch target
alignment. The incremental code size increase of sandboxing
with nacljmp is consistently small.

Overall, the performance impact of Native Client on these
benchmarks is on average less than 5%. At this level,
overhead compares favorably to untrusted native execution.

4.2. Compute/Graphics Performance Tests

We implemented three simple compute+animation bench-
marks to test and evaluate our CPU performance for threaded

Sample | Native Client | Linux Executable
Vorono1 | 124 13.9
Earth 144 12.6
Life 21.9 19.4

Table 6: Compute/graphics performance tests. Times are user time
in seconds.

Executable 1 thread | 2 threads | 4 threads
Native Client | 42.16 22.04 124
Linux Binary | 46.29 24.53 13.9

Table 7: Voronoi thread performance. Times are user time in
seconds.

code.? They are:
« Earth: a ray-tracing workload, projecting a flat image
of the earth onto a spinning globe
« Voronoi: a brute force Voronoi tessellation®

« Life: cellular automata simulation of Conway’s Game
of Life

These workloads have helped us refine and evaluate our
thread implementation, in addition to providing a benchmark
against standard native compilation.

We used the Linux time command to launch and time

. standalone vs. NaCl release build executables. All measure-

ments are for a Ubuntu Dapper Drake Linux system with
a 2.4GHz Intel Q6600 quad core processor. VSYNC was
disabled.> The normal executables were built using g++
version 4.0.3, the NaCl versions with nacl-g++ version 4.2.2.
All three samples were built with -03 -mfpmath=sse
-msse —fomit-frame-pointer.

Voronoi used four worker threads and ran for 1000 frames.
Earth ran with four worker threads for 1000 frames. Life
ran as a single thread, for 5000 frames. Table 6 shows the
average for three consecutive runs.

Voronoi ran faster as a NaCl application than as a normal
executable. The other two tests, Earth and Life, ran faster
as normal executables than their Native Client counterparts.
Overall these preliminary measurements suggest that, for
these simple test cases, the NaCl thread implementation
behaves reasonably compared to Linux. Table 7 shows a
comparison of threaded performance between Native Client
and a normal Linux executable, using the Voronoi demo.
Comparing Native Client to Linux, performance scales com-
parably with increased thread count.

4.3. H.264 Decoder

We ported an internal implementation of H.264 video

decoding to evaluate the difficulty of the porting effort.

3. These benchmarks will be included in our open source distribution.

4, See http://en.wikipedia.org/wiki/Voronoi

5. It is important to disable VSYNC when benchmarking rendering
applications. If VSYNC is enabled, the application’s rendering thread may
be put to sleep until the next vertical sync occurs on the display.

The original application converted H.264 video into a raw

file format, implemented in about 11K lines of T for the

standard GCC environment on Linux. We modified it to play

video. The port required about l@
code, more than half of which was error checking code.

Apart from rewriting the Makefile, no other modifications
were required. This experience is consistent with our general
experience with Native Client; legacy Linux libraries that
don’t inherently require ngtwork and disk generally port
with minimal effort. Performance of the original and NaCl
versions were comparable and limited by video frame-rate.

4.4. Bullet

ullet {8] is an open source physics simulation system.
It has accuracy and modeling features that make it appro-
priate for real-time applications like computer games. As
a complex, performance sensitive legacy code base it is
representative of a type of system that we would like to
support with Native Client.

The effort required to build Bullet for Native Client was
non-trivial but generally straightforward. We used Bullet
v2.66 for our experiments which is configurable via auto-
tools [5], allowing us specify use of the NaCl compiler. We
also had to build the Jam build system [35], as it is required
by the Bullet build. A few #dcfines also had to be adjusted
to eliminate unsupported profiling system calls and other OS
specific code. Overall it took a couple of hours of effort to
get the library to build for Native Client.

Our performance test used the HelloWorld demo program
from the Bullet source distribution, a simulation of a large
number of spheres falling and colliding on a flat surface. We
compared two builds using GCC v4.2.2 capable of generat-
ing NaCl compliant binaries. Measuring 100,000 iterations,
we observed 36.5 seconds for the baseline build (-static) vs.
32-byte aligned blocks (as required by Native Client) at 36.1
seconds, or about a 1% speedup for alignment. Incorporating
the additional opcode constraints required by Native Client
results in runtime of 37.3 seconds, or about a 2% slowdown
overall. These numbers were obtained using a two processor
dual-core Opteron 8214 with 8GB of memory.

4.5. Quake

We profiled sdlquake-1.0.9 (from www.libsdl.org) using
the built-in “timedemo demol” command. Quake was run
at 640x480 resolution on a Ubuntu Dapper Drake Linux
box with a 2.4GHz Intel Q6600 quad core CPU. The video
system’s vertical sync (VSYNC) was disabled. The Linux
executable was built using gee version 4.0.3, and the Native
Client version with nacl-gcc version 4.2.2, both with -02
optimization.

With Quake, the differences between Native Client and
the normal executable are, for practical purposes, indistin-
guishable. See Table 8 for the comparison. We observed

10

Run # Native Client | Linux Executable
1 143.2 1429
2 143.6 143.4
3 144.2 143.5
Average | 143.7 143.3

Table 8: Quake performance comparison. Numbers are in frames
per second.

very little non-determinism between runs. The test plays the
same sequence of events regardless of frame rate. Slight
variances in frame rate can still occur due to the OS thread
scheduler and pressure applied to the shared caches from
other processes. Although Quake uses software rendering,
the performance of the final bitmap transfer to the user’s
desktop may depend on how busy the video device is.

5. Discussion

As described above, Native Client has inner and outer
sandboxes, redundant barriers to protect native operating
system interfaces. Additional measures such as a CPU
blacklist and NaCl mmmist will also be deployed,
and we may deploy whitelists if we determine they are
needed to secure the system. We have also considered more
elaborate measures, although as they are speculative and
unimplemented we don’t describe them here. We see public
discussion and open feedback as critical to hardening this
technology, and informing our decisions about what security
mechanisms to include in the system.

We expect Native Client to be well suited to simple,
computationally intensive extensions for web applications,
specifically in domains such as physical simulation, lan-
guage processing, and high-performance graphics rendering.
Over time, if we can provide convenient DOM access, we
hope to enable web-based applications that run primarily in
native code, with a thin JavaScript wrapper. There are also
applications of this technology outside of the browser; these
are beyond our current focus.

We have developed and tested Native Client on Ubuntu
Linux, MacOS and Microsoft Windows XP. Overall we
are satisfied with the interaction of Native Client with
these operating systems. That being said, there are a few
areas where operating system support might helpful. Popular
operating systems generally require all threads to use a flat
addressing model in order to deliver exceptions correctly.
Use of segmented memory prevents these systems from
interpreting the stack pointer and other essential thread state.
Better segment support in the operating system might allow
us to resolve this problem and allow for better hardware
exception support in untrusted code. If the OS recognized
a distinguished thread to receive all exceptions, that would
allow Native Client to receive exceptions in a trusted thread.

Native Client would also benefit from more consistent
enabling of LDT access across popular x86 operating sys-

tems. As an interesting alternative to maintaining system call
access as provided by most current systems, a system call
for mapping the LDT directly into user space would remove
a kernel system call from the path for NaCl thread creation,
relevant for modules with a large number of threads.

With respect to programming languages and language
implementations, we are encouraged by our initial experi-
ence with Native Client and the GNU tool chain, and are
looking at porting other compilers. We have also ported two
language interpreters, Lua and awk, and are aware of efforts
to port other popular interpreted languages. While it would
be challenging to support JITted languages such as Java,
we are hopeful that Native Client might someday allow
developers to use their language of choice in the browser
rather than being restricted to only JavaScript.

6. Related Work

Techniques for safely executing 3rd-party code generally
fall into three categories: system request moderation, fault
isolation (including virtualization), and trust with authenti-
cation.

6.1. System Request Moderation

Kernel-based mechanisms such as user-id based access
control, systrace [50] and ptrace [60] are familiar facilities
on Unix-like systems. Many previous projects have explored
use of these mechanisms for containing untrusted code [24],
[33], [34], [36], [52], most recently Android [9], [27] from
Google and Xax [17] from Microsoft Research. Android
uses a sandbox for running 3rd party applications. Each
Android application is run as a different Linux user, and
a containment system partitions system call activity into
permission groups such as “Network communication™ and
“Your personal information”. User acknowledgment of re-
quired permissions is required prior to installing a 3rd party
application. User separation inherently denies potentially
useful intercommunication. To provide intercommunication,
Android formed a permissions model atop the Binder in-
terprocess communication mechanism, the Intent sytem and
ContentProvider data access model. [9]

Xax is perhaps the most similar work to Native Client
in terms of goals, although their implementation approach
is quite different, using system call interception based on
ptrace on Linux and a kernel device driver on Windows. We
considered such a kernel-based approach very early in our
work but rejected it as impractical due to concerns about
supportability. In particular we note that the Xax Windows
implementation requires a kernel-mode device driver that
must be updated for each supported Windows build, a
scheme we imagine onerous even if implemented by the
OS vendor themselves. There are known defects in ptrace

11

containment® that Xax does not address. Although the Xax
authors do recognize one such issue in their paper, a simple
search at Mitre’s Common Vulnerabilities and Exposures
site’ documents forty-one different ptrace-related issues.
Because of its pure user-space inner sandbox, Native Client
is less vulnerable to these difficult kernel issues. Xax is
also vulnerable to denial-of-service attacks based on x86
errata that can cause a machine to hang or reboot [31], [38].
Because Native Client examines every instruction and rejects
modules with instructions it finds suspect, it significantly re-
duces the attack surface with respect to invalid instructions,
and further it includes relevant mechanism for defending
against new exploits should they be found.

Because the Xax sandbox functions at the process bound-
ary, it fails to isolate untrusted code when shared application
components such as DLLs are involuntarily injected by
the operating system, an issue both for security and for
portability of untrusted code. In contrast, the Native Client
inner sandbox creates a security sub-domain within a native
operating system process. Apart from these security differ-
ences we note that Xax does not support threading, which
we considered essential given the trend towards multicore
CPUs.

The Linux seccomp® facility also constrains Linux pro-
cesses at the system call interface, allowing a process to
enter a mode where only _exit(), read(), and write() system
calls are permitted.

6.2. Fault Isolation

Native Client applies concepts of software fault isolation
and proof-carrying code that have been extensively dis-
cussed in the research literature. Our data integrity scheme
is a straightforward application of segmented memory as
implemented in the Intel 80386 [14]. Our current control
flow integrity technique builds on the seminal work by
Wahbe, Lucco, Anderson and Graham [62]. Like Wahbe et
al., Native Client expresses sandboxing constraints directly
in native machine instructions rather than using a virtual
machine or other ISA-portable representation. Native Client
extends this previous work with specific mechanisms to
achieve safety for the x86 [4], [14], [32] ring-3 instruc-
tion set architecture (ISA), using several techniques first
described by McCamant and Morrisett [40]. Native Client
uses a static validator rather than a trusted compiler, similar
to validators described for other systems [19], [40], [41],
[49], applying the concept of proof-carrying code [46].

After the notion of software fault isolation was popu-
larized by Wahbe et al., researchers described complemen-
tary and alternative systems. A few [1], [19], [40], [41],

6. http://www.linuxhq.com/kernel/v2.4/36-rc1/Documentation/ptrace.txt

7. For example, see http://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=
ptrace

8. See linux/kernel/seccomp.c

[49], [56] work directly with x86 machine code. Others
are based on intermediate program representations, such as
type-safe languages [28], [45], [47], [59], abstract virtual
machines [3], [20], [21], [39], or compiler intermediate
representations [53]. They use a portable representation,
allowing ISA portability but creating a performance obstacle
that we avoid by working directly with machine code.
A further advantage of expressing sandboxing directly in
machine code is that it does not require a trusted compiler.
This greatly reduces the size of the trusted computing
base [61], and obviates the need for cryptographic signatures
from the compiler. Apart from simplifying the security
implementation, this has the further benefit in Native Client
of opening the system to 3rd-party tool chains.

Compared to Native Client, CFI [1] provides finer-grained
control flow integrity. Whereas our system only guarantees
indirect control flow will target an aligned address in the text
segment, CFI can restrict a specific control transfer to a fairly
arbitrary subset of known targets. While this more precise
control is possibly useful in some scenarios, such as insuring
integrity of translation from a high-level language, it is not
useful for Native Client, since we intend to permit quite
arbitrary control flow, even hand-coded assembler, as long
as execution remains in known text and targets are aligned.
At the same time, CFI overhead is a factor of three higher
on average (15% vs. 5% on SPEC2000), not surprising
since its instrumentation sequences are much longer than
Native Client’s, both in terms of size and instruction count.
XFI [19] adds data sandboxing to CFI control flow checks,
with additional overhead. By contrast Native Client gets data
integrity for free from x86 segments.

Other recent systems have explored mechanisms for en-
abling safe side effects with measured trust. NaCl resource
descriptors are analogous to capabilities in systems such as
EROS [55]. Singularity channels [30] serve an analogous
role. DTrace [11], Systemtap [49] and XFI [19] have related
mechanisms.

A number of projects have explored isolating untrusted
kernel extensions. SPIN and VINO take different approaches
to implementing safety. SPIN chose a type-safe language,
Modula-3 [47], together with a trusted compiler tool chain,
for implementing extensions. VINO, like Native Client and
the original work by Wahbe et al., used software fault
isolation based on sandboxing of machine instructions. Like
Native Client, VINO used a modified compilation toolchain
to add sandboxing instructions to x86 machine code, using
C++ for implementing extensions. Unlike Native Client,
VINO had no binary validator, relying on a trusted compiler.
We note that a validator for VINO would be more difficult
than that of Native Client, as its validator would have had
to enforce data reference integrity, achieved in Native Client
with 80386 segments.

The Nooks system [58] enhances operating system kernel
reliability by isolating trusted kernel code from untrusted

12

device driver modules using a transparent OS layer called
the Nooks Isolation Manager (NIM). Like Native Client,
NIM uses memory protection to isolate untrusted modules.
As the NIM operates in the kernel, x86 segments are not
available. The NIM instead uses a private page table for
each extension module. To change protection domains, the
NIM updates the x86 page table base address, an operation
that has the side effect of flushing the x86 Translation
Lookaside Buffer (TLB). In this way, NIM’s use of page
tables suggests an alternative to segment protection as used
by Native Client. While a performance analysis of these
two approaches would likely expose interesting differences,
the comparison is moot on the x86 as one mechanism is
available only within the kernel and the other only outside
the kernel. A critical distinction between Nooks and Native
Client is that Nooks is designed only to protect against
unintentional bugs, not abuse. In contrast, Native Client must
be resistant to attempted deliberate abuse, mandating our
mechanisms for reliable x86 disassembly and control flow
integrity. These mechanisms have no analog in Nooks.

There are many environments based on a virtual-machine
architecture that provide safe execution and some fraction of
native performance [3], [6], [7], [20], [28], [39], [53], [63].
While recognizing the excellent fault-isolation provided by
these systems, we made a deliberate choice against virtu-
alization in Native Client, as it is generally inconsistent
with, or irrelevant to, our goals of OS neutrality, browser
neutrality, and peak native performance.

More recently, kernel extensions have been used for
operating system monitoring. DTrace [11] incorporated a
VM interpreter into the Solaris kernel for safe execution, and
provided a set of kernel instrumentation points and output
facilities analogous to Native Client’s safe side effects.
Systemtap [49] provides similar capabilities to DTrace, but
uses x86 native code for extensions rather than an interpreted
language in a VM.

6.3. Trust with Authentication

Perhaps the most prevalent example of using native code
in web content is Microsoft’s ActiveX [15]. ActiveX controls
rely on a trust model to provide security, with controls
cryptographically signed using Microsoft’s proprietary Au-
thenticode system [43], and only permitted to run once a
user has indicated they trust the publisher. This dependency
on the user making prudent trust decisions is commonly
exploited. ActiveX provides no guarantee that a trusted
control is safe, and even when the control itself is not
inherently malicious, defects in the control can be exploited,
often permitting execution of arbitrary code. To mitigate this
issue, Microsoft maintains a blacklist of controls deemed
unsafe [42]. In contrast, Native Client is designed to prevent
such exploitation, even for flawed NaCl modules.

7. Conclusions

This paper has described Native Client, a system for
incorporating untrusted x86 native code into an application
that runs in a web browser. In addition to creating a barrier
against undesirable side effects, NaCl modules are portable
both across operating systems and across web browsers, and
supports performance-oriented features such as threading
and vectorization instructions. We believe the NaCl inner
sandbox is extremely robust; regardless we provide addi-
tional redundant mechanisms to provide defense-in-depth.

In our experience we have found porting existing
Linux/gcc code to Native Client is straightforward, and
that the performance penalty for the sandbox is small,
particularly in the compute-bound scenarios for which the
system is designed.

By describing Native Client here and making it available
as open source, we hope to encourage community scrutiny
and contributions. We believe this feedback together with
our continued diligence will enable us to create a system
that achieves a superior level of safety than previous native
code web technologies.

Acknowledgments

Many people have contributed to the direction and the
development of Native Client; we acknowledge a few of
them here. The project was conceived based on an idea from
Matt Papakipos. Jeremy Lau, Brad Nelson, John Grabowski,
Kathy Walrath and Geoff Pike have made valuable contri-
butions to the implementation and evaluation of the system.
Thanks also to Danny Berlin, Chris DiBona, and Rebecca
Ward. We thank Sundar Pichai and Henry Bridge for their
role in shaping the project direction. We’d also like to thank
Dick Sites for his thoughtful feedback on an earlier version
of this paper.

References

[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-
flow integrity: Principles, implementations, and applications.
In Proceedings of the 12th ACM Conference on Computer
and Communications Security, November 2005.

[2] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid,

A. Tevanian, and M. Young. Mach: A new kemnel foundation

for UNIX development. pages 93-112, 1986.

[3] A. Adl-Tabatabai, G. Langdale, S. Lucco, and R. Wahbe. Ef-

ficient and language-independent mobile programs. SIGPLAN

Not., 31(5):127-136, 1996.

[4] Advanced Micro Devices. AMDG4 Architecture Program-

mer's Manual, Volume 1: Application Programming. Ad-

vanced Micro Devices, September 2007. Publication number:

24592.

[S] Autoconf. http://www.gnu.org/software/autoconf/.

[6] P.Barham, B. Dragovic, K. Fraser, S. Hand, A. Ho, R. Neuge-
bauer, 1. Pratt, and A. Warfield. Xen and the art of virtu-
alization. In 19th ACM Symposium on Operating Systems
Principles, pages 164-177, 2003.

[7] E. Bugnion, S. Devine, K. Govil, and M. Rosenblum. Disco:

Running commodity operating systems on scalable multipro-

cessors. ACM Transactions on Computer Systems, 15(4):412—

447, November 1997.

8

—

Bullet physics SDK. http://www.bulletphysics.com.

9

—

J. Bumns. Developing secure mobile applications for an-
droid. http://isecpartners.com/files/iSEC_Securing_Android_
Apps.pdf, 2008.

[10] K. Campbell, L. Gordon, M. Loeb, and L. Zhou. The
economic cost of publicly announced information security
breaches: empirical evidence from the stock market. Journal
of Computer Security, 11(3):431-448, 2003.

[11] B. Cantrill, M. Shapiro, and A. Leventhal. Dynamic instru-
mentation of production systems. In 2004 USENIX Annual
Technical Conference, June 2004.

[12] D. R. Cheriton. The V distributed system. Communications
of the ACM, 31:314-333, 1988.

[13] F. B. Cohen. Defense-in-depth against computer viruses.
Computers and Security, 11(6):565-584, 1993.

(14] J. Crawford and P. Gelsinger. Programming 80386. Sybex
Inc., 1991.

[15] A. Denning. ActiveX Controls Inside Out. Microsoft Press,
May 1997.

[16] Directorate for Command, Control, Communications and
Computer Systems, U.S. Department of Defense Joint Staff.
Information assurance through defense-in-depth. Technical
report, Directorate for Command, Control, Communications
and Computer Systems, U.S. Department of Defense Joint
Staff, February 2000.

[17]) J. R. Douceur, J. Elson, J. Howell, and J. R. Lorch. Leverag-
ing legacy code to deploy desktop applications on the web.
In Proceedings of the 2008 Symposium on Operating System
Design and Implementation, December 2008.

[18] M. Eisler (editor). XDR: External data representation. Internet
RFC 4506, 2006.

[19] U. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. Nec-
ula. XFI: Software guards for system address spaces. In
OSDI '06: 7th Symposium on Operating Systems Design And
Implementation, pages 75-88, November 2006.

[20] B. Ford. VXA: A virtual architecture for durable compressed
archives. In USENIX File and Storage Technologies, Decem-
ber 2005.

[21] B. Ford and R. Cox. Vx32: Lightweight user-level sandboxing
on the x86. In 2008 USENIX Annual Technical Conference,
June 2008.

[22] The GNU compiler collection. http://gce.gnu.org.
[23] GNU binutils. http://www.gnu.org/software/binutils/.

[24] I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer.
A secure enviroment for untrusted helper applications. In
Proceedings of the 6th USENIX Security Symposium, 1996.

[25] D. Golub, A. Dean, R. Forin, and R. Rashid. UNIX as an

application program. In Proceedings of the Summer 1990

USENIX Conference, pages 87-95, 1990.

[26] Google Inc. Protocol buffers. http://code.google.com/p/
protobuf/.
[27] Google Inc. Android—an open handset alliance project. http:

/lcode.google.com/android, 2007.

[28] J. Gosling, B. Joy, G. Steele, and G. Bracha.

Language Specification. Addison-Wesley, 2000.

The Java

[29] B. Gough and R. Stallman. An Introduction to GCC. Network

Theory, Ltd., 2004,
[30] G. Hunt, J. Larus, M. Abadi, M. Aiken, P. Barham, M. Fah-
ndrich, C. Hawblitzel, O. Hodson, S. Levi, N. Murphy,
B. Steensgaard, D. Tarditi, T. Wobber, and B. Zill. An
overview of the Singularity project. Technical Report MSR-
TR-2005-135, Microsoft Research, October 2005.
[31] Intel Corporation. Intel Pentium processor invalid instruction
errata overview. http://support.intel.com/support/processor/
pentium/ppiie/index.html.
[32] Intel Corporation. Intel 64 and IA-32 Architectures Software
Developers Manual, Volume 1: Basic Architecture. Intel
Corporation, August 2007. Order Number: 253655-024US.
[33] S. loannidis and S. M. Bellovin. Building a secure web
browser. In USENIX Annual Technical Conference, FREENIX
Track, pages 127-134, 2001.
[34] S. loannidis, S. M. Bellovin, and J. M. Smith. Sub-operating
systems: A new approach to application security. In Proceed-
ings of the 10th ACM SIGOPS European Workshop, 2002.

[35] Jam 2.1 user’s guide. http://javagen.com/jam/.

[36] C. Jensen and D. Hagimont. Protection wrappers: a simple
and portable sandbox for untrusted applications. In Proceed-
ings of the 8th ACM SIGOPS European Systems Conference,
pages 104-110, 1998.

[37] W. Joy, E. Cooper, R. Fabry, S. Leffler, K. McKusick, and
D. Mosher. 4.2 BSD system manual. Technical report,
Computer Systems Research Group, University of California,
Berkeley, 1983.

[38] K. Kaspersky and A. Chang. Remote code execution through
Intel CPU bugs. In Hack In The Box (HITB) 2008 Malaysia
Conference.

[39] T. Lindholm and F Yellin. The Java Virtual Machine
Specification. Prentice Hall, 1999.

14

[40] S. McCamant and G. Morrisett. Efficient, verifiable binary
sandboxing for a CISC architecture. Technical Report MIT-
CSAIL-TR-2005-030, 2005.

[41] S. McCamant and G. Morrisett. Evaluating SFI for a CISC
architecture. In /5th USENIX Security Symposium, August
2006.

[42] Microsoft Corporation. The kill-bit faq - part 1 of 3. Microsoft
Security Vulnerability Research and Defense (Blog).

[43] Microsoft Corporation. Signing and checking code

with Authenticode. http://msdn.microsoft.com/en-us/library/

ms537364(VS.85).aspx.

[44] Microsoft Corporation. Structured exception handling. http:

/fmsdn.microsoft.com/en-us/library/ms680657(VS.85).aspx,

2008.

[45] G. Mormrisett, K. Crary, N. Glew, and D. Walker.

based typed assembly language.

Programming, 12(1):43-88, 2002.

Stack-
Journal of Functional

[46] G. Necula. Proof carrying code. In Principles of Program-

ming Languages, 1997.

[47] G. Nelson (editor).
Prentice-Hall, 1991.

System Programming in Modula-3.

[48] Netscape Corporation. Gecko plugin API reference.
http://developer.mozilla.org/en/docs/Gecko_Plugin_API_
Reference.

[49] V. Prasad, W. Cohen, F. Eigler, M. Hunt, J. Keniston, and

J. Chen. Locating system problems using dynamic instru-

mentation. In 2005 Orntawa Linux Symposium, pages 49—64,

July 2005.

[50] N. Provos. Improving host security with system call policies.

In USENIX Security Symposium, August 2003.

[51] J. Reinders. Intel Thread Building Blocks. O'Reilly &
Associates, 2007.

[52] J. G. Richard West. User-level sandboxing: a safe and efficient
mechanism for extensibility. Technical Report TR-2003-014,
Boston University, Computer Science Department, Boston,
MA, 2003.

[53] 1. Richter.

2006.

CLR via C#, Second Edition. Microsoft Press,

[54] M. Savage. Cost of computer viruses top $10 billion already
this year. ChannelWeb, August 2001.

[55] J. Shapiro, J. Smith, and D. Farber. EROS: a fast capability
system. In Symposium on Operating System Principles, pages
170-185, 1999.

[56] C. Small. MiSFIT: A tool for constructing safe extensible
C++ systems. In Proceedings of the Third USENIX Confer-
ence on Object-Oriented Technologies, June 1997.

[57] B. Stroustrup. The C++ Programming Language: Second
Edition. Addison-Wesley, 1997.

[58] M. Swift, M. Annamalai, B. Bershad, and H. Levy. Recover-
ing device drivers. In 6th USENIX Symposium on Operating
Systems Design and Implementation, December 2004.

[59] D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and
P. Lee. TIL: a type-directed optimizing compiler for ML. In
PLDI '96: Proceedings of the ACM SIGPLAN 1996 confer-
ence on Programming language design and implementation,
pages 181-192, New York, NY, USA, 1996. ACM.

[60] W. Tarreau. ptrace documentation. http://www.linuxhq.com/
kernel/v2.4/36-rc1/Documentation/ptrace.txt, 2007.

[61] U. S. Department of Defense, Computer Security Center.

15

(62]

(63]

[64]

Trusted computer system evaluation criteria, December 1985.

R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. Effi-
cient software-based fault isolation. ACM SIGOPS Operating
Systems Review, 27(5):203-216, December 1993.

C. Waldspurger. Memory resource management in VMware
ESX Server. In 5th Symposium on Operating Systems Design
and Implementation, December 2002.

Document Object Model (DOM) Level 1 Specification. Num-
ber REC-DOM-Level-1-19981001. World Wide Web Consor-
tium, October 1998.

6.858 / Fall 2012 / Paper Reading Questions http://css.csail.mit.edw/6.858/2012/questions.html?q=q-nacl&lec=11

6.858: Computer

12
Systems Security Fall 20

Home = -
Paper Reading Questions
General
information For each paper, your assignment is two-fold. By the start of lecture:
Schedule e Submit your answer for each lecture's paper question via the
submission web site in a file named lecn.txt, and
Reference ® E-mail your own question about the paper (e.g., what you find
materials most confusing about the paper or the paper's general
context/problem) to 6.858-g@pdos.csail.mit.edu. You cannot
Piazza discussion use the question below. To the extent possible, during lecture
we will try to answer questions submitted by the evening
Submission GRIoTe:
2011 class ;
materials Lecture 11

Suppose an adversary discovers a bug in NaCl where the

i checker incorrectly determines the length of a particular x86 !
i instruction. How could an adversary exploit this to escape the '
. inner sandbox? :

LJKF o We/{zo/ |
bl ndiden Tt ctdieb

el(ﬁ)/‘rlﬂf\ @L@N{,{;/{/

C\UL o Nl eady for prse firt

Questions or comments regarding 6.858? Send e-mail to the course
staff at 6.858-staff@pdos.csail.mit.edu.

Top // 6.858 home // Last updated Friday, 12-Oct-2012 23:31:47 EDT

1of 10/13/2012 4:24 PM

[0/15

Paper Question 11

Michael Plasmeler

If an instruction length is not detected, this could cause the instruction length to overflow and
insert unchecked code into the execution flow. This has the potential to allow arbitrary code execution.

P&f\)w by ()04@1?,
él\(pb (,v} O\/M
Coge of e, bb e o b W pases
@Q}[UG,L (cj}/ll' oal(((Vi IS - HQ(SH
S?WM (o Peldife;

o
Whtw bl ody o upaitde case
b C, W Hosce

ﬂ(gti(ww (,CH @
Ul dn rafhe code CbF hed P test 4,
(4

Y, &
W ‘_& Sisdbox Y YL cole't |- Aokie X -
5__“?)%\:/69 i Plocess o VI bos ol
i ;Bf O~ St/ ,0{ "
e, i
OV, p@@)w

N
guntrtets] soiidy

?

HW ot
Ldoes ral rel gl & é
Could >V5\r (o Gpp

fﬁ,\o@h ()(ﬂhf@énibm@ Jos U a Aumbe,
0 Nee paachnts

s ﬂvby nt b 08 ~Speubic e Chies o
Vak Wty Pt POl ,',17

]\/ml JVOVHQ Sond oss To 727%7% o
LIFC chans| .

)NJL KOJM (Jo h\m@% any lff/eoéwis/q
P donk b 5 v, |

| R VAN

_\y"‘”k b“// (0 o in é@f{w(d

(/PU m} "f?mt [WL m}%@ﬁ/d 50(26 }Idny Wy

A,
| Mo otg o ol safe Lan (7)) by
G0t Vi C| oyanly(o GOy post fuls fou

|

[

YO\/ é@l«sp \CWH@,% 1\“\,0_ clog roaed V’/qu[t{%ffm
1}‘% applouh. Le’H@/
fie fok bl P
(-@0[% “LL /B(/@mgﬂnj P ‘”’&/Wé
(W b}/%h ‘\/M& hr//‘y

(w4
b (- (it 8

@ufa (ol
, 5 M Nl
g e —Va /
CC/ CH/ m) (mﬂllé’/ £ Vi"ﬂ(('(yf ‘*)/b‘/;;zpf
)‘//\/
{
D bt diasgubly oF fashidss
é’ Cb‘f ((ml\L LW/ o J767Z ﬁ@ Compzyg

({W (s Comp;(e/
Jov (ol gentate gg%wgéz

A lg /iy 10'9

Y
fort Sty Z[™
Vet y !
o L Do

1(Vje_ /ﬂv’/
s ﬂ
f {Ys CW}M 60} ({/ 9565 Wq/%
- 9 L s
/ 4 ma/] » (}b
. MLL /:(‘e W o
L. "y

WJB
é L gy,c call

/!

(

— N

PMed
/54

‘- ! Gk
’ liﬂ {-ﬁmb
A/& CL ‘.l’ erPo
{Jo
]N\ro

e g4
| Léémz[ce ’(th

o)

0 = Wem oy
éo QACH/ L/@&ﬂ/ CK‘Q e Con Z?/l' f //’]

How JO i (o bl ol will b an
£ yamp f5 e il

Qf} [ml (a/ wwo”? Laégf
Oc Qmﬂl@ Jam%(

— Code ebur vald nor wr foble
— Dok Setlon " m"“ Cxtnbl
mf%ﬂfi | // VK

N\(A écaa (n QIM/F fns

bt XEL allos walable lorght- s tieting

3 D 0 a0 0
o gesr 0 000 B od

by

Bot- 'f Jecde %HM at- ()

Y b,

e
mt 0x90 <Q¢C@{/

% dull ve deb oF ouk pasible <ol
ot s Gl ﬁ'ﬂt witkally Complcated

é9 %77% Infote (an dn)g JMP 17
ot /eﬂé it 30 bk gy

/Q@“Wblt D{Iééwﬂ}/
G o (YL
$asunbl

-l e adl o all (gt

- d Jump et o o e
| St *’C{ons}m} i Gode
@M} mp ¥ % e

oty ol &

Y éomwg@mz@c
lih F‘%é &sz !tmlffén:) OO‘(W
{LWL il ne m }%MMJM!’M
bo i chiky ' aFBentin

I\/M palgs $up /’vmpﬁ ZWK A 5,0@0(5»3 £ &

o § ontt ey o
P %Y g

g\a OOA‘ ’OW WJQ/ lDt’b

&{9 ’[NM s 1) M@ a/[/z’ﬂr@[
R\/)a bﬂ@(nJ 546}74;17/? 5/04/‘6 ?2 ﬁ?’Q _/6@//20///
Ut can oy banp b 31 b iy

Eae(/[q Lyﬁ st b o f>~7 ﬁcm
®9 L passes 47) })@ S

@QZ Aﬂtﬁ 5 ot 6}

é)er, ;é PS\{Q[L#@

{ JO}J it (comyJ ﬁ@t - s fo 3 b/1-
]W\//&/L(

Oy]'74] mdded g¢ t, ad{ ms foopd

D(L 1@%&@0
Lbl\ L’?Z /f(?ﬁw({

LOW él/’gj /QMK
S v bk £()
)11 180090,

5 0k
g@f v 710 32 é'L
Smce (Omoay T put- of offset

Y
A /ETLVVO ’gg o [OmM@J Jump
éo P(g (.:.5 \J{wl{o»eé
(ompwqf mmL /o@d /(NL \/@é/@ (]4}9 /%4)5%(/

Ceows D Vo ¢ i,
MV\)‘/W\PS b&@

% Tt s o & vytied bt bty
\/\ML (muk of (ke u Huble [

U - eWMMQ Ym0ly Now W,%H(
(L = lahd of O/Q%L\

Cgvau Comprod gy v Tho D —pbe 5
AV and P fs oniz C“/r&// o G)L

M B e
il Y /MJJ@J l«// | o oo ML | s ki

+° PQJM}‘ you ffam W%’v M}/ﬂ[g Jﬂ/q
hf\Q}# 25 Non W/Ht/b’q/ {ML ﬁ’”) A Ot Pa?]?i//t")

3

(5-’ NQ ;%}[Jm G Span 9L bt And//
U’JLW L jedidtn PVt PP bar s ol 7
lﬂ@&o cold, Bmf lh 4 Jkedod 3 pp /

(TM¥s o rot all reod § e sine 26k
Cg/m all it / Imp figth Cecchable

Al Qv Ukat olll breat”
OHJ@L wiory
Co Voitly WIX (00%({/ Nesod o
o call possily f wony - place

ND’)‘{(l/\ﬂ L\InJO{ Lw»ppMJ ;n /1/@[[

Mo ral % nck ge df des b o
Do Geute @t [aboe Tim)
(O ot Hgl«y bl

0004 | - (%o 0000

i ldaige w WL mb

0

Bt e o bo ol Do Mo

M%VL (an‘}/ol (Cads ¥ @\//H&s Y ﬁL/L
o vhe e gMWﬂm

SV\L@, an OM“&QC, CMM@{ 7125 éggg,

Llloo 0] 00000

A T8 s

Jnp L 9
&g 7
4 0 byles o

éeﬁv@i $kestor /e@}#@

:rﬂl@f/ M{m[n ‘b/lbl@
% (& = { ¥

% s 20 H L

0

7 9 1 |

P
hesl T~
7 5 L

6\/@“{ ;494'/%{ ‘(04 ?}[a/)l 4 €€b WM/O// @0/({/955 0)0@
v efoe by b Segront

%J/‘g /ts J@{WH 537
e o) ot & (oo t Seqran-
WMoV i@f/\c OX U)OO/ Z@m
vl don Fs0g

(ol wak i wib ofo halis
Db ik W (Lot

Coamnl v aond &%
: L/W[i f@@i ﬂl@ CM & dettl(zwfﬂf

gﬁ CWM, We (\0 VVA gﬂﬁ/’l’%w{emj
What abot dibe atesy) g tition bl

Woll Lo b apdy WD Fik to £uay

MMO/Y Cl/tLt!/ w/ G O[/M
BA hub g 4F of ieddbe]

VG b o Sgeortton e lge,,
O Nl hads o b ool i nd bl

éﬁmﬁaﬁm fo Wil -7 HF péc’rﬂ%
lr\l“}@l Cop]aet{ 7’},% W/ x?(
\/(/TLM Mo+ Pasg W@ol‘ o il
\Ns o JQ;F Szajtry ()Lwn, [PV
by Ty gol™ Al of N b weke Wus Gt

VI e i Do some bid

W Ten eal b Sppol—cone ot
iy

5

b b
W‘ ((’ W O/ﬁﬁﬂw [!,] 2 /MM %
f

Ebaﬂ } }q}/w\L doll e g %
L [a/‘H \ou ot s);//o ()
bl e D, TP

Wavld
M by 7L W g A odod ﬂaae e

g)a)r 3“0/\ J@/% ~Jr’)p s v lld
(o PP ok o candbox

g/eq,
Aa/‘h/f&z éﬂl& (1 S s l

B+
96/%&1(80‘,@ cldw/; C\\[p
VSA/’ (l%& ,

NoP
)(S)th(j Mfm reeds b /'?
% Wi re. 0{1/4/1 Mo C(][Ip/d(é
v’n (s on M]

J i/bk n/oL(,

by

OAsde Ll

’_\/

@iﬁ Can /‘V@\f (OMP/}{
Bt o dow report /%A/ SYL@@J@ rle

T/mpon«@ pighod

Gandbox %;Sea/'(c@ Cote. [t >
(nlie Sand box

I"Mﬁ'%' vrdo 6?Vd/04)a
%JNP)[9 SWL'%

(Whg

VT Ny 13, s oo\ Mo 87, %esyds
5anzm

P[O+ﬂ;f}”\ [mg o / C’/ 1 0x %ﬁ[N %C&)C
(W/#{r (oo nd V@M‘l fl
(ode - Cons of Nll ase
ks Comak

('QMZ(SMJéﬂ/C
TP oo (ode

Wk(nt re@u{cw (AL g gy myr

disallve
g afw@/fg Seohant & v

g FYEA&W{ Can &,,[be inwolle & o (pice oy
Bt hall e (mL (il
g?ﬂlb@ /v{ﬂv}'% (un (/mqp 719 l/l/l"—@/(j/@{ (L(Iéa/f

VPR

~ Fanpla, g by
“Sve sty
Y,

(w
g@ﬂ/t% /vm)l:/e“} (stead of Mm/ whon C}%

2 5?‘ g baud
{\ 6\"‘"‘/“5 WTL (fwé (mf%l

To W potut b £ bt

x86 memory segmentation - Wikipedia, the free encyclopedia

1 of 6

x86 memory segmentation

From Wikipedia, the free encyclopedia

http://en.wikipedia.org/wiki/X86 memory segmentation

x86 memory segmentation refers to the implementation of memory segmentati ¢ x86 architecture.

Certain portions of the memory may be addressed by a single index register without changing a 16-bit
segment selector. In real mode or V86 mode, a segment is always 65,536 bytes in size (using 16-bit offsets).

[n protected mode, a segment can have variable length. Segments can overlap.

Contents

1 Real mode

2 Protected mode
= 2.1 80286 protected mode
= 2.2 Detailed Segmentation Unit Workflow
= 2.3 80386 protected mode

3 Later developments

4 Practices

5 Notes and References

6 See also

7 External links

Real mode

In real mode, the 16-bit segment selector is interpreted
as the most signiﬁcamm_’ﬂgﬁﬂﬂ address,
called a segment address, of which the remaining four
least significant bits are all zeros. The segment address is
always added with a 16-bit offset to yield a /inear
address, which is the same as physical address in this
mode. For instance, the segmented address
06EFh:1234h has a segment selector of 06EFh.
representing a segment address of 06EFOR, to which we
add the offset, yielding the linear address

06EFOh + 1234h = 08124h (hexadecimal).

