Summary of Class 10 Exam 1 Information

TEST ONE Thursday Evening February 25 7:30 - 9:30 pm . The Friday class
immediately following is canceled because of the evening exam.

What We Expect From You On The Exam

(1) Ability to calculate the electric field of both discrete and continuous charge distributions.
We may give you a problem on setting up the integral for a continuous charge
distribution, although we do not necessarily expect you to do the integral, unless it is
particularly straight forward. You should be able to set up problems like: calculating the
field of a small number of point charges, the field of the perpendicular bisector of a finite
line of charge; the field on the axis of a ring of charge; and so on.

(2) To be able to recognize and draw the electric field line patterns for a small number of
discrete charges, for example, from two point charges (of same or opposite charge)

(3) To be able to apply the principle of superposition to electrostatic problems.

(4) An understanding of how to calculate the electric potential of a discrete set of charges,

that is the use of the equation V(r) = Z4—’—I for the potential of NV charges g;
i=1 EJr—r

located at positions r; . Also you must know how to calculate the configuration energy
necessary to assemble this set of charges.

(5) The ability to calculate the electric potential given the electric field and the electric field
given the electric potential, e.g. being able to apply the equations

AV, ,=V,~V, = —fE-dl and E=-VV .

atob

(6) An understanding of how to use Gauss's Law. In particular, we may give you a problem
that involves either finding the electric field of a uniformly or non-uniformly filled
cylinder, slab or sphere of charge, as well as the potential associated with that electric
field. You must be able to explain the steps involved in this process clearly, and in

particular to argue how to evaluate [ME -dA on every part of the closed surface to which

you apply Gauss's Law, even those parts that are zero.

(7) To be able to answer qualitative conceptual questions that require no calculation. There will
be concept questions similar to those done in class.

To study for this exam (which you should DEFINITELY DO!) we suggest that
you review your problem sets, in-class problems, Friday problem solving
sessions, PRS in-class questions, and relevant parts of the study guide and class
notes and work through multiple past exams

Summary of Class 10



) ( (/ MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Physics

8.02 Spring 2010
Problem Set 3

Due: Tuesday, February 23 at 9 pm.

Hand in your problem set in your section slot in the boxes outside the door of 32-082. Make
sure you clearly write your name and section on your problem set.

Text: Liao, Dourmashkin, Belcher; Introduction to E & M MIT 8.02 Course Notes.
Reading Assignments:

Week Three: Electric Potential

President’s Day — M 2/15 /M Classes on T 2/16

Class 6 WO3D1 T Feb 16 Electric Potential
Reading: Course Notes Sections 3.1-3.5, 3.7-3.8

Class 7 WO3D02 W/R Feb 17/18  Electric Potential; Equipotential Lines and Electric Fields
Expt.1: Electric Potential; Configuration Energy;

Reading: Course Notes: Sections 3.1-3.5
Experiment: Expt. L Electric Potential

Class 8 WO3D3 F Feb 19 PS03: Electric Potential

Reading: Course Notes: Sections 3.1-3.5, 3.7-3.8

Week Four Conductors and Capacitors

Class 9 W04D1 M/T Feb 22/3 Conductors and Insulators; Capacitance & Capacitors;
Energy Stored in Capacitors;
Reading: Course Notes: Sections 4.3-4.4; 5.1-5.4, 5.9

Class 10 W04D2 W/R Feb 24/25 Exam One Review

Exam 1 Thursday Feb 25 7:30 pm -9:30 pm

W04D3 F Feb 26 No class day after exam
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Problem 1: Concept Questions. Explain your reasoning.

Suppose an electrostatic potential has a maximum at point P and a minimum at point M.

(a) Are either (or both) of these points equilibrium points for a negative charge? If so are they
stable?

(b) Are either (or both) of these points equilibrium points for a positive charge? If so are they
stable?

Problem 2: Charges on a Square

Three identical charges +Q are placed on the
corners of a square of side a, as shown in the
figure.

a

ad

0

(a) What is the electric field at the fourth corner (the one missing a charge) due to the first three
charges?

(b) What is the electric potential at that corner?

(¢) How much work does it take to bring another charge, +0, from infinity and place it at that
corner?

(d) How much energy did it take to assemble the pictured configuration of three charges?

Problem 3: Line of Charge
Consider a very long rod, radius R and charged to a uniform linear charge density A.

a) Calculate the electric field everywhere outside of this rod (i.e. find E (F) )

'$ =t
\b) Calculate the electric potential everywhere outside, where the potential is defined to be zero
™~

“~ataradius B, >R (i.e. V(R,)=0)
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Problem 4: Estimation: High Voltage Power Lines

Estimate the largest voltage at which it’s reasonable to hold high voltage power lines. Then
check out this videg, (http://web.mit.edu/8.02t/www/materials/ProblemSets/PS03_Video.mpeg)
care of a Boulder City, Nevada power company. Air ionizes when electric fields are on the order

of 3x10° V-m™.

Problem 5: Charged Sphere Consider a uniformly charged sphere of radius R and charge Q.
Find the electric potential difference between any point lying on a sphere of radius » and the
point at the origin, i.e. V' (r)—=¥(0). Choose the zero reference point for the potential at » =0,
iLe. V(0)=0 ;)'How does your expression for ¥ (r) change if you chose the zero reference point

f6r the potential at r =co, i.e. ¥ (c0)=0. el
\ ) e ] ) o

Problem 6: Charged Washer A thin
washer of outer radius b and inner radius a !
has a uniform negative surface charge

density —o on the washer (note that o >0).

a) <’If we set V(eo) =0, what is the electric potential difference between a point at the center
‘of the washer and infinity, V' (P) =V (e0) ? —~

b) 7An electron of mass m and charge g =-—e is released with an initial speed v, from the
| center of the hole (at the origin) in the upward direction (along the perpendicular axis to
| 'the washer) experiencing no forces except repulsion by the charges on the washer. What'

speed does it ultimately obtain when it is very far away from the washer (i.e. at infinity)?
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Problem 7: Charged Slab & Sheets

An infinite slab of charge carrying a charge per unit
volume p has a charged sheet carrying charge per unit
area o, to its left and a charged sheet carrying charge Gy

e ame aealea e mae sea

per unit area 0, to its right (see top part of sketch). The
lower plot in the sketch shows the electric potential
V(x) in volts due to this slab of charge and the two
charged sheets as a function of horizontal distance x
from the center of the slab. The slab is 4 meters wide
in the x-direction, and its boundaries are located at
x=-2mand x=+2m, as indicated. The slab is

infinite in the y direction and in the z direction (out

of the page). The charge sheets are located at
x=—6mandx=+6 m, as indicated.

(a) The potential ¥(x)is a linear function of x in the region —6m<x<-2m. What is the
electric field in this region?

(b) The potential V(x) is a linear function of x in the region 2m < x <6 m. What is the electric
field in this region?

(¢) In the region —2m< x<2m, the potential V(x) is a quadratic function of x given by the

equation ¥ (x)= %xz -% V . What is the electric field in this region?

Ltygo 2[20/(D
(d) Use Gauss’s Law and your answers above to find an expression for the charge density p of
the slab. Indicate the Gaussian surface you use on a figure.

(e) Use Gauss’s Law and your answers above to find the two surface charge densities of the left
and right charged sheets. Indicate the Gaussian surface you use on a figure.



Michael E Plasmeier

From: Juven Wang [juven@MIT.EDU]

Sent: Sunday, February 21, 2010 8:42 PM
To: Juven Chunfan Wang

Subject: [8.02] Fwd: [LO8] Hints for 8.02t Pset 3

Hi 8.02 problem-solvers,

An updated version of hints.

prob 1)
check the first, second derivative of potential (or potential energy) and its sign.

equilibrium (here for static equilibrium) means that particle(charge) experiences zero net force - can stay where it was
without moving.

Stable equilibrium is equilibrium with an extra condition that under small (positional) perturbation, the particle will still
come back to (or be around) the equilibrium point instead of moving away.

(note: equilibrium includes stable, neutral and unstable equilibrium.)

prob 3-a)

method 1: by Gauss's law(easy), cylindrical gaussian surface method 2: Coulomb's law(tricky), integrate all charge
density on an infinite long wire to get E field. or you can integrate charge density on a finite length wire(interesting and
worthwhile to try), then taking the length to be infinite.

prob 3-b) potential in logarithmic log form. (the reason for not taking zero potential at infinity is because log(r) diverges
as r goes to infinity, which is a bad reference.)

prob 4) the E field causes by the cable is in 1/r form outside the cable(note: though unnecessary to apply here, E field is
in a linear form of r inside the cable).

The potential of the cable should be regard as potential respect to the ground, where we normally set zero potential
there. Apply prob 3-b). potential difference V is in logarithmic log(r), and assume the distance from the ground to the
cable is 510 m.

The E field caused by cable has its maximum at the radius R, say, 1~10 cm.
We like to match this maximum E field at radius R to the air-ionizing magnitude. By this relation, you can relate
maximum E to a maximum V saturate the ionizing bound. Find the maximum potential V respect to the ground.

prob 5) get the E field inside the sphere(by Gauss's law), which is proportional to r. relating E field to potential difference
V(r)-V(0) by doing a line integration from O to r.



potential difference V(\infty)-V(r) by doing a line integration from \infty to r. you need to do it by two regions since E
behaves differently inside and outside the sphere.

prob 6-a)

method 1: summing over potential, contributed from each charge density on the washer.

method 2: from potential V definition, do an integration of E field from infinity to the center of washer along the
symmetric axis. you have to find E field from the washer first.

method 1 and method 2 are equivalent by the fact: E field can be obtained by superposition principle.

prob 6-b)

including the electric potential energy as internal energy of the system, apply mechanical energy conservation(electric
potential energy+kinetic energy).

or you can use work-energy thm if you consider electrostatic force as an external force.

prob 7) by Gauss's law and by E_x=-dV/dx figure out total net charge of two sheets and one plane is zero.
argue that the slab has negative charge. two sheets have the same positive charge.

good luck!

Juven
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Physics

8.02 Spring 2010
Problem Set 3 Solutions

Problem 1: Concept Questions. Explain your reasoning.

Suppose an electrostatic potential has a maximum at point P and a minimum at point M.

(a) Are either (or both) of these points equilibrium points for a negative charge? If so are they
stable?

Solution: The electric field is the gradient of the potential, which is zero at both potential
minima and maxima. So a negative charge is in equilibrium (feels no net force) at both P & M.
However, only the maximum (P) is stable. If displaced slightly from P, a negative charge will
roll back “up™ hill, back to P. If displaced from M a negative charge will roll away from the
potential minimum.

(b) Are either (or both) of these points equilibrium points for a positive charge? 1f so are they
stable?

Solution: Similarly, both P & M are equilibria for positive charges, but only M is a stable
equilibrium because positive charges seek low potential (this is probably the case that seems
more logical since it is like balls on mountains).



Problem 2: Charges on a Square
Three identical charges +Q are placed on the corners of a square of side a, as ¢
shown in the figure.

=

|

i

H

- - ~ - - H
(a) What is the electric field at the fourth corner (the one missing a charge) 1
due to the first three charges? §
0

Solution: We'll just use superposition: 2 0%

~

NPTEW i
dre, | a (J_a) a 4ze,

(b) What is the electric potential at that corner?
Solution: A common mistake in doing this kind of problem is to try to integrate the E field we

just found to obtain the potential. Of course, we can’t do that we only found the E field at a
single point, not as a function of position. Instead, just sum the point charge potentials from the

3 points:
(PR Y TR <G 0 LN
471'50 ; ¥ ( \/_U "J 47[‘"-0 (2+ \/5]

(c) How much work does it take to bring another charge, +Q, from infinity and place it at that
corner?

Solution: The work required to bring a charge +Q from infinity (where the potential is 0) to the

corner is:
W =onr =—< (2+L]
drea 2

(d) How much energy did it take to assemble the pictured configuration of three charges?

Solution: The work done to assemble three charges as pictured is the same as the potential
energy of the three charges already in such an arrangement. Now, there are two pairs of charges

situated at a distance of a, and one pair of charges situated at a distance of \/Ea, thus we have

3 | Q_2 L OF 1 O L
W_z(élm:o a] [472’6 \/_a} 47, a(2+\/§)

Alternatively we could have started with empty space, brought in the first charge for free, the
second charge in the potential of the first and so forth. We’ll get the same answer.




Problem 3: Line of Charge
Consider a very long rod, radius R and charged to a uniform linear charge density A.

a) Calculate the electric field everywhere outside of this rod (i.e. find E(F) ).

Solution: This is easily calculated using Gauss’s Law and a cylindrical Gaussian surface of
radius » and length /. By symmetry, the electric field is completely radial (this is a “very long”
rod), so all of the flux goes out the sides of the cylinder:

[[[E-dA = 27riE = LN
By 18, 2mre,

b) Calculate the electric potential everywhere outside, where the potential is defined to be zero
at aradius R, >R (i.e. V(R,)=0)

Solution: To get the potential we simply integrate the electric field from R to wherever we want
to know it (in this case r):

v (r)=V(r)- ——jE a'“'=—f

I(H

r

A
dr'=— :i|{ﬁj
% 2rg, r

2nr'e, 2nE,

In(r")

Problem 4: Estimation: High Voltage Power Lines

Estimate the largest voltage at which it’s reasonable to hold high voltage power lines. Then
check out this video, care of a Boulder City, Nevada power company. Air ionizes when electric

fields are on the order of 3x10° V-m™.

Solution: In order to answer this question we have to think about what happens if we go to very
high voltages. What breaks down? The problem with high voltages is that they lead to high
fields. And high fields mean breakdown.

You derived the voltage and field in problem 3

E(r)=2A)2mey; V (r)=(A/27g,)In(R)/r) =  V(r)=E(r)rin(R,/r)
The strongest field, and hence breakdown, appears at » = R ~ 1 c¢cm, the radius of a power line
(that makes the diameter just under 1 inch — it might be 3 or 4 times that big but probably not ten

times). The voltage is defined relative to some ground, either another cable (probably Ry~ I m
away) or at the most the real ground (R, ~ 10 m away). So,

Ve = B RIN (R /R) = (3%10° V-m™ ) (1 em) In (10 m/1 cm) =[2x10° V



As it turns out, a typical power-line voltage is about 250 kV, about as large as we estimate here.
Some high voltage lines can even go up to 600 kV though (or double that for AC voltages).
They must use larger diameter cables.

By the way, you can tell that breakdown is a real concern. In humid weather (during rainstorms
for example) you will sometimes hear crackling coming from the power lines. This is corona
discharge, a high voltage, low current breakdown, similar to the crackling you hear from the Van
de Graff generator in class. The movie is of an arc discharge, a very high current phenomenon
that can be very dangerous.

Problem 5: Charged Sphere Consider a uniformly charged sphere of radius R and charge Q.

Find the electric potential difference between any point lying on a sphere of radius » and the
point at the origin, i.e. ¥ (r)—F(0). Choose the zero reference point for the potential at =0,

i.e. V(0)=0. How does your expression for ¥ (r) change if you chose the zero reference point
for the potential at » =0, i.e. V(x0)=0.