Because of the way the segment address and offset are
added. a single lincar address can be mapped to up to
4096 distinct segment:offset pairs. For example. the
linear address 08124h can have the segmented addresses
06EFh:1234h, 0812h:0004h, 0000h:8124h, etc. This
could be confusing to programmers accustomed to
unique addressing schemes, but it can also be used to
advantage, for example when addressing multiple nested
data structures. While real mode segments are always

IfLL
Naad %P*

Gl s s

Start of segment 3

Address: 0x28CH0000
.or-

0x2143:0477 00

Lmear address: 0x28C00

Start of segment
Address: 062143 0000
Linear address: 0x2 1430

Startof segmert
Address: Qw0 CEF 0000
Liear address: 0x0CEFO

(I/@f 07/ 42/

Segment 3
Sezment address: 0228 C0

>
Segment 2
Segment address: 0x2143
Segment 1
Segmentaddress; 0x0CEF
-

Main memory

10/22/2012 1:02 AM

x86 memory segmentation - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/X86_memory_segmentation

2 of 6

64 KiB long, the practical effect is only that no segment Three segments in real mode memory (click on image
can be longer than 64 KiB, rather than that every to enlarge). Note the overlap between segment 2 and

segment must be 64 KiB long. Because there is no
protection or privilege limitation in real mode. even if a
segment could be defined to be smaller than 64 KiB, it
would still be entirely up to the programs to coordinate
and keep within the bounds of their segments, as any program can always access any memory (since it can
arbitrarily set segment selectors to change segment addresses with absolutely no supervision). Therefore,
real mode can just as well be imagined as having a variable length for each segment, in the range 1 to 65536
bytes, that is just not enforced by the CPU.

segment 3; the bytes in the turquoise area can be used
from both segment selectors.

(Note that the leading zeros of the linear address, segmented addresses, and the segment and offset fields,
which are usually neglected, were shown here for clarity.)

The effective 20-bit address space of real mode limits the addressable memory to 220 bytes, or

1,048,576 bytes. This derived directly from the hardware design of the Intel 8086 (and, subsequently, the
closely related 8088), which had exactly 20 address pins. (Both were packaged in 40-pin DIP packages;
even with only 20 address lines, the address and data buses were multiplexed to fit all the address and data
lines within the limited pin count.)

Each segment begins at a multiple of 16 bytes, {rom the beginning of the linear (flat) address space. That is,
at 16 byte intervals. Since all segments are 64 KiB long, this explains the huge overlap that can occur
between segments and that any location in the linear memory address space can be accessed with many
segment:offset pairs. The actual location of the beginning of a segment in the linear address space can be
calculated with segmentx16. A segment value of 0Ch (12) would give an linear address at COh (192) in the
linear address space. The address offset can then be added to this number. 0Ch:0Fh (12:15) would be
COh+0Fh=CFh (192+15=207), CFh (207) being the linear address. Such address translations are carried out
by the segmentation unit of the CPU. The last segment, FI'FFh (65535), begins at linear address FFFFOh
(1048560), 16 bytes before the end of the 20 bit address space, and thus, can access, with an offset of up to
65,536 bytes, up to 65,520 (65536—16) bytes past the end of the 20 bit 8088 address space. On the 8088,
these address accesses were wrapped around to the beginning of the address space such that 65535:16
would access address 0 and 65533:1000 would access address 952 of the linear address space. Programmers
using this feature led to the Gate A20 compatibility issues in later CPU generations, where the linear address
space was expanded past 20 bits.

In 16-bit real mode, enabling applications to make use of multiple memory segments (in order to access
more memory than available in any one 64K-segment) is quite complex, but was viewed as a necessary evil
for all but the smallest tools (which could do with less memory). The root of the problem is that no
appropriate address-arithmetic instructions suitable for flat addressing of the entire memory range are
available.[d"mm” needed) i
slower programs.

lat addressing is possible by applying multiple instructions, which however leads to

Protected mode
80286 protected mode

The 80286's protected mode extends the processor's address space to g bytes (16 megabytes), but not by
adjusting the shift value. Instead, the 16-bit segment registers now contain an index into a table of segment

10/22/2012 1:02 AM

x86 memory segmentation - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/X86_memory segmentation

descriptors containing 24-bit base addresses to which the
offset is added. To support old software, the processor
starts up in "real mode", a mode in which it uses the

Iain memory

Het ek segmented addressing model of the 8086. There is a
Local Descriptor Table (LDT] small difference though: the resulting physical address is
I . no longer truncated to 20 bits, so real mode pointers (but
% il _ i not 8086 pointers) can now refer to addresses between
T] 100000n and 10FFEF. This roughly 64-kilobyte region
e s of memory was known as the High Memory Area

bt .(I*IMA). and later versions of MS-DOS could use it to
Segmeat selector 0x0017 increase the available "conventional" memory (i.e.

). within the first MiB). With the addition of the HMA, the
5 total address space is approximately. 1.06 MiB. Though
Three segments in protected mode memory (click on the 80286 does not truncate real-mode addresses to
image to enlarge), with the local descriptor table. 20 bits, a system containing an 80286 can do so with

hardware external to the processor, by gating off the
21st address line, the A20 line. The IBM PC AT
provided the hardware to do this (for full backward compatibility with software for the original IBM PC and

PC/XT models), and so all subsequent "AT-class" PC clones did as well.

The protected mode segmentation system, present in the 80286 and later x86 CPUs, can be used to enforce
separation of unprivileged processes, but most 32-bit operating systems uses the paging mechanism
introduced with the 80386 for this purpose instead. Such systems set all segment registers to point to a
segment descriptor with offset=0 and limit=2°2, giving an application full access to a 32-bit flat virtual
address space through any segment register. By this method, normal application code does not have to deal
with segment registers at all. This was possible because the 80386 widened the general purpose registers (i.e.
the offset registers) to 32 bits. Naturally, the base addresses in the descriptors were also widened to 32 bits.

Detailed Segmentation Unit Workflow

A logical address consists of a 16-bit segment selector (supplying 13+1 address bits) and a 16-bit offset. The
segment selector must be located in one of the segment registers. That selector consists of a 2-bit Requested
Privilege Level (RPL), a 1-bit Table Indicator (TI), and a 13-bit index.

When attempting address translation of a given logical address, the processor reads the 64-bit segment
descriptor structure from either the Global Descriptor Table when TI=0 or the Local Descriptor Table when
TI=1. It then performs the privilege check:

max(CPL, RPL) <DPL

where CPL is the current privilege level (found in the lower 2 bits of the CS register), RPL is the requested
privilege level from the segment selector, and DPL is the descriptor privilege level of the segment (found in
the descriptor). All privilege levels are integers in the range 0-3, where the lowest number corresponds to

the highest privilege.

If the inequality is false, the processor generates a general protection (GP) fault. Otherwise, address
translation continues. The processor then takes the 32-bit or 16-bit offset and compares it against the
segment limit specified in the segment descriptor. If it is larger, a GP fault is generated. Otherwise, the
processor adds the 24-bit segment base, specified in descriptor, to the offset, creating a linear physical

J

3of6 10/22/2012 1:02 AM

x86 memory segmentation - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/X86_memory_segmentation

address.

The privilege check is done only when the segment register is loaded, because segment descriptors are

. 5 . itali vede |
cached in hidden parts of the scgment registers,[e77tion needed](1]

80386 protected mode

In the 386 and later, protected mode retains the segmentation mechanism of 80286 protected mode, but a
paging unit has been added as a second layer of address translation between the segmentation unit and the
physical bus. Also., importantly, address offsets are 32-bit (instead of 16-bit), and the segment base in each
segment descriptor is also 32-bit (instead of 24-bit). The general operation of the segmentation unit is
otherwise unchanged. The paging unit may be enabled or disabled; if disabled, operation is the same as on
the 80286. If the paging unit is enabled, addresses in a segment are now virtual addresses, rather than
physical addresses as they were on the 80286. That is, the segment starting address, the offset, and the final
32-bit address the segmentation unit derives by adding the two are all virtual (or logical) addresses when the
paging unit is enabled. When the segmentation unit generates and validates these 32-bit virtual addresses
from a program's logical (46~bit[2]) addresses, the enabled paging unit finally translates these virtual
addresses into physical addresses. The physical addresses are 32-bit on the 386, but can be larger on newer
processors which support Physical Address Extension.

The 80386 also introduced two new general-purpose data segment registers, FS and GS, to the original set of
four segment registers (CS, DS, ES, and SS).

Later developments

The x86-64 architecture does not use segmentation in long mode (64-bit mode). Four of the segment

registers: CS, SS, DS, and ES are forced to 0, and the limit to 264 The segment registers I'S and GS can still
have a nonzero base address. This allows operating systems to use these segments for special purposes.

For instance, Microsoft Windows on x86-64 uses the GS segment to point to the Thread Environment Block.
a small data structure for each thread, which contains information about exception handling, thread-local
variables, and other per-thread state. Similarly, the Linux kernel uses the GS segment to store per-CPU data.

Practices

Logical addresses can be explicitly specified in x86 assembly language, e.g. (AT&T syntax):

However, segment registers are usually used implicitly.

= All CPU instructions are implicitly fetched from the code segment specified by the segment selector
held in the CS register.

= Most memory references come from the data segment specified by the segment selector held in the

DS register. These may also come from the extra segment specified by the segment selector held in the
ES register, if a segment-override prefix precedes the instruction that makes the memory reference.

4 of 6 10/22/2012 1:02 AM

X86 memory segmentation - Wikipedia, the free encyclopedia

50f6

http://en.wikipedia.org/wiki/X86_memory segmentation

Most, but not all, instructions that use DS by default will accept an ES override prefix.

= Processor stack references, either implicitly (e.g. push and pop instructions) or explicitly (memory

accesses using the (E)SP or (E)BP registers) use the stack segment specified by the segment selector
held in the SS register.

= String instructions (c.g. stos, movs), along with data segment, also use the extra segment specified by

the segment selector held in the ES register.

Segmentation cannot be turned off on x86-32 processors (this is true for 64-bit mode as well, but beyond the
scope of discussion), so many 32-bit operating systems simulate a flat memory model by setting all segments'

bases to 0 in order to make segmentation neutral to programs. For instance, the Linux kernel sets up only 4
general purpose segments:

* __USER_CS (User code segment, base=0, limit=4GB,
" _ USER_Ds (User data segment, base=0, limit=4GB, I

v __KERNEL CS (Kernel code segment, base=0, limit=4GB, DPL

__ KERNEL_DS (Kernel data segment, base=0, limit=4GB, DPL=
DPL
B]

Since the base is set to 0 in all cases and the limit 4 GiB, the segmentation unit does not affect the addresses
the program issues before they arrive at the paging unit. (This, of course, refers to 80386 and later
processors, as the earlier x86 processors do not have a paging unit.)

Current Linux also uses GS to point to thread-local storage.

Segments can be defined to be either code, data, or system segments. Additional permission bits are present
to make segments read only, read/write, execute, etc.

Note that, in protected mode, code may always modify all segment registers except CS (the code segment
selector). This is because the current privilege level (CPL) of the processor is stored in the lower 2 bits of
the CS register. The only way to raise the processor privilege level (and reload CS) is through the lcall (far
call) and int (interrupt) instructions. Similarly, the only way to lower the privilege level (and reload CS) is
through Iret (far return) and iret (interrupt return) instructions. In real mode, code may also modify the

CS register by making a far jump (or using an undocumented por ¢s instruction on the 8086 or 8088)[3]).

Of course, in real mode, there are no privilege levels; all programs have absolute unchecked access to all of
memory and all CPU instructions.

For more information about segmentation, see the IA-32 manuals freely available on the AMD or Intel
websites.

Notes and References

1.

A "Intel 64 and 1A-32 Architectures Software Developer's Manual", Volume 3, "System Programming Guide",
published in 2011, Page "Vol. 3A 3-11", the book is written: "Every segment register has a “visible” part and
a “hidden” part. (The hidden part is sometimes referred to as a “descriptor cache” or a “shadow register.”)
When a segment selector is loaded into the visible part of a segment register, the processor also loads the
hidden part of the segment register with the base address, segment limit, and access control information from
the segment descriptor pointed to by the segment selector. The information cached in the segment register
(visible and hidden) allows the processor to translate addresses without taking extra bus cycles to read the
base address and limit from the segment descriptor."

10/22/2012 1:02 AM

x86 memory segmentation - Wikipedia, the free encyclopedia http://cn.wikipedia.org/wiki/X86_memory_segnemation

2. A The 46 bits are 14 bits from a 16-bit segment register (the other two bits are the privilege level) plus a 32-bit

offset.

3. A pop s must be used with extreme care and has limited usefulness. because it immediately changes the
effective address that will be computed from the instruction pointer to fetch the next instruction. Generally, a far
jump is much more useful. The existence of pop cs is probably an accident, as it follows a pattern of PUSH
and POP instruction opcodes for the four segment registers on the 8086 and 8088.

See also

= Intel Memory Model
= THE multiprogramming system

External links

= Home of the IA-32 Intel Architecture Software Developer's Manual (http:/www.intel.com/products
/processor/manuals/index.htm)

= The Segment:Offset Addressing Scheme (http://mirror.href.com/thestarman/asm/debug
/Segments.html)

an

Retrieved from "http://en.wikipedia.org/w/index.php?title=X86_memory_segme ntation&oldid=518434163
Categories: X86 memory management

= This page was last modified on 18 October 2012 at 02:19.

= Text is available under the Creative Commons Attribution-ShareAlike License: additional terms may
apply. See Terms of Use for details.
Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.

60f6 10/22/2012 1:02 AM

Modes of Memory Addressing on x86 http://www.c-jump.con/CIS77/ASM/Memory/lecture.html

CIS-77 Home http://waw.c-jump. com/C 1s77/C1S77svllabus, htm

Modes of Memory Addressing on x86

. Two Real modes of addressing on 80x86
Segment Registers

Real Mode Segmented Model

. Real Mode Segmented Model, Cont.

. Problems Related to Segmentation

. Address Space in Real Mode

. Collective Terms for Memory

Memory Paragraphs in Real Mode

. Segment of Memory in Real Mode

10. Memory Access in Real Mode

I1. Segment Registers in Real Mode L
12. Segment Register Names
13, Segment Register Names, Cont,

14, Segment Positions in Real Mode

15. General-Purpose Registers in Real mode

16. Segmentation Models Summary

17. Real Mode Flat Model Summary

18. Real Mode Flat Model Diagram

19. Real Mode Segmented Model

20. Real Mode Segmented Model, Cont.

21. Real Mode Segmented Model, Cont.

22. x86 Protected Mode Flat Memory Model

23. Advantages of Flat Memory Model

24, The Protected Mode Flat Model Diagram

2

2

O 00 N1 O h R L D —

5. The Protected Mode Flat Model Diagram, Cont.
26. The Protected Mode Flat Model Diagram, Cont.
27. Protected Mode Flat Model Summary
28. Console Applications

30. Protected Mode Architecture

. Rings of protection, four levels of security

. Three types of segment descriptor tables

. Flat vs. Segmented Memory Model

. Differences between 16-bit and 32-bit Memory Modes
. Differences, cont.

. Differences, cont.

. Older OS and Addressing Modes Compared

LI LW W L LW
N oA e W) -

1. Two Real modes of addressing on 80x86

* Real mode flat model means
—
strictly converting one address value into a physically meaningful location in the RAM.
* Real mode segmented model means

strictly converting twe address values into a physically meaningful memory location.

PSS
gives access to one megabyte (1,048,576 bytes) of directly addressable memory, known as real mode memory.

2. Segment Registers

Segment registers are basically mgmory pointers located nside the CPU.
—_—

Segment registers point to a place in memory where one of the following Example: code segment register CS points to a 64K region of memory:
things begin:

1. Data storage f = 74008 J— e ——
2, Code execution, é/' - b |

!

1

| 64K
1 Memory Segment
|

Lof 13 10/22/2012 1:06 AM

Modes of Memory Addressing on x86 http://www.c-jump.com/CIS77/ASM/Memory/lecture.html

3. Real Mode Segmented Model

+ Segmented organization
o 16-bit wide segments)
* Two components (
o Base (16 bits)
o Offset (16 bits)
» Two-component specification is called fogical address, also called effective address.

» Logical address translates to a 20-bit physical address.

4. Real Mode Segmented Model, Cont.

o Addresses are limited to 20 bits: Generating 20-bit physical address in Real Mode:

22=1,048,576 bytes. = 16 bits + L) as @
» Physical address is generated by adding a cs| A 0 0 0
o 16-bit segment register, shifted left four bits
o } 16 bits -
o plusa 16 bit-offset, - g)({,
+ Pl 5 F 0 0 O 5@
(o
} 20 bits |

5. Problems Related to Segmentation

* Segmentation often caused grief for programmers who tried to access large data structures:

o Since an offset cannot exceed 16 bits, you cannot increment beyond 64k, (J/}(ég [/ /
s s G

o Instead, program must watch out for a 64k boundary and then play games with the segment register.

e e

» This nightmare was originally created to support CP/M-80 programs ported from 8080 chip to 8086. W[\O‘j{’ t 0 m 0{}0 L%{
o Successful short-term thinking; (
o Catastrophically bad long-term thinking that resulted in never-ending Windows 9x problems! P\//pﬂ% QL ‘)

6. Address Space in Real Mode

* Address space in real mode segmented model runs from
00000h to OFFFFFh,

within one megabyte of memory.

» For compatibility reasons, Pentium CPU is capable of switching itself into real mode segmented model, is effectively becoming a good old 8086 chip!

Size [Decimal | Hex |

20of13 10/22/2012 1:06 AM

Modes of Memory Addressing on x86 http://www.c-jump.cony/CIS77/ASM/Memory/lecture.html

Byte | 01H
Word 2 02H
Double word 4 04H
Quad word 8 08H
Ten byte 10 0AH
Paragraph (*) 16 10H
Page, or page frame, (almost never used) | 256 100H
Segment 65,536 | 10000H

(*) Paragraphs are almost never used, except in connection with the places where segments may begin,

8. Memory Paragraphs in Real Mode

» Any memory address evenly divisible by 16 1s called a paragraph boundary

-

o The first paragraph boundary is address 0.

o The second is address 10H (10H is equal to decimal 16.)
o The third address is 20H, and so on
= Any paragraph boundary may be considered the start of a segment.
» There are 64K different paragraph boundaries where a segment may begin
» Each paragraph boundary has a number.
» The numbers range from 0 to 64K minus one (decimal 65,535 or hex OFFFFh.)
* Any segment may begin at any paragraph boundary.
» The number of the paragraph boundary is called the segment address.
» Assembly language program can have up to four or five segments.

» Segment address is 16 bytes in size.

9. Segment of Memory in Real Mode

*» Every byte of memory, accessible by program, is assumed to reside in a segment. Initializing the data segment register:
—-..________'__‘

* Segment size varies and can range from 1 byte to 64 Kbytes.

+ Nothing is protected within a segment in Real Mode. MOV AX, 1000H

AH AL
» Segments can overlap.

« Initializing the data segment register in 16-bit real mode: AX| 10 00 @

« Numerical (immediate) values cannot be moved directly into the segment register. It is a 2-step process:
mov ax, 1000h
mov ds, ax MOV DS. AX
DS| 10 00 AX| 10 00

10. Memory Access in Real Mode

« Recall that 8086 and 8088 CPUs had 20 address pins, limiting a program to |
megabyte of memory.

3of13 10/22/2012 1:06 AM

Modes of Memory Addressing on x86 http://www.c-jump.com/CIS77/ASM/Memory/lecture.html

* To express a 20-bit address, two 16-bit registers are used:
o segment W{Adress in one 16-DIT register,
o and the offset address in another 16-bit register,

* The memory location of a particular byte from one megabyte of memory is
calculated as

o segment start address
o plus distance between the byte and the segment start.
[

« The byte's distance from the start of the segment is referred to as the byte's offset
address.

* SEGMENT:OFFSET addresses are always written in hexadecimal notation.
o For example, an address of one byte of data MyByte is given as 0001:001D.

© This means that MyByte is in segment 0001H and is located 001DH bytes
from the start of that segment.

+ Since segments can overlap, same byte could also be located by SEGMENT: OFFSET
combinations 0002:000D or 0001:001D. _—

11, Segment Registers in Real Mode

* The 8088, 8086, and 80286 CPUs have four segment registers to hold segment addresses.

* The 386 and later CPUs have two more, also available in real mode.

* Note: the 386 and later lntMcm registers.

* Each segment register is 16-bit in size.

* No matter how location in memory is accessed, the segment address of that location must be present in one of the six segment registers:

CS, DS, SS, ES, FS and GS.

12. Segment Register Names
All x86 segment registers are 16 bits in size, irrespective of the CPU:

© CS, code segment. Machine instructions exist at some offset into a code segment. The segment address of the code segment of the currently executing instruction is
contained in CS. -

40f13 10/22/2012 1:06 AM

Modes of Memory Addressing on x86 http://www.c-jump.comy/CIS77/ASM/Memory/lecture html

o DS, duta segment. Variables and other data exist at some offset into a data segment. There may be many data segments, but the CPU may only use one at a time, by
placing the segment address of that segment in register DS.

o 88, stack segment. The stack is a very important component of the CPU used for temporary storage of data and addresses. Therefore, the stack has a segment
address, which is contained in register SS.

o ES, extra segment. The extra segment is exactly that: a spare segment that may be used for specifying a location in memory.

13. Segment Register Names, Cont,

* FSand GSare clones of ES, the extra segment. The six segments of the memory system:

* FSand GS both are just additional segments, no specialty here.

» Names FS and GS come from the fact that they were created after ES: £, & (.

* They exist only in the 386 and later x86 CPUs.

—
« Extra segments ES, FS, and GS can be used for both data or code.

A S : —

050 T | e
Yo Vot o]
¥ AU~ - - o

14. Segment Positions in Real Mode

{a) Adjucent {b) Disjoint «) Partially overlapped (d) Fully overlapped

15. General-Purpose Registers in Real mode

* General-purpose registers may hold
o data values

o offset addresses that must be paired with segment addresses to locate
data in memory.

* The customary notation is to separate the segment register and the offset
register by a colon, For example:

Ds : AX
SS : SP
SS : BP
ES : DI
Ds : SI
Cs : BX

50f13 10/22/2012 1:06 AM

Modes of Memory Addressing on x86 hitp://www.c-jump.com/CIS77/ASM/Memory/lecture.html

tack Segment

Data Segment

Data Segment

Cééé"séémen!

Code Segment

and thary My

16. Segmentation Models Summary

= Pentium can turn off segmentation.
= Flat model
o Consists of one segment of 4GB
o Used by linux
* Multisegment model
o Up to six active segments
o Can have more than six segments (all segment descriptors are in the descriptor table.)

o A segment becomes active by loading its descriptor into one of the segment registers.

17. Real Mode Flat Model Summary

» CPU can see only 1 megabyte (1,048,576) of memory.
= segment:offset pairs form a 20-bit addresses out of two 16-bit addresses.
e In real mode flat model a program and all its data must exist within a single 64K block of memory.

o The real mode flat model is similar to protected mode flat model, the code model used on Linux and Windows XP/Vista.

18. Real Mode Flat Model Diagram

* The segment registers are all set to point to the beginning of the 64K block of
memory.

« The operating system sets segment registers when it loads the program.
* All segment registers point to that same place.
» Physical segment assignments never change as long as the program is running.

« The segment registers are still functioning, but no work with segments is
required.

60of13 10/22/2012 1:06 AM

Modes of Memory Addressing on x86

7of13

0000H ——

O100H e

19. Real Mode Segmented Model

* Real mode segmented model was mainstream programming model
throughout the MS-DOS era.

* Used when Windows 9x machine is booted into MS-DOS mode.
* Good choice to write code to run under MS-DOS.
* Program has access to IMB of memory.

*» The CPU handles transformations of segment:offset combinations into a full
20-bit address.

* CSalways points to the current code segment

| Your Program Code

Your Program Data

Unused

Memory Space

o The Stack

http://www.c-jump.conV/CIS77/ASM/Memory/lecture.html

Data Segment

Data Segmeﬁi

Coda Segméﬁt

Code Sagment

20. Real Mode Segmented Model, Cont.

* The next instruction to be executed is pointed to by the CS:IP register pair.

+ Machine instructions called jumps can change CS to another code segment if
necessary.

+ The program can span several code segments.

* There is no direct CS manipulation to change from one code segment to
another:

when a jump instruction needs to take execution into a different code
segment, it changes CS value for you.

10/22/2012 1:06 AM

Modes of Memory Addressing on x36

8of 13

21. Real Mode Segmented Model, Cont.

http://www.c-jump.conV/CIS77/ASM/Memory/lecture.html

e QOOOOH

Stack Segmant —

i
" { Dy | Asdesn

Data Segment

: Dﬁlﬁ‘%}ggiﬁani e

Code Segment

Code Segment

Adures
et e QFFFFEH (IMB)

Memony

¢ There is only one stack segment for any single program.

« A program has potential to destroy portions of memory that does not belong
to its process.

o Careless use of segment registers will cause the operating system to crash.

irs memory}

Q0000H

Stack Segment

Coda Segment

Corle Segment

20-Bil
Memory Addresses
omsnis e, e (JFFEFFH - (IMB)

22. x86 Protected Mode Flat Memory Model

* On 32-bit processors, Windows and Linux use the so-called protected mode flat memory model.

» Under flat memory model,

o entire address space is described by a 32-bit segment, which provides 2=y gigabytes of address space.

© program can (in theory) access up to 4 gigabytes of virtual or physical memory.

e In protected mode,

o segment registers contain sefector values rather than actual physical segment addresses.

o Selector values cannot be calculated by the program; they must be obtained by calling the operating system.

o Programs that update segment values or attempt to address memory directly do not work in protected mode.

10/22/2012 1:06 AM

Modes of Memory Addressing on x86 http://www.c-jump.com/CIS77/ASM/Memory/lecture. html

23. Advantages of Flat Memory Model

* 32-bit Protected Mode supports much larger duta structures than Real mode.
—

* Because code, data, and stack reside in the same segment, each segment register can hold the same value that never needs to change. p

b s
e ki e
» Rather than using a formula (such as CS:P) to determine the physical address, protected mode processors use a look up table.

» Segment registers simply point to OS data structures that contain the information needed to access a location.
* Protected mode uses privilege levels to maintain system integrity and security.

* Programs cannot access data or code that is in a higher privilege level,

{
(Segment value exchanges at the same privilege level are allowed.) tﬁ \ib },\pw m%l ﬂtﬂﬂ}
(
T Wtk ek

24, The Protected Mode Flat Model Diagram

* The instruction pointer is 32 bits in size

* EIP can indicate any machine instruction anywhere in{the 4 GB o
memory.

* The segment registers still exists and define where 4 GB of program-
accessible memory resides in physical or virtual memory

* The segment registers are now considered part of the gperating system, L Your Program Code
you can neither read nor change them directly. B i ; :

Your Program Data

The Stlack

25. The Protected Mode Flat Model Diagram, Cont,

» When 32-bit program executes, it has access to 4-gig address space.

* Any general-purpose register by itself can specify any memory location
in the entire memory address space of the 4 billion memory locations

(except certain operating system-specific parts of the program that
belong to the operating svstem.)

90f13 10/22/2012 1:06 AM

Modes of Memory Addressing on x86

http://www.c-jump.com/CIS77/ASM/Memory/lecture. html

\

The Stack

26. The Protected Mode Flat Model Diagram, Cont.

« Attempting to actually read or write certain locations in your own
program can be forbidden by the OS and will trigger an error.

« Challenges in programming for protected mode flat model are based on
understanding the operating system, its requirements, and restrictions.

The Stack

| Your Program Cots

Your Program Data

w 00060000

| et

27, Protected Mode Flat Model Summary

« Application programs cannot make use of protected mode by themselves.

» The operating system must set up and manage a protected mode.

Capability provided by Linux and Windows NT/2000/XP/Vista systems.
» Each address is a 32-bit quantity.

= All of the general-purpose registers are 32 bits in size.

28. Console Applications

» An easiest way to write protected mode assembly program under Windows is to create console application.

10 of 13

10/22/2012 1:06 AM

Modes of Memory Addressing on x86

» Console application is text-mode program that runs in a text-mode window called a console,

» The console is controlled by a user through a command line interfuce,

(almost identical to the MS-DOS command window.,)

» Console applications use protected mode flat model and are fairly straightforward.

* The default memary mode for text console app under Linux is also protected mode.

29. Segment Registers in Protected Mode

* Segment registers are called selectors when operating in protected mode.

http://www.c-jump.con/CIS77/ASM/Memory/lecture.html

* [n protected mode, segment registers simply point to data structures called segment descriptors that contain the information needed to access a physical memory location,

Segment selector is a segment register, containing the selector value:

. T
Tndex (13-bit) L RPL

Table indicator
0-GDT
1-LDT Requestor privilege level

00 - Highest

ol

10

11 - Lowest

13-bit

index field selects one of 8,192 segment descriptors.

TI (table indicator) specifies segment descriptor, which can be in

RPL requestor privilege level - 2-bit field, specifies if the access to the segment is allowed.

30. Protected Mode Architecture

Segment register (segment selector) -> segment descriptor -> physical memory

["accrss | o |

BASE ADDRESS

| ACCESS | LIMIT
~| .

BASE ADDRESS

Lo

| ACCESS | oLy
o e

f

|

BASE ADDRUSS |

§

DATA

GDT - global descriptor table (one for all programs)

LDT - local descriptor table (typically one for each program, more can
exist.)

IDT - interrupt descriptor table.

31. Rings of protection, four levels of security

The 2-bit requestor privilege level field, the RPL, specifies segment protection level:

11of13

10/22/2012 1:06 AM

Modes of Memory Addressing on x86

http://www.c-jump.com/CIS77/ASM/Memory/lecture. html

Privilege 15 32 1 0
level | e
Index (13-bit) i t RPL
Most ‘Table indicutor
privileged 0-GoT
1-1DT Requestor privilege lovel
00 - Highest
01
Q 10
Private 11 - Lowest
oS

functions

Device drivers

Application programs

32. Three types of segment descriptor tables

Segment register (segment selector)

Least
privileged

Some instructions that directly access ports or affect interrupts (such as CL1, ST, IN,
and OUT) are available at privilege levels normally used only by systems programs.

1. Global descriptor table GDT

Segment descriptor format:

= Only one in the system 15 121 8 7
T T T
i | i
i I i i
= Contains OS code and data Word 0 : Sepment limit (0~ 15) |
g ! [}
= Available to all tasks ! ; i
1 X '
; 1 !
2. Local descriptor table LDT Word § ; Base address (0 - 15) '
) '
’ 1
= Several LDTs may exist for a program. t
= Contains descriptors of a program Word2 | P | DPL | § Type | Base agdress (16 - 231
| :
1 i -
I n A Sepment
Word 3 Basc address (24 - 31) 1G] ¢ 0pV limit
i b L (1619}

3. Interrupt descriptor table IDT, used by interrupt processing.

33. Flat vs. Segmented Memory Model

32 and 64-bit Intel systems using a flat memory
model:

Linear Address

The segment selector in
each segment register
points to an overlapping
segment in the linear
address space

Use of Segment Registers
for Flat Memory Model

and can also prevent buffer overruns:

Code

Space for Program ;‘—’9’"9"" Segment
eqisters Dat
Seument ata
R:gisgm Crverlapping cs Segment
Segments 3 — o
&S L 33 Seq :r)fem
& il E3 e All segments
58 Beginning at FS - seg e
ES Address D P are mapped
FS 2 to the same
GS linear-address
space

Data
Segment

Data
Segment

Data
Sagment

Use of Segment Registers
in Segmented Memory Model

Segmented memory is preferred model on 16-bit systems as it allows for flexibility in memory allocation

12 0f 13

10/22/2012 1:06 AM

Modes of Memory Addressing on x86 http://www.c-jump.com/CIS77/ASM/Memory/lecture.html

34. Differences between 16-bit and 32-bit Memory Modes

© Understanding segments is an essential part of programming in assembly language.
o In the family of 8086-based processors, the term segment has two meanings:
1. A block of memory of discrete size, called a physical segment. The number of bytes in a physical memory segment is
(a) 64K for 16-bit processors
(b) 4 gigabytes for 32-bit processors.

2. A variable-sized block of memory, called a Jogical segment occupied by a program's code or data.

35. Differences, cont.

o Segmented architecture presents certain hurdles for 16-bit assembly-language program.
o For small 16-bit flat model programs, the limitations lose importance:
= code and data each occupy less than 64K and reside in individual segments.

= a simple offset locates each variable or instruction within a segment,

36. Differences, cont.

o Larger 16-bit programs, however, must contend with problems of segmented memory areas:
2 P g)
= [f data occupies two or more segments, the program must specify both segment and ofTset to access a variable.
= When the data forms a continuous stream across segments, such as the text in a word processor's workspace, the problems become more acute.

= Whenever it adds or deletes text in the first segment, the word processor must seamlessly move data back and forth over the boundaries of each following
segment.

o The problem of segment boundaries disappears in flat address space of 32-bit protected mode:
= Although segments still exist, they easily hold all the code and data of the largest programs.

= Even a very large program becomes, in effect, a small application, capable to reach all code and all data with a single offset address.

37. Older OS and Addressing Modes Compared

The MS-DOS and Older Windows Operating Systems
1 Available o)
Operating System Active Addressable | Contents nf Segment Word Length
System Access P - Memory Register
rocesses
3 . Actual :

MS-DOS and Windows real mode | Direct to hardware and OS call | One I megabyte address 16 bits
Windows 3.x virtual-86 mode Operating system call Multiple | I megabyte Septicnt 16 bits

selectors
Windows 3.x protected mode Operating system call Multiple | 16 megabytes :F’:;i‘:‘s 16 bits
Windows NT 3.x Operating system call Multiple | 512 megabytes Segment 32 bits

;i selectors

130f 13 10/22/2012 1:06 AM

1 of4

http://css.csail.mit.edw/6.858/2012/lec/111-nacl.txt

Native Client [0 (5/

What's the goal of this paper?

At the time, browsers allowed any web page to run only JS (+Flash) code.
Want to allow web apps to run native (e.g., x86) code on user's machine.
Don't want to run complex code on server.

Requires lots of server resources, incurs high latency for users.
Why is this useful?

Performance.
Languages other than JS.
Legacy apps-.
Actually being used in the real world.
Ships as part of Google Chrome: the NaCl runtime is a browser extension.
Web page can run a NaCl program much like a Flash program.
Javascript can interact with the NaCl program by passing messages.

NaCl also provides strong sandboxing for some other use cases.
Core problem: sandboxing x86 code.

What are some options for safely running x86 code?

Approach 0: trust the code developer.

ActiveX, browser plug-ins, Java, etc.

Developer signs code with private key.

Asks user to decide whether to trust code from some developer.

Users are bad at making such decisions (e.g., with ActiveX code).
Works for known developers (e.g., Windows Update code, signed by MS).
Unclear how to answer for unknown web applications (other than "no").

Native Client's goal is to enforce safety, avoid asking the user.

Approach 1: hardware protection / 0S sandboxing.
Similar plan to some ideas we've already read: OKWS, Capsicum, VMs,
Run untrusted code as a regular user-space program or a separate VM.

Need to control what system calls the untrusted code can invoke.
Linux: seccomp.

FreeBSD: Capsicum.
MacOSX: Seatbelt.
Windows: unclear what options exist.
Native client uses these techniques, but only as a backup plan.
Why not rely on 0S sandboxing directly?
Each 0S may impose different, sometimes incompatible requirements.
System calls to allocate memory, create threads, etc.
Virtual memory layout (fixed-address shared libraries in Windows?).
0S kernel vulnerabilities are reasonably common.
Allows untrusted code to escape sandbox.
Not every 0S might have a sufficient sandboxing mechanism.
E.g., unclear what to do on Windows, without a special kernel module.

Some sandboxing mechanisms require root: don't want to run Chrome as root.
Hardware might have vulnerabilities (!).

Authors claim some instructions happen to hang the hardware.
Would be unfortunate if visiting a web site could hang your computer.

Approach 2: software fault isolation (Native Client's primary sandboxing plan).
In principle, similar to the rewriting idea from the "JS subsets" paper.
Some high-level differences, though.
"Rewriting" done by a modified compiler, not x86-to-x86 (hard).
User's browser runs a verifier to check if "rewriting" was done correctly.
Advantage: verifier much smaller than the compiler/rewriter -> small TCB.
Overall plan:
Given an x86 binary to run in Native Client, verify that it's safe.
After verifying, can safely run it in same process as other trusted code.
Allow the sandbox to call into trusted "service runtime" code.

10/20/2012 5:38 PM

http://css.csail.mit.edw/6.858/2012/lec/111-nacl.txt

[Figure 2 from paper.]

What does safety mean for a Native Client module?

Goal #1: does not execute any disallowed instructions (e.g., syscall, int).
Ensures module does not perform any system calls.

Goal #2: does not access memory or execute code outside of module boundary.
Ensures module does not corrupt service runtime data structures.
Ensures module does not jump into service runtime code, ala return-to-libc.
As described in paper, module code+data live within [0..256MB) virt addrs.

Need not populate entire 256MB of virtual address space.

Everything else should be protected from access by the NaCl module.

How to check if the module can execute a disallowed instruction?
Strawman: scan the executable, look for "int" or "syscall" opcodes.
If check passes, can start running code.
Of course, need to also mark all code as read-only.
And all writable memory as non-executable.
Complication: x86 has variable-length instructions.
"int" and "syscall" instructions are 2 bytes long.
Other instructions could be anywhere from 1 to 15 bytes.
Suppose program's code contains the following bytes:
25 CD 80 00 00
If interpreted as an instruction starting from 25, it is a 5-byte instr:
AND %eax, $0x000080cd
But if interpreted starting from CD, it's a 2-byte instr:
INT $0x80 # Linux syscall
Could try looking for disallowed instructions at every offset..
Likely will generate too many false alarms.
Real instructions may accidentally have some "disallowed" bytes.

Reliable disassembly.
Plan: ensure code only executes instructions verifier knows about.
How can we guarantee this? Table 1 and Figure 3 in paper.
Scan forward through all instructions, starting at the beginning.
If we see a jump instruction, make sure it's jumping to address we saw.
Easy to ensure for static jumps (constant addr).
Cannot ensure statically for computed jumps (jump to addr from register).
Similar to the problem in FBJS with variable-based array indexing.

Computed jumps.

Much as with FBJS, idea is to rely on runtime instrumentation.

For computed jump to %eax, NaCl requires the following code:
AND $SO0xffffffe0, %eax
JMP *%eax

This will ensure jumps go to multiples of 32 bytes.

NaCl also requires that no instructions span a 32-byte boundary.

Compiler's job is to ensure both of these rules.
Replace every computed jump with the two-instruction sequence above.
Add NOP instructions if some other instruction might span 32-byte boundary.
Add NOPs to pad to 32-byte multiple if next instr is a computed jump target.
Always possible because NOP instruction is just one byte.

Verifier's job is to check these rules.
During disassembly, make sure no instruction spans a 32-byte boundary.
For computed jumps, ensure it's in a two-instruction sequence as above.

What will this guarantee?
Verifier checked all instructions starting at 32-byte-multiple addresses.
Computed jumps can only go to 32-byte-multiple addresses.

How does NaCl deal with RET instructions?
Prohibited -- effectively a computed jump, with address stored on stack.
Instead, compiler must generate explicit POP + computed jump code.

Why are the rules from Table 1 necessary?
Cl: executable code in memory is not writable.