Solution: In order to solve this problem we must first calculate the electric field as a function of
r for the regions 0 <r <R and r> R. Then we integrate the electric field to find the electric
potential difference between any point lying on a sphere of radius r and the point at the origin.
Because we are computing the integral along a path we must be careful to use the correct
functional form for the electric field in each region that our path crosses.

There are two distinct regions of space defined by the charged sphere: region I: r< R, and
region II: »> R . So we shall apply Gauss’s Law in each region to find the electric field in that
region.

For region I: r< R, we choose a sphere of
radius r as our Gaussian surface. Then, the
electric flux through this closed surface is

< p

[j[E, -dA=E, -4zr*.

The sphere has a uniform charge density p=Q/(4/3)7R’ . Because the charge distribution is
uniform, the charge enclosed in our Gaussian surface is given by

Q.. pl3)xr _gi

A
5 & & R

Now we apply Gauss’s Law:



’—mﬁl‘d}—\:%.

to arrive at:
., 0r
E, -4zr' ==——.

& £t

which we can solve for the electric field inside the sphere

- . Or .
E,=Er=—=—r, 0<r<R.
dme, R
For region Il: r> R: we choose the same F> R
spherical Gaussian surface of radius »> R, -
and the electric flux has the same form - b

r \
[_ﬂjﬁ,,-ciA:E,,-ltyri'z. { @ rl

All the charge is now enclosed, O, = 0O, then Gauss’s Law becomes

2 0
E,-d4nr ==.
Ey
We can solve this equation for the electric field
- " g .
E,=Er=—"—-r, r>R.
dre,r

In this region of space, the electric field falls off as 1/7° as we expect since outside the charge
distribution, the sphere acts as if all the charge were concentrated at the origin.

Our complete expression for the electric field as a function of 7 is then

EI :E,,i\'z"'—_‘f', O<r<R
dre R

E,=E,f= € %, roR



We can now find the electric potential difference between any point lying on a sphere of radius
r and the origin, i.e. V(r)—V(0).

We begin by considering values of » such that 0<r< R. We shall calculate the potential
difference by calculating the line integral

~V(0)= j dF'; 0<r<R

We use as integration variable »" and integrate from ' =0 to r'=r:

V()= V(O)——[ ~_pedrtem [ =P 0<r<r
£, R oo ARER 87e, R’

For r> R: we are taking a path form the origin through regions I and regions Il and so we need
to use both functional forms for the electric field in the appropriate regions. The potential
difference between any point lying on a sphere of radius » > R and the origin is given by the line
integral expression

F=R

V(r)-V(O)=- [ E,-di'- IE,, .d¥'; r>R.

r'=0 r=R

Using our results for the electric field we get that

r=R r

V(r)-V(0)=- j

This becomes

r'=R K, r'=r
V()-r©o=- |- O g [—L ek
TTE

Integrating yields

V@)=V (0)=— S’Jz

Substituting in the endpoints yields



O O (1 1
V(iR =V () =F(r)=-V)=——= = | | ¥
) © (") 2 87TEDR+47TEO(]‘ R] L

A little algebra then yields

V-V (©0)=—2—-2 . ;5 R
dreyr  8me,R

Thus the electric potential difference between any point lying on a sphere of radius » and the
origin (where /(0)=0) is given by

or’

———: 0<r<R
e, R
Vir)-V(0)= 35
O —=—:¥Fr>R

dre,r 8me R

When we set V(0) =0, we have an expression for the electric potential function
or’
sam—sssel WEFER
e, R
0 30
* __°= cr>R
drnesr  8meyR

Vr)=

We plot ¥ (r)vs. r in the figure below. Note that the graph of the electric potential function is
continuous at r = R.

V(r)

RN

30

- Sne R

When we set r =0, the potential difference between the sphere at infinity and the origin is



V(o) -V(0) =— gng

0

e

If we had chosen the zero reference point for the electric potential at » =co, with V() =0. The
30

with that choice, we have that 7(0) =
87g,R

. Therefore using our results above the new form

for the potential function is

rO)--2 . 0<r<R
8ne, R

0 30

- l
L)
4.77.'5{}1‘ SHSOR

V(r) =

V(0)+ >R

30

87g,R

This amounts to just adding the constant to the above results for the potential function

V(r) giving

30 or
87g,R  8ng, R’

g 0<r<R
Vir)=
tFr>R

3

dme,r
In the above expression we can easily check that F(w)=0. Equivalently we shift our previous

graph up by 30/87ze,R as shown in the graph below.

3Q

8e, R \

V@)




Problem 6: Charged Washer A thin
washer of outer radius » and inner radius a
has a uniform negative surface charge
density —o on the washer (note that o > 0).

a) If we set V(=) =0, what is the electric potential difference between a point at the center
of the washer and infinity, V' (P)—V (=) ?

Solution: The potential difference V() -V () between infinity and the point P at the center of
the washer is given by

k(—o)dd'
|F -r

V(P)-V(0)= J

source

Choose as an integration element a ring of radius ' and width dr’ with charge dq' = (—o)dda’
where da’ =27r'dr’ .

!
JZ =-ocda’=-carr'an’

Because the field point 7 is at the origin ¥ =0 and the vector from the origin to the any point on
the ring is ¥' = »'r, therefore in the above expression the distance from the integration element,
the ring, to the field point P is

So the integral becomes

k(-c)da' f k(o) 2zrdr!

V(P)-V(e)= | P

souree

=—ko2nx(b—a)
7

r'=a

b) An electron of mass m and charge g =—e is released with an initial speed v, from the

center of the hole (at the origin) in the upward direction (along the perpendicular axis to
the washer) experiencing no forces except repulsion by the charges on the washer. What
speed does it ultimately obtain when it is very far away from the washer (i.e. at infinity)?



Solution: By conservation of energy (note that V() -V (P) =ko2x(b—a)>0)
0=AK+AU =AK + q(V(0) =V (P)) = AK —eko2n(b—a) :

If we denote the initial speed of the electron by v, and the speed of the electron when it is very
far away by v, then AK = (1/2)mv; —(1/2)mv; . Hence

(1 /2)1113’} —(1/2)mv; =eka2n(b—a)>0.

We can now solve for the final speed of the electron when it is very far away from the washer

v, = ng +ekadm(b—a)/m .

PS03-10



Problem 7: Charged Slab & Sheets

An infinite slab of charge carrying a charge per unit
volume p has a charged sheet carrying charge per unit

area o, to its left and a charged sheet carrying charge O, P

" (G RSt e N o = —— — 0

per unit area o, to its right (see top part of sketch). The

V(x) in volts due to this slab of charge and the two
charged sheets as a function of horizontal distance x
from the center of the slab. The slab is 4 meters wide 145V
: < directi ‘s b ari ;

in the x-direction, and its 'om?d'mes are located a Bk -dm I A Bm
x=-2mand x=+2m, as indicated. The slab is } } i i

infinite in the y direction and in the =z direction (out \/

of the page). The charge sheets are located at
x=—-6 mand x =+6 m, as indicated. R . s £1167

1

" . . 1

lower plot in the sketch shows the electric potential |
1

1

(a) The potential ¥ (x)is a linear function of x in the region -6 m<x<-2m. What is the
electric field in this region?

Solution:
~ L S A =5 &
g9V _AV: SV 55V
ox Ax 4 m m

(b) The potential F(x) is a linear function of x in the region 2 m <x <6 m. What is the electric
field in this region?

Solution:

ox Ax am  om

(c) In the region —2m < x <2 m, the potential ¥(x) is a quadratic function of x given by the

5 , ¥V 25
equation V (x)=—x" ———
; ( ) 16 m~ 4

Solution: In the region inside the slab, the electric field is

— r A
E:—ﬂi{-i V,}ci

V . What is the electric field in this region?

(d) Use Gauss’s Law and your answers above to find an expression for the charge density p of
the slab. Indicate the Gaussian surface you use on a figure.

PS03-11



e

Solution:
Gaussian pillbox
G1 p (—'2
X Pl oo 5V xA
: ([[E-dA =Ed=|-2— |xd=dn = P2
i ; m” £, &,
I
-6m -2m | 2m 6m 2 p:[_é V, i|%
) 8 m”

(e) Use Gauss’s Law and your answers above to find the two surface charge densities of the left
and right charged sheets. Indicate the Gaussian surface you use on a figure.

Solution: The electric field vanishes in the regions x>6 m and x <—6 m (the electric potential
is zero and remains zero so the gradient is zero).

y

Gaussian pillbox G:uteiiian pillbox

O A 8]

1

1

1

1

1

1

| E ’
- R R

I

I

1

I

I

1

-6m -2m 2m 6m

Using Gauss’s law with the Gaussian pillboxes indicated in the figure, we have

S A P

5 4m £ &

Fed
=0, =|=—|g
4 m

o 5V
In a similar manner, o, ==—¢,.

0
4 m

A common mistake is to think that the sign must flip because the electric field sign flips. Note
that because the area vector of the Gaussian pillbox also flips direction this is NOT true. It is

very important to draw pictures and show the vector directions. If the vectors (E and dA) are
in the same direction then the dot product (and the enclosed charge) is positive.

PS03-12
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Class 10: Outline
Hour 1 & 2:
Review
Concept Review / Overview
PRS Questions — possible on

exam
Sample Exam

Exam Thursda

- See announcements page for
- section room assignments

Exam One: Review

Class 13: Outline

Hour 1:
Concept Review / Overview
PRS Questions — possible on exam

Hour 2:
Sample Exam

Exam Thursday: 7:30 - 9:30 pm

Class 09



Exam 1 Topics

« Fields (visualizations)
« Electric Field & Potential

» Discrete Point Charges

= Continuous Charge Distributions

« Symmetric Distributions — Gauss's Law
» Conductors and Insulators

.

General Exam Suggestions

You should be able to complete every problem
= If you are confused, ask

= |f it seems too hard, think some mare

+ Look for hints in other problems

« |f you are doing math, you're doing too much ———]
Read directions completely (before & after)
Write down what you know before starting
= Draw pictures, define (label) variables

+ Make sure that unknowns drop out of solution
Don't forget units! i

‘Hﬂl/& T;/‘L ,‘o h,',,t\

————no  hwd ma”lh‘

T P‘to"{//g F Vi K3

-

What You Should Study

* Review Friday Problem Solving (& Solutions)
Review In Class Problems (& Solutions)
Review PRS Questions (& Solutions)
Review Problem Sets (& Solutions)

= Review PowerPoint Presentations

» Review Relevant Parts of Study Guide
(& Included Examples)

Do Sample Exams (cn!iﬁéﬂunder Exam Prep)

o8
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Fields ofpas}k

¢t F

~ PRS Questions:
Fields

~ PRS: Vector Field (20

Y The field line at
left corresponds
to the vector field:

from @ 3 9

d\+ dc ‘(,‘91« !’leS

(Fst) £oa wold hae |




Cloe/ T

PRS: Grass Seeds

G

The vector field at leftis
created by:

1.  Two sources (equal strength)
. Two sources {top stronger)
. Two sources {bottom stronger)
. Source & Sink (equal streng‘th)
Saum & Sink {lnp strongnr)

PRS: Grass Seeds [

I Here there is an

. initial downward

L flow.

PRS

Circulation

& a
These two
circulations
are ln
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- PRS : Vector Field

,-"; The grass seeds
.; field plot at left is
a representation
of the vector field:

PRS: Electric Field

Two op osite charges are placed on a line as shown
below. The charge on the right is three times larger
than the charge on the left. Other than at infinity,
where is the electric field zero?

PRS: Field Lmes [p
Electric field lines show: -
1. Directlons of fcrces that EXlSt in space at aII
 times.

2 Direchcns :n Whlch charges on those lines wﬂl
acce!erate :

| Paths that charges_wiil_fo“ " .w

Class 09
Show i
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PRS: Force

The force between
the two charges is:

SI‘\OU N LQ_ /ﬂ

T il Conl

losk g) Nl cuses

£ 50 ‘)dﬂ&lJ wi(] g0

V% Qowby  dpum. sare P G to ~#i2s S ()

In wymRrarer

PRS: 5 Eq'ual Charges ”

[o]

4Six equal positive charges q sit at the vertices of a [ 1\
reguiar.hexa'glon:with sides of length R. We remove Mew ~ |/
the bottom charge. The electric field at the center of — -
the hexagon (point P) . é ‘ )
e e . o P Aayd s { @
: L) iy ! } .
s2'fcq 4 4
L] ]

o @0\' r @h ¥
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[ e, This

'PRS: Dipole Field

As you move to large distances r away from
a dipole, the electric field will fall-off as:

o% 1. 1/ justlike a pointcharge
0% @ More rapidly than ‘Ur2

PRS: Dipole in Non-Uniform Field

// E  Adipole sits in a non-uniform
electricfieldE . i

Due to the efectnc f' eId this dipoie wdi

E Field and Potential: Creating

Apomt charge g c:reates a ﬁeld and potentlal around il

; o Vi
(Le l(é« = {Q({,f/ /UAH‘ C hﬂ[jt
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E Field and Potential: Creating

Discrete set of point charges:

q = q Add up from each
= 7 L V= 5 point charge

Contmuous charge distribution:

dq . Break charged object

_into’small pleces, dg,
-andiniegrate

Continuous Sources: Charge Density

Charge Densities:

Azg Ga-—Q— : px—Q—
L A vV
a’Q cdi  dQo= pdV

- d‘x ; "’27”‘&’!".'.
. . dv,, =2nrldr
Rd® - 'de,m =4nridr

1

E Field and Potential: Creating

Discrete set of point charges:
B i._ g Add up from each
Bk fle ” pomt charge

Contlnuous charqe distribution: ?_f: .

I _tegrate to get V

T
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E Field and Potential: Effects

If you put a charged particle, g, in a field:

F =gE

Tq-nidﬁé'ajcha'_r_'ged 'p'é:"ticle, g, in a field:

Yoiah

~ PRS Questions:
lectric Fields and Potential

Class 09
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[o] PRS: Sign of W,
Thinking about the sign and rl>/

meaning of this..

sl

0% 4 W s negatwe
0% 5. [dontknow

\,Jg': Work of @’dl/:]?( (;f,“, “__"‘WL:E’L\ tlg

PRS: Masses in Potentials D’

Consider 3 equal masses sitting in different
gravitational potentials:

A) Constant, zero potential ¥ \ y V 4
B) Constant, non-zero potential ﬂ)o‘}?/ﬁ ldl s l!“l, L&lﬂh""

g_— C) Linear potenlual Vv uc x) but sﬁtang at V=0

- Which statement is true?