2 of4 10/20/2012 5:38 PM

3 of4

http://css.csail.mit.edw/6.858/2012/lec/111-nacl.txt

C2: binary is statically linked at zero, code starts at 64K.

C3: all computed jumps use the two-instruction sequence above.

C4: binary is padded to a page boundary with one or more HLT instruction.
C5: no instructions, or our special two-instruction pair, can span 32 bytes.
C6/C7: all jump targets reachable by fall-through disassembly from start.

Homework Q: what happens if verifier gets some instruction length wrong?

How to prevent NaCl module from jumping to 32-byte multiple outside its code?
Could use additional checks in the computed-jump sequence.
E.g.:
AND $O0x0fffffe0, %eax
JMP *%eax
Why don't they use this approach?
Longer instruction sequence for computed jumps.
Their sequence is 3+2=5 bytes, above sequence is 5+2=7 bytes.
An alternative solution is pretty easy: segmentation.

Segmentation.

x86 hardware provi n La" ;

Each menlory access is with respect to some "segment".
Segment specifies baSe + size.

Segments are specified by a Segment selector: ptr into a segment table.
%¥cs, %ds, %ss, %es, %fs, %gs
Each instruction can specify what segment to use for accessing memory.
Code always fetched using the %C{s segm =

Translation: (segment selector, addr) -> (segbase + addr % segsize).

Typically, all segments have base=0 ize=max, so segmentation is a no-op.
Can change segments: in Linux, duodify 1dt (h system call. f .
Can change segment selectors: just "MOV %ds", etc. l“@/— C{/oﬂ /(gé

Limiting code/data to module's size.
Add a new segment with offset=0, size=256MB.
Set all segment selectors to that segment.
Modify verifier to reject any instructions that change segment selectors. C:‘%Z;7

Ensures—all code and data accesses will be within [0..256MBJ-.

What would be required to run Native Client on a system without segmentation?
For example, AMD/Intel decided to drop segment limits in their 64-bit CPUs.
One practical possibility: run in 32-bit mode.

AMD/Intel CPUs still support segment limits in 32-bit mode.

Can run in 32-bit mode even on a 64-bit OS.
Would have to change the computed-jump code to limit target to 256MB.
Would have to add runtime instrumentation to each memory read/write.
See the paper in additional references below for more details.

Why doesn't Native Client support exceptions for modules?
What if module triggers hardware exception: null ptr, divide-by-zero, etc.
0S kernel needs to deliver exception (as a signal) to process.
But Native Client runs with an unusual stack pointer/segment selector.
Some OS kernels refuse to deliver signals in this situation.
NaCl's solution is to prohibit hardware exceptions altogether.
Language-level exceptions (e.g., C++) do not involve hardware: no problem.

What would happen if the NaCl module had a buffer overflow?
Any computed call (function pointer, return address) has to use 2-instr jump.
As a result, can only jump to validated code in the module's region.
Buffer overflows might allow attacker to take over module.
However, can't escape NaCl's sandbox.

Limitations of the original NaCl design?

Static code: no JIT, no shared libraries.
Dynamic code supported in recent versions (see additional refs at the end).

10/20/2012 5:38 PM

4 of 4

http://css.csail.mit.edw/6.858/2012/lec/111-nacl.txt

Invoking trusted code from sandbox.
Short code sequences that transition to/from sandbox located in [4KB..64KB).
Trampoline undoes the sandbox, enters trusted code.
Starts at a 32-byte multiple boundary.
Loads unlimited segment into %cs, %ds segment selectors.
Jumps to trusted code that lives above 256MB.
Slightly tricky: must ensure trampoline fits in 32 bytes.
(Otherwise, module could jump into middle of trampoline code..)
Trusted code first switches to a different stack: why?
Springboard (re-)enters the sandbox on return or initial start.
Re-set segment selectors, jump to a particular address in NaCl module.
Springboard slots (32-byte multiples) start with HLT.
Prevents computed jumps into springboard by module code.

What's provided by the service runtime? NaCl's "system call" equivalent.
Memory allocation: sbrk/mmap.
Thread operations: create, etc.
IPC: initially with Javascript code on page that started this NaCl program.
Browser interface via NPAPI: DOM access, open URLs, user input,
No networking: can use Javascript to access network according to SOP.

How secure is Native Client?
List of attack surfaces: start of section 2.3.
Inner sandbox: validator has to be correct (had some tricky bugs!).
Outer sandbox: OS-dependent plan.
Service runtime: initial loader, runtime trampoline interfaces.
IMC interface + NPAPI: complex code, can (and did) have bugs.

How well does it perform?
CPU overhead seems to be dominated by NaCl's code alignment requirements.
Larger instruction cache footprint.
But for some applications, NaCl's alignment works better than gcec's.
Minimal overhead for added checks on computed jumps.
Call-into-service-runtime performance seems comparable to Linux syscalls.

How hard is it to port code to NaCl?
For computational things, seems straightforward: 20 LoC change for H.264.
For code that interacts with system (syscalls, etc), need to change them.
E.g., Bullet physics simulator (section 4.4).

Additional references.

Native Client for 64-bit x86 and for ARM.
http://static.usenix.org/events/secl0/tech/full papers/Sehr.pdf

Native Client for runtime-generated code (JIT).
http://research.google.com/pubs/archive/37204 .pdf

Native Client without hardware dependence.
http://css.csail.mit.edu/6.858/2012/readings/pnacl.pdf

Other software fault isolation systems w/ fine-grained memory access control.
http://css.csail.mit.edu/6.858/2012/readings/xfi.pdf
http://research.microsoft.com/pubs/101332/bgi-sosp.pdf

10/20/2012 5:38 PM

Red [0/

The Quest to Replace Passwords:
A Framework for Comparative Evaluation of Web Authentication Schemes*

Joseph Bonneau
University of Cambridge
Cambridge, UK
jeb82@cl.cam.ac.uk

Cormac Herley
Microsoft Research
Redmond, WA, USA

cormac@microsoft.com

Abstract—We evaluate two _decades of proposals to replace
text passwords for general-pu; user ication on the
web' using a-broad set _of twenfy-five usability, deployability
and security benefits that an ideal might provide.
The scop€ of pro € survey Is also extensive, including

password management software, federated login protocols,
graphical password schemes, cognitive authentication schemes,
one-time passwords, hardware tokens, phone-aided schemes
and biometrics. Our comprehensive approach leads to key
insights about the difficulty of replacing passwords. Not only
does no known scheme come close to providing all desired
benefits: none even retains the full set of henefits that legacy
passwords already provide. In particular, there is a wide range
from schemes offering minor security benefits beyond legacy
passwords, to those offering significant sccurity benefits in
return for being more costly to deploy or more difficult to use.
We conclude that many academic proposals have failed to gain
traction because researchers rarely consider a sufficiently wide
range of real-world constraints. Beyond our analysis of current
schemes, our framework provides an evaluation methodology
and benchmark for future web authenticatiogpmposals.

_—

Keywords-authentication; computer security; human com-
puter interaction; security and usability; deployability; eco-
nomics; software engineering.

I. INTRODUCTION

The continued domination of passwords over all other
methods ommﬁ);;ss—
ment to security researchers. As web technology moves
ahead by leaps and bounds in other areas, passwords stub-
bornly survive and reproduce with every new web site.
Extensive discussions of alternative authentication schemes
have produced no definitive answers.

Over forty year§of research have demonstrated that
passwords are plagued by security problems [2] and openly
hated by users [3]. We believe that, to make progress, the
community must better systematize the knowledge that we
have regarding both passwords and their alternatives [4].
However, among other challenges, unbiased evaluation of
password replacement schemes is complicated by the diverse

*An extended version of this 2aper is available as a University of
Cambridge technical report [1].

tFrank Stajano was the lead author who conceived the project and
assembled the team. All authors gontributed equally thereafter.

(Caly -

In Proc. IEEE Symp. on Security and Privacy 2012 (*Oakland 2012").

Paul C. van Oorschot
Carleton University

Ottawa, ON, Canada

paulv@scs.carleton.ca

Frank Stajanof
University of Cambridge
Cambridge, UK
Sfrank.stajano@cl.cam.ac.uk

interests of various communities. In our experience, security

experts focus more on_security but less on usability and

practwwmt; biometrics experts
focuson analysis of false :wgm_ﬂmimﬂy;nccurﬁng
false positives rather than on attacks by an intelligent,
adaptive adversary; usability experts tend to be optimistic
about security; and originafors of a scheme, whatever their
background, downplay or ignore benefits that their scheme
doesn’t attempt to provide, thus overlooking dimensions on
which it fares poorly. As proponents assert the superiority
of their schemes, their gbjectiv i £ex-

plicitly stated and di i f potential
ad T Targeting different authentication problems using

different criteria, some address very specific environments
and narrow scenarios; others silently seek generic solutions
that fit all environments at once, assuming a single choice
is mandatory. As such, consensus is unlikely.

These and other factors have contributed to a long-
standing lack of progress on how best to evaluate and
compare authentication proposals intended for practical use.
In response, we propose a standard benchmark and frame-
work allowing schemes to be rated across a common, broad
spectrum of criteria chosen objectively for relevance in wide-
ranging scenarios, without hidden agenda.! We suggest and
define 25 properties framed as a diverse set of benefits,
dnd a methodology for comparative evaluation, demonstrated
and tested by rating 35 password-replacement schemes on
the same criteria, as summarized in a carefully constructed
comparative table.

Both the rating criteria and their definitions were it-
eratively refined over the evaluation of these schemes.
Discussion of evaluation details for passwords and nine
representative alternatives is provided herein to demonstrate
the process, and to provide evidence that the list of benefits
suffices to illuminate the strengths and weaknesses of a wide
universe of schemes. Though not cast in stone, we believe
that the list of benefits and their specific definitions provide
an excellent basis from which to work; the framework and

schemes: URRSA [5], MP-Auth [6], PCCP [7] and Pico [8]. We invite

I'The present authors contributed to the definition of the following
readers to verify that we have rated them impartially. j

10

evaluation process that we define are independent of them,
although our comparative results naturally are not. From our
analysis and comparative summary table, we look for clues
to help explain why passwords remain so dominant, despite
frequent claims of superior alternatives.

In the past decade our community has recognized a

tension between security and usability: it i;ﬁggmll_y\easy
to provide more of one by offering less of the other. But

the situation is much more complex than simply a linear
trade-off: we seek to capture the multi-Taceted, rather than

one-dimensional, nature of both usability and security in our

benefits. We further suggest that “deployability”, for lack of
a better word, is an important third dimension that deserves
consideration. We choose to examine all three explicitly,
complementing earlier comparative surveys (e.g., [9]-[11]).

Our usability-deployability-security (“UDS”) evaluation
framework and process may be referred to as semi-structured
evaluation of user authentication schemes. We take inspira-
tion from inspection methods for evaluating user interface
design, including feature inspections and Nielsen’s heuristic
analysis based on usability principles [12]. R

Each co-author acted as a domain expert, familiar with
both the rating framework and a subset of the schemes.
For each scheme rated, the evaluation process involved one
co-author studying the scheme and rating it on the defined
benefits; additional co-authors reviewing each rating score;
and iteratively refining the ratings as necessary through
discussion, as noted in Section V-D.

Our focus is user authentication on the web, specifically
from unsuperviséd end-user client devices (e.g., a personal
computer) o TEMOE Vertfrers—Some schemes examined
involve mobile phones as auxiliary devices, but logging
in directly from such constrained devices, which involves
different usability challenges among other things, is not a
main focus. Our present work does not directly examine
schemes designed exclusively for machine-to-machine au-
thentication, e.g., cryptographic prominfrasmcturc
such as client public-key certificates. Many of the schemes
we examine, however, are the technologies proposed for the
human-to-machine component that may precede machine-to-
machine authentication. Our choice of web authentication
as target application also has significant implications for
specific schemes, as noted in our results.

II. BENEFITS

The benefits we consider encompass three categories:
usability, deployability and security, the latter including
privacy aspects. The benefits in our list have been refined to
a set we believe highlights important evaluation dimensions,
with an eye to limiting overlap between benefits.

Throughout the paper, for brevity and consistency, each
benefit is referred to with an italicized mnemonic title. This
title should not be interpreted too literally; refer instead to
our actual definitions below, which are informally worded to

aid use. Each scheme is rated as either offering or not offer-
ing the benefit; if a scheme almost offers the benefit, but not
quite, we indicate this with the Quasi- prefix. Section V-D
discusses pros and cons of finer-grained scoring.

Sometimes a particular benefit (e.g., Resilient-to-Theft)
just doesn’t apply to a particular scheme (e.g., there is
nothing physical to steal in a scheme where the user must
memorize a secret squiggle). To simplify analysis, instead of
introducing a “not applicable” value, we rate the scheme as
offering the benefit—in the sense that nothing can go wrong,
for that scheme, with respect to the corresponding problem.

When rating password-related schemes we assume that
implementers use best practice such as salting and hashing
(even though we know they often don’t [13]), because we
assess what the scheme’s design can potentially offer: a poor
implementation could otherwise kill any scheme. On the
other hand, we assume that ordinary users won’t necessarily
follow the often unreasonably inconvenient directives of
security engineers, such as never recycling passwords, or
using randomly-generated ones.

A. Usability benefits

Ul Memorywise-Effortless: Users of the scheme do
not have to remember any secrets at all. We grant
a Quasi-Memorywise-Effortless if users have to
remember one secret for everything (as opposed
to one per verifier).

Scalable-for-Users: Using the scheme for hundreds
of-accounts does not increase the burden on the
user. As the mnemonic suggests, we mean “scal-
able” only from the user’s perspective, looking at
the cognitive load, not from a system deployment
perspective, looking at allocation of technical re-
sources.

Nothing-to-Carry: Users do not need to carry an
addiﬁonzﬂ;ﬁlm:r’alggig_(:_(_Ldsetronic device, me-
chanical key, piece of paper) to use the scheme.
Quasi-Nothing-to-Carry is awarded if the object
is one that they’d carry everywhere all the time
anyway, such as their mobile phone, but not if it’s
their computer (including tablets). &=
Physically-Effortless: The authentication process
does not require physical (as opposed to cognitive)
user effort beyond, say, pressing a button. Schemes
that don’t offer this benefit include those that
require typing, scribbling or performing a set of
motions. We grant Quasi-Physically-Effortless if
the user’s effort is limited to speaking, on the basis
that even illiterate people find that natural to do.
Easy-to-Learn: Users who don’t know the scheme
can figure it out and learn it without too much
trouble, and then easily recall how to use it.
Efficient-to-Use: The time the user must spend for

each authentication is acceptably short. The time
— T

U2

u3

U4

us

U6

(g[[pﬂw

u7

U8

I@&m 6(oJr {4

required for setting up a new association with
a verifier, although possibly longer than that for
authentication, is also reasonable.
Infrequent-Errors: The task that users must per-
form to log in usually succeeds when performed
by a legitimate and honest user. In other words,
the scheme isn’t so hard to use or unreliable that
genuine users are routinely rejected.?
Easy-Recovery-from-Loss: A user can conveniently
regain the ability to authenticate if the token is lost
or the credentials forgotten. This combines usabil-
ity aspects such as: low latency before restored
ability; low user inconvenience in recovery (e.g.,
no requirement for physically standing in line);
and assurance that recovery will be possible, for
example via built-in backups or secondary recovery
schemes. If recovery requires some form of re-
enrollment, this benefit rates its convenience.

B. Deployability benefits

D1

D2

D3

Accessible: Users who can use passwords® are not
prevented from using the scheme by disabilities or
other physical (not cognitive) conditions.
Negligible-Cost-per-User: The total cost per user
of the scheme, adding up the costs at both the
prover’s end (any devices required) and the veri-
fier’s end (any share of the equipment and software
required), is negligible. The scheme is plausible for
startups with no per-user revenue.
Server-Compatible: At the verifier’s end, the
scheme is compatible with text-based passwords.
Providers don’t have to change their existing au-
thentication setup to support the scheme. ’
Browser-Compatible: Users don’t have to change
their client to support the scheme and can ex-
pect the scheme to work when using other ma-
chines with an up-to-date, standards-compliant web
browser and no additional software. In 2012, this
would mean an HTMLS5-compliant browser with
JavaScript enabled. Schemes fail to provide this
benefit if they require the installation of plugins
or any kind of software whose installation re-
quires administrative rights. Schemes offer Quasi-

2We could view this benefit as “low false reject rate”. In many cases the
scheme designer could make the false reject rate lower by making the false
accept rate higher. If this is taken to an extreme we count it as cheating,
and penalize it through a low score in some of the security-related benefits.

31deally a scheme would be usable by everyone, regardless of disabilities
like zero-vision (blindness) or low motor control. However, for any given
scheme, it is always possible to identify a disability or physical condition
that would exclude a category of people and then no scheme would be
granted this benefit. We therefore choose to award the benefit to schemes
that do at least as well as the incumbent that is de facto accepted today,
despite the fact that it too isn’t perfect. An alternative to this text password
baseline could be to base the metric on the ability to serve a defined
percentage of the population of potential users.

D5

D6

b G S5

Browser-Compatible if they rely on non-standard
but very common plugins, e.g., Flash.

Mature: The scheme has been implemented and
deployed on a large scale for actual authentication
purposes beyond research. Indicators to consider
for granting the full benefit may also include
whether the scheme has undergone user testing,
whether the standards community has published re-
lated documents, whether open-source projects im-
plementing the scheme exist, whether anyone other
than the implementers has adopted the scheme, the
amount of literature on the scheme and so forth.
Non-Proprietary: Anyone can implement or use
the scheme for any purpose without having to pay
royalties to anyone else. The relevant techniques
are generally known, published openly and not
protected by patents or trade secrets.

C. Security benefits

S1

S2

S3

sS4

Resilient-to-Physical-Observation: An attacker
cannot impersonate a user after observing them
authenticate one or more times. We grant Quasi-
Resilient-to-Physical-Observation if the scheme
could be broken only by repeating the observation
more than, say, 10-20 times. Attacks include
shoulder surfing, ﬁfming the keyboard, recording
keystroke sounds, or thermal imaging of keypad.
Resilient-to-Targeted-Impersonation: It is not pos-
sible for an acquaintance (or skilled investiga-
tor) to impersonate a specific user by exploiting
knowledge of personal details (birth date, names
of relatives etc.). Personal knowledge questions are
the canonical scheme that fails on this point.
Resilient-to-Throttled-Guessing: An attacker
whose rate of guessing is constrained by the
verifier cannot successfully guess the secrets of a
significant fraction of users. The verifier-imposed
constraint might be enforced by an online server,
a tamper-resistant chip or any other mechanism
capable of throttling repeated requests. To give a
quantitative example, we might grant this benefit
if an attacker constrained to,_say, 10 guesses per
account per day, could compromise at most 1% of
accounts in a year. Lack of this benefit is meant
to penalize schemes in which it is frequent for
user-chosen secrets to be selected from a small
and well-known subset (low min-entropy [14]).
Resilient-to-Unthrottled-Guessing: An attacker
whose rate of guessing is constrained only by
available computing resources cannot successfully
guess the secrets of a significant fraction of users.
We might for example grant this benefit if an
attacker capable of attempting up to 240 or even
264 guesses per account could still only reach

Dl

S5

S6

S7

S8

fewer than 1% of accounts. Lack of this benefit
is meant to penalize schemes where the space
of credentials is not large enough to withstand
brute force search (including dictionary attacks,
rainbow tables and related brute force methods
smarter than raw exhaustive search, if credentials
are user-chosen secrets).
Resilient-to-Internal-Observation: An attacker can-
not impersonate a user by intercepting the user’s
input from inside the user’s device (e.g., by key-
logging mafware) or eavesdropping on the clear-
text communication between prover and verifier
(we assume that the attacker can also defeat
TLS if it is used, perhaps through the CA).
As with Resilient-to-Physical-Observation above,
we grant Quasi-Resilient-to-Internal-Observation
if the scheme could be broken only by intercept-
ing input or eavesdropping cleartext more than,
say, 10-20 times. This penalizes schemes that are
not replay-resistant, whether because they send
a static response or because their dynamic re-
sponse countermeasure can be cracked with a few
observations. This benefit assumes that general-
purpose devices like software-updatable personal
computers and mobile phones may contain mal-
ware, but that hardware devices dedicated exclu-
sively to the scheme can be made malware-free.
We grant Quasi-Resilient-to-Internal-Observation
to two-factor schemes where both factors must
be malware-infected for the attack to work. If
infecting only one factor breaks the scheme, we
don’t grant the benefit.
Resilient-to-Leaks-from-Other-Verifiers: Nothing
that a verifier could possibly leak can help an
attacker impersonate the user to another verifier.
This penalizes schemes where insider fraud at one
provider, or a successful attack on one back-end,
endangers the user’s accounts at other sites.
Resilient-to-Phishing: An attacker who simulates
a vammmcludmg by DNS manipulation)
cannot collect credentials that can later be used
to impersonate the user to the actual verifier. This
penalizes schemes allowing phishers to get victims
to authenticate to lookalike sites and later use
the harvested credentials against the genuine sites.
It is not meant to penalize schemes vulnerable
to more sophisticated real-time man-in-the-middle
or relay attacks, in which the attackers have one
connection to the victim prover (pretending to be
the verifier) and simultaneously another connection
to the victim verifier (pretending to be the prover).
Resilient-to-Theft: If the scheme uses a physical
object for authentication, the object cannot be used
for authentication by another person who gains

S9

S10

S11

possession of it. We still grant Quasi-Resilient-to-
Theft if the protection is achieved with the modest
strength of a PIN, even if attempts are not rate-
controlled, because the attack doesn’t easily scale
to many victims.

No-Trusted-Third-Party: The scheme does not rely
on a trusted third party (other than the prover
and the verifier) who could, upon being attacked
or otherwise becoming untrustworthy, compromise
the prover’s security or privacy.
Requiring-Explicit-Consent: The authentication
process cannot be started without the explicit
consent of the user. This is both a security and
a privacy feature (a rogue wireless RFID-based
credit card reader embedded in a sofa might charge
a card without user knowledge or consent).
Unlinkable: Colluding verifiers cannot determine,
from the authenticator alone, whether the same

bl

user is authenticating to both. This is a grivacy)
feature. To rate this benefit we disregard linkability

introduced by other mechanisms (same user ID,
same IP address, etc).

We emphasize that it would be simple-minded to rank
competing schemes simply by counting how many benefits
each offers. Clearly some benefits deserve more weight than
others—but which ones? Scalable-for-Users, for example,
is a heavy-weight benefit if the goal is to adopt a single
scheme as a universal replacement; it is less important if one
is seeking a password alternative for only a single account.
Providing appropriate weights thus depends strongly on the

specific goal for which the scheme cing compared, Q
i € reasons we don’t offer any.

which. 1870
e

Having said that, readers wanting to use weights might
use our framework as follows. First, examine and score each
individual scheme on each benefit; next, compare (groups
of) competing schemes to identify precisely which benefits
each offers over the other; finally, with weights that take into
account the relative importance of the benefits, determine an
overall ranking by rating scheme ¢ as S; = 3. Wj - b; ;.
Weights W; are constants across all schemes in a particular
comparison exercise, and b; ; € [0,1] is the real-valued
benefit rating for scheme ¢ on benefit j. For different
solution environments (scenarios k), the relative importance

of benehits will differ, with wei 5 replaced by Wi

In this paper we choose a morc qualltauvc approach

we do not suggest any weights W

) and the b; ; ratings

we assign are not continuous but coarsely quantized. In
Section V-D we discuss why. In our experience, “the journey

(the rating exercise) is the rewar:

": the important technical

insights we gained about schemes by discussing whether our
ratings were fair and consistent were worth much more to
us than the actual scores produced. As a take-home message
for the value of this exercise, bringing a team of experts to

! (45/L
i

b
m (
wiyhtiay

a shared understanding of the relevant technical issues is
much more valuable than ranking the schemes linearly or
reaching unanimous agreement over scoring.

III. EVALUATING LEGACY PASSWORDS

We expect that the reader is familiar with text passwords
and their shortcomings, so evaluating them is good exercise
for our framework. It’s also useful to have a baseline
standard to refer to. While we consider “legacy passwords”
as a single scheme, surveys of password W
web have found substantial variation in implemention. A
study of 150 sites in 2010 [13], for example, found a unique
set of design choices at nearly every site. Other studies
have focused on implementations of cookie semantics [15],
password composition policies [16], or use of TLS to protect
passwords [17]. Every study has found both considerable
inconsistency and frequent serious implementation errors in
practical deployments on the web.

We remind readers of our Section II assumption of best
practice by implementers—thus in our ratings we do not
hold against passwords the many weak implementations
that their widespread deployment includes, unless due to
inherent weaknesses; while on the other hand, our ratings
of passwords and other schemes do assume_that poor user
behgvior is an inherent asmctmm_

The difficulty of guessing passwords was studied over
three decades ago [2] with researchers able to guess over
8% of users’ passwords; follow-up studies over the years
have consistently compromised a substantial fraction of

accounts with dictionary attacks. Asurvey [3] of corporate
password users found them fustered-by password require-

ments and coping by writing passwords down on post-it
notes. On the web, users are typically overwhelmed by the
number of passwords they have registered. One study [18]
foun Users have mai s for which they’ve
forgotten their passwords and even accounts they can’t re-
member registering. Another [19] used a browser extension
to observe thousands of users’ password habits, finding on
average 25 accounts and 6 unique passwords per user.

Thus, passwords, as a purely memory-based scheme,
clearly aren’t Memorywise-Effortless or Scalable-for-Users
as they must be remembered and chosen for each site.
While they are Nothing-to-Carry, they aren’t Physically-
Effortless as they must be typed. Usability is otherwise
good, as passwords are de facto Easy-to-Learn due to years
of user experience and Efficient-to-Use as most users type
only a few characters, though typos downgrade passwords
to Quasi-Infrequent-Errors. Passwords can be easily reset,
giving them Easy-Recovery-from-Loss.

Their highest scores are in deployability, where they
receive full credit for every benefit—in part because many
of our criteria are defined based on passwords. For example,
passwords are Accessible because we defined the benefit
with respect to them and accommodations already exist for

most groups due to the importance of passwords. Pass-
words are Negligible-Cost-per-User due to their simplicity,
and are Server-Compatible and Browser-Compatible due to
their incumbent status. Passwords are Mature and Non-
Proprietary, with turnkey packages implementing password
authentication for many popular web development platforms,
albeit not well-standardized despite their ubiquity.
Passwords score relatively poorly on security. They
aren’t Resilient-ro-Phymation because even if
typed quickly they can be automatically recovered from
high-quality video of the keyboard [20]. Perhaps gener-
ously, we rate passwords as Quasi-Resilient-to-Targeted-
Impersonation in the absence of user studies establishing
acquaintances’ ability to guess passwords, though many
users undermine this by keeping passwords written-down in
plain sight [3]. Similarly, users’ well-established poor track
record in selection means passwords are neither Resilient-to-
Throttled-Guessing nor Resilient-to-Unthrottled-Guessing.
As static tokens, passwords aren’t Resilient-to-Internal-
Observation. The fact that users reuse them across
sites means they also aren’t Resilient-to-Leaks-from-Other-
Verifiers, as even a properly salted and strengthened hash
function [21] can’t protect many passwords from dedicated
cracking software. (Up to 50% of websites don’t appear to
hash passwords at all [13].) Passwords aren’t Resilient-to-
Phishing as phishing remains an open problem in practice.
Finally, their simplicity facilitates several security bene-
fits. They are Resilient-to-Theft as they require no hardware.
There is No-Trusted-Third-Party; having to type makes them
Requiring-Explicit-Consent; and, assuming that sites add salt

independently, even weak passwords are Unlinkable.
e

IV. SAMPLE EVALUATION OF REPLACEMENT SCHEMES

We now use our criteria to evaluate a representative
sample of proposed password replacement schemes. Table I
visually summarizes these and others we explored. Due to
space constraints, we only explain in detail our ratings for at
most one representative scheme per category (e.g. federated
login schemes, graphical passwords, hardware tokens, etc.).
Evaluation details for all other schemes in the table are
provided in a companion technical report [1].

We introduce categories to highlight general trends, but
stress that any scheme must be rated individually. Contrary
to what the table layout suggests, schemes are not uniquely
partitioned by the categories; several schemes belong to mul-
tiple categories, and different groupings of the schemes are
possible with these same categories. For example, GrIDsure
is both cognitive and graphical; and, though several of the
schemes we examine use some form of underlying “one-
time-passwords”, we did not group them into a common
category and indeed have no formal category of that name.

We emphasize that, in selecting a particular scheme for
inclusion in the table or for discussion as a category rep-
resentative, we do not necessarily endorse it as better than

L
Q&% i

alternatives—merely that it is reasonably representative, or
illuminates in some way what the category can achieve.

A. Encrypted password managers: Mozilla Firefox

The Firefox web browser [22] automatically offers to
remember passwords entered into web pages, optionally
encrypting them with a master password. (Our rating as-
sumes that this option is used; use without the password
has different properties.) It then pre-fills the username and
password fields when the user revisits the same site. With its
Sync facility the passwords can be stored, encrypted, in the
cloud. After a once-per-machine authentication ritual, they
are updated automatically on all designated machines.

This scheme is Quasi-Memorywise-Effortless (because
of the master password) and Scalable-for-Users: it can
remember arbitrarily many passwords. Without Sync, the
solution would have required carrying a specific computer;
with Sync, the passwords can be accessed from any of
the user’s computers. However it’s not more than Quasi-
Nothing-to-Carry because a travelling user will have to
carry at least a smartphone: it would be quite insecure to
syne-one's passwords wi ro found in a cybercafé.
It is Quasi-Physically-Effortless, as no typing is required
during authentication except for the master password once
per session, and Easy-to-Learn. It is Efficient-to-Use (much
more so than what it replaces) and has Infrequent-Errors
(hardly any, except when entering the master password). It

* does not have Easy-Recovery-from-Loss: losing the master

..
%‘M/ ((

J

Goo

password is catastrophic.

The scheme is backwards-compatible by design and thus
scores quite highly on deployability: it fully provides all
the deployability benefits except for Browser-Compatible,
unavoidably because it requires a specific browser.

It is Quasi-Resilient-to-Physical-Observation and Quasi-
Resilient-to-Targeted-Impersonation because an attacker
could still target the infrequently-typed master password
(but would also need access to the browser). It is not
Resilient-to-Throttled-Guessing nor Resilient-to-Unthrottled-
Guessing: even if the master password is safe from such
attacks, the original web passwords remain as vulnerable as
before.* It is not Resilient-to-Internal-Observation because,
even if TLS is used, it’s replayable static passwords that flow
in the tunnel and malware could also capture the master
password. It’s not Resilient-to-Leaks-from-Other-Verifiers,
because what happens at the back-end is the same as with
passwords. It’s Resilient-to-Phishing because we assume
that sites follow best practice, which includes using TLS
for the login page. It is Resilient-to-Theft, at least under

“Security-conscious users might adopt truly random unguessable pass-
words, as they need no longer remember them, but most users won't. If
the scheme pre-generated random passwords it would score more highly
here, disregarding pre-existing passwords. Similarly, for Resilient-ro-Leaks-
from-Other-Verifiers below, this scheme makes it easier for careful users to
use a different password for every site; if it forced this behaviour (vs. just
allowing it), it would get a higher score on this particular benefit.

Slace G ¥ @b{ﬁ”

our assumption that a master password is being used. It
offers No-Trusted-Third-Party because the Sync data is pre-
encrypted locally before being stored on Mozilla’s servers.
It offers Requiring-Explicit-Consent because it pre-fills the
username and password fields but the user still has to press
enter to submit. Finally, it is as Unlinkable as passwords.

B. Proxy-based: URRSA

Proxy-based schemes place a man-in-the-middle between
the user’s machine and the server. One reason for doing so,
employed by Impostor [23] and URRSA [5] is to enable
secure logins despite malware-infected clients.

URRSA has users authenticate to the end server using
one-time codes carried on a sheet of paper. At registration
the user enters the password, P;, for each account, j, to be
visited; this is encrypted at the proxy with thirty different
keys, Kj, giving C; = Ek,(P;). The C; act as one-time
codes which the user prints and carries. The codes are
generally 8-10 characters long; thirty codes for each of six
accounts fit on a two-sided sheet. The keys, but not the
passwords, are stored at the proxy. At login the user visits
the proxy, indicates which site is desired, and is asked for the
next unused code. When he enters the code it is decrypted
and passed to the end login server: ER-}(C,-) = P;. The
proxy never authenticates the user, it merely decrypts with
an agreed-upon key, the code delivered by the user.

Since it requires carrying one-time codes URRSA
is Memorywise-Effortless, but not Scalable-for-Users or
Nothing-to-Carry. It is not Physically-Effortless but is Easy-
to-Learn. In common with all of the schemes that in-
volve transcribing codes from a device or sheet it is not
Efficient-to-Use. However, we do consider it to have Quasi-
Infrequent-Errors, since the codes are generally 8-10 charac-
ters. It does not have Easy-Recovery-from-Loss: a revocation
procedure is required if the code sheet is lost or stolen. Since
no passwords are stored at the proxy the entire registration
must be repeated if this happens.

In common with other paper token schemes it is not
Accessible. URRSA has Negligible-Cost-per-User. Rather
than have a user change browser settings, URRSA relies on a
link-translating proxy that intermediates traffic between the
user and the server; this translation is not flawless and some
functionality may fail on complex sites, thus we consider
it only Quasi-Server-Compatible. It is, however, Browser-
Compatible. 1t is neither Mature nor Non-Proprietary.

In common with other one-time code schemes it is
not Resilient-to-Physical-Observation, since a camera might
capture all of the codes on the sheet. Since it merely inserts
a proxy it inherits many security weaknesses from the legacy
password system it serves: it is Quasi-Resilient-to-Targeted-
Impersonation and is not Resilient-to-Throttled-Guessing or
Resilient-to-Unthrottled-Guessing. It is Quasi-Resilient-to-
Internal-Observation as observing the client during authenti-
cation does not allow passwords to be captured, but breaking

the proxy-to-server TLS connection does. It inherits from
passwords the fact that it is not Resilient-to-Leaks-from-
Other-Verifiers, but the fact that it is Resilient-to-Phishing
from other one-time schemes. It is not Resilient-to-Theft nor
No-Trusted-Third-Party: the proxy must be trusted. It offers
Requiring-Explicit-Consent and is Unlinkable.

C. Federated Single Sign-O'@)
Federated single sign-on enables web sites to authenticate

a user by redirecting them to a trusted identity server which
attests the users’ identity. This has been considered a *“holy
grail” as it could eliminate the problem of remembering dif-
ferent passwords for different sites. The concept of federated
authentication dates at least to the 1978 Needham-Schroeder
key agreement protocol [24] which formed the basis for
Kerberos [25]. Kerberos has inspired dozens of proposals
for federated authentication on the Internet; Pashalidis and
Mitchell provided a complete survey [26]. A well-known
representative is OpenID,> a protocol which allows any web
server to act as an “identity provider” [27] to any server
desiring authentication (a “relying party”). OpenID has an
enthusiastic group of followers both in and out of academia,
but it has seen only patchy adoption with many sites willing
to act as identity providers but few willing to accept it as
relying parties [28].

In evaluating OpenID, we note that in practice identity
providers will continue to use text passwords to authenticate
users in the forseeable future, although the protocol itself
allows passwords to be replaced by a stronger mechanism.
Thus, we rate the scheme Quasi-Memorywise-Effortless in
that most users will still have to remember one master
password, but Scalable-for-Users as this password can work
for multiple sites. OpenID is Nothing-to-Carry like pass-
words and Quasi-Physically-Effortless because passwords
only need to be typed at the identity provider. Similarly,
we rate it Efficient-to-Use and Infrequent-Errors in that
it is either a password authentication or can occur auto-
matically in a browser with cached login cookies for the
identity provider. However, OpenID has found that selecting
an opaque “identity URL” can be a significant usability
challenge without a good interface at the relying party,
making the scheme only Quasi-Easy-to-Learn. OpenlD is
Easy-Recovery-from-Loss, equivalent to a password reset.

OpenlD is favorable from a deployment standpoint, pro-
viding all benefits except for Server-Compatible, includ-
ing Mature as it has detailed standards and many open-
source implementations. We do note however that it requires
identity providers yield some control over trust decisions
and possibly weaken their own brand [28], a deployment
drawback not currently captured in our criteria.

3OpenlD is often confused with OAuth, a technically unrelated protocol
for delegating access to one’s accounts to third parties. The recent OpenID
Connect proposal merges the two. We consider the OpenID 2.0 standard
here, though all current versions score identically in our framework.

Security-wise, OpenID reduces most attacks to only
the password authentication between a user and his or
her identity provider. This makes it somewhat difficult to
rate; we consider it Quasi-Resilient-to-Throttled-Guessing,
Quasi-Resilient-to-Unthrottled-Guessing, Quasi-Resilient-
to-Targeted-Impersonation, Quasi-Resilient-to-Physical-
Observation as these attacks are possible but only against
the single identity provider (typically cached in a cookie)
and not for each login to all verifiers. However, it is not
Resilient-to-Internal-Observation as malware can -either
steal persistent login cookies or record the master password.
OpenID is also believed to be badly non-Resilient-to-
Phishing since it involves re-direction to an identity
provider from a relying party [29]. OpenlD is Resilient-to-
Leaks-from-Other-Verifiers, as relying parties don’t store
users passwords. Federated schemes have been criticized on
privacy grounds and, while OpenID does enable technically
savvy users to operate their own identity provider, we rate
OpenlD as non-Unlinkable and non-No-Trusted-Third-Party
as the vast majority of users aren’t capable of doing so.

D. Graphical passwords: Persuasive Cued Clickpoints
(PCCP)

Graphical passwords schemes attempt to leverage natural
human ability to remember images, which is believed to
exceed memory for text. We consider as a representative
PCCP [7] (Persuasive Cued Click-Points), a cued-recall
scheme. Users are sequentially presented with five images
on each of which they select one point, determining the
next image displayed. To log in, all selected points must be
correctly re-entered within a defined tolerance. To flatten the
password distribution, during password creation a randomly-
positioned portal covers a portion of each image; users
must select their point from therein (the rest of each image
is shaded slightly). Users may hit a “shuffle” button to
randomly reposition the portal to a different region—but
doing so consumes time, thus persuading otherwise. The™
portal is absent on regular login. Published security analysis
and testing report reasonable usability and improved security
over earlier schemes, specifically in terms of resistance to
both hotspots and pattern-based attacks [11].

While not Memorywise-Effortless, nor Scalable-for-Users
due to extra cognitive load for each account password, PCCP
offers advantages over text passwords (and other uncued
schemes) due to per-account image cues reducing password
interference. It is Easy-to-Learn (usage and mental models
match web passwords, but interface details differ), but only
Quasi-Efficient-to-Use (login times on the order of 5s to 20s
exceed text passwords) and at best Quasi-Infrequent-Errors.

PCCP is not Accessible (consider blind users) and
has Negligible-Cost-per-User. It is not Server-Compatible;
though it might be made so by having a proxy act as inter-
mediary (much as URRSA does). It is Browser-Compatible.
It is not Mature, but apparently Non-Proprietary.

PCCP is not Resilient-to-Physical-Observation (due to
video-camera shoulder surfing), but is Resilient-to-Targeted-
Impersonation (personal knowledge of a target user does
not help attacks). We rate it Quasi-Resilient-to-Throttled-
Guessing due to portal persuasion increasing password ran-
domness, but note individual users may repeatedly bypass
portal recommendations. Although the persuasion is also
intended to mitigate offline attacks, we rate it not Resilient-
to-Unthrottled-Guessing as studies to date have been limited
to full password spaces of 243 (which are within reach of
offline dictionary attack, especially for users choosing more
predictable passwords, assuming verifier-stored hashes are
available). It is not Resilient-to-Internal-Observation (static
passwords are replayable). It is Resilient-to-Leaks-from-
Other-Verifiers (distinct sites can insist on distinct image
sets). PCCP is Resilient-to-Phishing per our strict definition
of that benefit; to obtain the proper per-user images, a
phishing site must interact (e.g., by MITM) with a legitimate
server. PCCP matches text passwords on being Unlinkable.