0% 1. None of the masses accelerat
__0_%_--_ 2. Only B accelerat L "’ o JO
0% Only C aoee!e . L : I{ {fle \‘j H)‘ COq}'f‘-‘Vi' ¢ S

0% All masses acceler s largest acceleration \

0% 5 All masses acceler gest acceleration not alL, 9n \7 ‘( C "W\(, (19

0% 6. ldon'tknow o V=

MV/ ‘H\WL/ ‘{,}_ 'LP‘,U(‘-’Q/QL A,

forg v PRS: Positive Charge
6 D Place a positive charge in an electrlc field. It
A will accelerate from
N 0‘ ) 5 'y | n
3 0% 1. higher to lower electric potent:al ' A‘} } (\Kﬂl\ “-')'09" P E
i lower to higher potential energy =~ {» h‘ L l,\ V (':
. higher to lower afebthc'potentfal Go ( lw i el
e higher to Iowe_r_pqteni;al enetgy e ) L@ 3 — ds
3. lower to higher electric 7
%  lowerto higher poi . nea, s Vb
4. lower to higher electri otentaaf‘ i
e hnghertn lower potenti energy o

71838

Class 09 | 10



PRS: Negative Charge §iiE]

Place a negative charge in an electric field. It

will accelerate from

0% %ﬁigher to lower electric potential,
. lower to higher potential energy
@ 2. higher to lower electric potential;
- higher to lower potential energy

lower t_o _hi_ghe_'r;_ paten_tié! energy
(4.)lower to higher efectric potential;
~ higher to lower potential energy

i)

(el (ol

To] PRS: Two Point Charges
The work done in moving a pgsitive test charge
from infinity to the point P midway between two %56’4[4/‘
charges of magnitude +q and —q: ) .
¢n’rrzgra,( ;pd,ﬁu doo T utfer .
0% 1. is positive. . ® Carn qdd o ponls —see F
' T
- th 2 vk ok, e O
termined — ot enough info s given
{ {
ek ool wlen 0 s
PRS: E from V [k
Consider the point charges you looked at earlier:
AONR 5. 4
. .v"m a " a .,,5,,, - . s
lated V(P). From that can you derive E(P)? )
Y \
Oﬂ(y j(’,ﬂ s or-(gla

Class 09
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Conductors in Equilibrium

Conductors are equipotential objects:

1) E = 0 inside

2) E perpendicular to surface 17
3) Net charge inside is 0 SSUA

4)Excess charge on surface

SAMPLE EXAM:

o
b )

F “_(-“ . ]\‘ oJ .k} C/ Wy M\ ( L't u‘\ 01
’) i 'j \ i - A& 3
q) S p U 0 oMt o1 O work o A4y
= i o
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Physics 8.02

Equation Sheet Exam One

Please Remove this Tear Sheet from Your Exam

= ~ [ -
L = 4 r= 1 3 r
dre,r dme r
.
r =— pointsfrom source q to observer
I
N
' _ 4q; o
Em;my point charges Z -~ 13 (r - ra')
i-1 47, |r—r,.]
- dg
E(r)—
ﬂ source lr |
Fq = qE.\-runre
dA Q:nv.
£

L'nrﬂ.\'( '(l’ o
surface

dA points from inside to outside

§ E-ds=0
closed
path
b, _
moving from a to b = I/b - I/u = —.[E -ds
AU =qgAV
—_— s -
Vpoin[ charge — m ’ V(OO) =0
N g
% = i P(e0)=0
many point charges ; 4.?1'80 F—]’l ( )
r®=—— [ =2 ¥(0)=0
471—5(] source r-r |
. 9 ey =0
all pairs 472"5‘ |

Lo, [ Ban.,

all space

-~

v
E =- OT for spherical symmetry,
or

E=-VV

g o 9V g _ OV o OV

o Y oy T &

C:H U:—CM-:Q—2
INg 2C

Circumferences, Areas, Volumes:

1) The area of a circle of radius r is

-

r
Its circumference is 27zr

2) The surface area of a sphere of
radius 7 is 477 . Its volume is
4/3)zr’

3) The area of the sides of a cylinder
of radius » and height % is 2zrh.

5 5
Its volume 1s 7zr~h

Integrals that may be useful

b

|dr=b—a

Il

T s oy

o ’

b

al” a b

Some potentially useful numbers

1
o =D 10”Nm
¢ 4;1'.50




8.02 Exam One Spring 2010

CILIAL | M Bl I EIR

MT(HIALEIL

GIVEN (first) NAM

T LAY [s]2]e

Student ID Number

Xgur Section:
L01 MW 9 am L02 MW 11 am L03 MW 1 pm L04 MW 3 pm
LO5 TR Y9 am L06 TR 11 am L07 TR 1 pm L08 TR 3 pm

Your Table and Group (e.g. 10A): \ ( (

Score Grader
Problem 1 (25 points) c§ \WHI-
y —7 ) |

Problem 2 (25 points) ) =y l

Problem 3 (25 points) / (7/ QQ

Problem 4 (25 points) l Sf F F
TOTAL 7/




Problem 1 (25 points)

In this problem you are asked to answer 5 questions, each worth 5 points. You do not
have to show your work; in most cases you may simply circle the chosen answer.

Question 1 (5 points)

1. Above we show the grass seeds representation of the field of four point charges,
located at the positions indicated by the numbers. Which statement is true about the signs

of these charges:
a) All four charges have the same sign.
\ @ Charges 1 and 2 have the same sign, and that sign is opposite the sign of 3 and 4.
v
c) Charges 1 and 3 have the same sign, and that sign is opposite the sign of 2 and 4.
d) Charges 1 and 4 have the same sign, and that sign is opposite the sign of 2 and 3.

e) None of the above.



Question 2 (5 points)

The grass seeds figure below shows the electric field of three charges with charges +1,
+1, and -1, The Gaussian surface in the figure is a sphere containing two of the charges.

The total electric flux through the spherical Gaussian surface is

a) Positive
b) Negative [\[er Q Cn(. IQ
L@ Zero

d) Impossible to determine without more information



Question 3 (5 points)

Two point-like charged objects with charges +Q and —Q are placed on the bottom
corners of a square of side a, as shown in the figure.

R e
B A

Pasy Yo do
_(i) p

¢ ~Nov — worly

You move an electron with charge —e from the upper right corner marked A to the
upper left corner marked B. Which of the following statements is true?

%) You do a negative amount of work on the electron equal to the amount of energy
necessary to assemble the system of three charged objects with the electron at

point B. ‘l J(({ n\‘{»ﬁj

You do a positive amount of work on the electron equal to the amount of energy
necessary to assemble the system of three charged objects with the electron at
point B.

You do a positive amount of work on the electron and the potential energy of the
system of three charged objects increases.

)

d)) You do a negative amount of work on the electron and the potential energy of the

. P ‘ . 1 r’ n; - J‘,'
system of three charged objects decreases. /| I_,w 075 m"ﬁéﬁ,a\i ,} " L {ﬁi gl -
e) You do a negative amount of work on the electron and the potential energy of the /

system of three charged objects increases.

\ﬂ\ You do a positive amount of work on the electron and the potential energy of the
system of three charged objects decreases.

WAy
//“’U "'/'CE‘J C \/uv”/gl

4 R . 1 1 77
" { Al ﬁm \i/ / s J 7



Question 4 (5 points)

A graph of the electric potential V' (z) vs. z is shown in the figure below.

@)1Vl
15
/// MN\K\‘T;V - SYZZZ
/ m
A== — -\
rd | | N
linear ;”; : 5 : Gnem‘
| V4 ' ! A |
7 ; Z
-3 A2 -l l 2\ &
/ Y
X / -5 B =
4 i [
//f ‘.\\ 6 ] O‘ & (A */
/ -10 \

Which of the following statements about the z -component of the electric field E, is
true?

-—

W E <0 for -3m<z<0and E < 0 for 0<z<3m. 6(OPQ
: = it
L/@ E.< 0 for -3m<z<0 and E.> 0 for 0<z<3m.