E. Cognitive authentication: GriDsure

Challenge-Response schemes attempt to address the re-
play attack on passwords by having the user deliver proof
that he knows the secret without divulging the secret itself.
If memorization and computation were no barrier then the
server might challenge the user to return a cryptographic
hash of the user’s secret combined with a server-selected
nonce. However, it is unclear if a scheme within the means
of human memory and calculating ability is achievable. We
examine the commercial offering GrIDsure (a variant of
which is described in a paper [30] by other authors) as
representative of the class.

At registration the user is presented with a grid (e.g., 5x5)
and selects a pattern, or sequence of cells. There are 254
possible length-4 patterns, for example. At login the user
is again presented with the grid, but now populated with
digits. To authenticate he transcribes the digits in the cells
corresponding to his pattern. Since the association of digits
to cells is randomized the string typed by the user is different
from login to login. Thus he reveals knowledge of his secret
without typing the secret itself.

This scheme is similar to passwords in terms of usability
and we (perhaps generously) rate it identically in terms of
many usability benefits. An exception is that it’s only Quasi-
Efficient-to-Use: unlike passwords, which can often be typed
from muscle memory, transcribing digits from the grid cells
requires effort and attention and is likely to be slower.

We consider the scheme as not Accessible as the two-
dimensional layout seems unusable for blind users. The
scheme has Negligible-Cost-per-User, in terms of technol-
ogy. It is not Server-Compatible but is Browser-Compatible.
It is not Mature. We rate it not Non-Proprietary, as the
intellectual property status is unknown.

The sccurity properties are, again, similar to passwords in
many respects. It is not Resilient-to-Physical-Observation, as
a camera that captures both the grid and user input quickly
learns the secret. It is an improvement on passwords in
that it is Resilient-to-Targeted-Impersonation: we assume
that an attacker is more likely to guess secret strings than
secret patterns based on knowledge of the user. However,
its small space of choices prevents it from being Resilient-
to-Throttled-Guessing or Resilient-to-Unthrottled-Guessing.
In spite of the one-time nature of what the user types the
scheme is not Resilient-to-Internal-Observation: too many
possible patterns are eliminated at each login for the secret
to withstand more than three or four observations. It shares
the remaining security benefits with passwords.

F. Paper tokens: OTPW

Using paper to store long secrets is the cheapest form of
a physical login token. The concept is related to military

codebookjfllsﬂ_ throughout history, but interest in using
possession of paper fokems—to authenticate humans was
spurred in the early 1980°s by Lamport’s hash-chaining
scheme [31], later developed into S/KEY [32]. OTPW is a
later refinement, developed by Kuhn in 1998 [33], in which
the server stores a larger set of independent hash values,
consisting of about 4 kB per user. The user carries the hash
pre-images, printed as 8-character values like IZdB_bgvH.
Logging in requires typing a “prefix password” as well as
one randomly-queried hash-preimage.

OTPW rates poorl)j}_usability: the prefix password
means the scheme isn’t Memorywise-Effortless or Scalable-
for-Users; it also isn’t Nothing-to-Carry because of the
paper token. The typing of random passwords means the
scheme also isn’t Physically-Effortless, Efficient-to-Use or
Infrequent-Errors. We do expect that the scheme is Easy-
to-Learn, as typing in a numbered password upon request
is only marginally more difficult than using text passwords.
It is also Easy-Recovery-from-Loss as we expect most users
can easily print a new sheet if needed.

Paper-based tokens are cheap and easy to deploy. We
rate OTPW as non-Accessible becauseplain printing may.be
insufficient for visually-impaired users, though alternatives
(e.g. braille) may be available. We consider the price of
printing to be mble—Cost-per—User. While not Server-
Compatible, the scheme is Browser-Compatible. Finally,
OTPW has a mature open-source implementation, making
it Mature and Non-Proprietary.

Though OTPW is designed to resist human observa-
tion compared to S/KEY, it isn’t Resilient-to-Physical-
Observation because the printed sheet of one-time codes
can be completely captured by a camera. Otherwise,
OTPW achieves all other security benefits. Because lo-
gin codes are used only once and randomly generated,
the scheme is Resilient-to-Throttled-Guessing, Resilient-to-
Unthrottled-Guessing and Resilient-to-Internal-Observation.

/7
WM

scheme. It's Resilient-to-Theft because possession of the
phone is insufficient: the user still needs to type user ID and
password in the browser (for additional protection against
theft, the authors envisage an additional PIN or biometric
to authenticate the user to the device; we are not rating
this). The scheme is No-Trusted-Third-Party if we disregard
the CA that certifies the TLS certificate of the bank. It’s
Requiring-Explicit-Consent because the user must type user
ID and password. Finally it’s Unlinkable because the phone
has a different key pair for each verifier.

I. Biometrics: Fingerprint recognition

Bigmetrics [37] are the “e” means of authen-
tication, leveraging the unique of physical or behavioral
characteristics across individuals. We discuss in detail fin-
gerprint biometrics [38]; our summary table also rates iris
recognition [39] and voiceprint biometrics [40]. In rating
for our remote authentication application, and biometric
verification (“Is this individual asserted to be Jane Doe really
Jane Doe?”), we assume unsupervisﬂd_biw‘are
as might be built into client devices, vs. verifier-provided
hardware, e.g., at an airport supervised by officials.

Fingerprint biometrics offer usability advantages
Memorywise-Effortless, Scalable-for-Users, Easy-to-Learn,
and Nothing-to-Carry (no secrets need be carried; we
charge elsewhere for client-side fingerprint readers not
being currently universal). Current products are at best
Quasi-Physically-Effortless and Quasi-Efficient-to-Use due
to user experience of not Infrequent-Errors (the latter two
worse than web passwords) and fail to offer Easy-Recovery-
from-Loss (here equated with requiring an alternate scheme
in case of compromise, or users becoming unable to provide
the biometric for physical reasons).

Deployability is poor—we rate it at best Quasi-Accessible
due to commmomN failure-to-register biometric issues; not
Negligible-Cost-per-User (fingerprint reader has a cost);
neither Server-Compatible nor Browser-Compatible, needing
both client and server changes; at best Quasi-Mature for un-
supervised remote authentication; and not Non-Proprietary,
typically involving proprietary hardware and/or software.

We rate the fingerprint biometric Resilient-to-Physical-
Observation but serious concerns include easi]y:goolin
COTS devices, e.g., by lifting fingerprints—from—glass
surfaces with gelatin-like substances [41], which we
charge by rating not Resilient-to-Targeted-Impersonation.
It is Resilient-to-Throttled-Guessing, but not Resilient-to-
Unthrottled-Guessing for typical precisions used; estimated
“effective equivalent key spaces” [9, page 2032] for fin-
gerprint, iris and voice are 13.3 bits, 19.9 bits and 11.7
bits respectively. It is not Resilient-to-Internal-Observation
(captured samples of static physical biometrics are subject
to replay in unsupervised environments), not Resilient-to-
Leaks-from-Other-Verifiers, not Resilient-to-Phishing (a seri-
ous concern as biometrics are by design supposed to be hard

to change), and not Resilient-to-Theft (see above re: targeted
impersonation). As a plus, it needs No-Trusted-Third-Party
and is Requiring-Explicit-Consent. Physical biometrics are
also a canonical example of schemes that are not Unlinkable.

V. DISCUSSION

A clear result of our exercise is that no scheme we
f'—'.—_—‘_-—-_

examined is perfect—or even comes close to perfect scores. 1
The-mcumbent(raditional passwords) achieves all benefits & 6 &%
on deployability, and one scheme (the CAP reader, discussed

in the tech report [1]) achieves all in security, but no Tl@r A,f'(o
scheme achieves all usability benefits. Not a single scheme |
is dominant over passwords, i.e., does better on one or more Tl(A(éb‘]
benefits and does at least as well on all others. Almost all
schemes do better than passwords in some criteria, but all
are worse in others: as Table I shows, no row is free of red
(horizontal) stripes. [
Thus, the current state of the world is a Pareto gui]ibrium.@ WP/ [/\ﬂ

Replacing passwords with any of the "schemes examined
is not a question of giving up an inferior technology for 1 ml,/
something unarguably better, but of giving up one set of
compromises and trade-offs in exchange for another. For C an b{’
example, arguing that a hardware token like RSA SecurID
is better than passwords implicitly assumes that the security W LM'H‘W
criteria where it does better outweigh the usability and
deployability criteria where it does worse. For accounts 6{6 u/(o
that require high assurance, security benefits may indeed &
outweigh the fact that the scheme doesn’t offer Nothing- Wrﬂ gope#:t
to-Carry nor Negligible-Cost-per-User, but this argument is
less compelling for lower value accounts. (\/D/ %Q O@
The usability benefits where passwords excel—namely,
Nothing-to-Carry, Efficient-to-Use, Easy-Recovery-from-
Loss—are where essentially all of the stronger security
schemes need improvement. None of the paper token or
hardware token schemes achieves even two of these three.
In expressing frustration with the continuing dominance of
passwords, many security experts presumably view these
two classes of schemes to be sufficiently usable to justify a
switch from passwords. The web sites that crave user traffic
apparently disagree.
Some sets of benefits appear almost incompatible, e.g.,
the pair (Memorywise-Effortless, Nothing-to-Carry) is
achieved only by biometric schemes. No schemes studied
achieve (Memorywise-Effortless, Resilient-to-Theft) fully,
nor (Server-Compatible, Resilient-to-Internal-Observation)
or (Server-Compatible, Resilient-to-Leaks-from-Other-
Verifiers), though several almost do. Note that since
compatibility with existing servers almost assures a static

replayable secret, to avoid its security implications, many
proposals abandon being Server-Compatible.

A. Rating categories of schemes

Password managers offer advantages over legacy pass-
words in selected usability and security aspects without

It is Resilient-to-Phishing as it is impractical for a user
to enter all of their secrets into a phishing—website even
if asked, and Resilient-to-Theft thanks to the prefix pass-
word. As a one-to-one scheme with different secrets for
each server, it is Resilient-to-Leaks-from-Other-Verifiers, No-
Trusted-Third-Party and Unlinkable. Finally, the typing re-
quired makes it Requiring-Explicit-Consent.

G. Hardware tokens: RSA SecurlD

Hardware tokens storc—ggé'rct’;:r.n—;; dedicated tamper-
resistant module carried by the user; the RSA SecurID [34]
family of tokens is the lopg-established market leader. Here
we refer to the simplest dedicated-hardware version, which
has only a display and no buttons or /O ports. Each instance
of the device holds a secret “seed” known to the back-end.
A cryptographically strong transform generates a new 6-
digit code from this secret every 60 seconds. The current
code is shown on the device’s display. On enrollment, the
user connects to the administrative back-end through a web
interface, where he selects a PIN and where the pairing
between username and token is confirmed. From then on,
for authenticating, instead of username and password the
user shall type username and “passcode” (concatenation of a
static 4-digit PIN and the dynamic 6-digit code). RSA offers
an SSO facility to grant access to several corporate resources
with the same token; but we rate this scheme assuming there
won’t be a single SSO spanning all verifiers.

In March 2011 attackers compromised RSA’s back-end
database of seeds [35], which allowed them to predict the
codes issued by any token. This reduced the security of each
account to that of its PIN until the corresponding token was
recalled and reissued.

The scheme is not Memorywise-Effortless nor Scalable-
Sfor-Users (it needs a new token and PIN per verifier). It’s
not Physically-Effortless, because the user must transcribe
the passcode. It’s simple enough to be Easy-to-Learn, but
Quasi-Efficient-to-Use because of the transcription. We rate
it as having Quasi-Infrequent-Errors, like passwords, though
it might be slightly worse. It is not Easy-Recovery-from-
Loss: the token must be revoked and a new one reissued.

The scheme is not Accessible: blind users cannot read
the code off the token. No token-based scheme can of-
fer Negligible-Cost-per-User. The scheme is not Server-
'Compatible (a new back-end is required) but it is Browser-
Compatible. 1t is definitely Mature, but not Non-Proprietary.

As for security, bccausmmmnum,
SecurID is Resilient-to-Physical-Observation, Resilient-
to-Targeted-Impersonation, Resilient-to-Throttled-Guessing
and Resilient-to-Unthrottled-Guessing (unless we also as-
sume that the attacker broke into the server and stole the
seeds). It is Resilient-to-Internal-Observation: we assume
that dedicated devices can resist malware infiltration. It’s
Resilient-to-Leaks-from-Other-Verifiers, as different verifiers
would have their own seeds; Resilient-to-Phishing, because

captured passcodes expire after one minute; and Resilient-to-
Theft, because the PIN is checked at the verifier, so guesses
could be rate-limited. It’s not No-Trusted-Third-Party, as
demonstrated by the March 2011 attack, since RSA keeps
the seed of each token. It’s Requiring-Explicit-Consent, as
the user must transcribe the passcode, and Unlinkable if each
verifier requires its own token.

H. Mobile-Phone-based: Phoolproof

Phoolproof Phishing Prevention [36] is another token-
based design, but one in which the token is a mobile
phone with special code and crypto keys. It uses public key
cryptography and an SSL-like authentication protocol and
was designed to be as compatible as possible with existing
systems.

Phoolproof was conceived as a system to secure banking
transactions against phishing, not as a password replacement.
The user selects a desired site from the whitelist on the
phone; the phone talks wirelessly to the browser, causing
the site to be visited; an end-to-end TLS-based mutual
authentication ensues between the phone and the bank’s
site; the user must still type the banking website password
into the browser. Thus the scheme is not Memorywise-
Effortless, nor Scalable-for-Users. It has Quasi-Nothing-to-
Carry (the mobile phone). It’s not Physically-Effortless as
one must type a password. We rate it Easy-to-Learn, perhaps
generously, and Quasi-Efficient-to-Use as it requires both
typing a password and fiddling with a phone. It’s no better
than passwords on Quasi-Infrequent-Errors, since it still uses
one. The only recovery mechanism is revocation and reissue,
so it doesn’t have Easy-Recovery-from-Loss.

On deployability: it’s Quasi-Accessible insofar as most
disabled users, including blind people, can use a mobile
phone too (note the user doesn’t need to transcribe codes
from the phone). We assume most users will already have a
phone, though perhaps not one of the right type (with Java,
Bluetooth etc), hence it has Quasi-Negligible-Cost-per-User.
The scheme requires changes, albeit minor, to both ends,
so it’s Quasi-Server-Compatible but, by our definitions, not
Browser-Compatible because it uses a browser plugin. It’s
not really Mature (only a research prototype), but it is Non-
Proprietary.

On security: it's Resilient-to-Physical-Observation,
Resilient-to-Targeted-Impersonation, Resilient-to-Throttled-
Guessing, Resilient-to-Unthrottled-Guessing because, even
after observing or guessing the correct password, the
attacker can’t authenticate unless he also steals the user’s
phone, which holds the cryptographic keys. It’s Quasi-
Resilient-to-Internal-Observation because malware must
compromise both the phone (to capture the private keys)
and the computer (to keylog the password). It’s Resilient-to-
Leaks-from-Other-Verifiers because the phone has a key pair
per verifier, so credentials are not recycled. It’s definitely
Resilient-to-Phishing, the main design requirement of the

Usability

Deployability

Security

E
S <,
=2 o
Siei 88
SRR x
a| = 2230 380 S
W D =] 1>
2 S| = SIS 28
g = 2 gl & N RV eSS N B0
2 Tw_ 3 S| s SREPIPE R4
S IR3PT .55 ST oZPEsS¥sexd
: 33558385 315 SESSS53sRES
3 s[3RS230E5[eE80 EPessesseths
S BlEL LIRSV S|SESEEEEEg S
CEAEEEE-SS R S bl FEEELEE TS
a & S = g o o 3B S mE e . e =
Category scheme & 2 333555 JSS5S SRS ESE8284SS
(Incumbent) Web passwords 1T |[13] @ eoeO0eooco00®0O®e@® O X X
Password managers Firefox o IV-A([22]) ® < ©e®0=—-0000 ®oeo0e
8 LastPass ¢~ [42]j0® © = 0 =|0 o0e=e00
sy URRSA IV-B| [5] ke . = %_O_ []
y Impostor [23]): oe==0
OpenlD IV-C|[27]| S =0 =
Microsoft Passporte, [43][© e=e=
Federated Facebook Connect<] [44](© ‘ OEEE
BrowserID [45]|0 '@ o e=0=
OTP over email & [46]|C ® Ze0=e0| =0 =
Graphical PCCP IV-D| [7] é'%'?‘ o o000 080®
PassGo [47] =0=00C0 @ (N NN
GrIDsure (original) |IV-E|([30] =0=0==| @ eoeeo0o0
.. Weinshall [48] =EE=0=0=0(06 0000
Cognitive Hopper Blum [49] ==E==e0e=0=0(0® o000
Word Association [50] eeoCeoe=0:=-0 = eeeoe
OTPW IV-F|[33] 0==0=0=-000 00000 OOCOOO
Paper tokens S/KEY [32]|@ .§O_O_'" o000 00000 0O=9000
PIN+TAN (51 e=00 eo0000C000®
Visual crypto PassWindow [52])! ==== OeeeOcee—=000
RSA SecurlD IV-G|[34] ®ooO _ _ =eoe
YubiKey ¢ [53]] MO ceocooce00=00
Hardware tokens |lronKey [54]© ©coo eeoe
CAP reader [55] @00 ee®e
Pico Bl|@e®=@=00 TN X
Phoolproof IV-H|[36] @0 0= XX
Cronto [56] L Jie e [N N)
Phone-based MP-Auth [6] =3 eeoeo
OTP over SMS ! =0 @
Google 2-Step &= [57] o000
Fingerprint IV-1|[38]|® @ oe=
Biometric Iris [39]|® @ e0=
Voice [40]|® @ =e
Personal knowledge [58]} oe
Recovery Preference-based [59]|© oe ecoo0ee
Social re-auth. [60] e o= @ee0co000e=00C

= offers the benefit; ©= almost offers the benefit; no circle = does not offer the benefit.
[il=/better than passwords; == worse than passwords; no background pattern = no change.
e group related schemes into categories. For space reasons, in the present paper we describe at most one representative

scheme per category; the companion technical report [1] discusses all schemes listed.

Table 1
COMPARATIVE EVALUATION OF THE VARIOUS SCHEMES WE EXAMINED

M, H‘&[ao‘foz\ L a&ﬁm&g w/ Gcaogle 1"5/1’#’

Lt B 1)

losing much. They could become a staple of users’ coping
strategies if passwords remain widespread, enabling as a ma-
jor advantage the management of an ever-increasing number
of accounngﬁmﬁr-WWalying
technology remains replayable, static (mainly user-chosen)
passwords. ¢ @ ———m—m—no—

Federated schemes are particularly hard to grade. Propo-
nents note that security is good if authentication to the iden-
tity provider (IP) is done with a strong_scheme (e.g., one-
time passwords or tokens). However in this case usability is
inherited from that scheme and is generally poor, per-Table
I. This also reduces federated schemes to be a placeholder
for a solution rather than a solution itself. If authentication
to the IP relies on passwords, then the resulting security is
only a little better than that of passwords themselves (with
fewer password entry instances exposed to attack).

Graphical passwords can approach text passwords on us-
ability criteria, offering some security gain, but static secrets
are replayable and not Resilient-to-Internal-Observation.
Despite adoption for device access-control on some touch-
screen mobile devices, for remote web authentication the
advantages appear insufficient to generally displace a firmly-
entrenched incumbent.

Cognitive schemes show slender improvement on the
security of passwords, in return for worse usability. While
several schemes attempt to achieve Resilient-to-Internal-
Observation, to date none succeed: the secret may withstand
one observation or two [61], but seldom more than a
handful [62]. The apparently inherent limitations [63], [64]
of cognitive schemes to date lead one to question if the
category can rise above one of purely academic interest.

The hardware token, paper token and phone-based cate-
gories of schemes fare very well in security, e.g., most in
Table I are Resilient-to-Internal-Observation, easily beating
other classes. However, that S/KEY and SecurlD have been
around for decades and have failed to slow down the
inexorable rise of passwords suggests that their drawbacks
in usability (e.g., not Scalable-for-Users, nor Nothing-to-
Carry, nor Efficient-to-Use) and deployability (e.g., hard-
ware tokens are not Negligible-Cost-per-User) should not be
over-looked. Less usable schemes can always be mandated,
but this is more common in situations where a site has a
de facto monopoly (e.g., employee accounts or government
sites) than where user acceptance matters. Experience shows
that the large web-sites that compete for both traffic and
users are reluctant to risk bad usability [16]. Schemes that
are less usable than passwords face an uphill battle in such
environments.

Biometric schemes have mixed scores on our usability
metrics, and do poorly in deployability and security. As
a major issue, physical biometrics being inherently non-
Resilient-to-Internal-Observation is seriously compounded
by biometrics missing Easy-Recovery-from-Loss as well,
with re-issuance impossible [9]. Thus, e.g., if malware cap-

tures the digital representation of a user’s iris, possible replay
makes the biometric no longer suitable in unsupervised
environments. Hence despite security features appropriate
to control access to physical locations under the supervision
of suitable personnel, biometrics aren’t well suited for un-
supervised web authentication where client devices lack a
trusted input path and means to verify that samples are live.

B. Extending the benefits list

Our list of benefits is not complete, and indeed, any such
list could always be expanded. We did not include resistance
to active-man-in-the-middle, which a few examined schemes
may provide, or to relay attacks, which probably none of
them do. However, tracking all security goals, whether met
or not, is important and considering benefits that indicate
resistance to these (and additional) attacks is worthwhile.

Continuous authentication (with ongoing assurances
rather than just at session start, thereby addressing session
hijacking) is a benefit worth considering, although a goal of
few current schemes. Positive user affectation (how pleasant
users perceive use of a scheme to be) is a standard usability
metric we omitted; unfortunately, the literature currently
lacks this information for most schemes. The burden on
the end-user in migrating from passwords (distinct from
the deployability costs of modifying browser and server
infrastructure) is another important cost—both the one-time
initial setup and per-account transition costs. While ease
of resetting and revoking credentials falls within Easy-
Recovery-from-Loss, the benefit does not include user and
system aspects related to ease of renewing credentials that
expire within normal operations (excluding loss). Other
missing cost-related benefits are low cost for initial setup
(including infrastructure changes by all stakeholders); low
cost for ongoing administration, support and maintenance;
and low overall complexity (how many inter-related “moving
parts” a system has). We don’t capture continued availabil-
ity under denial-of-service attack, ease of use on mobile
devices, nor the broad category of economic and business
effects—e.g., the lack of incentive to be a relying party is
cited as a main reason for OpenID’s lack of adoption [28].

We have not attempted to capture these and other benefits
in the present paper, though all fit into the framework and
could be chosen by others using this methodology. Alas,
many of these raise a difficulty: assigning ratings might be
even more subjective than for existing benefits.

C. Additional nuanced ratings

We considered, but did not use, a “fatal” rating to indicate
that a scheme’s performance on a benefit is so poor that the
scheme should be eliminated from serious consideration. For
example, the 2-3 minutes required for authentication using
the Weinshall or Hopper-Blum schemes may make them
“fatally-non-Efficient-to-Use”, likely preventing widespread
adoption even if virtually all other benefits were provided.

We decided against this because for many properties, it isn’t
clear what level of failure to declare as fatal.

We also considered a “power” rating to indicate that
a scheme optionally enables a benefit for power users—
e.g., OpenID could be rated “amenable-to-No-Trusted-Third-
Party” as users can run their own identity servers, in contrast
to Facebook Connect or Microsoft Passport. The popularity
of webmail-based password reset indicates most users ac-
cede to a heavily-trusted third party for their online identities
already, so “amenable-to” may suffice for adoption. OpenID
is arguably amenable to every security benefit for power
users, but doesn’t provide them for common users who
use text passwords to authenticate to their identity provider.
However, as one could argue for an amenable-to rating for
many properties of many schemes, we maintained focus on
properties provided by default to all users.

D. Weights and finer-grained scoring

We reiterate a caution sounded at the end of Section II: the
benefits chosen as metrics are not all of equal weight. The
importance of any particular benefit depends on target use
and threat environment. While one could assign weights to
each column to compute numerical scores for each scheme,
providing exact weights is problematic and no fixed values
would suit all scenarios; nonetheless, our framework allows
such an endeavour. For finer-grained evaluation, table cell
scores like partially could also be allowed beyond our very
coarse {no, almost, yes} quantization, to further delineate
similar schemes. This has merit but brings the danger of
being “precisely wrong”, and too fine a granularity adds to
the difficulty of scoring schemes consistently. There will be
the temptation to be unrealistically precise (“If scheme X
gets 0.9 for this benefit, then scheme Y should get at most
0.6”), but this demands the ability to maintain a constant
level of precision repeatably across all cells.

We have resisted the temptation to produce an aggregate
score for each scheme (e.g., by counting the number of
benefits achieved), or to rank the schemes. As discussed
above, fatal failure of a single benefit or combined failure
of a pair of benefits (e.g., not being Resilient-to-Internal-
Observation and fatally failing Easy-Recovery-from-Loss for
biometrics) may eliminate a scheme from consideration.
Thus, seeking schemes purely based on high numbers of
benefits could well prove but a distraction.

Beyond divergences of judgement, there will no doubt be
errors in judgement in scoring. The table scoring methodol-
ogy must include redundancy and cross-checks sufficient to
catch most such errors. (Our exercise involved one author
initially scoring a scheme row, co-authors verifying the
scores, and independently, cross-checks within columns to
calibrate individual benefit ratings across schemes; useful
clarifications of benefit definitions often resulted.) Another
danger in being “too precise” arises from scoring on second-

hand data inferred from papers. Coarsely-quantized but self-
consistent scores are likely better than inconsistent ones.
On one hand, it could be argued that different appli-
cation domains (e.g., banking vs. gaming) have different
requirements and that therefore they ought to assign different
weights to the benefits, resulting in a different choice of
optimal scheme for each domain. However on the other
hand, to users, a proliferation of schemes is in itself a
failure: the meta-scheme of “use the best scheme for each
application™ will score rather poorly on Scalable-for-Users,
Easy-to-Learn and perhaps a few other usability benefits.

E. Combining schemes

Pairs of schemes that complement each other well in a
two-factor arrangement might be those where both achieve
good scores in usability and deployability and at least one
does so in security—so a combined scheme might be viewed
as having the f the usability-deployability scores
(i.e., the combination does no € a particular usability
or deployability benefit unless both of the schemes do) and
th the security scores (i.e., the combination has the
security benefit if either of the schemes do). An exception
would appear to be the usability benefit Scalable-for-Users
which a combination might inherit from either component.

However, this is necessarily just a starting point for the
analysis: it is optimistic to assume that two-component
schemes always inherit benefits in this way. Wimberly and
Liebrock [65] observed that the presence of a second factor
caused users to pick much weaker passwords than if pass-
words mmﬁ%—as predicted
by mm Thus, especially
where user choice is involved, there can be an erosion of the
efficacy of one protection when a second factor is known to
be in place. Equally, defeating one security mechanism may
also make it materially easier to defeat another. We rated,
e.g., Phoolproof Quasi-Resilient-to-Internal-Observation be-
cause it requires an attacker to compromise both a PC and a
mobile device. However, malware has already been observed
in the wild which leverages a compromised PC to download
further malware onto mobile devices plugged into the PC
for a software update [67].

See O’Gorman [9] for suggested two-factor combinations
of biometrics, passwords, and tokens, for various applica-
tions (e.g., combining a hardware token with a biometric).
Another common suggestion is pairing a federated scheme
with a higher-security scheme, e.g., a hardware token.

VI. CONCLUDING REMARKS

The concise overview offered by Table I allows us to see
high level patterns that might otherwise be missed. We could
at this stage draw a variety of conclusions and note, for
example, that graphical and cognitive schemes offer only
minor improvements over passwords and thus have little
hope of displacing them. Or we could note that most of

the schemes with substantial improvements in both usability
and security can be seen as incarnations of Single-Sign-
On (including in this broad definition not only federated
schemes but also “local SSO” systems [26] such as password
managers or Pico). Having said that, we expect the long-
term scientific value of our contribution will lie not as much
in the raw data distilled herein, as in the methodology by
which it was assembled. A carefully crafted benefits list
and coherent methodology for scoring table entries, despite
inevitable (albeit instructive) disagreements over fine points
of specific scores, allows principled discussions about high
level conclusions.

That a Table I scheme (the CAP reader) scored full marks
in security does not at all suggest that its real-world security
is perfect—indeed, major issues have been found [55]. This
is a loud warning that it would be unwise to read absolute
verdicts into these scores. Our ratings are useful and we
stand by them, but they are not a substitute for independent
critical analysis or for considering aspects we didn’t rate,
such as vulnerability to active man-in-the-middle attacks.

We note that the ratings implied by scheme authors in
original publications are often not only optimistic, but also
incomplete. Proponents, perhaps subconsciously, often have
a biased and narrow view of what benefits are relevant. Our
framework allows a more objective assessment.

In closing we observe that, looking at the green (vertical)
and red (horizontal) patterns in Table I, most schemes
do better than passwords on security—as expected, given
that inventors of alternatives to passwords tend to come
from the security community. Some schemes do better and
some worse on usability—suggesting that the community
needs to work harder there. But every scheme does worse
than passwords on deployability. This was to be expected
given that the first four deployability benefits are defined
with explicit reference to what passwords achieve and the
remaining (wo are natural benefits of a long-term incum-
bent, but this uneven playing field reflects the reality of a
decentralized system like the Internet. Marginal gains are
often not sufficient to reach the activation energy necessary
to overcome significant transition costs, which may provide
the best explanation of why we are likely to live considerably
longer before seeing the funeral procession for passwords
arrive at the cemetery.

ACKNOWLEDGMENTS

The authors thank the anonymous reviewers whose com-
ments helped improve the paper greatly. Joseph Bonneau
is supported by the Gates Cambridge Trust. Paul C. van
Oorschot is Canada Research Chair in Authentication and
Computer Security, and acknowledges NSERC for funding
the chair and a Discovery Grant; partial funding from
NSERC ISSNet is also acknowledged. This work grew out

of the Related Work section of Pico [8].
—

REFERENCES

[1] J. Bonneau, C. Herley, P. C. van Oorschot, and F. Stajano,
“The quest to replace passwords: A framework for compar-
ative evaluation of web authentication schemes,” University
of Cambridge Computer Laboratory, Tech Report 817, 2012,
www.cl.cam.ac.uk/techreports/UCAM-CL-TR-817.html.

[2] R. Morris and K. Thompson, “Password security: a case
history,” Commun. ACM, vol. 22, no. 11, pp. 594-597, 1979.

[3] A. Adams and M. Sasse, “Users Are Not The Enemy,”

Commun. ACM, vol. 42, no. 12, pp. 41-46, 1999.

C. Herley and P. C. van Oorschot, “A research agenda

acknowledging the persistence of passwords,” IEEE Security

& Privacy, vol. 10, no. 1, pp. 28-36, 2012.

[5] D. Floréncio and C. Herley, “One-Time Password Access to
Any Server Without Changing the Server,” ISC 2008, Taipei.

[6] M. Mannan and P. C. van Oorschot, “Leveraging personal
devices for stronger password authentication from untrusted
computers,” Journal of Computer Security, vol. 19, no. 4, pp.
703-750, 2011.

[7] S. Chiasson, E. Stobert, A. Forget, R. Biddle, and P. C. van
Qorschot, “Persuasive cued click-points: Design, implemen-
tation, and evaluation of a knowledge-based authentication
mechanism,” IEEE Trans. on Dependable and Secure Com-
puting, vol. 9, no. 2, pp. 222-235, 2012.

[8] F. Stajano, “Pico: No more passwords!” in Proc. Sec. Proto-
cols Workshop 2011, ser. LNCS, vol. 7114. Springer.

[9] L. O’Gorman, “Comparing passwords, tokens, and biometrics
for user authentication,” Proceedings of the IEEE, vol. 91,
no. 12, pp. 2019-2040, December 2003.

[10] K. Renaud, “Quantification of authentication mechanisms: a

usability perspective,” J. Web Eng., vol. 3, no. 2, pp. 95-123,
2004.

[4

—

[11] R. Biddle, S. Chiasson, and P. C. van Oorschot, “Graphical
Passwords: Learning from the First Twelve Years,” ACM
Computing Surveys, vol. 44, no. 4, 2012.

[12] J. Nielsen and R. Mack, Usability Inspection Methods. John
Wiley & Sons, Inc, 1994,

[13] J. Bonneau and S. Preibusch, “The password thicket: technical
and market failures in human authentication on the web,” in
Proc. WEIS 2010, 2010.

[14] J. Bonneau, “The science of guessing: analyzing an
anonymized corpus of 70 million passwords,” IEEE Symp.
Security and Privacy, May 2012.

[15] K. Fu, E. Sit, K. Smith, and N. Feamster, “Dos and don’ts of
client authentication on the web,” in Proc. USENIX Security
Symposium, 2001.

[16] D. Floréncio and C. Herley, “Where Do Security Policies
Come From?” in ACM SOUPS 2010: Proc. 6th Symp. on
Usable Privacy and Security.

[17] L. Falk, A. Prakash, and K. Borders, “Analyzing websites for
user-visible security design flaws,” in ACM SOUPS 2008, pp.
117-126.

[18] S. Gaw and E. W. Felten, “Password Management Strategies
for Online Accounts,” in ACM SOUPS 2006: Proc. 2nd Symp.
on Usable Privacy and Security, pp. 44-55.

[19] D. Floréncio and C. Herley, “A large-scale study of web
password habits,” in WWW *07: Proc. 16" International Conf.
on the World Wide Web. ACM, 2007, pp. 657-666.

[20] D. Balzarotti, M. Cova, and G. Vigna, “ClearShot: Eavesdrop-
ping on Keyboard Input from Video,” in IEEE Symp. Security
and Privacy, 2008, pp. 170-183.

[21] B. Kaliski, RFC 2898: PKCS #5: Password-Based Cryptog-
raphy Specification Version 2.0, IETF, September 2000.

[22] Mozilla Firefox, ver. 10.0.2, www.mozilla.org/.

[23] A. Pashalidis and C. J. Mitchell, “Impostor: A single sign-
on system for use from untrusted devices,” Proc. IEEE
Globecom, 2004,

[24] R. M. Needham and M. D. Schroeder, “Using encryption
for authentication in large networks of computers,” Commun.
ACM, vol. 21, pp. 993-999, December 1978.

[25] J. Kohl and C. Neuman, “The Kerberos Network Authentica-
tion Service (V5),” United States, 1993.

[26] A. Pashalidis and C. J. Mitchell, “A Taxonomy of Single
Sign-On Systems,” in Proc. ACISP 2003, Information Se-
curity and Privacy, 8th Australasian Conference. Springer
LNCS 2727, 2003, pp. 249-264.

[27] D. Recordon and D. Reed, “OpenID 2.0: a platform for user-
centric identity management,” in DIM °06: Proc. 2nd ACM
Workshop on Digital Identity Management, 2006, pp. 11-16.

[28] S.-T. Sun, Y. Boshmaf, K. Hawkey, and K. Beznosov, “A
billion keys, but few locks: the crisis of web single sign-on,”
Proc. NSPW 2010, pp. 61-72.

[29] B. Laurie, “OpenlD: Phishing Heaven,” January 2007, www.
links.org/?p=187.

[30] R.Jhawar, P. Inglesant, N. Courtois, and M. A. Sasse, “Make
mine a quadruple: Strengthening the security of graphical
one-time pin authentication,” in Proc. NSS 2011, pp. 81-88.

[31] L. Lamport, “Password authentication with insecure commu-
nication,” Commun. ACM, vol. 24, no. 11, pp. 770-772, 1981.

[32] N. Haller and C. Metz, “RFC 1938: A One-Time Password
System,” 1998.

[33] M. Kuhn, “OTPW — a one-time password login package,”

1998, www.cl.cam.ac.uk/~mgk25/otpw.html.

[34] RSA, “RSA SecurlD Two-factor Authentication,” 2011, www.
rsa.com/products/securid/sb/10695_SIDTFA_SB_0210.pdf.

[35] P. Bright, “RSA finally comes clean: SecurID is compro-
mised,” Jun. 2011, arstechnica.com/security/news/2011/06/
rsa-finally-comes-clean-securid-is-compromised.ars.

[36] B. Pamno, C. Kuo, and A. Perrig, “Phoolproof Phishing
Prevention,” in Proc. Fin. Crypt. 2006, pp. 1-19.

[37] A. K. Jain, A. Ross, and S. Pankanti, “Biometrics: a tool
for information security,” IEEE Transactions on Information
Forensics and Security, vol. 1, no. 2, pp. 125-143, 2006.

[38] A. Ross, J. Shah, and A. K. Jain, “From Template to Image:
Reconstructing Fingerprints from Minutiae Points,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 29, no. 4, pp. 544-560,
2007.

[39] J. Daugman, “How iris recognition works,” IEEE Trans.
Circuits Syst. Video Techn., vol. 14, no. 1, pp. 21-30, 2004,

[40] P. S. Aleksic and A. K. Katsaggelos, “Audio-Visual Biomet-
rics,” Proc. of the IEEE, vol. 94, no. 11, pp. 2025-2044, 2006.

[41] T. Matsumoto, H. Matsumoto, K. Yamada, and S. Hoshino,
“Impact of artificial “gummy” fingers on fingerprint systems,”
in SPIE Conf. Series, vol. 4677, Apr. 2002, pp. 275-289.

[42] LastPass, www.lastpass.com/.

[43] D.P. Kormann and A. D. Rubin, “Risks of the Passport single
signon protocol,” Computer Networks, vol. 33, no. 1-6, 2000.

[44] “Facebook Connect,” 2011, www.facebook.com/advertising/
7connect.

[45] M. Hanson, D. Mills, and B. Adida, “Federated Browser-
Based Identity using Email Addresses,” W3C Workshop on
Identity in the Browser, May 2011.

[46) T. W. van der Horst and K. E. Seamons, “Simple Authenti-
cation for the Web,” in Intl. Conf. on Security and Privacy in
Communications Networks, 2007, pp. 473-482.

[47] H. Tao, “Pass-Go, a New Graphical Password Scheme,”
Master’s thesis, School of Information Technology and Engi-
neering, University of Ottawa, June 2006.

[48] D. Weinshall, “Cognitive Authentication Schemes Safe
Against Spyware (Short Paper),” in IEEE Symposium on
Security and Privacy, May 2006.

[49] N. Hopper and M. Blum, “Secure human identification pro-
tocols,” ASIACRYPT 2001, pp. 52-66, 2001.

[50] S. Smith, “Authenticating users by word association,” Com-
puters & Security, vol. 6, no. 6, pp. 464—470, 1987.

[51] A. Wiesmaier, M. Fischer, E. G. Karatsiolis, and M. Lip-
pert, “Outflanking and securely using the PIN/TAN-System,”
CoRR, vol. ¢s.CR/0410025, 2004.

[52] “PassWindow,” 2011, www.passwindow.com.

[53] Yubico, “The YubiKey Manual, v. 2.0,” 2009, static.yubico.
com/var/uploads/YubiKey_manual-2.0.pdf.

[54] Ironkey, www.ironkey.com/internet-authentication.

[55] S. Drimer, S. J. Murdoch, and R. Anderson, “Optimised
to Fail: Card Readers for Online Banking,” in Financial
Cryptography and Data Security, 2009, pp. 184-200.

[56] Cronto, www.cronto.com/.

[57] Google Inc., “2-step verification: how it works,” 2012, www.
google.com/accounts.