7
> -
Y c) E.>0 for -3m<z<0 and £, < 0 for 0<z<3m.

iO for -3m<z<0 and E. > 0 for 0<z<3m.

d) E

e) None of the above because E, cannot be determined from information in the

\ 7™ graph for the regions -3m<z<0 and 0<z<3m.
l_ \

‘ “h Uy ron L !
\: \-)(fn C fn f ’QS‘, lt’g -O( 0/ \{.\



Question 5 (5 points)

Careful measurements reveal an electric field

a
} 20
E(r)= "[

0;

distribution giving rise to this electric field?

a) A negative point charge at the origin with charge g =47£,a and a uniformly

=)

where a and R are constants. Which of the following best descrlbes the charge

positive charged spherical shell of radius R with surface charge density

oc=—ql4nR*.

B& A positive point charge at the origin with charge ¢ =47z¢g,a and a uniformly

A <o negative charged spherical shell of radius R with surface charge density
r‘,.“\:fl‘ 0'=—q/4ﬂ'R2.
Oc LR
A positive point charge at the origin with charge ¢ =4rg,a and a uniformly
negative charged sphere of radius R with charge density p=—q/(4zR’/3).
d) A negative point charge at the origin with charge —g =—47g,a and a uniformly
~ positive charged sphere of radius R with charge dens1ty p=q /(47:123 /3).
""(L TR J\] ‘ - ]‘_ ;\l} i ffl/‘ .M
. = e) Impossible to determine from the given 1nformat1on
[ ¢ | 7=
(o I\ b@ s W
) / j i \ b A o
R . 2 p b P
\ “’ .
Wi 4 L . 49 o O (A2 Lo
A L T ok
(r 0n ‘ i
{ 0 m ( /ll ¢
/ ¢ g Cor ( o5 j
Gurct — =
to (¢ o fl ‘ 1 /7 / }_----w_-l purtord
hos S0

/\."{_(



Problem 2 (25 points)

NOTE: YOU MUST SHOW WORK in order to get any credit for this problem. Make
it clear to us that you understand what you are doing (use a few words!) . \ & w
(oul b 5 jov

Four charged point-like objects, two of
charge +¢ and two of charge —q, are
arranged on the vertices of a square with
sides of length 2a, as shown in the

I
yiaxis ) @1q L((W Z

sketch.
a) What is the electric field at point O, X axis
which is at the center of the square? = 7~ " T T TR T 7T T 0 ¢
Indicate the direction and the magnitude.

v e-g

(%w ’P “mqj 1l,){) I./, cqaclp
Ci/ (% _ ) VeMNJ'/L

= d
(
2 fo ,
J L'WHM 2 hoaty (unf
/')\(cam(uﬁ) Vet [

diectsn ! sue 1 i Yoo
why w *,s b | orportnf
N
[ ([r QLIL‘)'\

E: L) )’i } ’{)—\.'.’1 9 "*j"

C L. -\
| s ’jﬁ o]

(5 Ny o J'IM,E

?GJ'MJI‘:’;{Iﬁ J/
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[ \(:3 -“"'I
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) - ™~

Jodkg
cighd

S\

b) What is the electric potential V" at point O, the center of the square, taking the potential
at infinity to be zero? -

o) - v ()

= V(P)-0 =V(#) =—(E-ds

w 1 05
AR o & ;?{:,FI
Y (1 0

)

/

A N R s A
o o el
ﬁ 0 jz Qa LFZ/ o
4 f :
‘79 M'ER [f ?UJ éb!l
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( ad (/5¢ Fhot
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¢) Sketch on the figure below one path leading from infinity to the origin at O where the
o]

integral IE -ds 1is trivial to do by inspection. Does your answer here agree with your

o0

result in b)? Iil\f e XI) {Jr:’iﬂl

11
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Problem 3 (25 points) "+ . ° ¢ r;léf ]

‘Nlﬁ .r ‘ L’ F r t/f
NOTE: YOU MUST SHOW WORK in order to get any credit for thS problem. Make

it clear to us that you understand what you are doing (use a few words!)

! |ff‘? yclabs Tt o i
5' Three infinite sheef$ of charge are located at x=—d, x=0, and x=4d , as shown in the
wld be sketch. The sheet at x =0 has a charge per unit area of 2¢ , and the other two sheets
\W
. A 0— have charge per unit area of —o . [ (0¢tda f*
& I
) 7
~ig8 +20 -0 2 . / f L
| (¥ 79
| 11 111 v Ploct '
y! o R P L T NP0% /
Piited ] | sy - - =0 5f,.(
o — —
C— 1L 2= J
w® A S >
x=-d x=0 x=g

b \.#‘ |
I r (P(Nm‘bﬁf' 11" dr & ol “N

a) What is the electric field in each of the four regions I-IV labeled in the sketch?
Clearly present your reasoning, relevant figures, and any accompanying calculations. Plot
the x component of the electric field, £, , on the graph on the bottom of the next page.

Clearly indicate on the vertical axis the values of E_ for the different regions.
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b) Find the electric potential in each of the four regions I-IV labeled above, with the
choice that the potential is zero at x =+c0 i.e. V/(+w0)=0. Show your calculations. Plot

the electric potential as a function of x on the graph on the bottom of the next page.
Indicate units on the vertical axis.
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¢) How much work must you do to bring a point like object with charge +Q in from
infinity to the origin x=07?

W‘%}:— ‘:AU T q/\/ % (V(P)HD)/

W= 14 V[x=0)

T 4\9&3* hos _(ho/g'{ @*I'c}m, Con gV
betey AG oty 0 Al repel fort
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Problem 4 (25 points) ol
NOTE: YOU MUST SHOW WORK in order to get any credit for this problem. Make
it clear to us that you understand what you are doing (use a few words!). You may find
the following integrals helpful in this answering this question.
"edr 1 1) "dr ! " 1y z .3
,ﬂr_z__(g_Z]’ ,. e Yalr. £%)s rj-dr =1~ ; ;[rdr =5(r;, -, )
r 1
. : b f"cj " /”_’_ at|
Consider a charged/infinite cylinder of radius R. r = | "
, I (0 n 1 D
E——— ’ i
{
p
The charge density is non-uniform and given by
—/'——-—
p(r)=br; r<R,
where r is the distance from the central axis and b is a constant. P

a) Find an expression for the direction and magnitude of the electric field
everywhere i.e. inside and outside the cylinder. Clearly present your reasoning,
relevant figures, and any accompanying calculations.

9‘/‘755"” cutae = [gge0 cy lndery
b a ) gralles
M&((JQ
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Fugy appooch

dd a0k led Yo lerg ol Sigg
Vs lad
b) A point-like object with charge +¢” and mass m is released from rest at the point

a distance 2R from the central axis of the cylinder. Find the speed of the object
when it reaches a distance 3R from the central axis of the cylinder
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Physics

8.02 Spring 2010
8.02 Exam One Solutions Spring 2010

Problem 1 (25 points)

Question 1 (5 points)

e

1. Above we show the grass seeds representation of the field of four point charges,
located at the positions indicated by the numbers. Which statement is true about the signs
of these charges:
a) All four charges have the same sign.
b) Charges 1 and 2 have the same sign, and that sign is opposite the sign of 3 and 4.
c) Charges 1 and 3 have the same sign, and that sign is opposite the sign of 2 and 4.
d) Charges 1 and 4 have the same sign, and that sign is opposite the sign of 2 and 3.
e) None of the above.
Solution b. Ficld lines continuously connect charges 1 and 3, and 2 and 4 respectively,
indicating that the charge of those pairs are opposite in sign. The field is a zero between

charges 1 and 2 indicating that they repel and hence are of the same sign. A smilar
argument holds for charges 3 and 4.



Question 2 (5 points)

The grass seeds figure below shows the electric field of three charges with charges +1,
+1, and -1, The Gaussian surface in the figure is a sphere containing two of the charges.