[58] S. Schechter, A. J. B. Brush, and S. Egelman, “It’s no secret:
Measuring the security and reliability of authentication via
‘secret’ questions,” in IEEE Symp. Security and Privacy,
2009, pp. 375-390.

[59] M. Jakobsson, L. Yang, and S. Wetzel, “Quantifying the
Security of Preference-based Authentication,” in ACM DIM
2008: 4th Workshop on Digital Identity Management.

[60] J. Brainard, A. Juels, R. L. Rivest, M. Szydlo, and M. Yung,
“Fourth-factor authentication: somebody you know,” in ACM
CCS 2006, pp. 168-178.

[61] D. Weinshall, “Cognitive Authentication Schemes Safe
Against Spyware,” IEEE Symp. Security and Privacy, 2006.

[62] P. Golle and D. Wagner, “Cryptanalysis of a Cognitive
Authentication Scheme,” IEEE Symp. Security and Privacy,
2007.

[63] B. Coskun and C. Herley, “Can “Something You Know” be
Saved?” ISC 2008, Taipei.

[64] Q. Yan, J. Han, Y. Li, and H. Deng, “On limitations of
designing usable leakage-resilient password systems: Attacks,
principles and usability” Proc. NDSS, 2012.

[65] H. Wimberly and L. M. Liebrock, “Using Fingerprint Authen-
tication to Reduce System Security: An Empirical Study,” in
IEEE Symp. Security and Privacy, 2011, pp. 32-46.

[66] J. Adams, “Risk and morality: three framing devices,” in Risk
and Morality, R. Ericson and A. Doyle, Eds. University of
Toronto Press, 2003.

[67] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner,
“A survey of mobile malware in the wild,” in ACM SPSM
2011: I Workshop on Security and Privacy in Smartphones
and Mobile Devices, pp. 3-14.

6.858 / Fall 2012 / Paper Reading Questions http://css.csail.mit.edw/6.858/2012/questions.html?2q=g- pass;‘.vvords&lr

M\ ((‘{ZM Scholnes ﬂﬁdo ,
6.858: cOmput”"“L A i 3paS s
Systems Security

Home P - -
aper Reading Questions
General
information For each paper, your assignment is two-fold. By the start of lecture:
Schedule ® Submit your answer for each lecture's paper question via the
submission web site in a file named lecn.txt, and
Reference ® E-mail your own question about the paper (e.g., what you find
materials most confusing about the paper or the paper's general
context/problem) to 6.858-q@pdos.csail.mit.edu. You cannot
Piazza discussion use the question below. To the extent possible, during lecture
we will try to answer questions submitted by the evening
Submission before. /@{
2011 class

materials Leciuxe: 12 iWH v

i Based on the different schemes described in the paper, what
. do you think would be a reasonable choice for authenticating
i users in the following scenarios, and what trade-offs would

: you have to make:

—

1. Logging in to a public Athena machine in a cluster.

2. Checking your balance on a bank's web site via HTTPS
from a private laptop. <

3. ATCessifg Facebook-from an Internet cafe.

4. Withdrawing cash from an ATM.

Pamfi oi% wWy I hot #@m I@
/Z Uﬁ (Mw,/@é w/ P s st e

CI ((/!dmt Apswt- My 91 ‘bptbc)

Questions or comments regarding 6.858? Send e-mail to the course
staff at 6.858-staff@pdos.csail.mit.edu.

op // 6.858 home // Last updated Friday, 12-Oct-2012 23:31:47 EDT

1ofl 10/13/2012 4:24 PM

Paper Questio_g 12

el nal Placer 5
chicrel | YOI 2T O T
Micnael riasmeiel

1. Ata public Athena terminal we want to avoid Internal Observations. At first glance, a
biometric system may prevent this, but software can be written to record the biometric
over the network, in addition to the user’s password.

The paper does not consider authentication with a trusted machine — but perhaps one is
appropriate here. One could imagine a separate authentication box — 1-2 per Athena
cluster which are highly protected from their environment (their only function is
authentication; housed in a tamper-proof box, etc) which users could use before
walking over.

However, a one-time password could prevent many of the later replays, limiting
attackers to stealing your current session only.

2. Perhaps here we are less concerned with efficient to use. We want to insure that only
we can get on. What this paper does not include, is geographical targeting. Many
systems today require additional verification if you are logging on from a new location —
either through IP location lookups or leaving cookies on machines you logged in before.
I would have such a scheme, with a OTP. Perhaps even the European TAN system where
you need to type in a special code only for transfers (which is what really matters) based
on the account number you are transferring to and the amount of the transfer.

3. Here again we want to prevent internal-observation. A OTP would prevent attackers
from key logging you password and using it later on. To prevent others from attempting
to access your account from cafes across the world, FB could require additional
verification when you log in from a machine it has not seen you log in from before.

4. Again we have a machine that is to some regards secure — the circuit board could be
stored in the safe next to the money. Currently these systems are something you have
(card) and something you know (password). A harder to copy card (EMV chip) would
make these attacks much harder - though would require swapping machines and cards
in the US.

0%

e Al
Vo o aple & W Ly
¢ Lottt
(\}(} P/ﬂ‘&\(/4
9?&;} W@& Wty

W™

f e 6. buch of Gty

hot CWM"(

not O(ﬁa@/a’w/

0% @6 p‘W‘Z AW/)

(/J}u[L) iy - wha éa)/(/l’nj

%(l Qagy o ol Vlﬂmt dﬁ,@/@é&”/((/

| (/ng.o Usgndre -
v LomplHer Tf) Ve i

hov Yo e%/e///) Vfbﬁ.’:ﬂ’
Rl | hello

W(i’\ivjf@“!r - 1
= ceull 5«/0(@

pwswi n il et
(o gt ghal pisshard

CCM‘} (vgC [xao}W

m‘é@/“i Aafu,
fM ¢ [MJ%{L émA 60/ 01

9

QJ\L W G at @zok}n pass /s
b //ooowoooww W

;Q) (23%6’@ 6 M%\L (owmeq | /@W[@J/ C/A

o sy 1[” bte foce
/(,M)&’v ’@Lﬂ/

J)L(/("WZ /«L 9 f (lcf }
oy Gt ¢ husly

n E /?gg(
G e we opdie hudh fudeo
@C/yp“}
P BLF)

/«[4 (JO"W/‘[/{@ Ve w@[)

UM flw %
bl it C&ﬁw X o

Y

dubley
Ut \ 4ol S hash

/?;'dggw HGW” ZJ&H)

Z\((na { }1/\;]& (tabow 7149/&
e 60{](@ﬁ’ 260

CL\M{ﬁ 5»»“

bt 4
o nptval_piond

Cz\j/_lfﬂge (s o

/
CHW W \/@‘g‘(”

0{/&&/%(7/1 CwL(L }W(’Q é?/@/ /\wlw

g 4 Qo
Yo pond [l

Cliad- — el

FiF

P PUeE o

[mise]

@

Som Spr(?? § @@V\V l %Co(fwl Ohat's
O-h'(fb o lﬂ;éﬂ)’

v (ot)\M 4 SM@ L/Mil[”/m 51%9 fwﬁ

Al G
1 ,]]
il P Sy
oy oo sl phtal hsaatl
— ["mory 1%5 vhy b Io'
el PJ t oy
O]P J ?{j '“77 hW ;ﬂm@whlﬁ
» Csiar %awa"g U b lus 0
(Oﬁ% plr WA " 1hroﬁf¢(
.._zbOlmeD 7 Sy ot~ @%‘J il
= atbras ~ o (o ubonal o0
’/ Prssod e | leals fon wully
C(’Wl’ : /\b\()(q{nﬁ/{ FM&
-~ (P8 %
- Pas 1 éw"d, ey
Yl)
E@hﬁl {/8 'm UQYMMHL

Lean

ol

{ ¢, 4%
(et o [0

—

booksswa&t /YWﬂ S

Can v o, J|

0«& J[
i -
0/1-17 Mpfiils R 6//17

WAL mwital Brecy 4 - 4
0 Slag l M’lﬂ By IM{;L/

| dpst /P@ZZ
| puss agc sy
ity ?%/

ot
proxy To Sore Okl

Mh m:% On ,/ﬁ O] /; 5}% Crogh

dﬁs’(&,@i " 5%/(; wl% I /} Veob mnathin
L)ﬂﬁ)@«w\ Mithve

Wt 44 2 Ry

mL Cln 51164(Vol C(//Z’an Qﬁém
b bl e by s

COJH @]Lwr@/ CLW”W/ \[p(//‘ PC{&!W@/{/ /

o

(gpReadys ’
/Kas {WL cg((6(,‘0[dé&tﬁh)M(

o b % pden (s faphiall 7
C&n:}' (/EQ H \{

’ b
Yaph
a P
2(//
9 ;:;
:
iy
flce
on
zm&ﬂ@/

N
a2
"
oo
o/
h
i

A
hdfo\td ; d
(hin
Th
Y

5
:\hlz m
v
v
| 4
ewn

)
(Cys

5

ﬁ%

’
0"
W
Y%,
¢
me
A
o
by

ﬁ_’r—//f
'ge/
%

@qﬂ JT(_DA/WK—?

b

Q,ng}@, Clgn (7
W mjrc« “’&Vhwjf ‘((0[)%1 Sohamt_
[v
Ch T fusad
Pdgtly o450
@ @(Oﬁ? gw
Ho
fuld 4ot >
H’b

s
{
|

(_% & o | v @l
Svg wider B mows & ou

7L1P'mg I b po ;“V@(t'M@ Al

1
@ ws v i of P> Y] Q@nd
Bowshiis

____/'_"N-_

nd o Wt (mwfe b 5 (omput.

e‘%/ (/@7 %y 35 ?L/ic/i\

b hoags Conpli
s
Cxe 20 b
votc@i}z bib

/O (0{:)L (VS Lﬁn/ w4
’ aikally evbel T G

b oL (ol S @it Clange!
%7“61\ Jfo CCPT

(egl {in (6 "
i éﬂe furgl
/4

o At Aply By duy

b b o Vgl) e fogepd

b

N w/ fl 71@1@{ Jromz)w/
bl 3 Jed fobe flye,

Vb(fﬂg Hund_ C/@({CMW[{0/ /MM;?Z@ ﬁu(/t%
bood iy split- fihurtlct g

bt o o danlad & e ap

\

(i Wit Npur lac

b v his T W b vy umble
gl
Mﬂ J[W[tzp Cisy b U

N M#er\wl Oloéﬂfmz”‘\

Thi b in gt dofrom, amd

S (Gt (huag 4y OF e 3 fim ndoreaty
A Usfr

1of4

http://css.csail.mit.edw/6.858/2012/lec/112-user-authentication. txt

User authentication [() "T

Problem: how to authenticate users?
Setting: user <-> computer <-> verifier server.
Potential extra components might help authentication:
A trusted third party.
User's portable device (either dedicated or app in mobile phone) .
A proxy server.
This paper proposes a number of criteria to evaluate authentication schemes.
Proposed criteria are reasonable; sometimes non-orthogonal, and not complete.
Useful as a starting point to think about a new authentication scheme.

Standard authentication: passwords.
User types in username and password.
Server checks whether password is correct for that username.

How to store passwords?
Server needs to be able to verify passwords.
Naive plan: store plaintext passwords.
Problem: if adversary compromises server, gets full list of passwords.
Hashing: store a table of (username, H(password)s.
Can still check a password: hash the supplied string, compare with table.
Hard for adversary to invert the hash function.
Problem: password space is quite small.
Top 5000 password values account for 20% of users.
Skewed distribution towards common passwords chosen by many users.
Yahoo password study: rule-of-thumb passwords are 10-20 bits of entropy.
Problem: hash functions optimized for performance -- helps adversary here.
E.g., my laptop can do ~2M SHAl's (of small blocks) per second.
Even with reasonable password (20 bits entropy), crack one account/second.
Expensive key-derivation function (e.g., PBKDF2 or BCrypt).
Replace the hash with a much more expensive hash function.
Key-derivation functions have adjustable cost: make it arbitrarily slow.
E.g., can make hash cost be 1 second -- 0(1M) times slower than SHAI.
Internally, often performs repeated hashing using a slow hash.
Problem: adversary can build "rainbow tables".
Table of password-to-hash mappings.
Expensive to compute, but helps efficiently invert hashes afterwards.
only need to build this rainbow table for dictionary of common passwords.
Roughly: 1l-second expensive hash -> 1M seconds = 10 days to hash common pws.
After that, can very quickly crack common passwords in any password db.
Better: use salting.
Input some additional randomness into the password hash: H(salt, pw).
Where does the salt value come from? Stored on server in plaintext.
Why is this better if adversary compromises the salt too?
Cannot build rainbow tables.
Choose a long random salt.
Choose a fresh salt each time user changes password.

How to transmit passwords?
Poor idea: sending password to the server in cleartext.
Slightly better: send password over encrypted connection.
Why is this bad?
Connection may be intercepted.
Shared passwords mean that one server can use password on another server.
Strawman alternative: send hash of password, instead of the password.
Not so great: hash becomes a "password equivalent", can still be resent.
Better alternative: challenge-response scheme.
User and server both know password.
Server sends challenge R.
User responds with H(R || password).
Server checks if response is H(R || password).
Server convinced user knows password (modulo MITM attacks), if it knew it.
Server does not learn password if it didn't already know it.

10/20/2012 5:38 PM

http://css.csail.mit.edw/6.858/2012/lec/112-user-authentication.txt

How to prevent server from brute-force guessing password based on H() value?
Expensive hash + salting.
Allow client to choose some randomness too: guard against rainbow tables.
To avoid storing the real password on the server, use protocol like SRP.
But challenge-response requires client-side and server-side changes.

How to check passwords?
Guessing attacks are a problem because of small key space.
Kerberos v4, and v5 without preauth: not great -- offline guessing.
Rate-limiting authentication attempts is important.
What to do after many failed authentication attempts?

What matters in user's password choice?

Many sites impose certain requirements on passwords (e.g., length, chars).

In reality, what matters is entropy.

Format requirements rarely translate into higher entropy.

Defeats only the simplest dictionary attacks.

Also has an unfortunate side-effect of complicating password generation.
E.g., no single password-gen algorithm satisfies every possible web site.
Conflicting length, symbol rules.

Password distribution "key spaces" are quite small in practice [above].

Password recovery.
Important part of the overall security story.
Recall story with Sarah Palin's email account, etc.
Think of this as yet another authentication mechanism.
Composing authentication mechanisms is tricky: are both or either required?
Recovery mechanisms are typically "eithexr".
Sometimes composing "both" is a good idea: token/paper + password/PIN, etc.

wWhat factors do the authors suggest are important in replacement schemes?
Table I.
Why are these factors important?
What are some schemes that fail at each of the factors?
What are some schemes that manage to achieve each of the factors?

Password managers.
Why resilient to phishing?
Why poor quality passwords?

Proxy-based: URRSA.
What problem does it solve?
How does it work?
User has some password P.
Proxy stores many keys K_i, generates C i = E {K i} (P).
Proxy keeps track of whether each C_i has been used (initially unused).
User gets a printout with all C_i values.
To log in, user sends an unused C_i to proxy.
Then user visits target login page via proxy server.
User submits a fake password, proxy replaces fake password with real one.
How does it rank on the metrics?

Graphical authentication scheme: PCCP.
Sequence of 5 images, user remembers points on each image.
Interesting design point: suggest random points to remember on each image.
How does it rank on the metrics?

Cognitive authentication (human challenge-response): GrIDsure.
5x5 grid, user chooses sequence of cells when registering.
As challenge, server populates grid with random numbers.
As response, user types in numbers from the chosen sequence of cells.
How does it rank on the metrics?

Single-signon (SS0).
Like Kerberos, will talk more about OAuth specifically next week.

2 of 4 10/20/2012 5:38 PM

hitp://css.csail.mit.edw6.858/2012/lec/112-user-authentication. txt

"Popular" protocols: OpenID, OAuth. "Signin with Facebook".

S50 can be thought of as a meta-authentication system: composes with others.
Security/usability depends on how user authenticates with identity provider.
Usability costs amortized over many sites that share an identity provider.

Many sites want to have direct control over trust relationship w/ user, etc.
550 makes one site dependent on another trusted third party.

One-time passwords.
Hash chaining.
OTPW: avoid chaining because last password reveals entire chain.

Hardware tokens.
RSA SecurID.
Google's 2-step authentication.
Similar to hash-based challenge-response scheme; implicit challenge = time.

Biometrics.

How big is the keyspace?
Fingerprints: ~13.3 bits.
Iris scan: ~19.9 bits.
Voice recognition: ~11.7 bits.

Problem: hard to recover from loss of "personal" information.

Perhaps more sensible in the presence of trusted biometric reader devices.
But not practical for web application authentication.

Try ranking some familiar authentication schemes.
Kerberos v4? v5?
Usability: renewing credentials.
SSL client certificates?
Challenge-response scheme?
Bank of America "SiteKey" (recognize image, type in a word)?

How effective is scheme combining? Which ranking criteria compose well?
"Either" vs. "both".

What factors are difficult to achieve? [par 4 of section V]
Memorywise-Effortless + Nothing-to-Carry.
Memorywise-Effortless + Resilient-to-Theft.
Either user remembers something, or it can be stolen, except for biometric.
Server-Compatible + Resilient-to-Internal-Observation.
Server-Compatible + Resilient-to-Leaks-from-Other-Verifiers.
Server compatible means sending a password.
Passwords can be stolen on user machine, replayed by one server to another.

What are potential answers to the homework questions? What factors matter?
Logging into public Athena machine?
Resilient-to-Internal-Observation: easy to install malware on machine.
Resilient-to-Physical-Observation: though maybe less so.
MIT IDs could be a good thing to leverage (smartcard?).
Biometrics? Untrusted terminals, probably not a great plan.
Would some proxy-based schemes work (like URRSA)?
Checking bank balance via HTTPS from private laptop?
Less relevant: Resilient-to-Physical-Observation, Resilient-to-Theft.
Good idea: separate transfer operations from looking at balance.
"Progressive authentication".
Would be a good thing for Athena machines too.
Get access to a browser to check maps or print paper vs. websis.
Password managers make sense for private/trusted machines.
Accessing Facebook from Internet cafe?
Password managers not a good idea here.
How sensitive is the data?
Might be leveraged to authenticate to other sites.
(Either "Login with facebook" or by answering personal questions.)
Maybe authentication-via-proxy (URRSA).
Withdrawing cash from ATM?

3 of4 10/20/2012 5:38 PM

http://css.csail.mit.edw6.858/2012/lec/I12-user-authentication. txt

Security matters highly.
Resilient-to-Physical-Observation.
Resilient-to-Theft.
Unlinkability less so.
Possibly trusted terminal: biometrics might be worth considering.
(Although in practice bank may not want to trust the terminals.)
one thing that matters but wasn't included in list: authenticating txmn.
Adversary can re-purpose entered credentials for different operation.
Hardware-token-based or phone-based solution could authenticate txn.
E.g., H(challenge || pw || withdrawal-amt || atm-location).

What other factors should we worry about in user authentication? [sec V.E]
Continuous authentication, instead of session start.
Migration cost from passwords / incentives for deployment (OpenID) .
Renewing credentials (Kerberos).
Availability / DoS attacks.

Why aren't these schemes widely used?

No single answer.

Convenience of passwords.

For many scenarios, security isn't important enough to justify switching cost.
Per-user cost on the server, on the user's end, software changes, etc.

Limited benefits of some alternative schemes.

Often hard for an individual user to improve his/her own security.
Perhaps partially fixed with SSO, where users can choose a better IdP.

References:
Full tech report: http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-817.pdf
http://www.cl.cam.ac.uk/~jcb82/doc/B12-IEEESP-analyzing_70M anonymized passwords.pdf

[For next year:
Talk less about specific authentication schemes.
Talk more about range of issues authentication schemes might need to address.
Talk about how to compose authentication schemes: two-factor, recovery, etc.]

4 of 4 10/20/2012 5:38 PM

6.858 Fall 2012 Lab 3: Server-side sandboxing http://css.csail. mit.edw/6.858/2012/1abs/lab3.html

6.858 Fall 2012 Lab 3: Server-side sandboxing
(
Handed out: Wednesday, October 3, 2012
All parts due: Friday, October 19, 2012 (5:00pm) @QP/(/U!\ 0/' [7 P G/Jr Z
Part 3: Extending the PyPy sandbox

In this part of the lab, we will extend the PyPy sandbox implemented in pypysandbox. py to support
operations needed for a profile to store persistent data, and to access zoobar application state.

i Exercise 3. Implement a writable and persistent /tmp directory in the PyPy sandbox. This

is needed by the visit-tracker.py and last-visits.py profiles to store their persistent
: information. Make sure that the /tmp directory seen by each user's profile is separate from |
: other users, so that profiles of different users cannot tamper with each other's files. As in

: lab 2, remember to consider the possibility of usernames with special characters.

Ensure that the visit-tracker and last-visits profiles work correctly after you
: implement your changes. The /tmp check should also pass at this time.

..

i Exercise 4. Since the standard Python SQLite module is implemented by calling into the

: native SQLite C/C++ library, it is not available in the PyPy sandbox (because the native
 library does not know how to forward its system calls via the RPC channel). In this

. exercise, your job is to support the get_xfers () function from proflib.py in the

: sandbox. A reasonable approach to do this is to extend the RPC server (pypysandbox. py)
: to perform the get_xfers () functionality on behalf of the sandboxed code. You will also
need to modify proflib.py to invoke this new interface.

: Hint: to create a new interface between code in the sandbox and the RPC server outside of
: the sandbox, such as for performing get _xfers () calls, consider overloading the file

: namespace by defining a special file name that corresponds to get_xfers calls. You can

: take a look at virtualizedSocketProc in . . ./pypy-sandbox/pypy/translator

\ /sandbox/sandlib.py to see an example of how the PyPy sandbox exposes access to

i TCP sockets in this manner.

Once you are finished with this exercise, the xfer-tracker.py should be functioning
i correctly in the sandbox.

1of2 10/13/2012 4:24 PM

6.858 Fall 2012 Lab 3: Server-side sandboxing http://css.csail.mit.edw/6.858/2012/1abs/lab3.html

Exercise 5. Implement the last remaining parts of proflib.py in the sandbox:

i get_user() and xfer (). Once you are done, granter.py should work from within the
i sandbox.

i Challenge! (optional) For extra credit, allow sandboxed code to safely manipulate

i sub-directories under /tmp using mkdir and rmdir, to open files in those sub-directories,
i and to be able to unlink and rename files and sub-directories. Write an example Python
i profile that uses sub-directories and renames files.

..

Challenge! (optional) Allow sandboxed code to safely create and use symlinks inside of its
i /tmp directory. :

You are done! Run make submit to upload 1ab3-handin.tar.gz to the submission web site.

20f2 10/13/2012 4:24 PM

F:\Users\Michael\Documents\MIT Senior\6.858\6.858 Code\lab3\zoobar\pypysandbox.py Saturday, October 13, 2012 5:33 PM

53 # * can access its own executable

54 # * can access the pure Python libraries

55 # * can access the temporary usession directory as /tmp

56 exclude = ['.pyc', '.pyo']

57 tmpdirnode = RealDir('/tmp/sandbox-root', exclude=exclude)

58 libroot = str(LIB_ROOT)

59

60 return Dir({

61 'bin': Dir({'pypy-c': RealFile(self.executable),

62 'lib-python': RealDir (libroot + '/lib-python', exclude=
exclude) ,

63 'lib pypy': RealDir(libroot + '/lib pypy', exclude=
exclude) 4

64 1), e

65 'proc': Dir({'cpuinfo': RealFile('/proc/cpuinfo'), }),

66 'tmp': tmpdirnode,

67 'preflib': RealFile('/jail/zoobar/proflib-sb.py')

68)

69

70 ## Implement / override system calls

71 #4

72 ## Useful reference:

73 4 pypy-sandbox/pypy/translator/sandpbox/sandlib.py

74 #4 pypy-sandbox/pypy/translator/sandbox/vEs.py

15 #4

76 def do_ll os_ 11 os geteuid(self):

77 return 0

78

79 def do 11 os 11 os getuid(self):

80 return 0

81

82 def do_11 os_ 11 os getegid(self):

83 return 0O

84

85 def do_11 os_ 11 os getgid(self}:

86 return 0

87

88 def do_11 os_ 11 os_fstat(self, fd):

89 ## Limitation: fd's 0, 1, and 2 are not in open fds table

30 f = self.get file(£fd)

91 try:

02 return os.fstat(f.fileno())

93 except:

94 raise OSError (errno.EINVAL)

95 do_ll os_ 11 os_fstat.resulttype = s_StatResult

96

97 def do_1l1 os_ 11 os open(self, vpathname, flags, mode):

98 if flags & (o0s.0 CREAT):

99 dirnode, nam te path(vpathname)

100 # LAB 3: handle file creation
101
102 node = self.get node (vpathname)

0%

F:\Users\Michael\Documents\MIT Senior\6.858\6.858 Code\lab3\zoobar\pypysandbox.py Saturday, October 13, 2012 5:33 PM

1
2
3
4
5
6
9
8

9
10
11
12
1.3
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
23
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
5il
52

import os, sys, errno
from cStringIC import StringIO

pypy_sandbox dir = '/zoobar/pypy-sandbox'
sys.path = [pypy sandbox dir] + sys.path

from pypy.translator.sandbox import pypy interact, sandlib, vfs
from pypy.translator.sandbox.vfs import Dir, RealDir, RealFile
from pypy.rpython.module.ll os stat import s StatResult

from pypy.tool.lib pypy import LIB ROOT

class WritableFile(vfs.RealFile):
def init (self, basenode):
self.path = basenode.path
def open(self):
try:
return open(self.path, 'wb')
except IOError, e:
raise OSError(e.errno, 'write open failed')

class MySandboxedProc (pypy interact.PyPySandboxedProc):
def init (self, profile owner, code, args):

super (MySandboxedProc, self). init_ (
pypy sandbox dir + '/pypy/translator/goal/pypy-c’,
['=-S', '=¢', code] + args

)

self.debug = True

self.virtual cwd = '/’

Replacements for superclass functions
def get node(self, vpath):

dirnode, name = self.translate path(vpath)
if name:

node = dirnode.join(name)
else:

node = dirnode

if self.debug:
sandlib.log.vpath('%r => %r' % (vpath, node))
return node

def handle message(self, fnname, *args):
if ' ' in fnname:
raise ValueError ("unsafe fnname")
try:
handler = getattr(self, 'do ' + fnname.replace('.', '__ "))
except AttributeError:
raise RuntimeError("no handler for " + fnname)
resulttype = getattr(handler, 'resulttype', None)
return handler (*args), resulttype

def build virtual_root(self):

build a virtual file system:

-1-

F:\Users\Michael\Documents\MIT Senior\6.858\6.858 Codellab3\zoobar\pypysandbox.py Saturday, October 13, 2012 5:33 PM

103 if flags & (0s.0 _RDONLY|os.O WRONLY|os.O RDWR) != os.O RDONLY:
104 CEE:E§B 3:_handLeprftabté_TIngjﬂg;—;ot raising OSError in somegfifﬁy
105 raise OSError(errno.EPERM, "write access denied")
106 node = WritableFile (node)

107

108 f = node.open()

109 return self.allocate fd(f)

110

111 def do 11 os 11 os write(self, fd, data):

112 try:

113 f = self.get file(fd)

114 except:

115 f = None

116

117 if f is not None: . ————

118 44 IAB 3: if this file should be writable, -do the write,
119 ## and return the number of bytes writgten

120 Taise OSError (errno.EPERM, "write not implemented yet")
121

122 return super (MySandboxedProc, self).do 11 os 11 os write(fd, data)
123

124 def run(profile owner, code, args = [], timeout = None):

125 sandproc = MySandboxedProc(profile owner, code, args)

126

127 if timeout is not None:

128 sandproc.settimeout (timeout, interrupt main=True)

129 try:

130 code output = StringlIO()

131 sandproc. interact (stdout=code output, stderr=code output)
132 return code output.getvalue()

133 finally:

134 sandproc.kill ()

135

136

e

(5D 13

57 z
0t 7
GQ\L a bl 6l [MLL’Z ﬂffﬁu lab
, il pat
I3

A”Ow QMMQ b bjfﬂ/g /J%IMLML p(/;/ﬁ f-
Adess Tooby app st

Lad Vs JaF okl worll
\A/ Wlesy 1 P(m[M)

l

NOW o | &.ML @’olaj dok da;/"? t%?
LP(O}J }Oéb{‘ +O io l,-,L OH

\\M& (5 M ‘%tbﬁﬂ@ %5”4/) (a%w/z'o/:

%Q lls d/ufw{z a ‘hnp ﬁohle/ 5)03(/}!@&
Moo T coll b Gl aly,

(J//m H, /L/' J / %’”w
cohoe ol e flud
il {@ / e et e

[}@MA{)AMM s /vM«j
Noew

Din whin Wy Bt e ek

G

ook b bl ab hae o saes Llles

/’E;L ool W w el b Wl]
]1,5 ik LKVJ(/

Wob ed- all Dt chuleny
Bflr % ﬂj‘///{/lg o)(what Fo Ja“\

@asm} b Oe Trp Somerboe
A/ﬂ W bttt D, gy il

o o Yaolde ol bl

\@ani AL %02 Y {le - rafad

4 o d lob ot debagng cdo
Ve, /] et b — .y

s 71
Y (78

L

(
D e
Gl By St gudion ot

N | Clle sl

gmcﬁ@/l% a s« fn /0/416!@ - 76@/&?
(, |
I 75},,,L lm, é/eq//k }m/sséy

Fod e on

N@w \NLQ((/ ‘Ls My J@(Vg C/ﬁdgf

R

é) HS 6%(:/} ((/nﬂ((/‘j

ﬂ Cltor u// [\J@w/ Fc/& 0[2/!%#
IJW‘}L [ﬁm b 5]L§ 697(64’

(A2 05
S.O V‘%[{ ZZ’I I[;@W@ ”‘* Aﬂv lﬁ’ M/c/ ﬁgﬁ @[b !

\ml PN[“ Golns 1(0})& Jlub]L 6{/,1@
Dt o e
(L@o(Di/ o 4
(i dp z
[M” for by sl ndy jeff

QL\l/ NAQ : ;024 C({Mﬂo/@d)
T%}L/

/%Mp /{M{Lnxv/()@#/ 'h\tPZdZ// las /V[\;Z/'_ . dak
{

r
L OC

Wl e el dguts gl di
Nt) (/['\Moﬁ vv/ Sanchr
Mi (/«/'LM bQ (/%t@{

@T

Ao

z\qf Are G/H (.hdﬁ G
W4

6@% ‘

W«Lﬂ { @Z[//V‘S no {'[é

/1 e ot 4 8 {
9. 4

S0)l
L@? ovtal

ledlr sH of
7‘5 ?lof Guro

\[/L e
é@ /Scc/cﬁ | ot
Wb{’ 0@% ﬁt 2 (Jr
/ 50(4,4 bozc ot)
Ao e gt ﬂo /mp}ﬂb
@(3@ [pQ(mé%}wy
1 ‘FQ(‘b\n% 2 (l/}/eo{'a/l,c’/)

Ohen & u/[[-mL i mﬂ (/656//[,/%&/
fen ag ot

ﬂw\v +0 @%\L A {(/
o ds.opa(file Flags; mode)
[%f/m; [(d

Th' alde Dl d = vour o
’['@Jf;/bg \wos k ‘L[/aow

waﬂg ub it S 1% e
Mg poske. an bl
E open, [6%@ q @;/rw&)@

@UA michable Obyed
On v

LM/ atleust 0

Shall 0pea tile desughs
y[ow;ie, b £ wen
(apn Lo Cale
e g0 4 pole. pAp
oc iy hadler Uil Fle

U/‘C(%%Ml WL(?[(@ for (/m%

/ | "I
Mé 7%/ U@ﬂf{ﬂj 7"0\//&{/7

\QP@/‘W[C[@&f ZIM
b i
Rﬁ"li O lv ¢ (onj

Wit & hae o dot do#

What e o fadt o ze

\G(L A P@@ﬂ

()5, \ite
\»/lw oy Call ﬁwf
Wk
hat (5 £
(2
ZML ar @”h Ec/[(

1 paper § y5tem a{//

w({]@ O‘o}@&f‘ 15 C&Uﬁ (l/z ﬂ)fzm 01/

[
(onvitng.

J(Jppqi; Z i Y wirk o hle Aeatyge
O T By
@f%{ {/ﬂm 6)% 0 €4& @Kﬁ/@

767
Tab Moe
éLouLaL 1(01 dpm [‘mL
g)« W\c” M]HQ[/WVL WO/L W0 Llf/o‘f(ﬁ
TOu L (OOL T/}\/O,OL\ l;b

T Lo wd b
@ ks ff o — { u(s ﬁ[]

e b i

W gm 6 sl Ul
G{Xr\ \éulo& a (al Ell 06,@6

@ Sl fare Meluibble. File wit dol

Soel &g Lo/

O o mbde raned pt
V\n (“Q //wt[/%ﬁ’tf/fﬁf@l[Jﬂ ‘dﬂxﬂy
w b duad i

/%

@
(b (dwi@(/, TLO Ltn\/ JW@ {@ﬁ/gwd /Z_
\%1[w)mL oo 61%@ Cay (aé |

M ﬂ’u \ [
& } N{ns /
ét V? M Z((bf/ /:; (? N : 567/1/(‘@

(i w alh gWee

ol (e £
ﬂ\w‘“‘ﬂ (/L%e (ode.
Sl % g
e 544
g
Tﬁ H 5{’%@, I[‘Z& \/\0{' 67%’/‘4
bt ol /

O{N éﬁ{()/ (/\,/ }\"U?(’

I
g,
Ly not vakd |

@ W dd bl 60 wal

Oc ¢ /er//’w('[
St ety 72| 1o That

00 dd T (o Tat B nee”

o - Szw\/M woll

Wh B ek 6 e
ﬂ@l biofy as wlll

L\/L\W\L L\qpp(%/}(i

63(;,“ (ﬂm@%& H\ OV

ik B Ll
\/‘Hﬁ CM, I C[/t!l/lyl,”/7
Pk ¢
\e

Y/
L dod gob A 9 F cody it Eil
0 dur [gpf,(f/ Jae) not wo/k

Veah ufs /az(«j ar lead Ly

QD(OJD 5 T . q/opmou/y /h«p{%f’”

[amt,,f(e@ bie__ nare\— nare 2‘}/@%
[M, V(lf'mtp pavel_ viare 7 (duf
lisk_ vt g nae \do
Bud et
| s
@ Uy ohi) hwy atibde pu
Mt s whith G
\Hb‘ . /WC/CMA{W
L"\}\‘J\ we 61‘0\/!‘(}, Vld\L MADHG/ g
(’i(f MJQ :b Lom) ‘(Nf/y

4
MVSJF [LJ/ gﬂy .
Rb ot & b pod

@v‘a[il QM%L (eq/”[175 &liLm

CHOW ’#O W[bﬂ ngﬁﬁf
6((05{“01/!’ Somr

Posﬂl@i 1, Duta (W43

et e o B
0 (b W § Ll g
@ OJ‘L S mendly - Ortor
"67%3(0 p:a%cc
ol

'60 M;L ON ((a%’%t(
R i, %M bt T v et wed ol

ol . .

C&o e old st hevy
BWL A does not lohe ﬁa te| Eile

Thi
L\/\& fc? \VaRmonZ4)

@ NQ [MJ/J(@ @/(, }&@
AW v Tullt
W/ fhaf A op{((m
f o b 720 z(bk\
@Z p/u‘)(/ Qlror
ﬂ(/fnL {([“ g

4
G mlde ool
by did 7ol open. al
‘{le " 177
Wo

LW@H e Laul\ ZLﬂ)"‘65[0—-—/51’7(/0/
| N i e o e
by b iy)\%
V‘\lb H’*’ 57 ity l (07

O il Flle ot Jifef

Lgpeﬂflflg Clror
Vs gnare. {z[/bi}ﬂﬂ 0(/&0 M%

@Fé(@ (g
® m&l lw’ha bk send
ek v el T £ L fhat (i

§ Lﬂf/ San d L(IIO Wadj
(o WLq /ey\/&r L//ﬂnj

@ (M& MWL !){ Wd/L«/(i/tj g (/)

flo = nifheg whaly wien. .
Ohoats b Lt e

H]}\((JOSAﬁ §VW

B op b gt

@ gl o pia,%m @ U&f

(:

(0w CIM‘# l\w/t [/v/(fil ¢ Pﬁm{léwf%?
L//m WV(ZQ, P wb

What-), T, ogen. Eile ot
jLJW | /@f (

4‘/ ; (mm&()

I Was ﬁrt{dﬁﬂg Wf'

® Now bl s wbe o
@Sﬂf \(”Q \/:7[1[64 {vl@ by ﬁw(/ o

Togh 1+ G ot ol ne bt v

and File Conterd w)L

[96" <«
WLML lw m(ée,
5
L9
% 1 lwes--

-

M% ‘15@ o (}r@‘

gntc/dfﬁ LW/Lﬂ SV /edin ## st /Mz@ W@
p/ mL M‘L

dd « ctbrg ¥ bhes wiltn mg- 4 -5

f{b/o (P/{Vm@(m ({c/@%f{))
@ file opn far (@M@

8

o Wbt ”/m/b !

N\ ’h% ‘l’ A ﬁ/@ Yl L//qpp@
& il TO o

O{/\HVL,(I+ E)/ (szﬁm, f L,/yrf“(/ﬂ7
be B Lo ek som b g

@M@w {,}uolt ‘m an A [Wﬂ W o (exsm

@\)4' g @9(/# 5/9 O
b
5y foed b WW

nyp s 4 (00/0}7
dudp £ L o had 14y, 7

O/‘Q Mo IL/V[In {‘ /@(J
LCar\ 4[u/a/¢; %[//V\ f
inpf
Un G O}

/\ﬂv« 1)0 “Wm;{é
ﬁ,(/[\/o moe < (00{&'/%
@ FE(Q W/Jv“é/\“} M){ ;7% '/"U‘Lc)
O Hin

.17 F
[%L £’\/Du/ [O ZZP

M’ WL Jc(f mL nol™ (oad mé(
O ?L V[OM%

Q/} V\cﬂJ’ /ewd/l

\NM {0, WJAM Opfnmj D o S%lL L[/Z
Pgm([o@mm,\

Oh 1 /TMWI
ool dal

C@H\U"ﬂ Sl l)/Cd/{*fa h’w‘{’
% fuaile Wﬁlw

@ Work i valks

VLGH* (MHL /r/z(/@u@/l/lt& ({

é e W4 u),ae (

woll gine CLQ/M»{) e
—pale dir W

. d(/ E ((W@?@
o &WL (/(e/ll VO

60 Tty e (M{a/y Gily

’WIM G5 My gl (ﬁ/Vlml (i

go Y\Mfﬁ b 0 Aﬂ@r M(,]ny

G i fus I malls e o
(;l& o mide

M WL(s Wﬂﬁ@ lt# C
(’7[er nml Cloake e T (i
N

uOl/\
ZOOLS \Cof i Tige

<§9 {E/Q Ay (/m)(ed\

(\
(/(vﬁL (eate d

e dh fal 1,

S 17 |
N 7L(1M9 (JPMC) C[ﬂﬁ"/@) b /%*4‘[2
it

g‘) {HQ MW s L

@) /Uo e
@J%' JO% NA~ (Q«/JV o —
17[5/ dwaﬁ W/H(‘/L? m cu/

7

[Q, QM‘;B

@ WO ‘(@ng\
I s e clitet POs e qp-
fgo 7{(% VKD C{@m H @ JQC'YL

@%zy abs vk
@/as}i/x@!n% N Sang pmﬂ@,

@ (5(6'}\”1/;6% on éﬁer P@ﬁle

__/é; &met (ZM

M‘@\L @jq\(p b«é (/[l
N [A
| @ éﬁd { E() Al (m pussts

2/\@ { (0 ot ﬂ“ﬁ 5

é fuad by (had st
M- it e ity 7

il don e

0r T gad e 0y
Lreed alhy i
@(s ptpt
h} UM\ J%h

@@,ﬁ@
.@50@0 o he wazkby

@ ?@Ej@?&j M/ah mire
@%MLWWV
@ et yeis

S T an g?f.«ﬂ i il er 7 ohy
e s 4l 4, [cloh hit Gl

(H- ol
Dad

g JPW#/ q o — Xl{%ﬁ 6\ fan p’d///lé pa Stadhpe
HWQ /0\/'0\13(/[“00)(pz e 27/'

M‘M poflh + e
Coiiler g judey 71 f ¢ e spe o (gl Gl
@OPJ

GM so look i M/dc Sm[éf frac |
LW@'{R we (M JOMﬂ ﬁmL e 709 SQO/JA
WW\ % &Tou{zfvf)/

élﬁ H 6@5 (in O‘f/\ \N/ v&&o
ﬂ«\d, éo(,[q,\t-LCmrQ(/L

O, /
gf)tl W{q&@d méa F/(

T/ﬁ\ M e ﬁq %(toﬂ« o fle ﬁ/
J@nq ‘1L/1 } Jo any 5/0(@{5@0[@[(e

6 1) W«e, + Open b [0 Doplaz
ad] b i

Mar b b Lo l»//]IOZ@AT

(go éa@(@m(of Cay 1/\9 ath gol

O s alh ak tm (ol Thaf

& o polty poll)
$ Fens 19/9@} YLLQQ(/(

pﬂwh‘zrbﬁ bv/ Kodh sl bo Aandued

flAﬂi W} W\MF b(,{c N &7‘2@/ On-. .

WLKWFO/ ?M{W._ J\J/G(Vl@ _ /] dat
4

@@m% nagls 17 oo Q& nomal /7[””/

Ngd %o “fa C/M/t
JVI’\O&@ uom (% 1[/@5 @ﬂble

Mo ke [,
(OW\ Mol Jw bp T mak (})}/@oﬁwr

e = by i bl flle Sty
Gpen = e aal fldg

e
i\i’i (6 Joms flo (LW o 1

JWLJ — (On M) {&lﬁ O)O/QML

Sl e &ty
‘K/(L/‘LVUV(Hlﬂ, (oko

— & fre of objek

B W p b b me of T

0 et 6}@@ g on bofore
(@Xy C/QCUJQ([,L@ f“Q/ J?p%d) o MM(\/M/ {{(/@ Jﬁlfﬂ

fea| i
oc D o)

Y

(ﬂf‘l W/ (%Q \m @(J/“ OJ;&B
Liead 00 [\{

69 /’}mp c(g, TWC

)1 ﬂL(ms(wh [zwo

,,,lewnmﬂ J{m £)GVL
L’FCW, 6 ¢ 55@%

(ow% ée]fx Qal)i ahlot

@n (el pa/YL\ M Pq/ﬁ znf/

9%,/@@,() 64 paded £
Call JV/M»W@ /m/ﬂn 1"(/("{’“1

U

Octene,

s

Can p4ss t oo {H& Q)Q%
et gnos o fly

No»/ Jde it i+ s](/\ (el wolld.

(o o Real Dy~ p e
0r /vr)*

Mo e L b A f)(’onz(ee'm; d%:/

__,_,_A_/M o ek coul i
e not cluded & g4 Cpond @

"y

@Fhv o GMJD &EA VWVL
(Y\Gw
[Vl Caa Ccf/zr Gg//mzetuviq

\///'AMQ F "Zﬁ 5 Wiaypec Ea/ @/ File

H\e bl [g 6(/(/()g(/g; Vi, JML{
@6‘\1 OKLO; 7L0 & \19 P@fm(&émﬁ
R ((M(,Y 3 s cﬁ@(

,\/
CJ/WU \/o/@
Jat b b W o

@ quo o/l

N Q0 s
@ Visih (oot U Ly

!

O by Gt

Y Maw

@ Vit Haddo

@ Xy Tk,

b 0 tanty

0) gudin da
@ CY %mp A

6H‘ XF@ 5 (4]

s Yo
Q- e

leed %o rebun ' e Tomat

o 0w pifbhboe (
C“(/l ‘(/Om W

—_._____

m(ptﬂk”lm (CLA‘*L ((mpp/]l- 51%6 a// — (_‘4 ray

@ ,DO v ﬁC‘/b ILO SQ/:W&@ Ar (%sfinsa
T Ye,
Ok o Lok« o o Tiy

@ g]l/ E/\@ (Vg
Opps

0 fly nt bl

O M MM Cole 2& CM(W/(
Co mae Do Yaslebe - pah bt o

@ JON eqor
M\\OML (/W")
(o W e senp

@ Usecnee ﬁili blaal
Ve fln bl s o

BN 7({,‘9/3\1)’Wt/c V5 nane

U lhboe (b v Seems b pd

6|a g//—w/é)ng ICVI(I
ﬁk T doa # M;L oe W/Zg ae @7//

]/ VN/C(, {0 9;0(26(‘41 (M50 1 /ﬁsu[lL

@éd It /ef/m}ag PM@’ L/ifﬂ/}
Jtéf rod b cotn (ﬂMl/

|
5@ aoul7 Eanbiat Py pitiords
5(/“’“{’/({ p A Sysidle
W(@]LQ f({,ﬁ///@i Wiony ‘ﬁmy (ﬁi vl m{'f(l)

debyl 1l

9@0{)&4 /Wf/fvb §€¥léﬂéo(wlt€,{d {
looL mL wa F/f/e /WL)
Ml pode a FW, File.

Clle o ohith
UV{UJ 10 ‘/? %V VoA 6'}/10

@
v?é(pj
File
f Mabe o Sl
A Ol T
e FH@%@//’ZW

‘_,.-——-—\-_-__-/

WLC (;fi +0 (efn dafd

v M by + F

O{] W Temp &//{ #
é‘f/('@ TO) ' ((//6

o,
o s dlbalel) e ohas 3
5

Read—s L

& (5 | ;

(foun af Fe. [75
" epecal st 7

Y
Q/L "0 wuginl Tile
L Shig T

f ~ k0 mfi
ﬂ\OP@7 l 05 towpldle.

0 fen [@f(//hﬁ]’ML

hing L0 [(bewy
D

Lllo =Lk Closs |
al + pates “w é/v/mg Wt

}/w, /1(1{ &// !/W/C
Cun gt hel)
cCﬁﬁﬁ()

A— | |
AK 9 (1 zlnp{Wm[O/z/m‘[/

0r Vi Jﬁ(@[)

50 /IW qm(F(l/ fa /rm/{/&(o{ g// g//,’,,j J:O

§ﬂ: CSVI/C‘/L@I‘O ﬂ/zﬁf@ &}W{”}
(b gl alvato-td 68

@ Ma df/@ 0@ t/5 s (éd!ﬂ/bé@
M s o betie any (ode 706~

{0 “/hlﬂn ;mroﬂ/‘fdft({mj
}Mpﬂ/ll" Salel
Kot

fhy

’ﬁuﬂt {/wﬂ m/aun K [»”V&

T ﬂﬂ‘/u [\Qﬂ/’l ﬂ;(:’ émz’(, ﬂ} f%&;//&

@fwm‘ ighoed /7
- Sk plntd it oy
& O T P/(’ML o std e
zfn WH[/(’é vgﬁ

(hteh 1o tes by eding jail)

@ Gns o k) ~exY gy

() o]

) glle
v VEGIYL’ Tf/w[@ @ @QWW/

=
Yl %/WL#/ [voit £
Gand b ched
flop

0
LS
;m {)’@M’V\L g mL_ MSF/(J

Yol)

1
7’;},({5\ Mg &L[/MJZ bg vy
b ned o chuk /dob
7

@](;M?, Aor :
fed abo! S

@ ste + it o
P/mC /llb /”'66 %

OA q /)7
0 J Jj:/e Yo/ | Tob
K KO'J' ﬂ(‘/’«n’\

(/’7\
)@]? bl L w.ﬂ/}\,)

Dol s St oodics
ok H ot T

oy

QH/@%M 6{(/[/ C/,;Qf nal~

Mh, L tadte o 2o ke,

Oll\ Now [')L ‘D
bi i fo Tie

@%’,,L lov /{
@Q/MW, I

lofl

Username:

theplaz

htps://taesoo.scripts.mit.edu:444/submit’handin. py/download/theplaz/r...

PASS Exercise 1: App functionality

PASS Profile
PASS Profile
PASS Profile
PASS Profile
PASS Profile

hell
visi
last
xfer
gran

PASS Exercise 2:
PASS Exercise 3:

Exercise
Exercise
Exercise
Exercise
Exercise

U W N =

20/20
20/20
20/20
20/20
20/20

Total: 100/100

o-user.py
t-tracker.py
=Visits.py
—tracker.py
ter.py
Sandbox check
/tmp check

EQ/(JL&Q,S 6(‘(&

103§ e

10/30/2012 10:44 AM

0959 Fan |

M W 5 The {O/M\L O\C 1\@ gm’,
OPEVL bool,

Of)@\ nates

()p(% l‘(wgw

No oyt ﬁw/glq

(by (et Doonhaded

ol Wy ke bk (027 < sen pok

E\U{m l ZOM
T e W v b OXFEC

N(ﬁ a paper (2 {> el

E)KC 0 HTT%

bf

g) ﬂlg N ot e
LUnmv Tl \l@é’;;/j 0/7[hﬂ 5)!/‘71% z'}l dfﬁ%
60 (an (Gnsver Ttl((ﬁvasf(l"’“)

20054/ gemi/”"f

L(fm b code
g&ag\z Bﬁ/md)
Boser Sax Origin

Co Gine. fuzL(//e wm[wfw/ s ol
Gafie Aralysts of 15

He bfes T
@OA‘IYL Wwirde O,)M ﬁe [ﬁl
o~ il ¢ o I (//%}

oy on ,
(\00(/9 (mﬂ(M/n @KQC)K Q’/%” 15/

o]
"’4%[@5[g

(3

g i ikl b cles

My Can Vi CWfﬂl"W
bmi a,sét/r«ﬂjfm
Wange bak ™ Laaly desig
Mf& 0/@’%‘4/

OJgmide felin addes

Mol oly Con Wiy Gand
6“/&@9 Yowaltd Jffgort: 7
b
0r h/”
ALl clds nd- o il Ay C@Zé

QCOM ok echinlom—reve 6/@%

’IT J&mﬂlyu @oa

@B%
(b
ol Clack
?‘.@

[[w

|)

i«

.

0
ol
vel
ud
b
i
wa/h Q

] C
0ld
po(tfff%&g
ts
ot
ot
al

——

Can bt %W (, (Lﬁt f/

m %5 /CMJM
W¥ gt G0Q gz
Joasnf ot {infion oo
by G
Whon (eud WW/ hwe b gl
Ght + it shl = ot
\0% by (,M; el stk

T lehic fag
Satond] S pqs
3y of ooy (Yl euh

W Y/
gk |

AT

%ﬁ d)olmH/
- Q\/Q({ @0\//\1%/ 5
Gt {
Vool P‘*f
Voul & bust
Vol 8t

{ ek]oo'w}e/ a(titic
@ M&L d@%@«o@
Cle Gt ke
brggy |
ke whoe puale g, fon
(0 b i, gpley o0

é@‘t . MQ@ %l < 5(@’€wl\L 2 e (MLJ\ Hf]

5

V]'l(gy@% Qé(c(/\ E\ﬂlq 4)6 mn K Jit 24 {,,é@

%ﬁ@ﬂ ~y &'bm "hw 1&3 ﬂé
5 Wﬂ met o A pogs of 7
Jc (Dm, o+

(he &4, = P?LOXBC

L/flvt” s P P

/Cw& 9

Ok & bl Sae il
:6%@2(%('% shal 4 eble
X0k p,q 4 v oo bt Yy dife 4,
N mat be £ giwe of he phat
S Ngy ody kb B § 3 50 pyan Cugy

MS mﬁ 14()[5@ (f,[am)
S g Jegb ab of hands ueo

) oy ot of T bad beads I legal
(Q&OM% M he N C{,di

/9“%7 (I 0/157 40 5@ W‘L 5F band
2 |
A 0l b abb T fox if

Non Chatib e pimg
/O(A({ME%J, W W\?IM/Z @/0(/555 {bf 5/6/[&4[)

L\Mﬂ lDOL}AO V{D Yo 7Lo //VZ)OL /OM»@}L Or ~ f"lt/ﬁlﬂf

%\‘/j ZL/U‘J Soir 5&//4’7[7
UQ!)Q_ p@%’ w“m m%lwby

o d y, EZ‘%“

e

Plaesses basg \ VH, 0 or mre Gy
O:‘[WF

w %

—

1_
T T

+° d\‘?@e p(?mzﬁdﬂq . it LQ oy
b e bl wb vt b0

tor mhuvsedon o) aps
(ke Za/ b/ e

al
(el (e duh ¥

0L b flle duseje 5 & mﬂw'/y
)MQ(M/T h 0{‘ JLL "

Lt p““}ﬂc(é Fo - (/t,d

)mo Jod

feﬁﬁfﬂﬂ '\//L

e /

bg ol for N B¢ Al”ﬂt Vi o /00;17
My Mg ved ot g
L é{ l Contp[omz,wt b 79[/ (g5

6@ 5€1Lu2tl ﬂ«w!ﬁs
g@eo\wf/l ﬂo«g 0 el Uit
% (i oS P@M\(%}ﬂ“ o{ +w)

& et fwh bt ovatlos
ha
(/ fl‘ CMND% lC(]Q 5%,%! L
S0 b N s il ol

Mg, s all s s i Jid
Ohiss g {aeia |

@W /[Svf/“ g
O . N Ny
v

Ol logd

I\ fow)\q,/@ 0 54%] Stnse ()![l‘l"v {')L Ll 790”[Z@ loe
OM& Ghs (wt

/V@/OW] vy /S\/L
w0 el anly
gl =Sy € evaute mc/

b {mebﬁm W;L WM7
(tnambes Pl for b Y

mjﬁtu(/\t Sv/lf ae 2 (W[C/ CW{/J EZ‘%L]

‘_—_\-—

Gics hue o by gt S exate
hoedh pd ¢ SO poneey

0)
v ot cksiss Copim

Gandboyes
0,41\1 0 05 Cf/}(&gfz /'WJ_—;

{ ;/71% cdls P mile S [(’j/’)t

/‘

Wik alls oo Leadl @l

a6, |11
l/(’/t[hf{)h ovi e
(ovse. —grudd

JD(I/IL @Wa (M’%/

PAC
\7101(5(/%‘[6/\]Z}c({;g) (0471/"/)

/0/(//&(/4
¢ Way & Hpe d i

P’W%;'m R, 029/\'@%

o dswgtion of ot oae

bW e poe (e gdyieé oy lins

(/]: I ot b Do lobe af wl/)

ﬂ beal p afp o snaller ploces
G Sualboeed e Gre il 40

()Zzswﬂww -2 appb ﬁ)[/;g,nc(sa{m o fh/'%
Chok fﬁo@m(pumision T oJeu 3L
@u/@ e Ug(f
(/oo k
U\wi e hall el -k fwo/, ol)

‘MM‘{W‘%"[—9(/,%@;/@4{0»; s SUT PO(C@§
&Ppé Cﬂ'/t)[(hﬂflgg

(3)
CMW 9 1 lwe AMH@ (@Mf(/) (aq €lLess

hoods Lol changes

b lob of ctwes
“}0@(#5}% S Qlu/ﬁ W plotes (n Sandliy

Chp _ 6”%@() (
q (¢ (3[56 [6[%/6 JW&L w0y

ai/li)0/@(% Cdn C/gzd@ a 56(/70(&}0)‘
bt (“e@t/zf@ (ode Charges
Gone 05@} pue Wcoéd;‘/)f@ busd

'
[

Or h"‘%ﬁ 1& {)Q/h’ﬁm @am{g/ ')o/('w‘/d;@ W pils
Sp it

h ey Fle v (L akd £ e
oo, s of (ole Choges
6 (n't gu o fds
Tk'u (m‘.ﬂe 4eems %o hae boor (it S8 Gl

LI ceda all of G, € K

b

W PW\ [\ }/(Q//w{/{’ 6)//’“16%("/@ (
Cmpafmm’a/z%; VW ipp> Yot /a(gz(q// a0
least -pifdge opai

oty of e Jessiobe o

—fdy
— Salebs

'M/ L@;Nﬂ@ or Wﬁ'“ﬂé’ foﬂ&é;’ﬂ
JQ‘W& Al shol rmo ZW&, afps

o Otp,emlztff)
(it be AL

B Cap —n [, pask of /a’gwg)
£ @) al e cigh
(]'L“/lgﬁ ZL@/rwl (/WZL)

)I;/Lc@,@(m Forls o Processes
Gs T}\;g /(u&f ﬂ F)/OM{}WL =0 ﬂ’téw,()

()
Q (I oy Opt oo ondar o
9 Opin ﬁo% dlafales wade fi

bﬁ/ll I L(//‘A/&L g{/f pon

’ﬁf(buesh Laue_

ﬁ)&s@ Gogs Wl ot W goﬂi
/Fg &{’/5(‘3@ +m)

Sesion (w0
U he Jif pude
P(’y\ J@H@ ‘*ﬂnd WWW’/’/‘Z

(] \ [
%‘/?Z(@ “‘9 Ly(,,% L/ﬂt)/({, (n V/b

[M+7 Sl wiog st
Uéi (e ff@e Creors zfn J}

OFoy pok
C&Cgl > het jﬂﬂcl 'FO p’azaﬁj c/fbht

v

s o ol ot St Do e gyt
Tk apet it

p/ /(/H 51@1 4

F/ ggh /0; f’:{ fron ;MM

s9d by lidyo e

Wj
I/VL/W
@ @b
Auﬁmﬁw{ﬁ chet o 5”/‘46
[AL (ot ahal /7 “\ty g g Thir gon
M &(/[59 7L(¢91L CHML Wf'/&

! f_q@ (/&be@;
s 9(?/?{60‘(9/5

-
t{)/l
ﬂ g ph e dibhs

"/ mae St LCJ

Ths dond /%uz/q ()q,gw(f
50 cJ/(J l‘IL]fLM b l@@/ 1Y m /vp/"w/‘/

Lo

(g i / (Iv\mLMCe y /mlmv
-~ Lexby
)ﬂ“ < mmhwﬁr
LSW(C@ ﬂv)ld (Mw O/Lr%’L 7[%4/4 2

(gfgeémﬂ p 511[/(1,(47} ﬁ/éﬁﬂvé} Jo m(a/ﬂ ead, a{ﬂ/

fable i ved al fibs
’\mf«g binds aente Ho reqast
o Gyl T 1o Change, pasosd
(aad war (el yor ol gosw b

@ il e é‘@r Fr

\—//-"

h\‘t) \zs _]\; E’p\OMM @X)V}gx) ;(6‘77‘ ﬁ»’lj

Wb Py Joly
JO Gle e
ﬂM ﬂLo @@F]Lo \/;gy— 'ﬂ‘(/)“ﬁﬂ

bt hal Css ke > ik B @ i
Wi, denol gbll b

Qupe ocgt g JW[W

‘(/{M‘@ /wl/ucldw}

C()oa@ — M bl{ﬂhﬂ‘f é“m[/a/ W%I[Lh“
o whal g e ew@w Jo (o

Seire ﬁﬂ(ﬂ

()

? \
o Inages |
’(aml See P}LX@[
—t (S J/m@nééqﬂ

el

e dst bse ajax vsh

mc‘Lf?V\ a/di {‘050/\
Ldm? grk s “"MMHZ T do

X.@ have. Sz’iLe, Qﬂ*’fzﬂj syl
ﬂwki l)c, (sl

fahe Ay
[l (palk fo J{n/e(opg)
)WKL WL‘(’L A{Mnlac]L{/)utd

rhw\ab Tt@al —@Wje{} & 3§
Ms of Qw”l{ (Odg Mfa}/ mWI/HM }n M&ﬂ

@
3t of g
“5QL ZachW
"0}}/601[0/7 '}7‘(/“"5/
— v

2 lM[B 4)1(C{’Liﬂl](sb
C i el
- ‘ﬁ/M/Hﬂu

N

—

\

& ‘1C0f Qach M@(/L

| = O < powy g a2
e Vatale nome

J‘ = (//vlunwﬂ

9’0/(5%1"1(/”(

E‘:@//o/ 9#
Vf«(iwa@ W(I/WZ{J/47L 1%"" Safﬂ St qb7
R: /(ﬂlfm 6@7{

jpable Thb migh ol e
6 i?[\t sl 6)11(!40‘; hire
> Whoh yuves sungfiaed & el Boolen

K = does Tos foncllon b exif 7

Ny bery 1 hotes 0@ ot

- - My localians That WQ(JZ’J tl &
b\/F Wﬁﬂ"ﬂL §(M£ﬂ7@d

({7 Pums or 6“(” Vi A z Gz
Gs Dauss o glbal bidbles Seaitized

Can b (ndiblow]

Today’]
F o (7
Y f—JUﬂ) fu %(Mp €M‘YL?

U\ ‘q A :jo 17'0 Ol; (47 ﬁ 06 [

' 6
/e '—"Cﬂm
AR VYR APV
Bu”‘]" (n T

n [Q% E/V
Pmmph“r o o by b dal

—_—

éW(OW{'«@ 7) l ﬂf
Dl d e bk
@ Ajjv bawes (7 /V}’T (om
1 i an lolpetr »
m \/'{ ‘(D% E js ZW]LQKWH/ NG
Nt
2 [f LO\M LM\ IMWM*\
i ﬁ‘&b fa{)e/

9
@) Pmlo}bht Jtn dle

— da&(w*ﬂl
“N(/hdf)w

—eual())
Oh T e D FRTC o

) (2o aushle
a_ 11245 vguhle

() p@LLLH Q,éitom ¢ Vo

9) Bl)ets |
) 0\0/&& b & Gk)

{) [)ro\a;b;lt wi%(/)
% oﬂL7 S tope. I /wiﬁm

C\/\/MP W Tf Slope &é,lafb{

SR VI WA T

el vlh()
Pf@f‘ﬁz 3W£Q,
Io'h beor o O gy
’15 m hess

e

NOA Supe. @L}@b wlesed l4// q[]

H \io«*l# “ﬂqi (n OW@'LMAZ}AA b /’nm‘me/

folla, e pohatyoe
P

by fon whih 0T Obeds aninbert Pop
dny oy @ kg ol

@) blod. , fote e
_ P(ojw W

b

@
f\) fak we PO 7 iy
T 9/2/@ C)

l) ‘{WPHO/D f
. pust

Tyl
) ﬁw%)

bg‘](MJJ 7{0 6&% H {’0 Wl (s e

o
etk ot e
e
7AY Ww(/lc
P\/B\LL by C/“LP}')

f\O'}' f@wuz 6)((/45 ‘f"j 0N

C%ue) (//mln\ /e,cv”/ ﬁl[m (J(@

@ \ 1
: | K A

6Mb€ oty

@ L({MWJ wh g JS
((//Lb %3 conftvt

i all b o du
TS bl b ol ot o4 9

ln bfmg— l’@v(W/
—EM 0¥ MGMMP}M

[Lu P(n\[/\j n CW@VK Say WA({(/LL C/§1 WW(/%

—

EN& BP Oh %/qpplﬂj &WC

ﬁN &/Jf‘u/@)v;Jr @ot 2)

r.—-——-____-/.__—\—

\O‘l 6003
Y o nabe e diedy I baar

((@69 pcf%/m |
TPC Chngl + froted obest

W
5-@” (et ”Q U’J@ = I COﬂ;P/l [C g Cﬁ% e
Vi g«, T & oot [hwst

|t ditdeed ey

g@ Can &At[w(les% Vﬁz?:’t Oﬁ%/’t
K?(l allows Jawble legh

S (dn by }m,o s %%/w ot 30 ot q4qps
St (uiiting (m&wﬂf}m Yo %@L[
() ot te b ado bh

W MWD RO RO, ea
bofore JMP ¢ %CW‘

(¥
ftj(Mﬂ/]@@ o{W /QWE/ §(Mj
G M b Vidfled N
HALT bhe ey B ot R g e
) ok hge bbb opat fon Jmiy to by

Call b 6M4

Se@w@wF glator Cequkt

% ds
I Jaw;t 0@4 Mb

{age Tt ol elentable
ot Viufable

0, Ctly ok
\ , (
%‘/dwbl@ émbov > Seilee AW Chlie
Undo urdboy

Singeed Gve ntle = Gadbr
(egraMles Gandbry

)

Usef ittt T s he o

Qd’b‘t %{I//C) (omﬂf/l«ﬂ 0\/} 75{ Pc(gg(/,p/ (/J

Vsty &2 CompTler S vedly Sw
P‘%@ A W @L C/gle@crc{

hash ij?ant
1o pront il Ly 12

Jsword uangé0

5/‘0 ﬂ/{l WG/C‘
ng‘ﬂﬁ [é(ﬁf\ 0
M{ﬂ Wﬂ/{/"w

1010 Praliet

Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.858 Fall 2011

Quiz I

You have 80 minutes to answer the questions in this quiz. In order to receive credit you must answer
the question as precisely as possible.

Some questions are harder than others, and some questions earn more points than others. You may
want to skim them all through first, and attack them in the order that allows you to make the most
progress.

If you find a question ambiguous, be sure to write down any assumptions you make. Be neat and
legible. If we can’t understand your answer, we can’t give you credit!

Write your name on this cover sheet.

THIS IS AN OPEN BOOK, OPEN NOTES EXAM.

Please do not write in the boxes below.

I (xx/20) | II (xx/10) | III (xx/16) | IV (xx/22) | V (xx/10) | VI (xx/16) | VII (xx/6) | Total (xx/100)

Name:

Username from handin site:

t @ ¢

I XF

Consider the following assembly code, which zeroes out 256 bytes of memory pointed to by the EAX register.
This code will'execute under XFI. XFI's allocation stack is not used in this code.

You will need fil\in the verification states for this code, which would be required for the verifier to check the
safety of this code\ along the lines of the example shown in Figure 4 of the XFI paper. Following the example

where regname and congt are any register names and constant expressions, respectively. Include all
verification states necessary, to ensure safety of the subsequent instruction, and to ensure that the next
verification state is legal.

x86 instructions Verification state

1
3 mrguard (EAX, 0, 256)

4 (1)

5 ECX := EAX # currelt pointer

6 EDX := EAX+256 # end of\256-byte array
T

8 loop:

9

10 Mem[ECX] := 0

1 ECX := ECX+4
13 if ECX+4 > EDX, jmp out
15 jmp loop

17 out:
18

1. [S points]: What are the verification states needed at location marked (1)?

2. [5 points]: What

e the verification states needed at location marked (2)?

3. [5 points]: What are the verificatipn states needed at location marked (3)?

4. [5 points]: What are the verification states needed at location marked (4)?

II ForceHTTPS

V 5. [10 points]: Suppose bank.com uses and enables ForceHTTPS, and has a legitimate SSL
BQ f‘“ \ certificate signed by Verisign. Which of the following statements are true?
Y

A. @ue / @ ForceHTTPS prevents the user from entenng thelr password on a phlshmg web site
n

imperso bank . com. hﬁw Is rj_ {mpeﬁo"‘d/‘!‘ﬂ m do“ ‘! hat “(p/-

alse ForceHTTPS ensures that the developer of the bank . com web site cannot acciden-
[QU\(‘:) load avascript code from another web server using <SCRIPT SRC=...>.

@ / False ForceHTTPS prevents a user from accidentally accepting an SSL certificate for
k . com that’s not signed by any legitimate CA.

D. True / F ForceHTTPS prevents a browser from accepting an SSL certificate for bank . com

that’s sign byaCAW
s Ofbtj fon gé/, COJQ ﬂOlouLﬁd

IIT Zoobar security

Ben Bitdiddle is working on lab 2. For his privilege separation, he decided to create a separate database
to store each user’s zoobar balance (instead of a single database called zoobars that stores everyone’s
balance). He stores the zoobar balance for user x in the directory /jail/zoobar/db/zoobars . x, and
ensures that usernames cannot contain slashes or null characters. When a user first registers, the login service
must be able to create this database for the user, so Ben sets the permissions for /jail/zoobar/db to
0777.

6. [4 points]: Explain why this design may be a bad idea. Be specific about what an adversary would
have to do to take advantage of a weakness in this design.

OM 5@/{,{2{,@; o Sl CO(/Z@ aéd@% They
(bbbl
Woll ol ey

Ben Bitdiddle is now working on lab 3. He has three user IDs for running server-side code, as suggested in
lab 2 (ignoring transfer logging):

e User ID 900 is used to run dynamic python code to handle HTTP requests (via zookfs). The database
containing user profiles is writable only by uid 900.

e User ID 901 is used to run the authentication service, which provides an interface to obtain a token
T Y v R R . .
given a username and password, and to check if some token for a username is valid. The database
containing user passwords and tokens is stored in a DB that is readable and writable only by uid 901.
— et

e User ID 902 is used to run the transfer service, which provides an interface to transfer zoobar credits

from user A to user B,-as long as-a-token for user A is provided. The database storing zoobar balances
is writable only by uid 902. The transfer service invokes the authentication service to check whether a

—

token is valid. i S

Recall that to run Python profile code for user A, Ben must give the profile code access to A’s token (the
profile code may want to transfer credits to visitors, and will need this token to invoke the transfer service).

To support Python profiles, Ben adds a new operation to the authentication service’s interface, where the °
caller supplies an argumentusername, the authentication service looks up the profile for username, runs
the profile’s code with a token for username, and returns the output of that code.

7. [4 points]: Ben discovers that a bug in the HTTP handling code (running as uid 900) can allow an
adversary to steal zoobars fron@ﬁr;Explain how an adversary can do this in Ben’s design.

se)L Ch‘%‘/ LPKO‘G}Q '}‘0 ‘ffo(’l{W
hae auy se{w'uc call ol e

/

v

8. [8 points]: Propose a design change that prevents attackers from stealing zoobars even if they
compromise the HTTP handling code. Do not make any changes to the authentication or transfer
services (i.e., code running as uid 901 and 902).

. @(\/L/ d‘“"ﬂl“ﬂ pof iles

LW{} Lo loge)

IV Baggy bounds checking

——

Consider a system that runs the following cade under the Baggy bounds checking system, as described in the
paper by Akritidis et al, with siot_size@

struct sa {
char buf[32];
void (xf) (void);

i { el 1L1P€

struct sb {
void (*£f) (void);
char buf[32];

};

L - ™ T PR

1 void handle (void) {
12 printf ("Hello.\n");
13}

15 void buggy (char xbuf, void (x*f) (void)) {

16 *f = handle;
17 gets (buf) ;

E 0 0; be‘cwu{ ({/&/l// éf%[

21 void testl (void) { -S ¢ kJLuw*“ 7,

] struct sa x; g OD@W}/J%
b<] buggy (x.buf, &x.f);

4}

26 void test2 (void) {

b struct sb x;

28 buggy (x.buf, &x.f);
» }

30

31 void test3 (void) {

32 struct sb y;

33 struet sa x;

34 buggy (x.buf, &y.f);
35}

37 void testd (void) ({
38 struct sb x[2];
39 buggy (x[0] .buf, &x[1].f);

w0}

Assume the compiler performs no optimizations and places variables on the stack in the order declared, the

stack grows down (from high address to Tow address , that this is a 32-bit system, and that the address of
handle contains no zero bytes. 48T e
(l tl.t hormal

np‘l goaqf rfiH"tlg qv

bo T had 1o cle at f "/OM@

(ole. 4 o O = adles oF

|L5 [\/A,}Eaﬂ WWT

9. [6 points]:

; '@ / False If function test1 is ca ed an adversary can construct an mput that will cause the
I

poram o impto sy s | (e S K f Lol A £-cenan sty X

. True / Féz If function test?2 is called an adversary can construct an 1n ut that w;]l cause the

programt jump to an arbitrary address. f{oﬂ,{.ﬂpw \{ LV][H'H["]q wfzﬁa @ / LM
t e

. True / Kal If function test 3 is called, an adversary can construct an mput that W1]1 causc

program to jump to an arbitrary address. T

i '@ / False If function test4 is called, advers can co an input that Wlll cause the
program to jump to an arbitrary address.(j\/Q /} ® ()ﬁj & ¢ /"Ul/(fb W ﬂ%’)C‘

1

For the next four questions, determine what is the minimum numbcr of bytes that an adversary has to provide
as input to cause this program to likely crash, when running different test Tunctions. Do not count the newline
character that The adversary has to type in to signal the end of the line to get s. Recall that get s terminates
its string with a zero byte.

-

=

10. [4 points]: What is the minimum number of bytes that an adversary has to provide as input to

likely cause a program runni gte:%m Cm%ﬁl O\/Q(M ¢ M[1LLM/ W % L ;’7& +

J"WL
11. [4 points]: What is the minimum number of bytes that an adversary Has to provide as input to
likely cause a program running test?2 to crash?

" bagyy etrtion

12. [4 points]: What is the minimum number of bytes that an adversary has to provide as input to
likely cause a program running test 3 to crash?

oY 1 /

13. [4 points]: What is the minimum number of bytes that an adversary has to provide as input to
likely cause a program running test4 to crash?

(s ()\/ﬂ(mﬁtﬂg X[(N w//\/(/L [971[(’_

g J"“\Ma) ,}

V Browser security

The same origin policy generally does not apply to images or scripts. What this means is that a site may
include images or scripts from any origin. S

14. [3 points]: Explain why including images from other origins may be a bad idea for user privacy.

(an (@a,{a/‘z,\fa ‘[n (1 /
" it Vorare. ~ NN

15. [3 points]: Explain why including scripts from another origin can be a bad idea for security.

jgmawﬂfpow %
a %4& A pg tosdl T O

Or 3@\} /’IM chEe)

16. [4 points]: In general, access to the file system by JavaScript is disallowed as part of JavaScript
code sandboxing. Describe a situation where executing JavaScript code will lead to file writes.

CCooMQ%@ fzs ch/ fo JM
j o FF slts optn MLs fo a/é(

N

o (e o (Caslas

%‘L\M@? COWLQ(Q r

L b @ &/fed qv 10

VI Static analysis

Consider the following snippet of JavaScript code:

<

[s1]

H

L)
|

= false;

function foo() {
var tl = new Object();
var t2 = new Object();
var t = bar(tl, t2);
P = true;

W N WM B W R =

——

9
1o function bar(x, y) {

1 var r = new Object();
12 if (P) |

13 r = %;
14 } else {

15 r =y;

16 }

17

18 return r;

19}

A flow sensitive pointer analysis means that the analysis takes into account the order of statements in the
program. A flow insensitive pointer analysis does not consider the order of statements.

17. [4 points]: Assuming no dead code elimination is done, a flow-insensitive pointer analysis (i.e.,
one which does not consider the cqntrol flow of aprogram) will conclude that variable t in function

foo may point to objects allocated at the Tollowing line numbers: =
A. True / Line 1 \
B. (Ffye / False Line 4 (L Jl'[d~ 51/\/
C. / False Line5

D. Trug / e Linell

11

18. [4 points]: Assuming no dead code elimination is done, a flow-sensitive pointer analysis (i.e.,
s : < TNy, 0 T TS W e T s

one which considers the control flow of a program) will conclude that variable t in function foo may

point to objects allocated at the following line numbers:

“IFalse Line 4 d\ Ca’/l[f AWC)

False Lines5

S 0 ¥ »

Is¢ Line 11

19. [2 points]: At runtime, variable t in function foo may only be observed pointing to objects

allocated at,the following line numbers:
True / Line 1

e / False Line4 /[&yyi M

/ False Line5

/@e Line 11
“‘}1 0)0@ ﬂ(ﬂL @W&{h W@
T WW\ I 50¢
T s sty gubbng/ gt hidly at

® P

12

20[2p tley u think a sound analysis that supports the eval construct is going to be precise?
W Vory Olﬂ(fc/‘ﬁ ’IL" ﬁ (s F/Qd
Only - 5%

W /’WﬂL /(35796(/1[Y, a/!%%/é/{ Cct/@ @YL /&1}{,@

21. [4 points]: What is one practical advantage of the bottom-up analysis of the call graph described
in the PHP paper by Xie and Aiken (discussed in class)?

(an o mikaley +1ix e
{xﬁ /N LML 0{ ?L‘ fzz;w? ’[i{oﬂt a2

pc/&mce Y stalubl //7
SVMMJ’(}

L s hae whnt T bofton
P Natnt

13

VII 6.858

We’d like to hear your opinions about 6.858, so please answer the following questions. (Any answer, except
no answer, will receive full credit.)

22. [2 points]: How could we make the ideas in the course easier to understand?

23. [2 points]: What is the best aspect of 6.858 so far?

24. [2 points]: What is the worst aspect of 6.858 so far?

End of Quiz

14

Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.858 Fall 2011
Quiz I: Solutions

Please do not write in the boxes below.

T (xx/20) [T (xx/10) | TIT (x/16) | IV (xx/22) | V (xx/10) | VI (xx/16) [VIT (xx/6) | Total (xx/100)
1 " d ’ > ! Grade fnrlquizl rYva
5k .
R R 55
o . , teteteteleteteltetesteteleloteleotetetedelolel el

I XFI

Consider the following assembly code, which zeroes out 256 bytes of memory pointed to by the EAX register.
This code will execute under XFI. XFI's allocation stack is nol used in this code.

You will need fill in the verification states for this code, which would be required for the verifier to check the
safety of this code, along the lines of the example shown in Figure 4 of the XFI paper. Following the example
from the paper, possible verification stale statements include:

valid|regname+const, regname+const)
origSSP = regname+const
retaddr = Mem|[regname]

where regname and const are any register names and constant expressions, respectively. Include all
verification states necessary to ensure safety of the subsequent instruction, and to ensure that the next
verification state is legal,

[%86 instructions Verification state
2

3 mrguard (ERX, 0, 256)

4 (1)

] ECX := EAX # current pointer

. EDX := EAX+256 # end of 256-byte array

b

*

.

loop:
(2)
10 Mem[ECX]) := 0
n ECX := ECX+4
[(3)
" if ECX+4 > EDX, jmp out
" (4)

15 jmp loop

17 out:

(X}

L. [5 points]: What are the verification states needed at location marked (1)?

Answer:

» valid[EAX-0, EAX+256) is the only verification state that can be inferred at this point.

2. [5 points]: What arc the verification states needed at location marked (2)?
Answer:
e valid[EAX-0, EAX+256), lrom above.
e valid[ECX-0, ECX+4), to satisfy the subsequent write to 4 bytes at ECX.,
o valid[ECX-0, EDX+0), to represent the loop condition.

3. [5 points]: What are the verification states needed at location marked (3)?
Answer:

s valid[EAX-0, EAX+256), from above.

e valid[ECX-4, EDX+0), the loop condition updated with new value of ECX.

4. [5 points]: What are the verification states needed at location marked (4)?
Answer:

o valid[EAX-0, EAX+256), from above.

e valid[ECX-4, EDX+0), from above.

o valid[ECX-0, ECX+4), inferred from the check just before.

Note that these verification states must imply (i.c., be at least as strong) as the verification states at (2),

II ForceHTTPS

5. [10 points]: Suppose bank.com uses and enables ForceHTTPS, and has a legitimate SSL
certificate signed by Verisign. Which of the following statements are true?

A. True / False ForceHTTPS prevents the user from entering their password on a phishing web site
impersonating bank . com.
Answer: False,

B. True / False ForceHTTPS ensures that the developer of the bank . com web site cannot acciden-
tally load Javascript code from another web scrver using <SCRIPT SRC=...>.
Answer: False.