The total electric flux through the spherical Gaussian surface is
a) Positive
b) Negative
c) Zero
d) Impossible to determine without more information
Solution c. Because the field lines connect the two charges within the Gaussian surface

they must have opposite sign. Therefore the charge enclosed in the Gaussian surface is
zero. Hence the electric flux through the surface of the Gaussian surface is also zero.



Question 3 (5 points)

Two point-like charged objects with charges +Q and —Q are placed on the bottom
corners of a square of side a, as shown in the figure.

B, A

144

t

8] ()

=

You move an electron with charge —e from the upper right corner marked A to the
upper left corner marked B. Which of the following statements is true?

a)

b)

You do a negative amount of work on the electron equal to the amount of energy
necessary to assemble the system of three charged objects with the electron at
point B.

You do a positive amount of work on the electron equal to the amount of energy
necessary to assemble the system of three charged objects with the electron at
point B.

You do a positive amount of work on the electron and the potential energy of the
system of three charged objects increases.

You do a negative amount of work on the electron and the potential energy of the
system of three charged objects decreases.

You do a negative amount of work on the electron and the potential energy of the
system of three charged objects increases.

You do a positive amount of work on the electron and the potential energy of the
system of three charged objects decreases.

Solution d. Because point B is closer to the positive charge than the point A, the electric
potential difference V' (B)—V(A)> 0. When you move an electron with charge —e from

the upper right corner marked A to the upper left corner marked B, the potential energy
difference is U(B)—U(A4)=—e(V(B)—V(4))< 0. This means that you do a negative
amount of work and the potential energy of the system decreases.



Question 4 (5 points)

A graph of the electric potential ¥ (z) vs. z is shown in the figure below.
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Which of the following statements about the z -component of the electric field £. is

true?

a) E.<0for -3m<z<0 and £, < 0 for 0<z<3m.

b) E. <0 for -3m<z<0 and £, > 0 for 0<z<3m.

c) E.>0 for -3m<z<0 and E,< 0 for 0<z<3m.

d) E.>0 for -3m<z<0 and E,> 0 for 0<z<3m.

e) None of the above because £, cannot be determined from information in the

graph for the regions 3m<z<0 and 0<z<3m.

Solution b. For values of —3m <z <0 , the derivative dV(z)/dz> 0, and

E;
E =-dV(z)/dz>0.

=—dV(z)/dz < 0. For values of 0 <z<3m, the derivative dV(z)/dz<0, and



Question 5 (5 points)

Careful measurements reveal an electric field

- i, e Pir<R
E(r)y=<r" R
6; =R

where a and R are constants. Which of the following best describes the charge
distribution giving rise to this electric ficld?

a) A negative point charge at the origin with charge ¢ =4mzg,a and a uniformly
positive charged spherical shell of radius R with surface charge density
o=-q/47R*.

b) A positive point charge at the origin with charge ¢ =47g,a and a uniformly
negative charged spherical shell of radius R with surface charge density
oc=—q/4xR*.

c) A positive point charge at the origin with charge ¢ =47zg,a and a uniformly

negative charged sphere of radius R with charge density p=—g/(47R°/3).

d) A negative point charge at the origin with charge —¢ =—-4ms,a and a uniformly
positive charged sphere of radius R with charge density p =g /(47R’/3).

¢) Impossible to determine from the given information.

/ Solution ¢. As you shall see below the answer should be c. because the problem does not
Waj | specify the sign of the constant a. However both description c. and d. do seem plausible
(g,lfw'. d L sowe shall accept answers c., d., and e.

‘f.) m
Assume a > 0. Then the electric field can be thought of as the superposition of two

fields, Ep(r) =i,f' and E_(r) = —%f' . E,(r) is the electric field of a positive point
= .

charge at the origin with ¢ =47zs,a . E_(r) is the electric field of a uniformly negative

charged sphere of radius R . Because the electric field for radius » > R is zero, the sum
of the two charges distributions must be zero. Therefore the charge density must satisfy
p=—q/(4xR’ 13) =-4rg,a/(4nR’ /3)=-3g,al R’ .



Now assume a < 0 . Suppose the electric field can now be thought of as the superposition
of two fields, E_(r) = %f' and E, ()= —%—;—f' . E_(r) is the electric field of a negative

»
point charge at the origin with —g = 47zs,a >0, hence ¢ <0. E () is the electric field of
a uniformly positively charged sphere of radius R . Because the electric field for radius
r> R is zero, the sum of the two charges distributions must be zero. Therefore the charge
density must satisfy p =¢/(47R’/3)<0 . Therefore when a <0 the only possible
answer d. cannot be correct.



sum

V(0) Vi) =V (O)y=k—L+k—T ;D COD__
(2a7)"" (2a°}'" (2a8°)" (2a°)"*

c) Sketch on the figure below one path leading from infinity to the origin at O where the
0
integral IE -ds 1is trivial to do by inspection. Does your answer here agree with your

o

result in b)?

*$a 4 1

Solution: The electric field at any point along the x-axis is points in the —y-direction.
Therefore for a path from infinity to the origin at O along the x-axis, the dot product

a
E-ds =0 and hence the integral IE -ds = 0. Because by definition

o
f]—il -ds =—(V(0)—-V(x))=0, and the integral is path independent, our answer for the

above path along the x-axis sagrees with our result in part b.



Problem 2 (25 points)

NOTE: YOU MUST SHOW WORK in order to get any credit for this problem. Make
it clear to us that you understand what you are doing (use a few words!) .

Four charged point-like objects, two of
charge +¢ and two of charge —¢, are

_ _ @ iy MaXiS ® g
arranged on the vertices of a square with ;
sides of length 2a, as shown in the 5 5
sketch. .
a) What is the electric field at point O, a O a X axis
orhifoh s atihe ceniter of Hie:Squiwe? w i A i P i 4 deh B e B ol e caee S5 owen o oo e 20
Indicate the direction and the magnitude.
a
© -4 ¢ ®-q

Solution: When I add the contributions to the electric field at the origin from the two
positive charges on the upper corners of the square, the horizontal component cancels and
the vertical component points down.

E
2 ¢/\\§ E.
O ~ 3 O

%t i
A similar argument holds for the contributions to the electric field at the origin from the
two negative charges on the lower corners of the square. Therefore the electric field at the

origin is
(i](ﬁi) . T

E,=4
¢ o2 dre, a

= : 4 q
E_|sin@(—j)=4k—=
" o)) 2

b) What is the electric potential ¥ at point O, the center of the square, taking the potential
at infinity to be zero?

Solution zero. The electric potential difference between infinity and the origin is just the



Problem 3 (25 points)

NOTE: YOU MUST SHOW WORK in order to get any credit for this problem. Make
it clear to us that you understand what you are doing (use a few words!)

Three infinite sheets of charge are located at x=-d , x=0, and x=d , as shown in the
sketch. The sheet at x =0 has a charge per unit area of 2o, and the other two sheets
have charge per unit area of —o .

-0 + 20 -0
I II 111 v
» >, b
x=—d x=0 x=d

a) What is the electric field in cach of the four regions I-TV labeled in the sketch?
Clearly present your reasoning, relevant figures, and any accompanying calculations. Plot
the x component of the electric field, £, on the graph on the bottom of the next page.

Clearly indicate on the vertical axis the values of E_ for the different regions.

Solution: We begin by choosing a Gaussian cylinder with end caps in regions I and IV as
shown in the figure below. The total charge enclosed is zero and hence the electric flux
on the endcaps must be zero. Thus the electric field must be zero in regions 1 and IV.