C. True / False ForceHTTPS prevents a user from accidentally accepling an SSL certificate for
bank . com that's not signed by any legitimate CA.
Answer: True.

D. True / False ForccHTTPS prevents a browser from accepting an SSL certificate for bank . com
that's signed by a CA other than Verisign,
Answer: False.

III Zoobar security

Ben Bitdiddle is working on lab 2. For his privilege separation, he decided to create a separate database
lo store each user's zoobar balance (instead of a single database called zoobaxs that stores everyone’s
balance). He stores the zoobar balance for user x in the directory / jail/zoobar/db/zoobars. x, and
ensures that usernames cannot contain slashes or null characters, When a user first registers, the login service
must be able to create this database for the user, so Ben sels the permissions for / jail/zoobar/dbto
0777.

6. [4 points]: Explain why this design may be a bad idea. Be specific about what an adversary would
have to do 1o take advantage of a weakness in this design.

Answer; Since the directory is world-writable, an adversary could replace the contents of an arbitrary
database, by lirst renaming the existing database’s subdirectory to some unused name, and then creating
a fresh directory (database) with the desired name of the database. For example, the adversary could
replace all passwords with ones that the adversary chooses.

Answer: If an attacker can compromise any service, he can rename the zoobars . x file, since the
directory is world-writable and not sticky, and replace it with a new one. (He can also replace the file
with a symbolic link to an interesting other file that the zoobar-handling user can write to, and mount
something along the lines of a confused-depulty attack.)

Full credit was also given for creating a directory before the user gets created; partial credit was given
for removing a directory (since you cannot remove a non-empty directory you don't have permissions
on).

Ben Bitdiddle is now working on lab 3. He has three user IDs for running server-side code, as suggested in
lab 2 (ignoring transfer logging):

o User ID 900 is used to run dynamic python code to handle HTTP requests (via zookfs). The database
containing user profiles is writable only by uid 900.

User 1D 901 is used to run the authentication service, which provides an interface to obtain a token
given a username and password, and to check if some token for a username is valid. The database
containing user passwords and tokens is stored in a DB that is readable and writable only by uid 901.

User 1D 902 is used to run the transfer service, which provides an interface to transfer zoobar credits
from user A to user B, as long as a token for user A is provided. The database storing zoobar balances
is writable only by wid 902. The transfer service invokes the authentication service to check whether a
token is valid.

Recall that to run Python profile code for user A, Ben must give the profile code access to A’s token (the
profile code may want to transfer credits to visitors, and will need this token to invoke the transfer service),

To support Python profiles, Ben adds a new operation to the authentication service's interface, where the
caller supplies an argument use rname, the authentication service looks up the profile for username, runs
the profile's code with a token for use rname, and returns the output of that code.

7. [4 points]: Ben discovers that a bug in the HTTP handling code (running as uid 900) can allow an
adversary 1o steal zoobars from any user. Explain how an adversary can do this in Ben's design.
Answer: An adversary can modify an arbitrary user’s profile and inject Python code that will transfer
all of the user’s zoobars to the adversary's account.

8. [8 points]: Propose u design change thal prevents altackers from stealing zoobars even if they
compromise the HTTP handling code. Do not make any changes to the authentication or transfer
services (1., code running as uid 901 and 902).

Answer: Use a separate service, running as a separate vid, to edit profiles. Make sure the profile
database is writable only by this new service’s uid. Require the user’s token to be passed to this service
when editing a user's profile. Have this profile-editing service check the token using the authentication
service.

Note that this only prevents attacking users who never log in, as the HTTP service can get the token of
any user who does log in. An argument that compromising the HTTP service gets you wide latitude in
compromising any user’s activity would have been acceplted for full credit.

IV Baggy bounds checking

Consider a system that runs the following code under the Baggy bounds checking system, as described in the
paper by Akritidis et al, with slol size=16:

struct sa |
char buf[32]);
void (+f) (void);
1

1
1
3
4
3
s struct sb |

1 void (+f) (void);
3 char buf[32]);

s)i

u void handle (void) {
” printf("Hello.\n");
n)

15 void buggy(char s+buf, void (««f) (void)) {
16 «f = handle;

" gets (buf);

" («£)

w]

n void testl(void) {

b struct sa x;

n buggy (x.buf, &x.f);
H |

% void test2(void) {

0 struct sb x;

] buggy (x.buf, &x.f);
»)

n void test3(void) {

n struct sb y;

13 struct sa xj

» buggy (x.buf, sy.f);
3

»n void testd (void) {

u struct sb x[2);

0] buggy (x (0] .buf, &x[1].f);
@)

Assume the compiler performs no optimizations and places variables on the stack in the order declared, the
stack grows down (from high address to low address), that this is a 32-bit system, and that the address of
handle contains no zero byles.

9. [6 points]:

A. True / False If function test1 is called, an adversary can construct an input that will cause the
program to jump to an arbitrary address.
Answer: True. (If you overflow x.buf into x.f, you remain within the allocation bounds of x.)

B. True / False If function test2 is called, an adversary can construct an input that will cause the
program to jump to an arbitrary address.
Answer: False. (If you overflow x,buf into any higher location, like the return pointer, you exceed the
allocation bounds of x.)

C. True / False If function test 3 is called, an adversary can construct an input that will cause the
program 1o jump to an arbitrary address.
Answer: False. (If you overflow x.buf into any higher location, like y, you exceed the allocation
bounds of x.)

D. True / False If function test4 is called, an adversary can construct an input that will cause the
program to jump to an arbitrary address.

Answer: True. (If you overflow x[0] into x[1], you remain within the allocation bounds of the array x.)

For the next four questions, determine what is the minimum number of bytes that an adversary has to provide
as input to cavse this program to likely crash, when running different test functions. Do not count the newline
character that the adversary has lo type in Lo signal the end of the line lo gets. Recall thal get s lerminates
its string with a zero byte.

10. [4 points]: What is the minimum number of bytes that an adversary has to provide as input to
likely cause a program running test1 to crash?

Answer: 32 (by overwriting x.f with a NUL byte, and jumping to it). Overwriting 64 byles would
cause a baggy bounds exception, but you can crash the program earlier.

11, [4 points): What is the minimum number of bytes that an adversary has to provide as input to
likely cause a program running test2 to crash?

Answer: 60 (via a baggy bounds exception).

12. [4 points]: What is the minimum number of bytes that an adversary has to provide as input to
likely causc a program running test 3 to crash?

Answer: 64 (via a baggy bounds exception).

13. [4 points]: What is the minimum number of bytes that an adversary has lo provide as input o
likely cause a program running test4 to crash?

Answer: 32 (by overwriting x[1].f with a NUL byte, and jumping to it). Overwriting 124 bytes would
cause a baggy bounds exception, but you can crash the program earlier.

V Browser security

The same origin policy generally does not apply to images or seripts. What this means is that a site may
include images or scripts from any origin.

14. [3 points]: Explain why including images from other origins may be a bad idea for user privacy.

Answer: The other origin’s server can track visitors to the page embedding images from that server.

15, [3 points]: Explain why including scripts from another origin can be a bad idea for security.
Answer: The other origin’s server must be completely trusted, since the script runs with the privileges
of the embedding page. For example, the script’s code can access and manipulate the DOM of the
embedding page, or access and send out the cookies from the embedding page.

16. [4 points]: In general, access to the file system by JavaScript is disallowed as part of JavaScript
code sandboxing. Describe a siluation where executing JavaScript code will lead to file writes,
Answer: Setting a cookie in Javascript typically leads to a file write, since the browser usually stores
cookies persistently. Loading images can cause the image content to be saved in the cache (in some
local file).

VI Static analysis
Consider the following snippet of JavaScript code:

1 var P = false;

)

3 function fool) |
var tl = new Cbject ();
var t2 = new Object();
var t = bar(tl, t2);
P = true;

}

- e e .

.
w function bar(x, y) |
" var r = new Object();

[} if (P) |
n r = X;
"] else |
13 r =4

0]

" return rj;
w o)

A flow sensitive pointer analysis means that the analysis takes into account the order of statements in the
program. A flow insensitive pointer analysis does not consider the order of statements,

17. [4 points]: Assuming no dead code elimination is done, a flow-insensitive pointer analysis (i.e.,
one which does not consider the control flow of a program) will conclude that variable t in function
foo may point to objects allocated at the following line numbers:

A. True / False Linel
Answer: False.

B. True / False Lincd
Answer: True,

C. True / False Line3s
Answer: True.

D. True / False Line 1l

Answer: True.

18. [4 points]: Assuming no dead code elimination is done, a flow-sensilive pointer analysis (i.e.,
one which considers the control flow of a program) will conclude that variable t in function foo may

point to objects allocated at the following line numbers:

A. True / False

Answer: False.
B. True / False

Answer: True.
C. True / False

Answer: True.

D. True / False
Answer: False.

Line 1

Linc 4

Line 5

Line 11

19, [2 points]: At runtime, variable t in function foo may only be observed pointing to abjects

allocated at the following line numbers:

A, True / False
Answer: False.

B. True / False
Answer: True.

C. True / False

Answer: True.

D. True / False
Answer: False.

Line 1

Line 4

Line 5

Line 11

20. [2 points]: Do you think a sound analysis that supports the eval construct is going to be precise?
Please explain.

Answer: No, because it is difficult to statically reason about the code that may be executed at runtime
when eval is invoked, unless the analysis can prove that arbitrary code cannot be passed to eval at
runtime, and can statically analyze all possible code strings that can be passed to eval.

21. [4 points]: What is one practical advantage of the bottom-up analysis of the call graph described
in the PHP paper by Xie and Aiken (discussed in class)?

Answer: Performance and scalability, by not analyzing functions that are not invoked by application
code, and by summarizing the effects of the function once and reusing that information for inter-
procedural analysis.

VII 6.858

We'd like to hear your opinions about 6.858, so please answer the following questions. (Any answer, except
no answer, will receive Tull credit.)

22. [2 points]: How could we make the ideas in the course easier to understand?

Answer: Any answer received full credit.

23. [2 points]: What is the best aspect of 6.858 so far?

Answer: Any answer received full credit,

24, [2 points]: What is the worst aspect of 6.858 so far?

Answer: Any answer received full credit.

End of Quiz

w To
'@N;ﬁm Powt/‘fi%/
(g
o bab Uy 01
o1,

;n bﬂl@
lod s Jvd £
[q,f@ Jodd + caled
N (it s
W(ﬂtc n/{ /‘(MLO“‘(ot : WM
np

%
1[i pof/}% bkt
furdk

AT

Cow b el f
Owge P falie o

(i }QQ f[w or TL/ e

% (i bc @Eh{f X ¥

(}M k)ﬁ {1770 \C/ ' 14 @
Oy
(V4 W/H]l{/n /v MWLW VLr/(L

Data-flow analysis - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Data-flow_analysis

Data-flow analysis

From Wikipedia, the free encyclopedia

Data-flow analysis is a technique for gathering information about the possible set of values calculated at
various points in a computer program. A program's control flow graph (CFG) is used to determine those
parts of a program to which a particular value assigned to a variable might propagate. The information
gathered is often used by compilers when optimizing a program. A canonical example of a data-flow analysis
is reaching definitions.

A simple way to perform data-flow analysis of programs is to set up data-flow equations for each node of
the control flow graph and solve them by repeatedly calculating the output from the input locally at each
node until the whole system stabilizes, i.c., it reaches a fixpoint. This general approach was developed by

Gary Kildall while teaching at the Naval Postgraduate School.[']

Contents

= | Basic principles

= 2 An iterative algorithm
= 2.1 Convergence
m 2.2 The work list approach
» 2.3 The order matters
» 2.4 Initialization

3 Examples
= 3.1 Forward Analysis
= 3.2 Backward Analysis

4 Other approaches

5 Bit vector problems

6 Sensitivities

7 List of data-flow analyses

8 Notes

9 Further reading

Basic principles

It is the process of collecting information about the way the variables are used, defined in the program.
Data-flow analysis attempts to obtain particular information at each point in a procedure. Usually. it is
enough to obtain this information at the boundaries of basic blocks. since from that it is easy to compute the
information at points in the basic block. In forward flow analysis, the exit state of a block is a function of the
block's entry state. This function is the composition of the effects of the statements in the block. The entry
state of a block is a function of the exit states of its predecessors. This yields a set of data-flow equations:

For each block b:

outy, = transy(iny)

[of 7 10/22/2012 2:17 AM

Data-flow analysis - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Data-flow_analysis

In this, {7 an.sy, is the transfer function of the block . It works on the entry state 777;, yielding the exit
state ottty The join operation join combines the exit states of the predecessors p € pred;, of p, yielding
the entry state of {;.

After solving this set of equations, the entry and / or exit states of the blocks can be used to derive
properties of the program at the block boundaries. The transfer function of each statement separately can be
applied to get information at a point inside a basic block.

Each particular type of data-flow analysis has its own specific transfer function and join operation. Some
data-flow problems require backward flow analysis. This follows the same plan, except that the transfer
function is applied to the exit state yielding the entry state, and the join operation works on the entry states
of the successors to yield the exit state.

“The entry point (in forward flow) plays an important role: Since it has no predecessors, its entry state is well
defined at the start of the analysis. For instance, the set of local variables with known values is empty. If the
control flow graph does not contain cycles (there were no explicit or implicit loops in the procedure) solving
the equations is straightforward. The control flow graph can then be topologically sorted; running in the
order of this sort, the entry states can be computed at the start of each block, since all predecessors of that
block have already been processed. so their exit states are available. If the control flow graph does contain
cycles, a more advanced algorithm is required.

An iterative algorithm

The most common way of solving the data-flow equations is by using an iterative algorithm. It starts with an
approximation of the in-state of each block. The out-states are then computed by applying the transfer
functions on the in-states. From these, the in-states are updated by applying the join operations. The latter
two steps are repeated until we reach the so-called fixpoint: the situation in which the in-states (and the
out-states in consequence) do not change.

A basic algorithm for solving data-flow equations is the round-robin iterative algorithm:

fori—1toN
initialize node i
while (sets are still changing)
fori—1toN
recompute sets at node i

Convergence

1o be usable, the iterative approach should actually reach a fixpoint. This can be guaranteed by imposing
constraints on the combination of the value domain of the states, the transfer functions and the join
operation.

The value domain should be a partial order with finite height (i.c.. there are no infinite ascending chains €'y
<&’y <...). The combination of the transfer function and the join operation should be monotonic with
respect to this partial order. Monotonicity ensures that on each iteration the value will either stay the same
or will grow larger, while finite height ensures that it cannot grow indefinitely. Thus we will ultimately reach

20f7 10/22/2012 2:17 AM

Data-flow analysis - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Data-flow analysis

a situation where T(x) = x for all x, which is the fixpoint.
The work list approach

It is easy to improve on the algorithm above by noticing that the in-state of a block will not change if the
out-states of its predecessors don't change. Therefore, we introduce a work list: a list of blocks that still
need to be processed. Whenever the out-state of a block changes, we add its successors to the work list. In
each iteration, a block is removed from the work list. Its out-state is computed. If the out-state changed, the

block's successors are added to the work list. For efficiency, a block should not be in the work list more than
once.

The algorithm is started by putting information generating blocks in the work list. It terminates when the
work list is empty.

The order matters

The efficiency of iteratively solving data-flow equations is influenced by the order at which local nodes are

visited.[*! Furthermore, it depends, whether the data-flow equations are used for forward or backward
data-flow analysis over the CFG. Intuitively, in a forward flow problem, it would be fastest if all
predecessors of a block have been processed before the block itself, since then the iteration will use the
latest information. In the absence of loops it is possible to order the blocks in such a way that the correct
out-states are computed by processing each block only once.

In the following, a few iteration orders for solving data-flow equations are discussed (a related concept to
iteration order of a CFG is tree traversal of a tree).

= Random order - This iteration order is not aware whether the data-flow equations solve a forward or
backward data-flow problem. Therefore, the performance is relatively poor compared to specialized
iteration orders.

= Postorder - This is a typical iteration order for backward data-flow problems. In postorder iteration,
a node is visited after all its successor nodes have been visited. Typically, the postorder iteration is
implemented with the depth-first strategy.

= Reverse postorder - This is a typical iteration order for forward data-flow problems. In reverse-
postorder iteration, a node is visited before all its successor nodes have been visited, except when
the successor is reached by a back edge. (Note that this is not the same as preorder.)

Initialization

The initial value of the in-states is important to obtain correct and accurate results. If the results are used for
compiler optimizations, they should provide conservative information, i.e. when applying the information,
the program should not change semantics. The iteration of the fixpoint algorithm will take the values in the
direction of the maximum element. Initializing all blocks with the maximum element is therefore not useful.
At least one block starts in a state with a value less than the maximum. The details depend on the data-flow
problem. If the minimum element represents totally conservative information, the results can be used safely
even during the data-flow iteration. If it represents the most accurate information, fixpoint should be
reached before the results can be applied.

3 of7 10/22/2012 2:17 AM

Data-flow analysis - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Data-flow_analysis

Examples

The following are examples of properties of computer programs that can be calculated by data-flow analysis.
Note that the properties calculated by data-flow analysis are typically only approximations of the real
properties. This is because data-flow analysis operates on the syntactical structure of the CFG without
simulating the exact control flow of the program. However, to be still useful in practice, a data-flow analysis
algorithm is typically designed to calculate an upper respectively lower approximation of the real program
properties.

Forward Analysis

The reaching definition analysis calculates for each program point the set of definitions that may potentially
reach this program point.

%)

4
I

w

1
1
:
r Ak
1 e ' The reaching definition of variable "a" at line 7 is the set of assignments a=5 at line 2
and a=3 at line 4.

1

1

1

1

Backward Analysis

The live variable analysis calculates for each program point the variables that may be potentially read
afterwards before their next write update. The result is typically used by dead code elimination to remove
statements that assign to a variable whose value is not used afterwards.

The out-state of a block is the set of variables that are live at the end of the block. Its in-state is the set of
variable that is live at the start of it. The out-state is the union of the in-states of the blocks successors. The

transfer function of a statement is applied by making the variables that are written dead, then making the
variables that are read live.

Initial Code:

Backward Analysis:

4 of 7 10/22/2012 2:17 AM

Data-flow analysis - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Data-flow_analysis

nonou

}
3
52
4;
1

00; //% is never being used later thus not in the out set {a,b,d}
f a > b then
t

t: {a,b,d} //union of all (in) successors of bl => b2: {a,b}, and b3:(b,d)

1 c = 4;
: return b * d + c;
1// out:{}

The out-state of b3 only contains b and d, since ¢ has been written. The in-state of b1 is the union of the
out-states of b2 and b3. The definition of ¢ in b2 can be removed, since ¢ is not live immediately after the
statement.

Solving the data-flow equations starts with initializing all in-states and out-states to the empty set. The work
list is initialized by inserting the exit point (b3) in the work list (typical for backward flow). Its computed
out-state differs from the previous one, so its predecessors bl and b2 are inserted and the process continues.
The progress is summarized in the table below.

processing in-state old out-state new out-state work list

b3 0 0 {b.d} (b1.b2)
bl {bd} {} { (b2)
b2 qbd) O fa,b} (b1)
bl {abd} {} { 0

Note that bl was entered in the list before b2, which forced processing bl twice (bl was re-entered as
predecessor of b2). Inserting b2 before bl would have allowed earlier completion.

Initializing with the empty set is an optimistic initialization: all variables start out as dead. Note that the
out-states cannot shrink from one iteration to the next, although the out-state can be smaller that the

in-state. This can be seen from the fact that after the first iteration the out-state can only change by a change
of the in-state. Since the in-state starts as the empty set, it can only grow in further iterations.

Other approaches

In 2002, Markus Mohnen described a new method of data-flow analysis that does not require the explicit
construction of a data-flow g:mp]y[3 linstead relying on abstract interpretation of the program and keeping a
working set of program counters. At each conditional branch, both targets are added to the working set.
Each path is followed for as many instructions as possible (until end of program or until it has looped with
no changes), and then removed from the set and the next program counter retrieved.

50f7 10/22/2012 2:17 AM

Data-flow analysis - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Data-flow_analysis

Bit vector problems

The examples above are problems in which the data-flow value is a set, e.g. the set of reaching definitions
(Using a bit for a definition position in the program), or the set of live variables. These sets can be
represented efficiently as bit vectors, in which each bit represents set membership of one particular'
element. Using this representation, the join and transfer functions can be implemented as bitwise logical
operations. The join operation is typically union or intersection, implemented by bitwise /ogical or and
logical and. The transfer function for each block can be decomposed in so-called gen and kill sets.

As an example, in live-variable analysis, the join operation is union. The kill set is the set of variables that
are written in a block, whereas the gen set is the set of variables that are read without being written first.
The data-flow equations become

ouly == U 11

SCRUCC

ing = (outy, — killy) U geny,
In logical operations, this reads as

out(b) =0
for s in succ(b)
out(b) = out(b) or in(s)
in(b) = (out(b) and not kill(b)) or gen(b)

Sensitivities

Data-flow analysis is inherently flow-sensitive. Data-flow analysis is typically path-insensitive, though it is
possible to define data-flow equations that yield a path-sensitive analysis.

= A flow-sensitive analysis takes into account the ordes-of statements in a program. For example, a
flow-insensitive pointer alias analysis may determine "variables x and y may refer to the same
location", while a flow-sensitive analysis may determine "after statement 20, variables x and y may
refer to the same location".

= A path-sensitive analysis computes different pieces of analysis information dependent on the
predicates at conditional branch instructions. For instance, if a branch contains a condition x>0, then
on the fall-through path, the analysis would assume that x<=0 and on the target of the branch it
would assume that indeed x>0 holds.

= A context-sensitive analysis is an interprocedural analysis that considers the calling context when

analyzing the target of a function call. In particular, using context information one can jump back to

the original call site, whereas without that information, the analysis information has to be propagated

k to all possible call sites, potentially losing precision.

List of data-flow analyses

= Reaching definitions
= Liveness analysis
= Definite assignment analysis

6of7 10/22/2012 2:17 AM

] L.

(
), 1o e

Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.858 Fall 2010

Quiz I

All problems afe open-ended questions. In order to receive credit you must answer the question
as precisely as possible. You have 80 minutes to finish this quiz.

Write your name on this cover sheet.

Some questions may be harder than others. Read them all through first and attack them in the
order that allows you to make the most progress. If you find a question ambiguous, be sure to
write down any assumptions you make. Be neat. If we can’t understand your answer, we can’t
give you credit!

THIS IS AN OPEN BOOK, OPEN NOTES EXAM.

Please do not write in the boxes below.

I(xx/16) | II (xx/15) | III (xx/17) | IV (xx/10) | V (xx/16) | VI (xx/6) | Total (xx/80)

Name:

W R -

A 3= bt
otk < ok 0

Suppose that you use Baggy bounds checking to run the following C code, where X and Y are constant
values. Assume that slot_size is 16 bytes, as in the paper.

I Baggy bounds checking

e
char *p = malloc(40); {
char *q = p + X; r@(;ﬁbg/
char *r = q + ¥Y; |
*xr = '\0";

For the following values of X and Y/, indicate which line number will cause Baggy checking to abort, or
NONE if the program will finish executing without aborting.

1. [2 points]: X =45,Y =0 (| Vol
Nom -wilhin QL([f"”/'[

2. [2 points]: X =60,Y =0

Noae

3. [2 points]: X =50,Y =-20

Nosg
4. [2 points]: X =70,Y = -20
’ A/Q 5(/ g@fb Ml)9 [{& 5 Z*im ﬁ
A4

5. [2 points]: X =80,Y =-20

<OLbe U b b5 | hyke befoe Ohy st
6. [2 points]: X 25 Y =4
y\g Oots ok by Mae T J@

7. [2 points]: X = -5,Y =60

NQV\E y wz?l’h(/l

8. [2 points]: X = —10,Y =20

(4 hoe Lﬁ“ = dir
UW g W Wolay 1 9, 5(9}5 i

L’@t b N / A
y (s This JHlG ls/gﬁ(
g L2 o ot

T toue €l P o

“G ol k)0 DN

(e
{%ﬁ fé;i% _htl,) Z) é /

II Control hijacking
Consider the following C code:

struct foo {

char buf[40];

void (*f2) (struct foo =*);
};

void

f(void)

{
void (*xfl) (struct foo =*);
struct foo x;

/* .. initialize fl and x.£f2 in some way .. */
gets (x.buf);

if (£1) £1(&x);
if (x.£2) x.f2(&x);

There are three possible code pointers that may be overwritten by the buffer overflow vulnerability: f1,

z.f2, and the function’s return address on the stack. Assume that the compiler typically places the return

address, f1, and z in that order, from high to low address, on the stack, and that the stack grows down.
—)

9. [5 points]: ich of the three code pointers can be overwritten by an adversary if the code is
executed as part of odule?

\

\

10. [5 points]: What code could the adversary cause to be executed, if any, if the above code is
executed as part of an XFI module?

11. [5 points]: What code could the adVersary cause to be executed, if any, if the above code is
executed under control-flow enforcement froin lab 2 (no XFI)?

IIT OS protection

Ben Bitdiddle is running a web site using OKWS, with one machine running the OKWS server, and a
separate machine running the database and the database proxy.

12. [12 points]: The database machine is maintained by another administrator, and Ben cannot
change the 20-byte authentication tokens that are used to authenticate each service to the database
proxy. This makes Ben worried that, if an adversary steals a token through a compromised or ma-
licious service, Ben will not be able to prevent the adversary from accessing the database at a later
time.

Propose a change to the OKWS design that would avoid giving tokens to each service, while providing
the same guarantees in terms of what database operations each service can perform, without making
any changes to the database machine.

13. [5 points]: Ben is considering running a large number of services under OKWS, and is worried
he might run out of UIDs. To this end, Ben considers changing OKWS to use the same UID for
several services, but to isolate them from each other by placing them in separate chroot directories
(instead of the current OKWS design, which uses different UIDs but the same chroot directory).
Explain, specifically, how an adversary that compromises one service can gain additional privileges
under Ben’s design that he or she cannot gain under the original OKWS design.

IV Capabilities and C

Ben Bitdiddle is worried that a plugin in his web browser could be compromised, and decides to apply.some
ideas from the *“Securify Architectures for Java” paper to sandboxing the plugin’s C code usin@
| ol

(nt (@

Ben decides to use the capability model (§3.2 from the Java paper), and writes a function safe_open as
follows: . L
(l/ ({.(V/leh 10N
int

safe_open (const char *pathname, int flags, mode_t mode)

{
char buf([1024];
snprintf (buf, sizeof (buf), "/safe-dir/%s", pathname);
return open(buf, flags, mode);

which is intended to mirror Figure 2 from the Java paper. To allow his plugin’s XFI module to access to
files in /safe-dir, Ben allows the XFI module to call the safe_open function, as well as the standard
read, write, and close functions (which directly invoke the corresponding system calls).

14. [10 points]: Can a malicious XFI module access files (i.e., read or write) outside of
/safe-dir? As in the Java paper, let’s ignore symbolic links and “..” components in the path
name. Explain how or argue why not.

V Browser security

15. [6 points]: In pages of a site which has enabled ForceHTTPS, <SCRIPT SRC=...> tags
that load code from an http://.../ URL are redirected to an https://.../ URL. Explain
what could go wrong if this rewriting was not performed.

[omf, sl Code

Ben Bitdiddle runs a web site that frequently adds and removes files, which leads to customers complaining
that old links often return a 404 File not found error. Ben decides to fix this problem by adding a link to
his site’s search page, and modifies how his web server responds to requests for missing files, as follows (in

Python syntax):

def missing_file (regpath):
print "HTTP/1.0 200 OK"
print "Content-Type: text/html"
print ""
print "We are sorry, but the server could not locate file", regpath
print "Try using the search function."

16. [10 points]: Explain how an adversary may be able to exploit Ben’s helpful error message to
compromise the security of Ben’s web application.

Ao

VI 6.858

We’d like to hear your opinions about 6.858, so please answer the following questions. (Any answer, except
no answer, will receive full credit.)

17. [2 points]: How could we make the ideas in the course easier to understand?

18. [2 points]: What is the best aspect of 6.858?

19. [2 points]: What is the worst aspect of 6.858?

End of Quiz

10

Departinent of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.858 Fall 2010

Quiz I

All problems are open-ended questions. In order to receive credit you must answer the question
as precisely as possible. You have 80 minutes to finish this quiz.

Write your name on this cover sheet.

Some questions may be harder than others. Read them all through first and attack them in the
order that allows you to make the most progress. If you find a question ambiguous, be sure o
write down any assumptions you make, Be neal. If we can’t understand your answer, we can't
give you credit!

THIS IS AN OPEN BOOK, OPEN NOTES EXAM.

Please do not write in the boxes below.

15 T T T T T T T
Grade for quiat 27

Mean 49, Median 51, Std. dev. 14

I Baggy bounds checking

Supposc that you use Baggy bounds checking to run the following C code, where X and Y are constant
values. Assume that slot_size is 16 byles, as in the paper.

char +p = malloc(40);
char +q = p + X;

char «r = g + ¥;

«r = *\0*;

For the following values of X and Y, indicate which line number will cause Baggy checking to abort, or
NONE if the program will finish executing without aborting.

Answer: Recall that Baggy bounds checking rounds up the allocation size to the nearest power of 2 (in this
case, 64 for pointer p), and can track out-of-bounds pointers that are up sloz_size/2 out of bounds.

1. [2 points]: X =45Y =0
Answer: NONE: the access is within the 64 bytes limit.

2. [2 points]: X =60,V =0
Answer: NONE: the access is within the 64 bytes limit.

3. [2 points]: X =50,V =-20
Answer: NONE: the access is within the 64 bytes limit.

4. [2 points]: X =70,Y =-20
Answer: NONE: ¢ goes out of bounds, but by less than slor_size/2, so r is in bounds again.

5. [2 points]: X =80,Y =-20
Answer: Line 2: since q goes out of bounds by more than slor_size/2, Baggy aborts the pointer
arithmetic. (We also accepted the answer of Line 4, due to some confusion.)

6. [2 points]: X =-5.Y =4
Answer: Line 4 the reference is | byte before the start of the object, i.e. out of bounds.

7. [2 points]: X =-5,Y =60
Answer: NONE: within the 64-byte object bounds.

8. [2 points]: X =-10,Y =20
Answer: Line 2: since ¢ goes out of bounds by more than slot_sizel2, in the negative direction. (We
also accepted the answer of Line 4, due to some confusion.)

II Control hijacking
Consider the following C code:

struct foo |

char buf[40]);

veid (#f2) (struct foo =);
Vi

void
£ (void)

{
veoid (+«fl) (struct foo =);
struct foo x;

/+ .. initialize fl and x.f2 in some way .. */

gets (x.buf)
if (f1) fl{ex);
if (x.£2) x.£2(&x);

There are three possible code pointers that may be overwritten by the buffer overflow vulnerability: f1,
z.f2, and the function’s return address on the stack. Assume that the compiler typically places the return
address, f1, and z in that order, from high to low address, on the stack, and that the stack grows down.

9. [5 points]: Which of the three code pointers can be overwritlen by an adversary if the code is
executed as part of an XFI module?

Answer: z.f2 can be overwritlen, because it lives at a higher address than z.buf on the allocation
stack. f1 and the return address live on the scoped stack, which cannot be written to via pointers.

10. [5 points}: What code could the adversary cause 1o be executed, if any, if the above code is
executed as part of an XFI module?
Answer: Any function inside the XFI module that is the target of indirect jumps (i.c., has an XFI
label), and any stubs for allowed external functions (which also have XFI labels). The adversary
cannot jump to arbitrary functions inside the XFI module that are not the targets of indircct jumps
(and thus do not have an XFI label).

11. [5 points]: What code could the adversary cause to be executed, if any, if the above code is
executed under control-flow enforcement from lab 2 (no XFI)?

Answer: Any code that was jumped to during the training run at the calls to f1 or x.f2, or any call
sites of this function f during the training run.

IIT OS protection 13. [5 points]: Ben is considering running a large number of services under OKWS, and is worried
he might run out of UIDs. To this end, Ben considers changing OKWS to use the same UID for
several services, but to isolate them from each other by placing them in separate chroot directorics
(instead of the current OKWS design, which uses different UIDs but the same chroot directory).
Explain, specifically, how an adversary that compromises one service can gain additional privileges
under Ben's design that he or she cannot gain under the original OKWS design.

Ben Bitdiddle is running a web site using OKWS, with one machine running the OKWS server, and a
separate machine running the database and the database proxy.

Answer: The compromised service could use kill or ptrace to interfere with or take over other
12, [12 points]: The database machine is maintained by another administrator, and Ben cannot services running under the same UID,
change the 20-byte authentication tokens that are used to authenticate each service to the database
proxy. This makes Ben worried that, if an adversary steals a token through a compromised or ma-
licious service, Ben will not be able to prevent the adversary from accessing the database at a later
time.
Propose a change to the OKWS design that would avoid giving tokens to each service, while providing
the same guarantees in terms of what database operations each service can perform, without making
any changes to the database machine.
Answer 1: Implement a second proxy on the OKWS machine that keeps the real database tokens,
accepts queries from services (authenticating the service using UIDs or another token), and forwards
the queries to the real database server / proxy.
Answer 2: Establish connections to the database proxies in the launcher, send the 20-byte token from
the launcher, and then pass the (now authenticated) file descriptors to the services.

IV Capabilities and C

Ben Bitdiddle is worricd that a plugin in his web browser could be compromised, and decides to apply some
ideas from the “Security Architectures for Java” paper Lo sandboxing the plugin's C code using XFL.

Ben decides to use the capability model (§3.2 from the Java paper), and writes a function safe_open as
follows:

int

safe_open(const char spathname, int flags, mode_t mode)

{
char buf(1024];
snprintf (buf, sizeof(buf), "/safe-dir/%s", pathname);
return open(buf, flags, mode);

which is intended to mirror Figure 2 from the Java paper. To allow his plugin’s XFI module to access to
files in /safe-dir, Ben allows the XFI module to call the safe_open function, as well as the standard
read, write, and close functions (which directly invoke the corresponding system calls).

read or write) outside of
' components in the path

14. [10 points]: Can a malicious XFI module access files (i.e
/safe-dir? As in the Java paper, let’s ignore symbolic links and “
name. Explain how or argue why not.

Answer: No. There are two possible attacks. First, a malicious XFI module could guess legitimate
integer file descriptor numbers of other open files in the browser process (¢.g., cookie files or cache
files), and invoke read or write on them. Second, a malicious XFI module could write arbitrary
data D to address A by first writing D to a file in /safe-dir, and then invoking read on that file,
passing A as the buffer argument to read. This will write D to memory location A (since read is
outside of XFI), and allow the attacker to gain control of the entire process,

Browser security

15. [6 points]: In pages of a site which has enabled ForceHTTPS, <SCRIPT SRC=...> lags
that load code from an http://. ../ URL are redirected to an https://.../ URL. Explain
what could go wrong if this rewriting was not performed.

Answer: An aclive altacker could replace the Javascript code in the HTTP response with arbitrary
malicious code that could modify the containing HTTPS page or steal any of the data in that page, or
the cookie for the HTTPS page’s origin.

Ben Bitdiddle runs a web site that frequently adds and removes files, which leads to customers complaining
that old links often return a 404 File not found error. Ben decides to fix this problem by adding a link to
his site’s search page, and modifies how his web server responds to requests for missing files, as follows (in
Python syntax):

def missing_file (regpath):
print "HTTP/1.0 200 OK"
print "Content-Type: text/html"
print ="
print "We are sorry, but the server could not locate file", regpath
print "Try using the search function."

16. [10 points]: Explain how un adversary may be able to exploit Ben's helpful error message 1o
compromise the security of Ben's web application.
Answer: Anadversary could construct a link such as:

http://ben.com/<SCRIPT>alert (5);</SCRIPT>,
containing arbitrary Javascript code, and trick legitimate users into visiting that link (c.g., by purchas-
ing ads on some popular site). Ben's server would echo the request path back verbatim, including the
Javascript code, causing the victim's browser to execute the resulting Javascript as part of Ben's page,
giving the attacker’s Javascript code access to the victim's cookies for Ben’s site,

VI 6.858

We'd like to hear your opinions about 6.858, so please answer the following questions. (Any answer, except
no answer, will receive full credit.)

17. [2 points]: How could we make the ideas in the course easier to understand?

18, [2 points]: What is the best aspect of 6.8587

19. [2 points]: What is the worst aspect of 6.858?

End of Quiz

Q[(L\(Ll m Y/,\/

Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.893 Fall 2009

Quiz I

All problems are open-ended questions. In order to receive credit you must answer the question
as precisely as possible. You have 80 minutes to finish this quiz.

Write your name on this cover sheet.

Some questions may be harder than others. Read them all through first and attack them in the
order that allows you to make the most progress. If you find a question ambiguous, be sure to
write down any assumptions you make. Be neat. If we can’t understand your answer, we can’t
give you credit!

THIS IS AN OPEN BOOK, OPEN NOTES EXAM.

Please do not write in the boxes below.

I(xx/18) | II (xx/16) | III (xx/18) | IV (xx/8) V (xx/18)

VI (xx/8) | VII (xx/8) | VIII (xx/6) | Total (xx/100)

Name:

I Buffer Overflows

Ben Bitdiddle is building a web server that runs the following code sequence, in which process_req()
is invoked with a user-supplied string of arbitrary length. Assume that process_get () is safe, and for
the purposes of this question, simply returns right away.

void process_reqg(char xinput) ({
char buf[256];
strepy (buf, input);
if (!strncmp(buf, "GET ", 4))
process_get (buf) ;
return;

1. [6 points]: Ben Bitdiddle wants to prevent attackers from exploiting bugs in his server, so he
decides to make the stack memory non-executable. Explain how an attacker can still exploit a buffer
overflow in his code to delete files on the server. Draw a stack diagram to show what locations on the
stack you need to control, what values you propose to write there, and where in the input string these
values need to be located.

2. [6 points]: Seeing the difficulty of preventing exploits with a non-executable stack, Ben
instead decides to make the stack grow up (towards larger addresses), instead of down like on the x86.
Explain how you could exploit process_req () to execute arbitrary code. Draw a stack diagram
to illustrate what locations on the stack you plan to corrupt, and where in the input string you would
need to place the desired values.

3. [6 points]: Consider the StackGuard system from the “Buffer Overflows” paper in the context of
Ben’s new system where the stack grows up. Explain where on the stack the canary should be placed,
at what points in the code the canary should be written, and at what points it should be checked, to
prevent buffer overflow exploits that take control of the return address.

4

II XFI

4. [2 points]: Suppose d\program has a traditional buffer overflow vulnerability where the attacker
can overwrite the return address on the stack. Explain what attacks, if any, an attacker would be able
to mount if the same program s run under XFI. Be specific.

5. [4 points]: Suppose a program has a buffer ovefflow vulnerability which allows an attacker
to overwrite a function pointer on the stack (which is invigked shortly after the buffer is overflowed).

Explain what attacks, if any, an attacker would be able to mpunt if the same program is run under XFIL.
Be specific.

6. [4 points]: Suppose a malicious XFI module, which is not allowed to invoke unlink (),
attempts to remove arbitrary files by directly jumping to the unlink () codein 1ibc. What precise
instruction will fail when the attacker tries to do so, if any?

7. [6 points]: Suppose a malicious XFI module wants to circumvent XFI's inline checks in its
code. To do so, the module allocates a large chunk of memory, copies its own executable code to it
(assume XFI is running with only write-protection enabled, for performance reasons, so the module
is allowed to read its own code), and replaces all XFI check instructions in the copied code with NOP
instructions. The malicious module then calls a function pointer, whose value is the start of the copied
version of the function that the module would ordinarily invoke. Does XFI prevent an attacker from
bypassing XFI's checks in this manner, and if so, what precise instruction would fail?

III Privilege Separation

8. [4 points]: OKWS uses database proxies to control what data each service can access, but lab 2
has no database proxies. Explain what controls the data that each service can access in lab 2.