- +ag” -0

oy ——too

., 671 E | = Te,

This turns out to be correct but the conclusion depends on an additional argument based
on symmetry. If the electric field is non-zero on the endcaps it must point either in the
+x-direction in both regions I and IV or in the —x-direction in both regions I and 1V.
Neither is possible due to the symmetry of the charge distribution. For example, if the
electric field pointed in the +x-direction in both regions I and IV. Then if we looked at




the charge distribution from the other side of the plane of the paper, the field should point
in the —x-direction. However the charge distribution is identical when looking from the
other side of the paper. Therefore the field must point in the +x-direction according to our -
original assertion. Therefore by symmetry the only possibility is for the fields in regions I

and IV to point toward x =0 or away from x = 0. In the first case the flux would be non- S '8 bk
zero on our Gaussian surface but it must be zero because the charge enclosed 1s zero. '

Hence the electric field in regions I and IV is zero. (A similar argument holds if we ;
assume that the field points in the —x-direction in both regions I and IV.)

For regions II and III, we choose a Gaussian cylinder with end caps in regions Il and III
as shown in the figure below. \', \ 7] Ll
A -

-G o il \

m
4 m

& i ol 1Y

The electric flux on the endcaps is [ﬂfﬁ -dA =2EA . The charge enclosed divided by &, is

0../& =20A4/¢g,. Therefore by Gauss’s Law, 2E4 =204/ g, which implies that the
magnitude of the electric field is £ =o'/ ¢&,. Thus the electric field is given by

0t x<-—-d
——1i; —d<x<0
. £,
E =
(O
—i; O<x<+d
50

0 5 d<x

The graph of the x component of the electric field, £, vs x is shown on the graph below.

o
glE,

x=—d

10



b) Find the electric potential in each of the four regions I-IV labeled above, with the
choice that the potential is zero at x =+o0 i.e. ¥ (+w0)=0. Show your calculations. Plot

the electric potential as a function of x on the graph on the bottom of the next page.
Indicate units on the vertical axis.

Solution: The electric potential difference between infinity and a point P located at x,
is given by

V(A')—V(oo):—jfl-ﬁ.

We shall evaluate this integral for points in cach region. We start with P anywhere in
region IV, d < x. Because the electric field in region IV is zero, the integral is zero,

V(x)-V () =—[E, -ds=0.
If P is anywhere in region III, 0< x <+d then

d
V(x)=V(xw)= _J. E!V -ds— Em -ds

B, Comery 4t

=0-

R Gy

X
g e} o o
Edy=—[—dx=——(x-d)=—d-—x
d o &y & &y

If P is anywhere in region 1I, —d < x <0 then

d 0 %
V(x)-V(w)=—[E, d5—[E, -ds-[E, ds
® d 0

If P is anywhere in region I, x <—d then
d _ 0 - -d ~ x
V(x)-V(®)=-[E, -d5~[E, -ds— [E,-d5- [ E, 45
@w d 0 —d
to i o o3 o
= O—I—dx— I ——dx—0=—d -—d =0
d 0 = ’

&y &y &y &g
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Because the electric field is continuous we can write our result as

P

R x<—-d
gd+£x; —-d<x<0
&y &y
V(- ()=
L F-Eys frzeud
&y €y
3 A d<x
Note this can be written as
| o x<—d

V(x)—V(w)= gzd—£|x ; —d<x<d.

0 0
i d<x

This result looks good because the area under the graph of the x component of the electric
field, E_ vs x for the region —d < x <d is zero. The plot of the electric potential as a

function of x on the graph is shown below with units of [V] on the vertical axis.

[V]
nx)
od /g,
~ = oy
x=-d x=0 x=d

¢) How much work must you do to bring a point-like object with charge +Q in from
infinity to the origin x=07?

Solution. The work you must do is equal to the change in potential energy (assuming the
point-like object begins and ends at rest). Therefore

W =U(0)-U(w)) = +0(V (0)—V (0)) = +%Ed .

0

12



Problem 4 (25 points)

NOTE: YOU MUST SHOW WORK in order to get any credit for this problem. Make
it clear to us that you understand what you are doing (use a few words!). You may find
the following integrals helpful in this answering this question.

b T, l L+l Jntl . T drw_ . .
;[l c!1=m(ib —i ),n#:l ; rT—-ln(.'b/fa).
Consider a charged infinite cy\ inder of radius R .
e
. ” : -
R t
e :
D \

— -

— e

The charge density is non-uniform and given by

plr)y=br; r<R,
where » is the distance from the central axis and b is a constant.
a) Find an expression for the direction and magnitude of the electric field
everywhere i.e. inside and outside the cylinder. Clearly present your reasoning, relevant
figures, and any accompanying calculations.
Solution. Because the charge distribution defines two distinct regions of space, region I
defined by r < R and region Il defined by » > R, we must apply Gauss’s Law twice to

find the electric field everywhere.

In region I, where r < R, we choose a Gaussian cylinder of radius » and length /.

7 Y, - f (q((m[{ ;f/

R A= ’
147 IR ; | )
v . S / '
: ,’ F —C. ho !}Ad(dfﬁ&
Because the electric field points away from the central axis, the electric flux on our (J &

Gaussian surface is

[JE, -dA=E,272r1.
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Because the charge density is non-uniform, we must integrate the charge density. We

choose as our integration volume a cylindrical shell of radius ', length / and thickness
dr'. The integration volume is then dV' =2zr'ldr" .

Therefore the charge divided by &, enclosed within our Gaussian surface is

r r - -3
Qem: /g() =_1-J.p2ﬂ'f"]flf" = ijb’-’zﬁ’.’]a{r’ o 27rlb zﬂ'lb’

2
redy=
€0 0 3¢,

&5 % &
Therefore Gauss’s Law becomes

E2zrl =2xlbr’ /3.
We can now solve for the direction and magnitude of the electric field when r< R,

Rl
3g,

Inregion Il where » > R, we choose a Gaussian cylinder of radius » and length /.

_ £
i {‘\ \‘
{ % 1 N
N ]

R /ﬁ .' ]" \ ; !
1 § !
¥ j '
Nt : ! {

t ; 7
l“ -/ {

Sty e —e r

Because the electric field points away from the central axis, the electric flux on our
Gaussian surface is

[[IE,,-(!K:EHZJZ‘J'!.
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We again must integrate the charge density but this time taking our endpoints as =0
and r = R . Therefore the charge divided by &, enclosed within our Gaussian surface is

27IbR?
Qe =_Ip2ﬂl ldr’ =—Jb: 2xrldr = ﬁlbj' 2t ”[b _

€0 0
Therefore Gauss’s Law becomes
E,2xrl =2rIbR’ /3.
We can now solve for the direction and magnitude of the electric field when »> R,

3
5, -1
3g;, r

Collected our results we have that

b’— r; r<R
3z,
bR 1

35, r

=
1]

—r F>R

b) A point-like object with charge +¢ and mass m is released from rest at the point

a distance 2R from the central axis of the cylinder. Find the speed of the object when it
reaches a distance 3R from the central axis of the cylinder.

Solution: The change in kinetic energy when the object moves from a distance 2R from
the central axis of the cylinder to a distance 3R is given by

KBR)-K(2R)=-(UBR)-UR2R)) =—q(¥ (3R)-V(2R)).

Because the particle was rclcabcd atrest, K(2R)=0,and K(3R)=(1/ 2)mv} , the final
speed of the object is

v, = \/—32(1/(31%)—1/(2}2)) .
m

The electric potential difference between two points in region I is given by

15



3R - s bR 1 ..
VGR)_VQR)E_LR E,-ds=- 2R E}—rd-S'
3 3 3
e [ROR L g PR DR SR yrermy
2R 3g, 1 3¢, 2R 3g,

Therefore the speed of the object when it reaches a distance 3R from the central axis of

the cylinder is
3
v, = Fqu In(3/2).
3me,
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