9. [8 points]: Inlab 2, logging is implemented by a persistent process that runs under a separate
UID and accepts log messages, so that an attacker that compromises other parts of the application
would not be able to corrupt the log. Ben Bitdiddle dislikes long-running processes, but still wants to
protect the log from attackers. Suggest an alternative design for Ben that makes sure past log messages
cannot be tampered with by an attacker, but does not assume the existence of any long-running user
process.

10. [6 points]: Ben proposes another strawman alternative to OKWS: simply use chroot () to
run each service process in a separate directory root. Since each process will only be able to access
its own files, there is no need to run each process under a separate UID. Explain why Ben’s approach
is faulty, and how an attacker that compromises one service will be able to compromise other services
too.

IV Information Flow Control

11. [8 points]:

This problem was buggy; everyone received full credit.

V Java

12. [4 points]: Wheha privileged operation is requested, extended stack introspection walks up
the stack looking for a stack frame which called enablePrivilege (), but stops at the first stack
frame that is not authorized tdcall enablePrivilege (). Give an example of an attack that could
occur if stack inspection did ndt stop at such stack frames.

10

13. [8 points]: Suppose you wanted to run an applet and allow it to connect over the network to
web.mit.edu port 80, but nowhere else. In Java, opening a network connection is done by constructing
a Socket object, passing the host and port as arguments to the constructor. Sketch out how you would
implement this security policy with extended stack introspection, assuming that the system library
implementing sockets calls checkPrivilege ("socket") in the Socket constructor. Explain
how the applet must change, if any.

11

14. [6 points]: Sketch out how you would implement the same security policy as in part (b), except
by using name space management. Explain how the applet must change, if any.

VI Browser

15. [8 points]: The paper argues that the child policy (where a frame can navigate its immedi-
ate children) is unnecessarily strict, and that the descendant policy (where a frame can navigate the
children of its children’s frames, and so on) is just as good. Give an example of how the descendant
policy can lead to security problems that the child policy avoids.

13

VII Resin

16. [8 points]: Sketdh out the Resin filter and policy objects that would be needed to avoid cross-
site scripting attacks throtigh user profiles in zoobar. Assume that you have a PHP function to strip
out JavaScript.

J\IM (04

14

VIII G.@ QJ‘LM ({ass

We'd like to hear your opinions about 6.893, so please answer the following questions. (Any answer, except
no answer, will receive full credit.)

17. [2 points]: How could we make the ideas in the course easier to understand?

18. [2 points]: What is the best aspect of 6.893?

19. [2 points]: What is the worst aspect of 6.8937

End of Quiz

15

I Buffer Overflows

Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Ben Bitdiddle is building a web server that runs the following code sequence, in which process_req()
is invoked with a user-supplied string of arbitrary length. Assume that process_get () is safe, and for
the purposes of this question, simply returns right away.

void process_req(char sinput) {

6.893 Fall 2009
Quiz I Solutions Strcy but, input);

if (!strncmp(buf, "GET *, 4))
process_get (buf) ;

All problems are open-ended questions. In order to receive credit you must answer the question ; paruzop

as precisely as possible. You have 80 minutes to finish this quiz.

Write your name on this cover sheet,

Some questions may be harder than others. Read them all through first and autack them in the 1. [6 points]: Ben Bitdiddle wants to prevent attackers from exploiting bugs in his server, so he

order that allows you to make the most progress. If you find a guestion ambiguous, be sure to decides to make the stack memory non-executable. Explain how an attacker can still exploit a bufTer

write down any assumptions you make. Be neat. If we can’t understund your answer, we can't overflow in his code to delete files on the server. Draw a stack diagram to show what locations on the

give you credit! stack you need to control, what values you propose to writc there, and where in the input string these
values need to be located.

THIS 1S AN OPEN BOOK, OPEN NOTES EXAM. Ans An attacker can still take control of Ben's server, and in particular, remove files, by using

a 'm attack, where the return address is overflowed with the address of the unlink

function in libc. The attacker must also arrange for the stack to contain proper arguments for unlink,

Please do not write in the boxes below. k !
at the right location on the stack.

T (xx/18) | II (xx/16) | 11T (xx/18) | IV (xx/8) V (xx/18)

VI (xx/8) | VII (xx/8) | VIIT (xx/6) | Total (xx/100)

The mean score on the quiz was 67, median was 62, and standard deviation 15,

Name:

2. [6 points]: Seeing the difficulty of preventing exploits with a non-executable stack, Ben
instead decides to make the stack grow up (towards larger addresses), instead of down like on the x86.
Explain how you could exploit process_reg () to exccute arbitrary code. Draw a stack dingram
to illustrate what locations on the stack you plan to corrupt, and where in the input string you would
need to place the desired values,

Answer: The return address from the st rcpy function is on the stack following the buf array, If
the attacker provides an input longer than 256 bytes, the subsequent bytes can overwrite the return
address from st rcpy, vectoring the execution of the program to an arbitrary address when st rcpy
relurns.

3. [6 points]: Consider the StackGuard system from the “Buffer Overflows” paper in the conlext of
Ben's new system where the stack grows up. Explain where on the stack the canary should be placed,
at what points in the code the canary should be written, and at what points it should be checked, to
prevent buffer overflow exploits that take control of the return address.

Answer: The canary must be placed at an address immediately before each function’s return address
on the stack. Because The STk grows Up; This space mustbe-reserved by the caller (although it's OK

if the callee puts the canary value there, before execultp-my tode-that-might overflow the stack and
corrupt the return address). The callee must verify the canary value before returning to the caller.

II

XFI

4. [2 points]: Suppose a program has a traditional buffer overflow vulnerability where the attacker
can overwrite the return address on the stack, Explain what attacks, if any, an attacker would be able
to mount if the same program is run under XFI. Be specific.

Answer: Because XFI has two stacks, the attacker will not be able to exploit a traditional buffer
overflow (corrupting the return address). The attacker may still be able to corrupt other data or pointers
on the allocation stack: see below.

5, [4 points]: Suppose a program has a bufTer overflow vulnerability which allows an attacker
to overwrile a function pointer on the stack (which is invoked shortly after the buffer is overflowed).
Explain what attacks, if any, an attacker would be able to mount if the same program is run under XFI.
Be specific.

Answer: The attacker can cause the module Lo slart executing the start of any legal function in the
XFI module, or any legal stub that will in turn execute allowed external functions.

6. [4 points]: Suppose a malicious XFI module, which is not allowed to invoke unlink (),
attempts to remove arbitrary files by directly jumping to the unlink () code in 1ibe. What precise
instruction will fail when the attacker tries to do so, if any?

Answer: The CFI label check before the jump to unlink will notice that the unl ink function does
not have the appropriate CFI label, and abort execution,

7. [6 points]: Suppose a malicious XFI module wants to circumvent XFI's inline checks in its
code. To do so, the module allocates a large chunk of memory, copies its own executable code to it
(assume XFI is running with only write-protection enabled, for performance reasons, so the module
is allowed to read its own code), and replaces all XFI check instructions in the copied code with NOP
instructions. The malicious module then calls a function pointer, whose value is the start of the copied
version of the function that the module would ordinarily invoke, Does XFI prevent an attacker from
bypassing XFI's checks in this manner, and if so, what precise instruction would fuil?

Answer: XFI assumes and relies on the hardware/OS to prevent execution of data memory (e.g. the
NX flag on recent x86 CPUs).

IIT Privilege Separation

8. [4 points]: OKWS uscs database proxics to control what data each service can access, but lab 2
has no database proxies. Explain what controls the data that each service can access in lab 2,

Answer: Lab 2 relies on file permissions (and data partitioning) to control what service can access
what data.

9. [8 points]: Inlab 2, logging is implemented by a persistent process that runs under a separate
UID and accepls log messages, so that an attacker that compromises other parts of the application
would not be able to corrupt the log. Ben Bitdiddle dislikes long-running processes, but still wants to
protect the log from attackers. Suggest an alternative design for Ben that makes sure past log messages
cannot be tampered with by an attacker, but does not assume the existence of any long-running user
process.

Answer: One approach may be 1o use a setuid binary that will execute the logging service on-demand
under the appropriate user ID.

10, [6 points]: Ben proposes another strawman alternative to OKWS: simply use chroot () lo
run each service process in a separate directory root. Since each pracess will only be able to access
its own files, there is no need to run each process under a separate UID. Explain why Ben's approach
is faulty, and how an attacker that compromises one service will be able to compromise other services
loo.

Answer: Processes running under the same UID can still kill or debug each other, even though they
cannot interact through the file system.

IV Information Flow Control

11. [8 points]: This problem was buggy; everyone received full credit,

Java

12, [4 points]: When a privileged operation is requested, extended stack introspection walks up
the stack looking for a stack frame which called enablePrivilege (), but stops at the first stack
frame that is not authorized to call enablePrivilege (). Give an example of an attack that could
occur if stack inspection did not stop at such stack frames.

Answer: A luring attack, whereby trusted code that has called enablePrivilege () accidentally
invokes untrusted code, which can then perform privileged operations.

13. [8 points]: Suppose you wanted to run an applet and allow it 1o connect over the network 1o
web.mit.edu port 80, but nowhere else. In Java, opening a network connection is done by constructing
a Socket object, passing the host and port as arguments to the constructor. Sketch out how you would
implement this security policy with extended stack introspection, assuming that the system library
implementing sockets calls checkPrivilege ("socket") in the Sockel constructor. Explain
how the applet must change, if any.

Answer: Something like the following code:

public class MitSocketFactory {
public static Socket getSocket() |
enablePrivilege ("socket");
return new Socket ("web.mit.edu", BO);

The applet’s code would need 1o invoke MitSocketFactory.getSocket () instead of using
the Socket constructor directly.

14. [6 points]: Sketch out how you would implement the same security policy as in part (b), except
by using name space management. Explain how the applet must change, if any.

Answer: Replace the Sockel object with MitSocket in the applel’s namespace:

public class MitSocket extends Socket |
public MitSocket (String host, int port) |{
super();
if ('host.equal ("web.mit.edu") || port != 80)
throw SecurityException("only web.mit.edu:80 allowed");

connect (host, port);

The applet would not have to change. Nole that Mi t Socket s constructor does not call super (host,
port). Instead, it invokes super () and calls connect (host, port) later. Invoking the
super (host, port) constructor would have allowed the applet to open connections to arbitrary
hosts (which would then be immediately closed), by constructing an MitSocket object with the
right host and port arguments, since the securily check comes after the superclass canstructor.

VI Browser

15. [8 points]: The paper argues that the child policy (where 2 frame can navigate its immedi-
ate children) is unnecessarily strict, and that the descendant policy (where a frame can navigate the
children of its children's frames, and so on) is just as good, Give an example of how the descendant
policy can lead to security problems that the child policy avoids.

Answer: Consider a web site that contains a login frame, where users are expected to input passwords.
Under the descedant policy, an attacker can put the web site in a frame, and navigate the login frame
(a grandchild) to hitp://attacker.com, which looks similar to the original one, to steal passwords.

VII Resin

16. [8 points]: Sketch out the Resin filter and policy objects that would he needed to avoid cross-
site scripting attacks through user profiles in zoobar. Assume that you have a PHP function to strip
out JavaScript.

Answer: There are several possible solutions. One approach is to define two “empty” policies, Un-
safePolicy and JSSanitizedPolicy, the export_check functions of which do nothing. Input strings are
tagged UnsafePolicy, and the PHP function to strip out JavaScript attaches JSSanitizedPolicy to re-
sulting strings. The standard output filter checks that strings must contain neither or both palicies.

VII 6.893

We'd like to hear your opinions about 6.893, so please answer the following questions. (Any answer, except
no answer, will receive full credit.)

17. [2 points]: How could we make the ideas in the course easier to understand?

More and simpler examples to illustrate the problem;
More labs.

18. [2 points]: What is the best aspect of 6.8937

Labs;
Recent papers.

19. [2 points]: What is the worst aspect of 6.8937

Long, conceptual papers;
Repetitive, time-consuming labs,

End of Quiz

Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.858 Fall 2012

Quiz I

You have 80 minutes to answer the questions in this quiz. In order to receive credit you must answer
the question as precisely as possible.

Some questions are harder than others, and some questions earn more points than others. You may
want to skim them all through first, and attack them in the order that allows you to make the most
progress.

If you find a question ambiguous, be sure to write down any assumptions you make. Be neat and
legible. If we can’t understand your answer, we can’t give you credit!

Write your name and submission website username (typically your Athena username) on this cover
sheet.

This is an open book, open notes, open laptop exam.
NO INTERNET ACCESS OR OTHER COMMUNICATION.

Please do not write in the boxes below.

T (xx/20) | II (xx/16) | III (xx/12) | IV (xx/20) | V (xx/10) | VI (xx/16) | VII (xx/6) | Total (xx/100)
L é
\L 4] ‘1 N2 \/f /é %

T

) _
Name: /M{((/\O. {)

0
Fw

Submission website username:

The

!

{4 EU’ l"'

-
T

cu)

I Buffer overflows (L('—H8>

Consider the following C program, where an adversary can supply arbitrary input on std:in Assume no
compiler optimizations, and assume a 32-bit system. In this example, fgets() never writes past the end of
the 256-byte buf, and always makes 1(NULD—term1nated

- .
int mainQ { {@Q L ~ r,;;/&ﬁ; wn] cod

char buf[256];

fgets(buf, 256, stdin); | [oyl
foo(buf); ns O -~ 1700 0 4 /
printf("Hello world.\n"); L
} r _
/\1:4; i ‘7 A v n/r
1. [12 points]: Suppose the foo function is as follows: { 4 f .' / { J
PQL/I!;. lr 7 a4 d

void foo(char *buf) {
char tmpl'@@@]; // assume compiler placesﬂ" on the stack
// copy from buf to tmp
int i = 0; // assume compiler places I_L}lg_;gglster
while (buf[i] != 0) {
tmp[i] = bufl[i];
i++;

) ;U 5l I ' {
} p() {['/ﬂ“ r U{";i{' ‘/\ul - l‘/\"h({,iﬂ (4 {.{:5.;{,.,(;.5 :_/Lir';:

}] A
Wl 200

Which of the following are true? Assume there is an unmapped page both above and below the stack in

the process’s virtual memory. j

(Circle True or False for each choice.) Sld

@ ’@ / False An adversary can trick the program to delete files on a system where the stack grows
down.

@'ﬁue / Halsg An adversary can trick the program to delete files on a system where the stack grows
up: (f bit..'h (J /

K@e / False An adversary can trick the program to delete files on a system using Baggy bounds
ecking with slot_size=16. (Stack grows down.)). ' >
: 2P (s o 150

D./ True / Kalse An adversary can prevent the program from print'ing “Hello world” on a system using
Baggy bounds checking with slot_size=16. (Stack grows down.) 0 pﬁi ”(’
: PP

@True / @sa An adversary can trick the program to delete files on a system using terminator stack
canaries for return addresses. (Stack grows down.) C 0p e Cd ”) ({.

@@: / False An adversary can prevent the program from pr{inting “Hello world” on a system using
terminator stack canaries for return addresses. (Stack grows down.)

O
p(’.‘i:: V(i s Jn 2

2. [8 points]: Suppose the foo function is as follows:

C)\{) struct request {
void (*f)(void); // function pointer
char path[240];
i

void foo(char *buf) {
struct request r;
r.f = /* some legitimate function */: Ef'éﬁi
X strcpy(r.path, buf); .
\L\«U{(ﬁt\l(‘ r.£0; G0 A (ol
}

Which of the following are true?
(Circle True or False for each choice.)

/ False An adversary can trick the program to delete files on a system where the stack grows

chm (CPT OW{ {

. True / a@a An adversary can trick the program to delete files on a system where the stack grows

P Wo, “ e owﬂ ~ (s ads N g
><E / False An adversary can trick the program to delete files on a system using Baggy bounds

hecking with slot_size=16. Assume strcpy is compiled w1th Baggy. (Stack g7rows down.)

WOl Dreotd howls Z4g
. True / F@e An adversary can prevent the program from prmtmg “Hello world™ on a system using

aggy bounds checking with slot_size=16. Assume strcpy is compiled with Baggy. (Stack grows
down.)

II OS sandboxing

Ben Bitdiddle is modifying O_wc_agiifgm. To start each service, Ben’s okld forks, opens the
service executable binary, then calls cap_enter() to enter capability mode in that process, and finally
executes the service binary. Each service gets file descriptors only for sockets connm and for TCP
connectlmevam database proxies.

3. [6 points]: Which of the following changes are safe now that the services are running under
Capsicum, assuming the kernel implements Capsicum perfectly and has no other bugs?
- (Circle True or False for each choice.)

\“ A./Trye / False Itis safe to run all services with the same UID/GID.
B.(Trpe / False It is safe to run services without chroot. (()(, (5t M {1905

)\C True / @se It is safe to also give each service an open file descriptor for a per-service directory
/cores/servicename.

\AUTO/@

A od '!p ool € qu,! i o Uttty

Ben also considers replacing the oklogd component with a single log file, and giving each service a file
descriptor to write to the log file. 7o
\\}‘ (
f

[5 points]: What should ok1d do to ensure one service cannot read or overwrite log entries from
another service? Be as specific as possible.

O Ol b a L Tl only alloes

| ' :
A ’{'9 5 Lch&.\ (" A0 f,lff!?_b 11(rzud
W U b b e qdal il — i

n wqitt twasp 416

/L_/,.;»Mp(/, (AP LR zTé)

. [5 points]: What advantages could an oklogd-based design have over giving each service a file
descriptor to the log file?

A W\o/xlm\l thoe ol woifiotir] Wldf“p‘g’;’j/
th 'E’,\Lac‘n ot (05 Ondugs
S Xt
Até {w’ f} l,gﬂ g S0][({_7,@_ 4’3 Ci\ﬂ.ﬂg{o (/4]@/17
Sﬁ)r(iﬁ@ Mo M\\l Wi f/‘

reve-s- ""é/’j beld . /n{j @_1.{,,7
— endorer SHoredoe

/'-,
O
>

III Network protocols

either Kerberos (as described in the paper) or SSL/TLS (wnhout chent cemﬁcates where users authenticate
using pm/ss—\;c?;ds) for protecting a client’s network connection to the file server. For this question, assume
users choose hard-to-guess passwords.

é 6. [6 points]: Would Ben’s system remain secure if an adversary learns the server’s private key, but
that adversary controls/only a Jggje machine (on the adversary’s own home network), and does not

collude with anyone glse? Discuss both for Kerberos and for SSL/TLS.

e Ve W T Stors puvele bey To make ok, 0w ol fulats
ot $000r
(tfésﬂjﬁn l/\\f\(blﬂ T) /".f Jff, f,» m Tﬁﬁ {0/19 w/ am;, /ff,'u«_z((l

]@T’ 1 Oqf] luﬂf /o fl 8 !
o lﬂ(,]ud@‘[Q'{\,l \jbé} Ver gy I Ut\{ %L’g(((}ﬂ fﬂal C&((@fﬁ' % Q/[SCPwce

W : |]
1((TL_[\/‘Jl N/ (¢ 4§ f:f 4.:!:'!5’_ {iyf‘./ / _hﬂ-(a{]tﬂial{)f (gl‘/.’d

| — . .. F ‘r y ¥
(a"’ dny héﬁ% Goal e / from he Sons (0P Dol)
b s o bl , T i st
IS5 G 0 Iy == |
’}\U . 0 v (g‘ 1 L“ 01y J‘a! ~,-.4,[
5l ﬁbr@ /W“P m(((((Ol / 5 ﬁfq (40 p - \/(“Mﬂf L/{{@)

7. [6 points]: Suppose an adversary learns the server’s private key as above, and the adversary

also controls some network routers. Ben learns of this before the adversary has a chance to take any
/L action. How can Ben prevent the adversary from mounting attacks that take advantage of the server’s

private key (e.g., not a denial-of-service attack), and when will the system be secure? Discuss both for
Kerberos and for SSL/TLS.

Qﬂ N otk ol (m/ tor a5 a coge atlllo

gi I*"‘j Ay lﬂj Acless }9 U1y é?u\‘if’ E:?’s;'/u"' ;‘f o
k%;; TA‘* {wb’“h'{lﬁ {)kﬁ) é@ q’b f‘ﬂ malﬁ W/FSW'?'Q

0\ (Oi/id}, if.‘;lWa’P t\; (e s @ul@]\yé/(;v’o{,‘}? \'Q,

Grotorn Gy //O \.vl\«ﬁ'_w‘ dll C’:ﬂﬂfiﬁ hase 7w f’j' {/

IV Static analysis

Would Yichen Xie’s PHP static analysis tool for SQL injection bugs, as described in the paper, flag a potential
error/warning in the m‘ﬁg@qﬁ but-complete PHP applications?

8./110 points]:
@e / False The tool would report a potential error/warning in the following code:

function gq($s) { b7 5 L0 (doa Ii"i
return mysgl_query($s); ﬁ\{g\j{w’,‘} V\Q\l Cd\ il if{‘fd lifﬂa (
}

$x = $_GET['id’];
("SELECT (7§ $x™); . £
1 O<. ij;i o T o7

B. True / @;}ge The tool would report a potential error/warning in the following code:

function my_validate() { : ; d
return isnumeric($_GET[’'id’'D); S nNurtile ofo L (Q’{'/ e

}

$x = $_GET[’id’]; _ i
if (my_validate()) { & i B dn|T ¢ A
mysql_query("SELECT .. $x");

} "\ @\lﬁ] G (1[(-4!; (o aﬁ'c‘rf

A ('E / False The tool would report a potential error/warning in the following code:
C L ¢

mysql_query("SELECT .. $n");

}

(Orﬂ{) \@;l; \‘{ {/ f lf)(/{ !”l f(li’J ¢ 'u :’ :f{:*.,-'i

ue/ / False The tool would report a potential error/warning in the following code:

function check_arg($n) {
$v = $_GET[$n];
¢ W\f\a

return isnumeric($v);

}
$x = $_GET['id’]; ©— bf\

if (check_arg(’id’)) { Wﬂ? L\Q(Q |
mysql_query("SELECT .. $x"); ¢~ J,w) G {f,,’: ?(\

| '
l‘] woAd bP smf 4

“d) ""u\f; 4 ifl '/?

}

O

Runtime instrumentation

10. [10 points]:

Consider the following Javascript code:

function foo(x, y) { %
return X + y;
}

var a = 2;
eval ("fooCa, a)");

var p_c = {

Kz 5,
f: function() { return a + this.k; }
-
var kk = 'k’;
p_c[kk] = 6;
p_c.fQ;

Based on the description in the paper by Sergio Maffeis et al, and based on lecture 9, what will be the
FBIS rewritten version of this code, assuming the application-specific prefix is@_j

VI Browser security

Al s
Ben Bitdiddle is taking 6.858. Once he’s done with his lab at 4:55pm, he rushes to submlt it by going to
<@tpS i/tr_?;@scrlpts .mit.edu/submit/handin.py/student, selecting his labN-handin. tar.gz

file, and clicking “Submit”. The 6.858 submission web site also allows a student to download a copy of their
past submission.

For your reference, when the user logs in, the submission web site stores a cookie in the user’s browser to

keep track of their user name. To prevent a user from constructing their own cookie, or arbitrarily changing

the value of an existing cookie, the server includes a signature/MAC of the cookie’s value in the cookie, and

checks the signature when a new request comes in. %igmﬂ(?g’cﬁt’by clicking on the “Logout”

link, https://taesoo.scripts.mit.edu/submit/handin.py/logout, which clears the cookie.
"—_—_'__h.—‘——“-____._

Alyssa P. Hacker, an enterprising 6.858 student, doesn’t want to do lab 5, and wants to get a copy of Ben’s

upcoming lab 5 submission instead. Alyssa has her own web site at https://alyssa. scrlpts mit.edu/,
and can convince Ben to visit that site at any point. -

11. [16 points]: How can Alyssa get a copy of Ben’s lab 5 submission?

Alyssa’s attack should rely only on the Same-Origin Policy. Assume there are no bugs in any software,
Ben’s (and Taesoo’s) password is unguessable, the cookie signature scheme is secure, efc.
~ ——ee—

3 | vl
/ L(e S (V¥ L/ I vl ne poge

’ T | | (e . Uy
(N zﬂ L"{Izdi({ \k\ll qc 1 ‘:} {"!ij ' ‘{' | ‘ j 10
J Vi \ o {1V

VII 6.858

We’d like to hear your opinions about 6.858. Any answer, except no answer, will receive full credit.

12. [2 points]: This year we started using Piazza for questions and feedback. Did you find it useful,
and how could it be improved?

Vo Puza o lpd e for gpal g,

T} V\o O\ }VMYLQ (c(//f ﬂg{gu /0'0 Mf’
F%' (€sporl *(WQJ Ol‘wufb u‘FP(‘GCWde _/

13. [2 points]: What aspects of the labs were most time-consuming? How can we make them less

tedious?
é‘(’(:/ﬂ\&jf (/ I\Q/. i s be ',iu botte

hQC m gn

W@@J (o) J{o lm A4 /o a?.cf-u} fofpwk/u e “ﬁ
[
LP“"% /'? roe hil 71 / JOLWA}% 1{0 Thost

14. [2 pomts] Are there other thmgs you’d like to see improved in the second half of the semester?

ﬂ% Chy e releld, m/[/ 7 Yow)

:H *at{b@ e e fu ﬁw > 99‘ ! i
'y .
)Wa.’.:"\]’ gl /’

V.

e hl TG S Y
‘ma@ L\H\é on 1N THUY fals ot 1k (g
End of Quiz

O 1 \ '
\':p WA ifag e W} ‘(o(u&fﬂj on

""]'h (oA UA][. ‘ - o i
) L 3 & | (.G{li{ y ?.l"'uc.;",. t,)_f 3 [J‘U /A

0/
Post

g \ \ : /o |
\k{ L\ } (L{\O\L f‘{ (Un (pﬂ,ﬁfl'] {Jl/\t) Lf/ﬁﬂe/

a o0 n by oy (I cfu@fﬁm)

W@ IM\ élﬁd ((_(_ f,oa 7‘ (i now \’ffﬂvﬂ} |
Go o u-] FBJ}]fw} goﬂ Orayly

@U\ &) ”3 @m{): h’. /f\
(Aﬂf E’U% I W"'@M ’m«L ﬂth@fl

\()l :H v

éfu/w (JQW!(;/\ r((mmz Jw ua/[«

AM 3{ e AM“E”S (ha Com v/ ud
)€v€‘ Qlf’fr:;{ v

OV)

AL\ mvb‘{' CL\@@@ J{o (onmon 50(0nd [,] -
)’V/ (ldwwvnt,céoma;/’

Ewm D@M

(/oo\ug (/\bl(‘(, /HC[A &67([4«0(/1[}”‘é/* b(
Jaless Calls Jowxf%mf J;M

'D“W {/UV J,O % olo E]L/

30

25

20

15

10

Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.858 Fall 2012
Quiz I Solutions

CANASA
KRS
o0 e

0%

S
%
%

'.
Q
Q

NS
CRKK
otede
LK
v.',v.é
0.0’0
0.0.0

X
o
o
%

9.

::
::
K

P,
::
\/
&
o
5

K
0:0
o
o
5
5

530!
o
39,
3%,
8
%5

X
1%
%!
X
8
S5
0%
&5
28
25
&S

i 3:33#3:2:2:2:3333233:3:55 |
QRRIRIKRLIRIK

20205020 % % %% %

5
5

:0

X

SR
&

%

5

15650045
| 0’0"::0’0’0

10 20 30 40 50 60 70 80 90 100

Histogram of grade distribution

I Buffer overflows

Consider the following C program, where an adversary can supply arbitrary input on stdin. Assume no
compiler optimizations, and assume a 32-bit system. In this example, fgets () never writes past the end of
the 256-byte buf, and always makes it NULL-terminated.

int main() {
char buf[256];
fgets(buf, 256, stdin);
foo(buf) ;
printf("Hello world.\n");

1. [12 points]: Suppose the foo function is as follows:

void foo(char *buf) {
char tmp[200]; // assume compiler places "tmp" on the stack

// copy from buf to tmp
int i = 0; // assume compiler places "i" in a register
while (buf[i] != 8) {
tmp[i] = buf[i];
i++;
}
}

Which of the following are true? Assume there is an unmapped page both above and below the stack in
the process’s virtual memory.

(Circle True or False for each choice.)

A. True / False An adversary can trick the program to delete files on a system where the stack grows
down.

Answer: True. The adversary can overwrite foo’s return address.

B. True / False An adversary can trick the program to delete files on a system where the stack grows
up.
Answer: False. If the stack grows up, then no other state is placed above tmp on the stack, so even if
the adversary overflows tmp, it will not affect the program’s execution.

C. True / False An adversary can trick the program to delete files on a system using Baggy bounds
checking with slot_size=16. (Stack grows down.)

Answer: False. Baggy will prevent memory writes to tmp from overflowing to the return address or
any other stack variable.

D.

True / False An adversary can prevent the program from printing “Hello world” on a system using
Baggy bounds checking with slot_size=16. (Stack grows down.)

Answer: False. The argument buf points to a string that is at most 255 bytes long, since fgets
NULL-terminates the buffer. Baggy enforces a power-of-2 allocation bound for tmp, which ends up
being 256 bytes.

True / False An adversary can trick the program to delete files on a system using terminator stack
canaries for return addresses. (Stack grows down.)

Answer: False. A terminator stack canary includes a NULL byte, and if the adversary overwrites
the return address on the stack, the canary value will necessarily not contain any NULL bytes (since
otherwise the while loop would have exited).

. True / False An adversary can prevent the program from printing “Hello world” on a system using

terminator stack canaries for return addresses. (Stack grows down.)

Answer: True. The adversary could simply overwrite the canary value, which will terminate the
program as foo returns.

2. [8 points]: Suppose the foo function is as follows:

struct request {
void (*f)(void); // function pointer
char path[240];

35

void foo(char *buf) {
struct request r;
r.f = /* some legitimate function */;
strcpy(r.path, buf);
r.£0O;
}

Which of the following are true?
(Circle True or False for each choice.)

. True / False An adversary can trick the program to delete files on a system where the stack grows
down.

Answer: True. The adversary can overwrite foo’s return address on the stack.

. True / False An adversary can trick the program to delete files on a system where the stack grows
up.
Answer: True. The adversary can overwrite strcpy’s return address on the stack.

. True / False An adversary can trick the program to delete files on a system using Baggy bounds
checking with slot_size=16. Assume strcpy is compiled with Baggy. (Stack grows down.)

Answer: False. Baggy bounds checking will prevent strcpy from going past r’s allocation bounds,
and r. f is before r.path in r’s memory layout.

. True / False An adversary can prevent the program from printing “Hello world” on a system using
Baggy bounds checking with slot_size=16. Assume strcpy is compiled with Baggy. (Stack grows
down.)

Answer: True. If the adversary supplies 255 bytes of input, then strcpy will write past r’s allocation
bounds of 256 bytes, and Baggy will terminate the program.

II OS sandboxing

Ben Bitdiddle is modifying OKWS to use Capsicum. To start each service, Ben’s okld forks, opens the
service executable binary, then calls cap_enter() to enter capability mode in that process, and finally
executes the service binary. Each service gets file descriptors only for sockets connected to okd, and for TCP
connections to the relevant database proxies.

3. [6 points]: Which of the following changes are safe now that the services are running under
Capsicum, assuming the kernel implements Capsicum perfectly and has no other bugs?
(Circle True or False for each choice.)
A. True / False It is safe to run all services with the same UID/GID.

Answer: True.

B. True / False It is safe to run services without chroot.
Answer: True.

C. True / False It is safe to also give each service an open file descriptor for a per-service directory
/cores/servicename.

Answer: True.

Ben also considers replacing the oklogd component with a single log file, and giving each service a file
descriptor to write to the log file.

4. [5 points]: What should ok1d do to ensure one service cannot read or overwrite log entries from
another service? Be as specific as possible.

Answer: okld should call:
lc_limitfd(logfd, CAP_WRITE);

To ensure that the service cannot seek, truncate, or read the log file.

5. [5 points]: What advantages could an oklogd-based design have over giving each service a file
descriptor to the log file?

Answer: oklogd can enforce structure on the log file, such as adding a timestamp to each record,
ensuring each record is separated from other records by a newline, ensuring multiple records are not
interleaved, etc.

III Network protocols

Ben Bitdiddle is designing a file server that clients connect to over the network, and is considering using
either Kerberos (as described in the paper) or SSL/TLS (without client certificates, where users authenticate
using passwords) for protecting a client’s network connection to the file server. For this question, assume
users choose hard-to-guess passwords.

6. [6 points]: Would Ben’s system remain secure if an adversary learns the server’s private key, but
that adversary controls only a single machine (on the adversary’s own home network), and does not
collude with anyone else? Discuss both for Kerberos and for SSL/TLS.

Answer: With Kerberos, no: the adversary can impersonate any user to this server, by constructing
any ticket using the server’s private key.

With SSL, yes: the server can impersonate the server to another client, but no clients will connect to
the adversary’s fake server.

7. [6 points]: Suppose an adversary learns the server’s private key as above, and the adversary
also controls some network routers. Ben learns of this before the adversary has a chance to take any
action. How can Ben prevent the adversary from mounting attacks that take advantage of the server’s
private key (e.g., not a denial-of-service attack), and when will the system be secure? Discuss both for
Kerberos and for SSL/TLS.

Answer: With Kerberos, Ben should change the server’s private key. The system will be secure from
that point forward. If the adversary was recording network traffic from before the attack, Ben should
also make sure he changes the server’s private key over a secure network link, because kpasswd does
not provide forward secrecy. The adversary may be able to decrypt network traffic to the file server
before the key is changed.

With SSL, Ben should obtain a new SSL certificate for the server, with a new secret key, but the
adversary can continue to impersonate Ben’s file server until the compromised certificate expires. The
system will only be secure once the certificate expires, or once all clients learn of the certificate being
revoked.

IV Static analysis

Would Yichen Xie’s PHP static analysis tool for SQL injection bugs, as described in the paper, flag a potential
error/warning in the following short but complete PHP applications?

8. [10 points]:

A. True / False The tool would report a potential error/warning in the following code:

function q($s) {
return mysql_query($s);

¥

$x = $_GET[’id’];
q("SELECT .. $x");

Answer: True. The summary for g() indicates that the argument must be sanitized on entry, and the
main function does not sanitize the argument.

B. True / False The tool would report a potential error/warning in the following code:

function my_validate() {
return isnumeric($_GET[’id’]);

}

$x = $_GET[’id’];

if (my_validate()) {
mysql_query("SELECT .. $x");

}

Answer: False. The summary for my_validate() indicates that $_GET[id] is sanitized if the return
value is true.

9. [10 points]:

. True / False The tool would report a potential error/warning in the following code:
mysql_query("SELECT .. $n");

Answer: True. The tool reports warnings when any variable must be sanitized on entry into the main
function, and the variable is not known to be easily controlled by the user, such as $_GET and $_POST.

. True / False The tool would report a potential error/warning in the following code:

function check_arg($n) {
$v = $_GET[$n];
return isnumeric($v);

}

$x = $_GET[’id’];

if (check_arg(’id’)) {
mysql_query("SELECT .. $x");

}

Answer: True. The summary for check_arg() indicates that $_GET[_L] is sanitized if the return
value is true, but the call to mysql_query () requires $_GET[id] to be sanitized.

V Runtime instrumentation

10. [10 points]:

Consider the following Javascript code:

function foo(x, y) {
return x + y;

}

var a = 2;
eval("foo(a, a)");

var p_c = {

ki 5,
f: function() { return a + this.k; }
};
var kk = ’k’;
p-c[kk] = 6;
peLE0);

Based on the description in the paper by Sergio Maffeis et al, and based on lecture 9, what will be the
FBIS rewritten version of this code, assuming the application-specific prefix is p_?

Answer: FBJS adds a p_ prefix to every variable name, and wraps this and variable array indexes in
$FBJS.ref() and $FB]S.idx () respectively.

function p_foo(p_x, p_y) {
return p_x + p_Y;

}

var p_a = 2;
p_eval("foo(a, a)");

var p_p_c = {

kx5,
f: function() { return p_a + $FBIS.ref(this).k; }
b
var p_kk = 'k’;
p_p_c[$SFBJS.idx(p_kk)] = 6;
PP €500 ;

10

VI Browser security

Ben Bitdiddle is taking 6.858. Once he’s done with his lab at 4:55pm, he rushes to submit it by going to
https://taesoo.scripts.mit.edu/submit/handin.py/student, selecting his LabN-handin.tar.gz
file, and clicking “Submit”. The 6.858 submission web site also allows a student to download a copy of their
past submission.

For your reference, when the user logs in, the submission web site stores a cookie in the user’s browser to
keep track of their user name. To prevent a user from constructing their own cookie, or arbitrarily changing
the value of an existing cookie, the server includes a signature/MAC of the cookie’s value in the cookie, and
checks the signature when a new request comes in. Finally, users can log out by clicking on the “Logout”
link, https://taesoo.scripts.mit.edu/submit/handin.py/logout, which clears the cookie.

Alyssa P. Hacker, an enterprising 6.858 student, doesn’t want to do lab 5, and wants to get a copy of Ben’s
upcoming lab 5 submission instead. Alyssa has her own web site at https://alyssa.scripts.mit.edu/,
and can convince Ben to visit that site at any point.

11. [16 points]: How can Alyssa get a copy of Ben’s lab 5 submission?

Alyssa’s attack should rely only on the Same-Origin Policy. Assume there are no bugs in any software,
Ben’s (and Taesoo’s) password is unguessable, the cookie signature scheme is secure, etc.

Answer: Alyssa’s web site should force Ben’s browser to log out from the 6.858 submission web site,
by inserting the following tag:

and then set a cookie for domain=scripts.mit.edu containing Alyssa’s own cookie. When Ben
visits the submission web site to upload his lab 5, he will actually end up uploading it under Alyssa’s
username, allowing Alyssa to then download it at 4:56pm.

VII 6.858

We'd like to hear your opinions about 6.858. Any answer, except no answer, will receive full credit.

12. [2 points]: This year we started using Piazza for questions and feedback. Did you find it useful,
and how could it be improved?

Answer: Generally good; Ul not so great; appreciate anonymity. Would be good if answers show
up quicker. Bypass email preferences for important announcements. In-person office hours are also
important. Submit paper questions via Piazza. Signal-to-noise ratio too low. More TA/professor
participation other than David. Ask people not to be anonymous. Separate login is annoying. RSS
feed.

13. [2 points]: What aspects of the labs were most time-consuming? How can we make them less
tedious?

Answer: Include more debugging tools, especially for the PyPy sandbox. Explain where errors /
debug output goes. Explanation of provided lab code; explain what parts to focus on. Start discussions
of papers. Avoid asking for the same thing multiple times in the lab; 2nd part of lab 2 was repetitive.
Speed up the VM / run Python fewer times. More office hours. Better / more fine-grained / faster make
check. Review/recitation session to provide background knowledge for a lab.

14. [2 points]: Are there other things you’d like to see improved in the second half of the semester?

Answer: Past exploits. More time on labs. More late days. More summaries of papers / what to focus
on / background info. More attacks. More recent papers. Explicit lectures on lab mechanics. More
design freedom in labs / more challenging design choices; less fill-in-the-blank style. Some papers
are too technical. Fewer ways to turn things in (submit via make; submit via text file; email question;
Piazza). Balance first and second parts of labs. Novelty lecture on lockpicking. Shorter quiz. Weekly
review of lecture (not labs) material — recitation? Relate labs to lectures, teach more hands-on stuff.
Labs where you solve some problem rather than get the details right? Explain what corner cases matter
for labs. Lecture should focus on application of paper’s ideas and short review of paper content. More
info on final projects. Scrap the answers.txt stuff, just code.

End of Quiz

12

